Starting in 2022, the lab has decided to post here only the archival, open-access version of our publications. This is part of the movement to emphasize quality and content over the impact factor or prestige of the journal a paper is published in. Full citations (for referencing papers in your own work) can be found on pubmed and/or within the archival version, which will be updated once a paper is accepted for publication after peer review.
Asterisk (*) denotes equal contribution
2023
Abstract
Rumination is a kind of repetitive negative thinking that involves prolonged sampling of negative episodes from one’s past, typically prompted by a present negative experience. We model rumination as an attempt at hidden-state inference, formalized as a partially-observable Markov decision process (POMDP). Using this allegorical model, we demonstrate conditions under which continuous, prolonged collection of samples from memory is the optimal policy. Consistent with phenomenological observations from clinical and experimental work, we show that prolonged sampling (i.e., chronic rumination), formalized as needing to sample more evidence before selecting an action, is required when possible negative outcomes increase in magnitude, when states of the world with negative outcomes are a priori more likely, and when samples are more variable than expected. By demonstrating that prolonged sampling may allow for optimal action selection under certain environmental conditions, we show how rumination may be adaptive for solving particular problems.
2022
Abstract
In the last few decades, the field of neuroscience has witnessed major technological advances that have allowed researchers to measure and control neural activity with great detail. Yet, behavioral experiments in humans remain an essential approach to investigate the mysteries of the mind. Their relatively modest technological and economic requisites make behavioral research an attractive and accessible experimental avenue for neuroscientists with very diverse backgrounds. However, like any experimental enterprise, it has its own inherent challenges that may pose practical hurdles, especially to less experienced behavioral researchers. Here, we aim at providing a practical guide for a steady walk through the workflow of a typical behavioral experiment with human subjects. This primer concerns the design of an experimental protocol, research ethics, and subject care, as well as best practices for data collection, analysis, and sharing. The goal is to provide clear instructions for both beginners and experienced researchers from diverse backgrounds in planning behavioral experiments.
Abstract
Senior faculty are incredibly powerful. In a two-page tenure letter, they can make or break a career. This power has an outsized impact on scholars with marginalized identities, such as Black academics, who are promoted with tenure at lower rates than their White colleagues. We suggest that this difference in tenure rates is due to an implicit, overly narrow definition of academic excellence that does not recognize all contributions that Black scholars make to their departments, institutions and academia in general, as well as the many invisible extra burdens of mentoring and representation that these scholars bear. Our goal is to empower letter-writers to counteract these factors and promote the academic culture we all want to support. Towards this end, and inspired by Tema Okun’s (2021) antidotes to “White supremacy culture” in academia, we propose to faculty with majority privilege a set of practical steps for writing inclusive, anti-racist tenure letters. Our recommendations address what to do before writing the letter, what to include (and not include) in the letter itself, and what to do after writing the letter to further support our excellent colleagues. Written from the perspective of USA-based, mostly non-Black, academics and non-academics in STEM fields who are learning about and working toward Black liberation in academia, we hope these recommendations, and their future refinement, can support widespread ongoing work toward an inclusive academia that appreciates and rewards diverse ways of doing, learning and knowing.
Abstract
Realistic and complex decision tasks often allow for many possible solutions. How do we find the correct one? Introspection suggests a process of trying out solutions one after the other until success. However, such methodical serial testing may be too slow, especially in environments with noisy feedback. Alternatively, the underlying learning process may involve implicit reinforcement learning that learns about many possibilities in parallel. Here we designed a multi-dimensional probabilistic active-learning task tailored to study how people learn to solve such complex problems. Participants configured three-dimensional stimuli by selecting features for each dimension and received probabilistic reward feedback. We manipulated task complexity by changing how many feature dimensions were relevant to maximizing reward, as well as whether this information was provided to the participants. To investigate how participants learn the task, we examined models of serial hypothesis testing, feature-based reinforcement learning, and combinations of the two strategies. Model comparison revealed evidence for hypothesis testing that relies on reinforcement-learning when selecting what hypothesis to test. The extent to which participants engaged in hypothesis testing depended on the instructed task complexity: people tended to serially test hypotheses when instructed that there were fewer relevant dimensions, and relied more on gradual and parallel learning of feature values when the task was more complex. This demonstrates a strategic use of task information to balance the costs and benefits of the two methods of learning.
Abstract
Cognitive tasks are capable of providing researchers with crucial insights into the re- lationship between cognitive processing and psychiatric phenomena across individuals. However, many recent studies have found that task measures exhibit poor reliability, which hampers their utility for individual-differences research. Here we provide a nar- rative review of approaches to improve the reliability of cognitive task measures. First, we review methods of calculating reliability and discuss some nuances that are specific to cognitive tasks. Then, we introduce a taxonomy of approaches for improving task reliability. Where appropriate, we highlight studies that are exemplary for improving the reliability of specific task measures. We hope that this article can serve as a helpful guide for experimenters who wish to design a new task, or improve an existing one, to achieve sufficient reliability for use in individual-differences research.
Abstract
How do biological systems learn continuously throughout their lifespans, adapting to change while retaining old knowledge, and how can these principles be applied to artificial learning systems? In this Forum article we outline challenges and strategies of ‘lifelong learning’ in biological and artificial systems, and argue that a collaborative study of each system’s failure modes can benefit both.
Abstract
Abstract
Abstract
2021
Abstract
Abstract
Reinforcement learning is a powerful framework for modelling the cognitive and neural substrates of learning and decision making. Contemporary research in cognitive neuroscience and neuroeconomics typically uses value-based reinforcement-learning models, which assume that decision-makers choose by comparing learned values for different actions. However, another possibility is suggested by a simpler family of models, called policy-gradient reinforcement learning. Policy-gradient models learn by optimizing a behavioral policy directly, without the intermediate step of value-learning. Here we review recent behavioral and neural findings that are more parsimoniously explained by policy-gradient models than by value-based models. We conclude that, despite the ubiquity of ‘value’ in reinforcement-learning models of decision making, policy-gradient models provide a lightweight and compelling alternative model of operant behavior.
Abstract
Abstract
How does rumination affect reinforcement learning — the ubiquitous process by which we adjust behavior after error in order to behave more effectively in the future? In a within-subject design (n=49), we tested whether experimentally induced rumination disrupts reinforcement learning in a multidimensional learning task previously shown to rely on selective attention. Rumination impaired performance, yet unexpectedly this impairment could not be attributed to decreased attentional breadth (quantified using a “decay” parameter in a computational model). Instead, trait rumination (between subjects) was associated with higher decay rates (implying narrower attention), yet not with impaired performance. Our task-performance results accord with the possibility that state rumination promotes stress-generating behavior in part by disrupting reinforcement learning. The trait-rumination finding accords with the predictions of a prominent model of trait rumination (the attentional-scope model). More work is needed to understand the specific mechanisms by which state rumination disrupts reinforcement learning.
Abstract
Abstract
The central theme of this review is the dynamic interaction between infor- mation selection and learning. We pose a fundamental question about this interaction: How do we learn what features of our experiences are worth learning about? In humans, this process depends on attention and memory, two cognitive functions that together constrain representations of the world to features that are relevant for goal attainment. Recent evidence suggests that the representations shaped by attention and memory are themselves in- ferred from experience with each task. We review this evidence and place it in the context of work that has explicitly characterized representation learning as statistical inference. We discuss how inference can be scaled to real-world decisions by approximating beliefs based on a small number of experiences. Finally, we highlight some implications of this inference process for human decision-making in social environments.
Abstract
Understanding the brain requires us to answer both what the brain does, and how it does it. Using a series of examples, I make the case that behavior is often more useful than neuroscientific measurements for answering the first question. Moreover, I show that even for “how” questions that pertain to neural mechanism, a well-crafted behavioral paradigm can offer deeper insight and stronger constraints on computational and mechanistic models than do many highly challenging (and very expensive) neural studies. I conclude that behavioral, rather than neuroscientific research, is essential for understanding the brain, contrary to the opinion of prominent funding bodies and scientific journals, who erroneously place neural data on a pedestal and consider behavior to be subsidiary.
Abstract
Much of traditional neuroeconomics proceeds from the hypothesis that value is reified in the brain, that is, that there are neurons or brain regions whose responses serve the discrete purpose of encoding value. This hypothesis is supported by the finding that the activity of many neurons covaries with subjective value as estimated in specific tasks and has led to the idea that the primary function of the orbitofrontal cortex is to compute and signal economic value. Here we consider an alternative: that economic value, in the cardinal, common-currency sense, is not represented in the brain and used for choice by default. This idea is motivated by consideration of the economic concept of value, which places important epistemic constraints on our ability to identify its neural basis. It is also motivated by the behavioral economics literature, especially work on heuristics, which proposes value-free process models for much if not all of choice. Finally, it is buoyed by recent neural and behavioral findings regarding how animals and humans learn to choose between options. In light of our hypothesis, we critically reevaluate putative neural evidence for the representation of value and explore an alternative: direct learning of action policies. We delineate how this alternative can provide a robust account of behavior that concords with existing empirical data.
Abstract
Abstract
2020
Abstract
To efficiently learn optimal behavior in complex environments, humans rely on an interplay of learning and attention. Healthy aging has been shown to independently affect both of these functions. Here, we investigate how reinforcement learning and selective attention interact during learning from trial and error across age groups. We acquired behavioral and fMRI data from older and younger adults performing two probabilistic learning tasks with varying attention demands. While learning in the unidimensional task did not dier across age groups, older adults performed worse than younger adults in the multidimensional task, which required high levels of selective attention. Computational modeling showed that choices of older adults are better predicted by reinforcement learning than Bayesian inference, and that older adults rely more on reinforcement learning based predictions than younger adults. Conversely, a higher proportion of younger adults' choices was predicted by a computationally demanding Bayesian approach. In line with the behavioral findings, we observed no group differences in reinforcement learning related fMRI activation. Specifically, prediction-error activation in the nucleus accumbens was similar across age groups, and numerically higher in older adults. However, activation in the default mode was less suppressed in older adults for higher
attentional task demands, and the level of suppression correlated with behavioral performance. Our results indicate that healthy aging does not signicantly impair simple reinforcement learning. However, in complex environments, older adults rely more heavily on suboptimal reinforcement-learning strategies supported by the ventral striatum, whereas younger adults utilize attention processes supported by cortical networks.
Abstract
Abstract
Abstract
Abstract
Abstract
2019
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Rationale. Depression is a disorder characterized by sustained negative affect and blunted positive affect, suggesting potential abnormalities in reward learning and its interaction with episodic memory. Objectives. This study investigated how reward prediction errors experienced during learning modulate memory for rewarding events in individuals with depressive and non-depressive symptoms.
Methods. Across three experiments, participants learned the average values of two scene categories in two learning contexts. Each learning context had either high or low outcome variance, allowing us to test the effects of small and large prediction errors on learning and memory. Participants were later tested for their memory of trial-unique scenes that appeared alongside outcomes. We compared learning and memory performance of individuals with self-reported depressive symptoms (N = 101) to those without (N = 184).
Results. Although there were no overall differences in reward learning between the depressive and non-depressive group, depression severity within the depressive group predicted greater error in estimating the values of the scene categories. Similarly, there were no overall differences in memory performance. However, in depressive participants, negative prediction errors enhanced episodic memory more so than did positive prediction errors, and vice versa for non-depressive participants who showed a larger effect of positive prediction errors on memory. These results reflected differences in memory both within group and across groups.
Conclusions. Individuals with self-reported depressive symptoms showed relatively intact reinforcement learning, but demonstrated a bias for encoding events that accompanied surprising negative outcomes versus surprising positive ones. We discuss a potential neural mechanism supporting these effects, which may underlie or contribute to the excessive negative affect observed in depression.
Abstract
Abstract
Abstract
Abstract
Abstract
2018
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems.