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Abstract

A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in

these are actor–critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the

temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and

learning guided by a prediction error signal in the actor. We selectively review several actor–critic models of the basal ganglia with an

emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent

to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal

ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses

Evolutionary Computation techniques to ‘evolve’ an optimal RL mechanism, and relate the evolved mechanism to the basic model of the

critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic

in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the

basal ganglia. We return to the actor component of the actor–critic model, which is usually modeled at the striatal level with very little detail.

We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and

physiological characteristics of basal ganglia–thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-

biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the

level of the frontal cortex towards the selection of rewarded plans and actions, the reinforcement-driven dimensionality reduction framework

may serve as a basis for basal ganglia actor models. We conclude with a short discussion of the dual role of the dopamine signal in RL and in

behavioral switching. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A large number of computational models of information

processing in the basal ganglia have been developed in

recent years (Houk, Adams, & Barto, 1995; see Fig. 1 for a

general scheme of basal ganglia connections). A recent

review groups these models into three main (not mutually

exclusive) categories: models of serial processing, models

of action selection, and models of reinforcement learning

(RL) (Gillies & Arbuthnott, 2000). The first category

includes models that assign a central role to the basal

ganglia loop structure in generating sequences of activity

patterns (Berns & Sejnowski, 1998). The second class

focuses on the tonic inhibitory activity that the major basal

ganglia output nuclei exert upon their targets, assuming that

it provides for action selection via focused disinhibition

(Gurney, Prescott, & Redgrave, 2001). In this paper, we

focus on the third class of models, which assign a major role

for the basal ganglia in RL.

The interest in RL models of the basal ganglia has

been initiated by the seminal studies of Wolfram

Schultz, which provided experimental evidence

suggesting that RL plays an important role in basal

ganglia processing (Schultz & Dickinson, 2000; Schultz,

Tremblay, & Hollerman, 2000). Recording the activity

of dopaminergic (DA) neurons in monkeys during the

acquisition and performance of behavioral tasks, Schultz

and colleagues found that DA neurons respond phasi-

cally to primary rewards, and as the experiment
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progresses, the response of these neurons gradually

shifts back in time from the primary reward to reward-

predicting stimuli. The firing pattern of DA neurons was

also found to reflect information regarding the timing of

delayed rewards (relative to the reward-predicting

stimulus), as could be seen by the precisely timed

depression of DA firing when an expected reward was

omitted. This pattern of activity is very similar to that

generated by computational algorithms of RL, in

particular temporal difference (TD) models (Sutton,

1988), as described in detail in another paper in this

issue (Suri, 2002).

In the context of basal ganglia modeling, TD

learning is mainly used in the framework of Actor–

Critic models (Barto, 1995; Houk et al., 1995). In such

models, an actor sub-network learns to perform actions

so as to maximize the weighted sum of future rewards,

which is computed at every timestep by a critic sub-

network (Barto, 1995). The critic is adaptive, in that it

learns to predict the weighted sum of future rewards

based on the current sensory input and the actor’s

policy, by means of an iterative process in which it

compares its own predictions to the actual rewards

obtained by the acting agent. The learning rule used by

the adaptive critic is the TD learning rule (Sutton, 1988)

in which the error between two adjacent predictions (the

TD error) is used to update the critic’s weights.

Numerous studies have shown that using such an error

signal to train the actor results in very efficient RL

(Kaelbling, Littman, & Moore, 1996; Tesauro, 1995;

Zhang & Dietterich, 1996).

The analogy between the basal ganglia and actor–

critic models builds on the strong resemblance between

DA neuron activity and the TD prediction error signal,

and between DA-dependent long-term synaptic plasticity

in the striatum (Calabresi et al., 2000; Wickens, Begg,

& Arbuthnott, 1996) and learning guided by a predic-

tion error signal in the actor. Actor–critic models of

basal ganglia functioning have gained popularity in

recent years, and several models have been proposed. A

comparison between these models shows that they

mainly differ in two important aspects. Models of the

critic differ in the way in which the temporal dynamics

of DA firing are reproduced, that is, in the network

architecture responsible for producing the short phasic

response of DA neurons to unpredicted rewards and

reward-predicting stimuli, and the depression induced by

reward omission. Models of the actor differ in the

extent to which they take into account known basal

ganglia anatomy and physiology.

In Section 2 we briefly review several actor–critic models

of the basal ganglia with an emphasis on the mechanism

responsible for reproducing the temporal dynamics of DA

firing and on the architecture of the actor. Section 3 introduces

an alternative approach to modeling a critic network, which

uses Evolutionary Computation techniques to evolve an

optimal RL mechanism. This mechanism is then related to

the more classic models of critics presented in Section 2.

Section 4 provides a critical discussion of the anatomical

plausibility of the implementation of an adaptive critic in basal

ganglia circuitry. In Section 5 we return to the actor

component of the actor–critic model and describe an

alternative model of the basal ganglia which takes into

account several important, and previously neglected, anatom-

ical and physiological characteristics of basal ganglia–

thalamocortical connectivity. This model sees the main

computational role of the basal ganglia as being a key station

in a dimension reduction coding–decoding cortico-striato-

pallido-thalamo-cortical loop. We conclude with a short

discussion of the dual role of the DA signal in RL and

behavioral switching.

Fig. 1. A general scheme of basal ganglia–thalamocortical connections.

The striatum is the main input structure of the basal ganglia. It is divided

into dorsal striatum (most of the caudate and putamen) and ventral striatum

(nucleus accumbens and the ventromedial parts of the caudate and

putamen). The striatum is innervated by the entire cerebral cortex, and

projects to the output nuclei of the basal ganglia, the globus pallidus (GPi),

the substantia nigra pars reticulata (SNr) and the ventral pallidum (VP).

These nuclei project in turn to the ventral anterior (VA) and mediodorsal

(MD) thalamic nuclei, which are reciprocally connected with the frontal

cortex. Information from the striatum can also reach the output nuclei via

the ‘indirect pathway’, namely, via striatal projections to the external

segment of the globus pallidus (GPe), GPe projections to the subthalamic

nucleus (STN), and the latter’s projections to GPi/SNr/VP. The striatum

also projects dopaminergic neurons in the substantia nigra pars compacta

(SNC), retrorubral area (RRA) and ventral tegmental area (VTA). Please

note that this scheme does not relate to two important principles of

organization of the depicted projections. One is the compartmental

organization of the dorsal striatum into striosomes (patches, in rats) and

matrix. The other is the topographical organization of the projections

between the different levels into several ‘streams’ which form several

ganglia–thalamocortical circuits. (For extensive reviews of the organiz-

ation of basal ganglia–thalamocortical connections, see Alexander &

Crutcher, 1990; Gerfen, 1992; Joel & Weiner, 1994, 1997, 2000; Parent,

1990).
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2. Actor–critic models of reinforcement learning in the

basal ganglia

2.1. Houk, Adams, and Barto (1995)

One of the first actor–critic models of the basal ganglia

was presented by Houk et al. (1995). This model suggests

that striosomal modules fulfill the main functions of the

adaptive critic, whereas matrix modules function as an

actor. Striosomal modules comprise of striatal striosomes,

subthalamic nucleus, and dopaminergic neurons in the

substantia nigra pars compacta (SNc). According to the

model, three sources of input interact in generating the firing

patterns of DA neurons. Two of these inputs arise from

striatal striosomes and provide information on the occur-

rence of stimuli that predict reinforcement. One is a direct

input to the SNc, which provides prolonged inhibition, and

the other is an indirect input, channeled to the DA neurons

via the subthalamic nucleus, which provides phasic

excitation. The third input to DA neurons, which is assumed

to arise from the lateral hypothalamus, is also excitatory and

provides information on the occurrence of primary rewards.

During acquisition, striatal striosomal neurons learn to fire

in bursts when stimuli predicting future primary reinforce-

ment occur, through DA-dependent strengthening of

corticostriatal synapses. After learning, the presentation of

a reward-predicting stimulus would lead to DA burst firing

as a result of indirect excitation from the striosomes. The

arrival of an expected primary reward would not lead to a

DA response, since the prolonged direct inhibition arising

from the striosomes would cancel the excitation arising

from the lateral hypothalamus. In terms of the TD equation

for the prediction error, the primary reinforcement in the TD

equation is equated with the primary reinforcement to DA

neurons, the prediction PðtÞ of future reinforcement is

equated with the indirect excitatory input to DA neurons,

and the direct inhibitory input is equated with the prediction

Pðt 2 1Þ at the earlier time step.

Houk et al.’s model of the critic does not include an

exact timing mechanism, but rather a slow and persistent

inhibition of DA neurons. As a result, it does not account

for the timed depression of DA activity when an expected

reward is omitted. This problem has been tackled in later

models by using a different representation of the inputs to

the network. The ‘complete serial compound stimulus’

(Montague, Dayan, & Sejnowski, 1996) is a represen-

tation of the stimulus which has a distinct activation

component for each timestep during and for a while after

the presentation of the stimulus. In general, it is assumed

that the presentation of a stimulus initiates an exuberance

of temporal representations and the learning rule can

select the ones that are appropriate, that is, that

correspond to the stimulus–reward interval. The models

described later use this computational principle, but

describe different neural implementations of this general

solution.

In contrast to the detailed discussion of the critic, Houk

et al. provide only a general scheme of the implementation

of the actor in basal ganglia circuitry. According to their

model, matrix modules, comprising of the striatal matrix,

subthalamic nucleus, globus pallidus, thalamus, and frontal

cortex, generate signals that command various actions or

represent plans that organize other systems to generate

actual command signals. They note, however, that from a

sensory perspective, the signals generated by the matrix

modules may signal the occurrence of salient contexts (see

also Section 5).

2.2. Suri and Schultz (1998, 1999)

Suri and Schultz have extended the basic actor–critic

model presented by Barto (1995), both by providing a neural

model of the actor and by modifying the TD algorithm with

respect to stimulus representation so as to reproduce the

timed depression of DA activity at the time of omitted

reward. The timing mechanism was implemented by

representing each stimulus using a set of neurons, each of

which was activated for a different duration (instead of the

single prolonged inhibition in Barto’s model). The critic

learning rule was modified to ensure that only the weight for

the stimulus representation component that covers the actual

stimulus–reward interval is adapted, whereas the weights

for the other neurons remain unchanged. These modifi-

cations allowed the model to replicate the firing pattern of

DA neurons to reward-predicting stimuli, predicted rewards

and omitted rewards (Suri & Schultz, 1998). In an

enhancement of their basic model (Suri & Schultz, 1999),

the teaching signal was further enriched to better fit the

pertaining biological data on the responses of DA neurons to

novel stimuli.

The actor in these models was comprised of one

layer of neurons, each representing a specific action. It

learned stimulus-action pairs based on the prediction

error signal provided by the critic. A winner-take-all

rule that can be implemented through lateral inhibition

between neurons ensured that only one action was

selected at a given time.

Using this modified and extended model of the critic,

Suri and Schultz (1998, 1999) demonstrated that even a

simple actor network was sufficient to solve relatively

complex behavioral tasks. However, although these authors

acknowledge the general similarity between the actor–

critic architecture and basal ganglia structure, and suggest

that the components of the temporal stimulus representation

may correspond to sustained activity of striatal and cortical

neurons, no attempt was made to implement the critic in

the known architecture of the basal ganglia. In addition, the

extension of the TD algorithm to include novelty responses,

generalization responses and some temporal aspects in

reward prediction, was achieved by arbitrarily specifying

the values of specific parameters of the model (e.g.

initializing specific synaptic weights with specific values,
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using different learning rates for different synapses)

rather than by a more biologically plausible implemen-

tation in a neural network related to basal ganglia

anatomy and physiology. Such an attempt has been made by

Contreras-Vidal and Schultz (1999).

2.3. Contreras-Vidal and Schultz (1999)

Contreras-Vidal and Schultz (1999) provide a neural

network architecture related to basal ganglia anatomy which

can account for DA responses to novelty, generalization

and discrimination of appetitive and aversive stimuli, by

incorporating an additional adaptive resonance neural

network originally developed by Carpenter and Grossberg

(1987). They further suggest that there are two types of

reward prediction errors: a signal representing error in the

timing of reward prediction, which may be related to the TD

model, and a signal coding for error in the type and amount

of reward prediction, which may be related to the adaptive

resonance network. Whereas description of this network is

beyond the scope of our paper, we will briefly discuss their

implementation of the timing mechanism responsible for the

depression of DA activity at the time of omitted reward.

Similar to Suri and Schultz (1998, 1999), Contreras-Vidal

and Schultz postulate that striosomal neurons generate a

spectrum of timing signals in response to a sensory input (a

‘complete serial compound’ representation of the stimulus).

However, in their model, striosomal neurons are activated

successively following stimulus onset and for a restricted

period of time, in contrast to the sustained activity of

different durations assumed by Suri and Schultz. As in Suri

and Schultz’s models, the learning rule ensures that

synapses of striosomal neurons active at the time of primary

reward delivery (that is, in conjunction with DA activity),

are strengthened, but in Contreras-Vidal and Schultz’s

model, it is striatonigral rather than corticostriatal synapses

that are assumed to be modified by learning. (It should be

noted that whereas there is ample evidence for long term

plasticity in corticostriatal synapses, there is no such

evidence for striatonigral synapses.) After learning, the

excitation of DA neurons by predicted primary rewards is

canceled by the timed inhibition arising from striosomes.

Importantly, in contrast to models based on the general

scheme of a critic presented by Barto (1995), in this model

the source of excitation to DA neurons is assumed to be

different from that of inhibition. Thus, the phasic DA

response to reward-predicting stimuli is attributed to

excitation arising from the prefrontal cortex (PFC) and

channeled to the DA neurons via the striatal matrix and

substantia nigra pars reticulata (SNr).

2.4. Brown, Bullock, and Grossberg (1999)

Another attempt to answer the question of what

biological mechanisms compute the DA response to rewards

and reward-predicting stimuli, is provided by Brown et al.

(1999). Similar to Contreras-Vidal and Schultz (1999), these

authors suggest that the fast excitatory response to con-

ditioned stimuli and the delayed, adaptively timed inhibition

of response to rewarding unconditioned stimuli, are sub-

served by different anatomical pathways. The suppression

of DA responses to predicted rewards and the decrease in

DA activity when a predicted reward is omitted depend on

adaptively timed inhibitory projections from striosomes in

the dorsal and ventral striatum to SNc. In contrast to

Contreras-Vidal and Schultz (1999), however, the succes-

sive bursting of striosomal neurons following stimulus onset

depends on an intra-cellular calcium-dependent timing

mechanism. As in earlier models, the simultaneous

occurrence of striosomal neurons’ spiking and DA burst

firing (in response to a primary reward) leads to enhance-

ment of corticostriatal synapses on the active striosomal

neurons. A striosomal population that fires at the expected

time of reward delivery is thus selected, hence, forward

preventing the DA response to predicted rewards. The

activation of DA neurons to rewards and reward-predicting

stimuli is attributed to excitatory projections from the

pedunculopontine tegmental nucleus (PPN) to the SNc. The

phasic nature of DA activation is suggested to be due to

habituation or accommodation of PPN neurons projecting to

the SNc.

2.5. Suri, Bargas, and Arbib (2001)

In a recent paper, Suri et al. (2001) extend the actor–

critic model employed by Suri and Schultz (1998, 1999) by

using an extended TD model, an actor based on the anatomy

of basal ganglia–thalamocortical circuitry, and complex

interactions between the critic and actor. Similar to the actor

in Suri and Schultz (1998, 1999), each model neuron in the

striatal layer is thought to correspond to a small population

of striatal matrix neurons that is able to elicit an action.

However, the mechanism ensuring the selection of only one

action at a given time depends on the interaction between

the direct and indirect pathways connecting the striatum to

the basal ganglia output nuclei and on a winner-take-all rule

at the cortical level. In this model DA affects the action of

the actor by three types of membrane potential-dependent

influences on striatal neurons: long-term adaptation of

corticostiatal transmission, and transient effects on striatal

neurons’ firing rates and duration of the up- and down-state.

The critic receives sensory and reward information, as in

earlier models, and in addition receives information

regarding the intended and actual action from the thalamic

and cortical levels of the actor. As a result, the critic can

learn both stimulus – reward and action-stimulus

associations.

Suri et al. showed that this extended actor–critic model

is capable of sensorimotor learning, as is the original actor–

critic model employed by Suri and Schultz (1998, 1999). In

addition, this model has planning capabilities, that is, the

ability to form novel associative chains and select its action

D. Joel et al. / Neural Networks 15 (2002) 535–547538



in relation to the outcome predicted by these associative

chains. Planning in this model critically depends on the fact

that the input to the extended critic includes prediction of

future stimuli and information regarding intended actions

(provided by the thalamus), which can be used to estimate

future prediction signals, and on the fact that the critic is run

for two iterations for every action step. Together, these

characteristics enable the evaluation of intended actions,

based on the formation of new associative chains between

an action, the sensory outcome of that action and the reward.

Suri et al. also model the novelty responses of DA

neurons, that is, the transient increase in striatal DA upon

the encounter of a novel stimulus. This novelty response

increases the likelihood of firing in striatal neurons in the

up-state, and therefore the likelihood of action, thus

generating exploration behavior. The novelty response of

DA neurons is achieved through an initial choice of weights

effectively equivalent to assigning optimistic initial values

to novel places/stimuli. Exploratory behavior also results

from the stochastic transitions between up and down states

of the striatal neurons in the model. Below we describe

another mechanism which may control the tradeoff between

exploration and exploitation, which is characteristic of

armed bandit situations.

3. Evolution of reinforcement learning—a different

approach to modeling the critic

An alternative approach to modeling a RL critic has been

taken by us (Niv, Joel, Meilijson, & Ruppin, (2002) in

press). We have used Evolutionary Computation techniques

to evolve the neuronal learning rules of a simple neural

network model of decision-making in bumble-bees foraging

for nectar. To this end we formalized a very general

framework for evolving learning rules, which encompassed

all heterosynaptic Hebbian learning rules and also allowed

for neuromodulation of synaptic plasticity. Using a genetic

algorithm, bees were evolved based on their nectar-

gathering ability in a changing environment. As a result of

the uncertainty of the environment, efficient foraging could

only result from efficient RL, thus an efficient RL

mechanism was evolved.

To avoid the possible confusion of terms, we make a

distinction between the notions of heterosynaptic plasticity

(Dittman & Regehr, 1997; Schacher, Wu, & Sun, 1997;

Vogt & Nicoll, 1999) and neuromodulation of plasticity

(Bailey, Giustetto, Huang, Hawkins, & Kandel, 2000;

Fellous & Linster, 1998). In contrast to the conventionally

used monosynaptic Hebbian learning, heterosynaptic Heb-

bian learning allows for activity-independent modification

of synapses such that a synapse can also be updated when

only the pre-synaptic or post-synaptic component has been

active, and more generally, even when neither have been

active. We term this, ‘heterosynaptic’ modification as it

allows for the firing of a neuron to affect all its synapses,

regardless of the activity of the other neurons connected to

them. Neuromodulation of synaptic plasticity further

enhances the learning rule by allowing a three-factor

interaction in the learning process: through neuromodu-

lation the activity of a neuron can gate the plasticity of a

synapse between two other neurons. Both heterosynaptic

plasticity and neuromodulatory gating of synaptic plasticity

have been demonstrated in neural tissues (Bailey et al.,

2000; Dittman & Regehr, 1997; Fellous & Linster, 1998;

Schacher et al., 1997; Vogt & Nicoll, 1999), and have been

recognized to increase the computational complexity of

synaptic learning (Bailey et al., 2000; Fellous & Linster,

1998; Wickens and Kotter, 1995). By allowing for

heterosynaptic learning and neuromodulation of plasticity,

we defined a very large search space in which the genetic

algorithm could search for optimal synaptic learning rules.

Within the framework of our model, we showed that only

one network architecture could produce effective RL and

above-random foraging behavior. The evolved network was

similar to an architecture proposed earlier by Montague,

Dayan, Person, and Sejnowski (1995) and consisted of a

sensory input module which codes changes over time in

the sensory input, a reward input module which provides

information on nectar intake, and an output unit P. The

evolved learning rule was indeed heterosynaptic and

incorporated neuromodulation of synaptic plasticity (for a

detailed description see Niv et al. (2002) in press; http://

www.cns.tau.ac.il/ t yaeln/AdaptiveBehavior2002.htm).

The learning mechanism evolved can be closely related

to the adaptive critic, with respect to the activity of the

output unit and the neuromodulation of synaptic plasticity.

Similar to Montague et al. (1995), the output of the model

unit P quite accurately captures the essence of the activity

patterns of midbrain dopaminergic neurons in primates

and rodents (Montague et al., 1996; Schultz, Dayan, &

Montague, 1997), and the corresponding octopaminergic

neurons in bees (Hammer, 1997; Menzel & Muller, 1996).

Since in the evolved network the synaptic weights come to

represent the expected reward and the inputs represent

changes over time in the sensory input, the output of the

network represents an ongoing comparison between the

expected reward in subsequent timesteps. As in the critic

model, this comparison provides the error measure by which

the network updates its weights and learns to better predict

future rewards.

With regard to neuromodulation, this work has shown

that efficient RL critically depends on the evolution of

neuromodulation of synaptic plasticity, that is, the gating of

synaptic plasticity between two neurons by the activity of a

third neuron (a ‘three-factor’ Hebbian learning rule). This is

similar to the DA-dependent plasticity described in

corticostriatal synapses (Calabresi et al., 2000; Wickens

et al., 1996). The demonstration of the computational

optimality of this learning rule to RL contributes to the

attempts of computational models to bridge between the

complex anatomy and physiology of the basal ganglia–
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thalamocortical system and findings from lesion and

imaging studies implicating this system in procedural or

stimulus-response learning.

In contrast to the monosynaptic learning rules usually

employed by actor–critic models, the heterosynaptic

learning rules we have evolved enable the modification of

a synapse even when its pre- or post-synaptic component (or

both) are not activated. This allows for non-trivial

interactions between the rewards predicted by different

stimuli. For example, the amount of reward predicted by one

stimulus can be modified as a result of the disappointment or

surprise encountered when facing a different stimulus, and

the tendency to perform a certain response can change even

when another response was executed. In the model, these

micro-level heterosynaptic plasticity dynamics give rise

directly to the macro-level tradeoff between exploration and

exploitation characteristic of foraging behavior. Evidence

from cerebellar (Dittman & Regehr, 1997) and hippocampal

(Vogt & Nicoll, 1999) synapses shows that heterosynaptic

plasticity indeed occurs in the brain, but this phenomenon

has yet to be demonstrated in the striatum. Such a

mechanism could provide another intra-striatal mechanism

that controls exploration, in addition to those suggested by

Suri et al. (2001).

Our model reflects mainly the critic module of the actor–

critic framework and consists only of an extremely

simplistic actor. Future work focused on elaborating the

actor component of the model is needed in order to increase

the relevance of the model to learning in the basal ganglia,

and to allow for a more detailed account of how this

computational model could be implemented in basal ganglia

circuitry.

4. Critic networks in the basal ganglia—a discussion

As evident from the earlier description of the models, it is

widely accepted that a critic-like function is sub-served by

the connections of striatal striosomes with the DA system.

Yet, only three studies (Brown et al., 1999; Contreras-Vidal

& Schultz, 1999; Houk et al., 1995) have attempted to

provide neural network models of the critic based on the

known anatomy and physiology of these connections. A

comparison between these models in general, and in relation

to the implementation of a timing mechanism in particular,

can be found in Brown et al. (1999) and Contreras-Vidal and

Schultz (1999). Here we would like to focus on two issues:

(1) Are there anatomical grounds to support the consensus

that striatal striosomes play a critical role in the Critic? (2)

Do the excitation of DA neurons when encountering a

reward-predicting stimulus and the inhibition of these

neurons when a predicted reward is omitted, arise from

one origin (as suggested by Houk et al. (1995) and implied

in the different models of Suri and colleagues), or do they

arise from two different sources with different character-

istics (as suggested by Brown et al., 1999; Contreras-Vidal

& Schultz, 1999)?

4.1. Striosomes and the adaptive critic

The focus on the connections between the striosomal

compartment of the striatum and the DA system stems from

the work of Charles R. Gerfen, who showed that in rats there

are reciprocal connections between the striosomes of the

dorsal striatum and a relatively small group of DA neurons,

residing in the ventral part of the SNc and in the SNr

(Gerfen, 1984, 1985; Gerfen, Herkenham, & Thibault,

1987). Current data in primates suggest that a group of DA

neurons may be reciprocally connected with neurons in the

dorsal striatum. There is no evidence, however, regarding

the compartmental origin of these striatal neurons (see Joel

& Weiner, 2000). Therefore, the implementation of the

critic in the connections of striosomal neurons with the DA

system is not supported by anatomical evidence in primates.

Even when considered only with regard to anatomical

evidence in rats, such implementation can account only for

the activity of a relatively small group of DA neurons.

Is there another group of striatal neurons which can

replace the ‘striosomes’ in the different models? Or, stated

differently, is there a group of striatal neurons, which have

reciprocal connections with the entire DA system? Two

recent meta-analyses of the anatomical data regarding the

connections between the striatum and the DA system in

primates (Haber, Fudge, & McFarland, 2000; Joel &

Weiner, 2000) and rats (Joel & Weiner, 2000) have

concluded that an asymmetry rather than reciprocity is an

important characteristic of the connections between the

striatum and the DA system. That is, the limbic (ventral)

striatum projects to most of the DA system but is innervated

by a relatively small sub-group of DA neurons, whereas the

reverse is true for the motor striatum (mainly putamen),

which is innervated by a larger region of the DA system than

the one to which it projects. As a result of this organization,

the limbic striatum reciprocates its DA input and innervates

DA neurons projecting to the associative (mainly caudate

nucleus) and motor striatum; the associative striatum

reciprocates part of its DA input and innervates DA neurons

projecting to the motor striatum, and the motor striatum

reciprocates part of its DA input (Haber et al., 2000; Joel &

Weiner, 2000). Based on this organization, the authors of

both papers suggested that the striato-DA-striatal con-

nections may serve an important role in the transfer of

information between basal ganglia–thalamocortical cir-

cuits, in addition to the role attributed to these connections

in intra-circuit processing.

We conclude that a critic which builds on reciprocal

connections between DA neurons and another group of

neurons, cannot be implemented in the connections between

the DA system and the striatum. However, since the ventral

striatum (and ventral pallidum (VP), see later) provides a

major inhibitory projection to the DA system, and the

D. Joel et al. / Neural Networks 15 (2002) 535–547540



activity of many ventral striatal neurons is related to rewards

and reward-predicting stimuli, it is possible that this

structure is part of the mechanism responsible for the

activity pattern of DA neurons. Future work will hopefully

reveal the role of the topographical organization of the

connections between the striatum and the DA system in the

computations performed by the basal ganglia.

4.2. Source(s) of excitation and inhibition to DA neurons

All the models we have reviewed, except Contreras-Vidal

and Schultz’s (1999) model, are based on Barto’s (1995)

architecture of the critic. In this architecture the compu-

tation of the prediction error depends on the activation of a

neuron or a group of neurons by the reward-predicting

stimulus. This leads both to fast excitation and delayed

inhibition of DA neurons (corresponding to PðtÞ and2Pðt 2 1Þ

in Barto’s model, respectively). Since most of these models

assume that the source of excitation and inhibition resides in

striatal striosomes, the existence of anatomical pathways

from the striosomes to the DA system, which carry these

signals, is hypothesized, as described in Houk et al.’s model

(see earlier). We have already discussed the problem in

assuming that striosomes provide direct inhibition to the

entire DA system. However, Houk et al.’s model encounters

an additional difficulty in assuming the existence of an

indirect pathway from the striosomes via the subthalamic

nucleus to the DA system, since current anatomical data

suggest that striatal projections to the subthalamic nucleus

(via the globus pallidus) arise from matrix neurons and not

from striosomal neurons (for review see Gerfen, 1992). It is

therefore unlikely that striosomes provide the fast excitation

to DA neurons.

Is it possible that striatal (not necessarily striosomal)

neurons are the source of the early excitatory and late

inhibitory input to DA neurons? Electrophysiological data

(for review see Bunney, Chiodo, & Grace, 1991; Kalivas,

1993; Pucak & Grace, 1994) and anatomical data (for

review see Haber et al., 2000; Joel & Weiner, 2000) indeed

suggest that activity of neurons of both the dorsal and

ventral striatum can either suppress DA cell activity directly

or promote bursting in DA cells indirectly. However, the

direct inhibitory effect likely precedes the indirect excit-

atory effect, which is mediated by at least two inhibitory

synapses (e.g. ventral striatal projections to the GABAergic

neurons of the VP, which project to most of the DA system).

This implies that the signal received by the DA system is

Pðt 2 1Þ2 PðtÞ rather than PðtÞ2 Pðt 2 1Þ: This, of course,

predicts an opposite activity pattern of DA neurons to that

observed. For example, it will result in inhibition, rather

than excitation, of DA activity in response to the encounter

of reward-predicting stimuli. In addition to the timing

problem, the inhibitory and facilitatory effects likely arise

from different subsets of neurons in the dorsal striatum.

Regarding the ventral striatum, it remains an open question

whether ventral striatal neurons projecting to the VP are

distinct from those projecting directly to DA cells (see Joel

& Weiner, 2000). Taken together, it is unlikely that a single

group of striatal neurons is the source of both indirect fast

excitation and direct delayed inhibition to the DA neurons,

as required by most models of the critic.

An alternative source of such a dual input to the DA

system is the limbic PFC. Schultz (1998) suggested that

input from this cortical region may be responsible for the

excitatory responses of DA neurons to rewards and reward-

predicting stimuli. Neurons in the limbic PFC respond to

primary rewards and reward-predicting stimuli and show

sustained activity during the expectation of reward (for

review see Schultz, Tremblay, & Hollerman, 1998; Zald &

Kim, 2001), and data in rats suggest that the limbic PFC

projects directly to DA neurons (for review see Overton &

Clark, 1997). The limbic PFC projects in addition to the

limbic (ventral) striatum (Berendse, Galis-de-Graaf, &

Groenewegen, 1992; Groenewegen, Berendse, Wolters, &

Lohman, 1990; Parent, 1990; Uylings & van Eden, 1990;

Yeterian & Pandya, 1991). Via the latter pathway, the

limbic PFC can provide the delayed inhibition to DA

neurons. This is in line with electrophysiological evidence

that neurons in the limbic striatum show reward related

activity, including sustained activity during the expectation

of rewards and reward-predicting stimuli (Rolls & Johnstone,

1992; Schultz, Apiccela, Scarnati, & Ljungberg, 1992). The

finding of neurons with sustained activity in the limbic PFC

and limbic striatum is in line with the timing mechanism

implemented in the critic models of Suri and Schultz (1998,

1999). As detailed earlier, in their model, sustained activity

of the stimulus representation component that covers the

actual stimulus–reward interval is responsible for the phasic

DA response to reward-predicting stimuli, the lack of DA

response during the stimulus–reward interval, and the

depression of DA activity when expected rewards are

omitted. Assuming that neurons of the limbic PFC provide

the timed sustained activity, their direct projections can

provide the prediction at time t of future reinforcement

ðPðtÞÞ; and their indirect projections, via the limbic striatum,

can provide the delayed prediction from the previous

timestep ðPðt 2 1ÞÞ; as required by Suri and Schultz’s

model. We would like to note, however, that although the

above suggestion respects known anatomy, it does not

incorporate other important projections to the DA cells

which may play a role in the production of the DA signal,

most notably, the projections from the limbic pallidum.

The assumption that the limbic PFC is the source of the

early excitation and late inhibition to DA neurons can also

be found in Brown et al.’s (1999) model. However, in their

model the translation of sustained activity in cortical

neurons to phasic responses of DA neurons (i.e. increase

in response to reward-predicting stimuli and decrease in

response to the omission of predicted rewards) is attained by

the specific properties of the pathways carrying the

excitation and inhibition signals. Thus, habituation of the

PPN (which is the final station in the pathway providing
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excitatory input to the DA neurons in their model) ensures

that DA neurons receive only a transient excitation

following a reward-predicting stimulus, and an intra-

cellular adaptive timing mechanism in the striosomes

translates the sustained cortical activity into a transient

and timed inhibition of DA cells at the time the reward is

expected.

We would like to end this section by concluding that

although the connections of the basal ganglia with the DA

system are thought to carry a ‘critic-like’ function, current

implementations of basic critic models in basal ganglia

connections build on assumptions that are inconsistent with

the known anatomy of these nuclei. Hopefully, future

attempts to implement such models in known neural circuits

will both shed light on the functioning of basal ganglia

nuclei, and provide additional constraints to the theoretical

models.

5. Reinforcement driven dimensionality reduction—

reward-biased representation in the basal ganglia

In contrast to the fairly advanced models of basal ganglia

processing which relate to the critic component of the

actor–critic model, most present models employ very

simple actor systems of information processing at the

striatal level. The exception is the actor in the model

presented by Suri et al. (2001), which is implemented in the

basal ganglia–thalamocortical connections. However, even

in this model, the output of the striatum is assumed to

translate into cortical activity in a relatively straightforward

manner. Each striatal neuron corresponds to a specific

action. Via a specific neuron at the level of the internal

segment of the globus pallidus (GPi) and SNr it disinhibits

one thalamic neuron, which projects in turn to a specific

cortical neuron, whose persistent activation executes a

cortical action.

In this section, we will present a model of basal ganglia

processing that may potentially be extended to serve as a

basis for a basal ganglia actor model. Based on several

important constraints imposed by known basal ganglia

anatomy and physiology, this model suggests that the basal

ganglia perform an efficient reinforcement driven dimen-

sionality reduction (RDDR) of the cortical representation

(Bar-Gad, Havazelet-Heimer, Ruppin, & Bergman, 2000;

www.math.tau.ac.il/ t ruppin). We focus on the theoretical

part. For a more detailed presentation of the model and for a

description of the electrophysiological experiments per-

formed on behaving monkeys to test some of the model

predictions, see Bar-Gad et al. (2000).

This model was motivated by two main anatomical and

physiological characteristics of basal ganglia–thalamocortical

circuitry:

1. The funneling structure of the basal ganglia. The number

of cortical neurons projecting to the striatum is two

orders of magnitude greater than the number of striatal

neurons (Kincaid, Zheng, & Wilson, 1998) and an

additional reduction of the same magnitude occurs from

the striatum to the GPi (Oorschot, 1996; Percheron,

Francios, Yelnik, Fenelon, & Talbi, 1994). Although

quantitative studies of the neuronal populations at the

pallido-thalamic and thalamo-cortical levels are still

lacking, most anatomical studies indicate that the cortico-

striato-pallido-thalamo-cortical pathway gradually

expands after the pallidal level (Arecchi-Bouchhioua,

Yelnik, Francios, Percheron, & Tande, 1996; Sidibe,

Bevan, Bolam, & Smith, 1997).

2. The lack of electrophysiological evidence for mutual

inhibition between striatal neurons (Jaeger, Kita, &

Wilson, 1994), in spite of the anatomical evidence for

extensive lateral connectivity in the striatum (Kita, 1996;

Yelnik, Francios, & Tand, 1997).

A possible solution explaining this apparent discrepancy

between anatomical and physiological data and the funnel-

ing structure along the cortico-basal ganglia–thalamo-

cortical loop is the hypothesis that the basal ganglia

perform efficient dimensionality reduction of cortical

activity. The term ‘dimensionality reduction’ describes the

process of projecting inputs from a high dimensional space

to a considerably smaller one. Efficient reduction is

achieved when all or most of the information contained

within the original space is preserved.

An important assumption of Bar-Gad et al.’s model is

that dimensionality reduction in a behaving animal should

be affected not only by the statistical properties of the input

patterns but also by their behavioral significance. The

relative significance of an input is determined by its novelty

(Redgrave, Prescott, & Gurney, 1999), incentive salience

(Berridge & Robinson, 1998), and ability to predict reward

(Robbins & Everitt, 1996). Suri and Schultz’s paper in this

issue reviews the large amount of evidence gathered in

recent years showing that such signals are coded by DA

neurons, and can reach the striatum by way of its DA input

(as described by Kotter et al. in this issue).

Theoretical studies have already shown that neural

networks can perform efficient dimensionality reduction

using competitive Hebbian learning rules for inter-layer

connectivity (Oja, 1982) and anti-Hebbian rules for the

lateral inhibitory intra-layer connectivity (Foldiak, 1989;

Kung & Diamantars, 1990). Obviously, these networks

typically have a funneled structure. To examine the RDDR

hypothesis, Bar-Gad et al. studied a simulated feed-forward

neural network, which extracted a principal component sub-

space using lateral inhibition (Foldiak, 1989; Kung &

Diamantars, 1990). This network was comprised of three

layers: the first layer represented the cortical input, the

intermediate layer represented the striatum, and the output

layer represented the GPi. Learning was Hebbian for the

feed-forward weights and anti-Hebbian for the lateral

weights. A reinforcement signal was combined with the
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feed-forward input at the intermediate layer to create a

three-factor Hebbian learning rule, crudely modeling

dopaminergic neuromodulation of corticostriatal synapses.

The reinforcement signal was positive for reward-related

events and zero for non-reward-related events (baseline DA

levels), allocating more encoding resources for rewarded

stimuli compared with non-rewarded ones. The network

weights were constrained to either positive or negative

values to reflect the known neurotransmitter physiology. To

measure the information loss of the network due to the

RDDR process, the output layer was expanded back to an

input-size space, reconstructing the decompressed patterns.

These simulations showed that attributing a larger than

baseline reinforcement signal during learning to a selected

subset of the ‘meaningful’ patterns indeed results in

discriminative information extraction, providing better

reconstructions for the selected, reward-enhanced inputs

than for the baseline set of stimuli. Bar-Gad et al.

demonstrated that a two-fold increase in the reinforcement

signal value versus baseline levels caused an almost five-

fold decrease in the compression reconstruction error.

Presenting the network with novel input patterns results

in correlated activity of the output neurons. This correlation

causes a transient increase in the efficacies of the inhibitory

lateral synapses and transient changes in the efficacies of the

feed-forward connections. These changes, in turn, lead to

decorrelation of neuronal activity within the output layer

and to an improvement in information compression. The

transient nature of these synaptic alterations explains on

the one hand why intra-layer synapses are important for the

encoding process, but on the other hand, that at the end of

the process they may obtain almost vanishing values. Thus,

the learning dynamics of these networks provide a possible

explanation to the seeming discrepancy between the

anatomical and physiological data pertaining to striatal

lateral inhibitory connectivity. These findings suggest that

the weak functionality of striatal intra-connectivity and the

low correlations of striatal and pallidal neurons’ firing can

be explained by noting that most of the experiments which

obtained these findings were performed in animals which

were not actively engaged in learning new behavioral tasks.

To experimentally test this prediction, Bar-Gad et al.

have trained a monkey to perform a key pressing task and

recorded its pallidal activity during task performance,

calculating the correlation coefficients for 151 pairs of

pallidal neurons (Bar-Gad et al., 2000). The correlation

coefficients were low during performance of a known task

leading to an expected reward and during rest periods. A

dramatic increase in absolute correlation values was

observed following unexpected rewards, following cessa-

tion of reward for earlier rewarded actions and following

performance of untrained rewarded actions. The periods of

enhanced correlation were prolonged and lasted for several

tens of seconds. The findings of high correlations during

learning, rule out the possibility that the lack of correlated

activity found otherwise in striatal and pallidal firing is

simply the result of sparse cortico–striatal connectivity.

These decreased correlations rather suggest an active

decorrelating process.

The RDDR model suggests that the basal ganglia play a

role in extraction and pre-processing of information from

the whole cortex. Why is it computationally useful? First, it

allows for the transmission of large amounts of information

within a limited number of axons. Bar-Gad et al. hypoth-

esize that the basal ganglia perform dimensionality

reduction of widespread cortical neural activity representing

the present state of the animal. The reduced information is

projected to the frontal cortex that uses it for planning future

actions. The RDDR network thus enables the exposure of

neurons in the executive regions of the frontal cortex to

maximal incoming cortical information using the anatomi-

cally limited number of synapses that each frontal neuron

can receive. Second, the RDDR network provides a vehicle

by which RL may be carried out in the brain in a central,

parsimonious location, by allowing the appetitive value of

stimuli to guide their storage and representation. Such

selective RDDR storage tends to bias the overall network’s

response towards rewarded input stimuli. As noted already

by Houk et al. (1995), such a biased signaling of complex

contexts could be useful in the formulation and implemen-

tation of plans and actions. Furthermore, part of the cortical

input to the basal ganglia arises from the frontal cortex, and

probably represents plans and actions. It is therefore

possible that the basal ganglia output acts to bias the

representation at the level of the frontal cortex towards the

selection of rewarded plans and actions. We thus suggest

that the RDDR framework may serve as a basis for basal

ganglia actor models.

6. The dual role of the DA signal in reinforcement

learning and behavioral switching

Throughout this paper we have related to the DA

response to rewards and reward-predicting stimuli as

providing a reinforcement signal. This hypothesis is a

refinement of the view that DA plays a central role in

learning (Le Moal & Simon, 1991; Robbins & Everitt, 1996;

White, 1997). An additional central function attributed to

the DA system is switching between different behaviors (Le

Moal & Simon, 1991; Lyons & Robbins, 1975; Oades,

1985; Robbins & Everitt, 1982; Van den Bos & Cools,

1989; Weiner, 1990). Recently, Redgrave et al. (1999)

pointed out that rewarding stimuli serve not only to

reinforce the behavior that preceded them, but also to

interrupt that behavior and initiate a different behavior (e.g.

switching from lever-pressing to approaching the food

magazine following reward-delivery). Based on this obser-

vation these authors suggested that the short-latency DA

response to rewards and reward-predicting stimuli sub-

serves switching rather than learning.

In contrast, based on the dual function of conditioned
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stimuli in reinforcement and switching, Weiner and Joel

(2002) suggested that the phasic response of DA neurons is

involved in both learning and switching. They further

suggested that these two functions are sub-served, respec-

tively, by the long-term and transient effects of a phasic

increase in striatal DA on corticostriatal synaptic trans-

mission. Thus, RL is sub-served by the DA-dependent

strengthening of corticostriatal synapses of striatal neurons

that were active prior to the increase in DA, and behavioral

switching is sub-served by DA-mediated facilitation and

attenuation of corticostriatal transmission, which facilitate a

change in striatal activity from the set of neurons that had

been active to a different set (see Weiner & Joel, 2002, for

elaboration of the cellular mechanisms which may underlie

these effects). Some support for this hypothesis can be found

in the results of Suri et al.’s (2001) simulations, although

their work did not directly relate to the issue of behavioral

switching. Suri et al.’s (2001) model incorporated both

long-term and transient effects of DA on striatal neurons. As

may be expected, these authors found that the former is

necessary for RL. Suri et al. have also found, that in their

model, a phasic increase in DA leads to increased behavioral

output, and that this effect is mediated by DA’s transient

effects on striatal firing.

In the context of the dual role of rewarding events,

namely, directing learning and facilitating behavioral

switching, we would like to point out that during the course

of learning, conditioned stimuli lose the former role, but not

the latter. Thus, as learning progresses, each conditioned

stimulus becomes predicted by preceding stimuli and

actions, and therefore loses its ability to induce a phasic

DA response and thus its ability to support learning.

However, during the learning process, each conditioned

stimulus becomes the elicitor of the next action in the goal-

directed behavior, as a result of reinforcement-driven

stimulus-response learning. Consequently, during the

execution of a learned sequence of actions, each action

results in the occurrence of a conditioned stimulus, which in

turn elicits the following action in the sequence.

It follows that conditioned stimuli may elicit switching

via at least two different mechanisms. One mechanism

depends on a phasic increase in striatal DA, and is

characteristic of novel situations and of the early stages of

learning. This mechanism either increases the likelihood of

switching in general, or favors switching to one of the class

of behaviors (mostly innate) that are characteristic of novel

situation (e.g. orienting). Another mechanism depends on

the strengthening of corticostriatal synapses, and is

characteristic of well-learned behaviors. This mechanism

is responsible for the termination of the current behavior and

the initiation of the subsequent behavior, which is specific

and learned (Weiner & Joel, 2002). Although this latter type

of switching occurs in the absence of a phasic increase in

striatal DA, baseline DA levels are thought to sub-serve an

important permissive role in movement initiation (Le Moal

& Simon, 1991; Robbins & Everitt, 1996; Salamone, 1994).

We have recently obtained evidence in rats suggesting that

DA also modulates the ability of conditioned stimuli to

terminate the preceding behavior (Joel, Avisar, & Doljansky,

2001).

None of the models reviewed above simulates the two

types of switching. However, a demonstration of the gradual

acquisition and loss of the ability to elicit a DA signal,

concomitantly with the acquisition of the ability to elicit

‘phasic DA-independent’ switching, can be found in the

simulations of Suri and Schultz (1998). In their simulations

of the acquisition of sequential movements by an actor–

critic model, a reward occurred at the end of a correctly

performed sequence of stimulus-action pairs. During

acquisition of the task, each of the different stimuli

gradually acquired the ability to elicit a DA signal and to

trigger the correct action. As training progressed, the

stimulus became predicted by earlier stimuli, and as a result

stopped eliciting the DA signal. However, as a result of

learning in the actor, each stimulus continued to trigger the

correct action. Thus, following learning, the presentation of

a stimulus resulted in the elicitation of the correct action

without an increase in DA.

7. Conclusions

Our selective review of actor–critic models of the basal

ganglia raises several issues which we believe future models

will have to deal with. Models of the critic build on the

strong resemblance between DA neuron activity and the TD

prediction error signal in the critic. From a computational

perspective, these models face two related challenges: One,

how to reproduce the specific temporal dynamics of DA

firing to rewards, reward-predicting stimuli, and novelty.

Two, what are the computational consequences of incorpor-

ating DA responses to novelty, generalization and dis-

crimination into a TD RL algorithm.

From an anatomical-physiological perspective it is clear

that a critic model which builds on reciprocal connections

between DA neurons and another group of neurons, cannot

be implemented in the connections between the DA system

and the striatum, because these connections are character-

ized by asymmetry rather than reciprocity. Similarly, a critic

which is based on Barto’s (1995) architecture, cannot be

implemented in these connections, because it is unlikely that

a single group of striatal neurons is the source of both

indirect fast excitation and direct delayed inhibition to the

DA neurons, as required by such models of the critic. One

potentially fruitful approach to these quandaries is to

harness the power of evolutionary computation techniques

to find candidate solution architectures that maximize critic

functionality under various anatomical and functional

constraints, and then examine these predictions experiment-

ally. The work of Niv et al. (2002, in press) is a first step in

this direction. Future models of the critic would have to deal

with these problems, and in addition should relate to the
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question of whether a single projection to the DA system

(e.g. from the basal ganglia) is responsible for DA neurons’

responses to both rewarding and novel stimuli, or whether

these responses are sub-served by different projections (as

suggested by Contreras-Vidal & Schultz, 1999).

Models of the actor build on the strong resemblance

between DA-dependent long-term synaptic plasticity in the

striatum and learning guided by a prediction error signal in

the actor. Current models of the actor, however, are very

simple and are usually modeled at the striatal level with very

little detail. The goal of future studies is to model the known

anatomy and physiology of the basal ganglia in a more

detailed and faithful manner, and address the question of the

computational role of the basal ganglia–thalamocortical

connections. There are currently several different neural-

network models of these connections that provide different

answers to these questions (Berns & Sejnowski, 1998;

Gurney et al., 2001). We have described a model of the

basal ganglia–thalamocortical connections which suggests

that the basal ganglia perform reinforcement-biased dimen-

sionality reduction of cortical inputs (Bar-Gad et al., 2000).

This RDDR framework may serve as a basis for future basal

ganglia actor models.

In summary, actor–critic models of the basal ganglia

have contributed to our thinking on basal ganglia function-

ing, by integrating some of the central aspects of basal

ganglia processing (the DA signal, DA-dependent learning

in the striatum) with learning theory. Yet, numerous

questions, regarding the function of these nuclei as well as

the theoretical aspects of RL, are left unanswered. It is our

hope that future models incorporating actor and critic

components that are more constrained by the known

anatomy and physiology of the basal ganglia will answer

some of these questions.
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