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Abstract

In neuroscience, the similarity matrix of neural activity patterns in response to
different sensory stimuli or under different cognitive states reflects the structure
of neural representational space. Existing methods derive point estimations of
neural activity patterns from noisy neural imaging data, and the similarity is
calculated from these point estimations. We show that this approach translates
structured noise from estimated patterns into spurious bias structure in the resulting
similarity matrix, which is especially severe when signal-to-noise ratio is low and
experimental conditions cannot be fully randomized in a cognitive task. We propose
an alternative Bayesian framework for computing representational similarity in
which we treat the covariance structure of neural activity patterns as a hyper-
parameter in a generative model of the neural data, and directly estimate this
covariance structure from imaging data while marginalizing over the unknown
activity patterns. Converting the estimated covariance structure into a correlation
matrix offers a much less biased estimate of neural representational similarity. Our
method can also simultaneously estimate a signal-to-noise map that informs where
the learned representational structure is supported more strongly, and the learned
covariance matrix can be used as a structured prior to constrain Bayesian estimation
of neural activity patterns. Our code is freely available in Brain Imaging Analysis
Kit (Brainiak) (https://github.com/IntelPNI/brainiak).

1 Neural pattern similarity as a way to understand neural representations

Understanding how patterns of neural activity relate to internal representations of the environment
is one of the central themes of both system neuroscience and human neural imaging [20, 5, 7, 15].
One can record neural responses (e.g. by functional magnetic resonance imaging; fMRI) while
participants observe sensory stimuli, and in parallel, build different computational models to mimic
the brain’s encoding of these stimuli. Neural activity pattern corresponding to each feature of an
encoding model can then be estimated from the imaging data. Such activity patterns can be used
to decode the perceived content with respect to the encoding features from new imaging data. The
degree to which stimuli can be decoded from one brain area based on different encoding models
informs us of the type of information represented in that area. For example, an encoding model based
on motion energy in visual stimuli captured activity fluctuations from visual cortical areas V1 to V3,
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and was used to successfully decode natural movie watched during an fMRI scan [14]. In contrast,
encoding models based on semantic categories can more successfully decode information from higher
level visual cortex [7].

While the decoding performance of different encoding models informs us of the type of information
represented in a brain region, it does not directly reveal the structure of the representational space in
that area. Such structure is indexed by how distinctively different contents are represented in that
region [21, 4]. Therefore, one way to directly quantify the structure of the representational space
in the neural population activity is to estimate the neural activity pattern elicited by each sensory
stimulus, and calculate the similarity between the patterns corresponding to each pair of stimuli.
This analysis of pair-wise similarity between neural activity patterns to different stimuli was named
Representational Similarity Analysis (RSA) [11]. In fact, one of the earliest demonstrations of
decoding from fMRI data was based on pattern similarity [7]. RSA revealed that the representational
structures in the inferotemporal (IT) cortex of natural objects are highly similar between human and
monkey [12] and a continuum in the abstract representation of biological classes exist in human
ventral object visual cortex [2]. Because the similarity structure can be estimated from imaging data
even without building an encoding model, RSA allows not only for model testing (by comparing the
similarity matrix of neural data with the similarity matrix of the feature vectors when stimuli are
represented with an encoding model) but also for exploratory study (e.g., by projecting the similarity
structure to a low-dimensional space to visualize its structure, [11]). Therefore, originally as a tool
for studying visual representations [2, 16, 10], RSA has recently attracted neuroscientists to explore
the neural representational structure in many higher level cognitive areas [23, 18].

2 Structured noise in pattern estimation translates into bias in RSA

Although RSA is gaining popularity, a few recent studies revealed that in certain circumstances
the similarity structure estimated by standard RSA might include a significant bias. For example,
the estimated similarity between fMRI patterns of two stimuli is much higher when the stimuli are
displayed closer in time [8]. This dependence of pattern similarity on inter-stimulus interval was
hypothesized to reflect "temporal drift of pattern"[1], but we believe it may also be due to temporal
autocorrelation in fMRI noise. Furthermore, we applied RSA to a dataset from a structured cognitive
task (Fig 1A) [19] and found that the highly structured representational similarity matrix obtained
from the neural data (Fig 1B,C) is very similar to the matrix obtained when RSA is applied to pure
white noise (Fig 1D). Since no task-related similarity structure should exist in white noise while the
result in Fig 1D is replicable from noise, this shows that the standard RSA approach can introduce
similarity structure not present in the data.

We now provide an analytical derivation to explain the source of both types of bias (patterns closer
in time are more similar and spurious similarity emerges from analyzing pure noise). It is notable
that almost all applications of RSA explicitly or implicitly assume that fMRI responses are related to
task-related events through a general linear model (GLM):

Y = X · β + ε. (1)

Here, Y ∈ RnT×nS is the fMRI time series from an experiment with nT time points from nS brain
voxels. The experiment involves nC different conditions (e.g., different sensory stimuli, task states,
or mental states), each of which comprises events whose onset time and duration is either controlled
by the experimenter, or can be measured experimentally (e.g., reaction times). In fMRI, the measured
blood oxygen-level dependent (BOLD) response is protracted, such that the response to condition
c is modelled as the time course of events in the experimental condition sc(t) convolved with a
typical hemodynamic response function (HRF) h(t). Importantly, each voxel can respond to different
conditions with different amplitudes β ∈ RnC×nS , and the responses to all conditions are assumed
to contribute linearly to the measured signal. Thus, denoting the matrix of HRF-convolved event time
courses for each task condition with X ∈ RnT×nC , often called the design matrix, the measured Y is
assumed to be a linear sum of X weighted by response amplitude β plus zero-mean noise.

Each row of β is the spatial response pattern (i.e., the response across voxels) to an experimental
condition. The goal of RSA is therefore to estimate the similarity between the rows of β. Because
β is unknown, pattern similarity is usually calculated based on ordinary least square estimation of
β: β̂ = (XTX)−1XTY, and then using Pearson correlation of β̂ to measure similarity. Because
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Figure 1: Standard RSA introduces bias structure to the similarity matrix. (A) A cognitive task
that includes 16 different experimental conditions. Transitions between conditions follow a Markov
process. Arrows indicate possible transitions, each with p = 0.5. The task conditions can be grouped
to 3 categories (color coded) according to the semantics, or mental operations, required in each
condition (the exact meaning of these conditions is not relevant to this paper). (B) Standard RSA of
activity patterns corresponding to each condition estimated from a region of interest (ROI) reveal
a highly structured similarity matrix. (C) Converting the similarity matrix C to a distance matrix
1− C and projecting it to a low-dimensional space using multi-dimensional scaling [13] reveals a
highly regular structure. Seeing such a result, one may infer that representational structure in the
ROI is strongly related to the semantic meanings of the task conditions. (D) However, a very similar
similarity matrix can also be obtained if one applies standard RSA to pure white noise, with a similar
low-dimensional projection (not shown). This indicates that standard RSA can introduce spurious
structure in the resulting similarity matrix that does not exist in the data.

calculating sample correlation implies the belief that there exists an underlying covariance structure
of β, we examine the source of bias by focusing on the covariance of β̂ compared to that of true β.

We assume β of all voxels in the ROI are indeed random vectors generated from a multivariate
Gaussian distribution N(0,U) (the size of U being nC × nC). If one knew the true U, similarity
measures such as correlation could be derived from it. Substituting the expression Y from equation 1
we have β̂ = β + (XTX)−1XT ε. We assume that the signal β is independent from the noise ε,
and therefore also independent from its linear transformation (XTX)−1XT ε. Thus the covariance of
β̂ is the sum of the true covariance of β and the covariance of (XTX)−1XT ε:

β̂ ∼ N(0, U + (XTX)−1XTΣεX(XTX)−1) (2)

Where Σε ∈ RnT ×nT is the temporal covariance of the noise ε (for illustration purposes, in this
section we assume that all voxels have the same noise covariance).

The term
(XTX)−1XTΣεX(XTX)−1

is the source of the bias. Since the covariance of β̂ has this bias term adding to U which we are
interested in, their sample correlation is also biased. So are many other similarity measures based on
β̂, such as Eucledian distance.
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The bias term (XTX)−1XTΣεX(XTX)−1 depends on both the design matrix and the properties of
the noise. It is well known that autocorrelation exists in fMRI noise [24, 22]. Even if we assume that
the noise is temporally independent (i.e., Σε is a diagonal matrix, which may be a valid assumption
if one "pre-whitens" the data before further analysis [22]), the bias structure still exists but reduces to
(XTX)−1σ2, where σ2 is the variance of the noise. Diedrichsen et al. [6] realized that the noise in
β̂ could contribute to a bias in the correlation matrix but assumed the bias is only in the diagonal
of the matrix. However, the bias is a diagonal matrix only if the columns of X (hypothetical fMRI
response time courses to different conditions) are orthogonal to each other and if the noise has no
autocorrelation. This is rarely the case for most cognitive tasks. In the example in Figure 1A, the
transitions between experimental conditions follow a Markov process such that some conditions are
always temporally closer than others. Due to the long-lasting HRF, conditions of temporal proximity
will have higher correlation in their corresponding columns in X. Such correlation structure in X is
the major determinant of the bias structure in this case. On the other hand, if each single stimulus is
modelled as a condition in X and regularization is used during regression, the correlation between β̂
of temporally adjacent stimuli is higher primarily because of the autocorrelation property of the noise.
This can be the major determinant of the bias structure in cases such as [8].

It is worth noting that the magnitude of bias is larger relative to the true covariance structure U when
the signal-to-noise ratio (SNR) is lower, or when X has less power (i.e., there are few repetitions of
each condition, thus few measurements of the related neural activity), as illustrated later in Figure 2B.

The bias in RSA was not noticed until recently [1, 8], probably because RSA was initially applied
to visual tasks in which stimuli are presented many times in a well randomized order. Such designs
made the bias structure close to a diagonal matrix and researchers typically only focus on off-diagonal
elements of a similarity matrix. In contrast, the neural signals in higher-level cognitive tasks are
typically weaker than those in visual tasks [9]. Moreover, in many decision-making and memory
studies the orders of different task conditions cannot be fully counter-balanced. Therefore, we expect
the bias in RSA to be much stronger and highly structured in these cases, misleading researchers and
hiding the true (but weaker) representational structure in the data.

One alternative to estimating β̂ using regression as above, is to perform RSA on the raw condition-
averaged fMRI data (for instance, taking the average signal∼ 6 sec after the onset of an event as a
proxy for β̂). This is equivalent to using a design matrix that assumes a 6-sec delayed single-pulse
HRF. Although here columns of X are orthogonal by definition, the estimate β̂ is still biased, so is its
covariance (XTX)−1XTXtrueUXTtrueX(XTX)−1 +(XTX)−1XTΣεX(XTX)−1 (where Xtrue
is the design matrix reflecting the true HRF in fMRI). See supplementary material for illustration of
this bias.

3 Maximum likelihood estimation of similarity structure directly from data

As shown in equation 2, the bias in RSA stems from treating the noisy estimate of β as the true β and
performing a secondary analysis (correlation) on this noisy estimate. The similarly-structured noise
(in terms of the covariance of their generating distribution) in each voxel’s β̂ translates into bias in
the secondary analysis. Since the bias comes from inferring U indirectly from point estimation of β,
a good way to avoid such bias is by not relying analysis on this point estimation. With a generative
model relating U to the measured fMRI data Y, we can avoid the point estimation of unknown β by
marginalizing it in the likelihood of observing the data. In this section, we propose a method which
performs maximum-likelihood estimation of the shared covariance structure U of activity patterns
directly from the data.

Our generative model of fMRI data follows most of the assumptions above, but also allows the noise
property and the SNR to vary across voxels. We use an AR(1) process to model the autocorrelation
of noise in each voxel: for the ith voxel, we denote the noise at time t(> 0) as εt,i, and assume

εt,i = ρi · εt−1,i + ηt,i, ηt,i ∼ N(0, σ2
i ) (3)

where σ2
i is the variance of the "new" noise and ρi is the autoregressive coefficient for the ith voxel.

We assume that the covariance of the Gaussian distribution from which the activity amplitudes βi of
the ith voxel are generated has a scaling factor that depends on its SNR si:

βi ∼ N(0, (siσi)
2U). (4)
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This is to reflect the fact that not all voxels in an ROI respond to tasks (voxels covering partially or
entirely white matter might have little or no response). Because the magnitude of the BOLD response
to a task is determined by the product of the magnitude ofX and β, but s is a hyper-parameter only
of β, we hereforth refer to s as pseudo-SNR.

We further use the Cholesky decomposition to parametrize the shared covariance structure across
voxels: U = LLT , whereL is a lower triangular matrix. Thus, βi can be written as βi = siσiLαi,
where αi ∼ N(0, I) (this change of parameter allows for estimating U of less than full rank
by setting L as lower-triangular matrix with a few rightmost-columns truncated). And we have
Yi − siσiXLαi ∼ N(0,Σεi(σi, ρi)). Therefore, for the ith voxel, the likelihood of observing
data Yi given the parameters is:

p(Yi|L, σi, ρi, si) =

∫
p(Yi|L, σi, ρi, si, αi)p(αi)dαi

=

∫
(2π)−

nT
2 |Σ−1

εi
| 12 exp[−

1

2
(Yi − siσiXLαi)TΣ− 1

2
εi

(Yi − siσiXLαi)]

· (2π)−
nC
2 exp[−

1

2
αTi αi]dαi

=(2π)−
nT
2 |Σ−1

εi
| 12 |Λi|

1
2 exp[

1

2
((siσi)

2Y Ti Σ−1
εi
XLΛiL

TXTΣ−1
εi
Yi − Y Ti Σ−1

εi
Yi)]

(5)

where Λi = (s2iσ
2
iL

TXTΣ−1
εi
XL+ I)−1. Σ−1

εi
is the inverse of the noise covariance matrix of

the ith voxel, which is a function of σi and ρi (see supplementary material).

For simplicity, we assume that the noise for different voxels is independent, which is the common
assumption of standard RSA (although see [21]). The likelihood of the whole dataset, including all
voxels in an ROI, is then

p(Y |L, σ, ρ, s) =
∏
i

p(Yi|L, σi, ρi, si). (6)

We can use gradient-based methods to optimize the model, that is, to search for the values of
parameters that maximize the log likelihood of the data. Note that s are determined only up to a scale,
because L can be scaled down by a factor and all si can be scaled up by the same factor without
influencing the likelihood. Therefore, we set the geometric mean of s to be 1 to circumvent this
indeterminacy, and fit s and L iteratively. The spatial pattern of s thus only reflects the relative SNR
of different voxels.

Once we obtain L̂, the estimate of L, we can convert the covariance matrix Û = L̂L̂T into a
correlation matrix, which is our estimation of neural representational similarity. Because U is a
hyper-parameter of the activity pattern in our generative model and we estimate it directly from data,
this is an empirical Bayesian approach. We therefore refer to our method as “Bayesian RSA” now.

4 Performance of the method

4.1 Reduced bias in recovering the latent covariance structure from simulated data

To test if the proposed method indeed reduces bias, we simulated fMRI data with a predefined
covariance structure and compared the structure recovered by our method with that recovered by
standard RSA. Fig 2A shows the hypothetical covariance structure from which we drew βi for each
voxel. The bias structure in Fig 1D is the average structure induced by the design matrices of all
participants. To simplify the comparison, we use the design matrices of the experiment experienced
by one participant. As a result, the bias structure induced by the design matrix deviates slightly from
that in Fig 1D.

As mentioned, the contribution of the bias to the covariance of β̂ depends on both the level of noise
and the power in the design matrixX . The more each experimental condition is measured during an
experiment (roughly speaking, the longer the experiment), the less noisy the estimation of β̂, and
the less biased the standard RSA is. To evaluate the improvement of our method over standard RSA
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Figure 2: Bayesian RSA reduces bias in the recovered shared covariance structure of activity
patterns. (A) The covariance structure from which we sampled neural activity amplitudes β for
each voxel. fMRI data were synthesized by weighting the design matrix of the task from Fig 1A
with the simulated β and adding AR(1) noise. (B) The recovered covariance structure for different
simulated pseudo-SNR. Standard individual: covariance calculated directly from β̂ as is done in
standard RSA, for one simulated participant. Standard average: average of covariance matrices of
β̂ from 20 simulated participants. Bayesian individual: covariance estimated directly from data by
our method for one simulated participant. Bayesian average: average of the covariance matrices
estimated by Bayesian RSA from 20 simulated participants. (C) The ratio of the variation in the
recovered covariance structure which cannot be explained by the true covariance structure in Fig 2A.
Left: the ratio for covariance matrix from individual simulation (panel 1 and 3 of Fig 2B). Right: the
ratio for average covariance matrix (panel 2 and 4 of Fig 2B). Number of runs: the design matrices of
1, 2, or 4 runs of a participant in the experiment of Fig 1A were used in each simulation, to test the
effect of experiment duration. Error bar: standard deviation.

in different scenarios, we therefore varied two factors: the average SNR of voxels and the duration
of the experiment. 500 voxels were simulated. For each voxel, σi was sampled uniformly from
[1.0, 3.0], ρi was sampled uniformly from [−0.2, 0.6] (our empirical investigation of example
fMRI data shows that small negative autoregressive coefficient can occur in white matter), si was
sampled uniformly from f · [0.5, 2.0]. The average SNR was manipulated by choosing f from one
of three levels {1, 2, 4} in different simulations. The duration of the experiment was manipulated by
using the design matrices of run 1, runs 1-2, and runs 1-4 from one participant.

Fig 2B displays the covariance matrix recovered by standard RSA (first two columns) and Bayesian
RSA (last two columns), with an experiment duration of approximately 10 minutes (one run, measure-
ment resolution: TR = 2.4 sec). The rows correspond to different levels of average SNR (calculated

post-hoc by averaging the ratio std(Xβi)
σi

across voxels). Covariance matrices recovered from one
simulated participant and the average of covariance matrices recovered from 20 simulated participants
(“average”) are displayed. Comparing the shapes of the matrix and the magnitudes of values (color
bars) across rows, one can see that the bias structure in standard RSA is most severe when SNR is
low. Averaging the estimated covariance matrices across simulated participants can reduce noise, but
not bias. Comparing between columns, one can see that strong residual structure exists in standard
RSA even after averaging, but almost disappears for Bayesian RSA. This is especially apparent for
low SNR – the block structure of the true covariance matrix from Figure 2A is almost undetectable
for standard RSA even after averaging (column 2, row 1 of Fig 2B), but emerges after averaging
for Bayesian RSA (column 4, row 1 of Fig 2B). Fig 2C compares the proportion of variation in the
recovered covariance structure that cannot be explained by the true structure in Fig 2A, for different
levels of SNR and different experiment durations, for individual simulated participants and for
average results. This comparison confirms that the covariance recovered by Bayesian RSA deviates
much less from the true covariance matrix than that by standard RSA, and that the deviation observed
in an individual participant can be reduced considerably by averaging over multiple participants
(comparing the left with right panels of Fig 2C for Bayesian RSA).
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4.2 Application to real data: simultaneous estimation of neural representational similarity
and spatial location supporting the representation

In addition to reducing bias in estimation of representational similarity, our method also has an
advantage over standard RSA: it estimates the pseudo-SNR map s. This map reveals the locations
within the ROI that support the identified representational structure. When a researcher looks into
an anatomically defined ROI, it is often the case that only some of the voxels respond to the task
conditions. In standard RSA, β̂ in voxels with little or no response to tasks is dominated by structured
noise following the bias covariance structure (XTX)−1XTΣεX(XTX)−1, but all voxels are taken
into account equally in the analysis. In contrast, si in our model is a hyper-parameter learned directly
from data – if a voxel does not respond to any condition of the task, si would be small and the
contribution of the voxel to the total log likelihood is small. The fitting of the shared covariance
structure is thus less influenced by this voxel.

From our simulated data, we found that parameters of the noise (σ and ρ) can be recovered re-
liably with small variance. However, the estimation of s had large variance from the true values
used in the simulation. One approach to reduce variance of estimation is by harnessing prior
knowledge about data. Voxels supporting similar representation of sensory input or tasks tend to
spatially cluster together. Therefore, we used a Gaussian Process to impose a smooth prior on
log(s) [17]. Specifically, for any two voxels i and j, we assumed cov(log(si), log(sj)) =

b2exp(− (xi−xj)
T (xi−xj)

2l2space
− (Ii−Ij)2

2l2inten
), where xi and xj are the spatial coordinates of the two

voxels and Ii and Ij are the average intensities of fMRI signals of the two voxels. Intuitively, this
means that if two voxels are close together and have similar signal intensity (that is, they are of the
same tissue type), then they should have similar SNR. Such a kernel of a Gaussian Process imposes
spatial smoothness but also allows the pseudo-SNR to change quickly at tissue boundaries. The
variance of the Gaussian process b2, the length scale lspace and linten were fitted together with the
other parameters by maximizing the joint log likelihood of all parameters (here again, we restrict the
geometric mean of s to be 1).
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Figure 3: Bayesian RSA estimates both the representational similarity structure from fMRI
data and the spatial map supporting the learned representation. (A) Similarity between 6 animal
categories, as judged behaviorally (reproduced from [2]). (B) Average representational similarity
estimated from IT cortex from all participants of [2], using our approach. The estimated structure
resembles the subjectively-reported structure. (C) Pseudo-SNR map in IT cortex corresponding to
one participant. Red: high pseudo-SNR, green: low pseudo-SNR. Only small clusters of voxels show
high pseudo-SNR.

We applied our method to the dataset of Connolly et al. (2012) [2]. In their experiment, participants
viewed images of animals from 6 different categories during an fMRI scan and rated the similarity
between animals outside the scanner. fMRI time series were pre-processed in the same way as in their
work [2]. Inferior temporal (IT) cortex is generally considered as the late stage of ventral pathway of
the visual system, in which object identity is represented. Fig 3 shows the similarity judged by the
participants and the average similarity matrix estimated from IT cortex, which shows similar structure
but higher correlations between animal classes. Interestingly, the pseudo-SNR map shows that only
part of the anatomically-defined ROI supports the representational structure.
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5 Discussion

In this paper, we demonstrated that representational similarity analysis, a popular method in many
recent fMRI studies, suffers from a bias. We showed analytically that such bias is contributed by both
the structure of the experiment design and the covariance structure of measurement and neural noise.
The bias is induced because standard RSA analyzes noisy estimates of neural activation level, and
the structured noise in the estimates turns into bias. Such bias is especially severe when SNR is low
and when the order of task conditions cannot be fully counterbalanced. To overcome this bias, we
proposed a Bayesian framework of the fMRI data, incorporating the representational structure as the
shared covariance structure of activity levels across voxels. Our Bayesian RSA method estimates this
covariance structure directly from data, avoiding the structured noise in point estimation of activity
levels. Our method can be applied to neural recordings from other modalities as well.

Using simulated data, we showed that, as compared to standard RSA, the covariance structure
estimated by our method deviates much less from the true covariance structure, especially for low
SNR and short experiments. Furthermore, our method has the advantage of taking into account the
variation in SNR across voxels. In future work, we will use the pseudo-SNR map and the covariance
structure learned from the data jointly as an empirical prior to constrain the estimation of activation
levels β. We believe that such structured priors learned directly from data can potentially provide
more accurate estimation of neural activation patterns—the bread and butter of fMRI analyses.

A number of approaches have recently been proposed to deal with the bias structure in RSA, such
as using the correlation or Mahalanobis distance between neural activity patterns estimated from
separate fMRI scans instead of from the same fMRI scan, or modeling the bias structure as a diagonal
matrix or by a Taylor expansion of an unknown function of inter-events intervals [1, 21, 6]. Such
approaches have different limitations. The correlation between patterns estimated from different scans
[1] is severely underestimated if SNR is low (for example, unless there is zero noise, the correlation
between the neural patterns corresponding to the same conditions estimated from different fMRI
scans is always smaller than 1, while the true patterns should presumably be the same across scans in
order for such an analysis to be justified). Similar problems exists for using Mahalanobis distance
between patterns estimated from different scans [21]: with noise in the data, it is not guaranteed that
the distance between patterns of the same condition estimated from separate scans is smaller than the
distance between patterns of different conditions. Such a result cannot be interpreted as a measure
of “similarity” because, theoretically, neural patterns should be more similar if they belong to the
same condition than if they belong to different conditions. Our approach does not suffer from such
limitations, because we are directly estimating a covariance structure, which can always be converted
to a correlation matrix. Modeling the bias as a diagonal matrix [6] is not sufficient, as the bias can
be far from diagonal, as shown in Fig 1D. Taylor expansion of the bias covariance structure as a
function of inter-event intervals can potentially account for off-diagonal elements of the bias structure,
but it has the risk of removing structure in the true covariance matrix if it happens to co-vary with
inter-event intervals, and becomes complicated to set up if conditions repeat multiple times [1].

One limitation of our model is the assumption that noise is spatially independent. Henriksson et
al. [8] suggested that global fluctuations of fMRI time series over large areas (which is reflected as
spatial correlation) might contribute largely to their RSA pattern. This might also be the reason that
the overall correlation in Fig 1B is higher than the bias obtained from standard RSA on independent
Gaussian noise (Fig 1D). Our future work will explicitly incorporate such global fluctuations of noise.
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