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SUMMARY

Dopamine neurons signal reward prediction errors.
This requires accurate reward predictions. It has
been suggested that the ventral striatum provides
these predictions. Here we tested this hypothesis
by recording from putative dopamine neurons in
the VTA of rats performing a task in which prediction
errors were induced by shifting reward timing or
number. In controls, the neurons exhibited error sig-
nals in response to both manipulations. However,
dopamine neurons in rats with ipsilateral ventral
striatal lesions exhibited errors only to changes in
number and failed to respond to changes in timing
of reward. These results, supported by computa-
tional modeling, indicate that predictions about the
temporal specificity and the number of expected
reward are dissociable and that dopaminergic pre-
diction-error signals rely on the ventral striatum for
the former but not the latter.

INTRODUCTION

Reward prediction errors are famously signaled, at least in

primates and rodents, by midbrain dopamine neurons (Barto,

1995; Mirenowicz and Schultz, 1994; Montague et al., 1996;

Schultz et al., 1997). Key to signaling reward prediction errors

are reward predictions (Bush and Mosteller, 1951; Rescorla

and Wagner, 1972; Sutton and Barto, 1998). Theoretical and

experimental work has suggested that the ventral striatum (VS)

is an important source of these predictions, particularly to dopa-

mine neurons in the ventral tegmental area (VTA) (Daw et al.,

2005, 2006; Joel et al., 2002; O’Doherty et al., 2003, 2004; Sey-

mour et al., 2004; Willuhn et al., 2012). Here we tested this hy-

pothesis by recording the activity of putative dopaminergic neu-

rons in the VTA of rats performing a task in which positive and

negative prediction errors were induced by shifting either the

timing or the number of expected reward. We found that dopa-

mine neurons recorded in sham-lesioned controls exhibited
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prediction error signals in response to both manipulations. By

contrast, dopamine neurons in rats with ipsilateral VS lesions ex-

hibited prediction error signals only in response to changes in the

number of reward; these neurons failed to respond to changes in

reward timing. Computational modeling of these data, using a

framework that separates learning about reward timing from

learning about reward number (Daw et al., 2006), showed that

this pattern of results could be obtained by degrading the

model’s ability to learn precise timing, while leaving all other as-

pects of themodel intact. Contrary to proposals that VSmight be

required for all aspects of reward prediction (Joel et al., 2002;

O’Doherty et al., 2003;Willuhn et al., 2012), these results suggest

that the VS is critical for endowing reward predictions with tem-

poral specificity.

RESULTS

We recorded single-unit activity in the VTA of rats with ipsilateral

sham (n = 9) or neurotoxic (n = 7) lesions of VS (see Figures S1A

and S1B for recording locations). Recordings were made in rats

with ipsilateral lesions to avoid confounding any neural effects of

lesionswith behavioral changes (Burton et al., 2014). Lesions tar-

geted the VS core, resulting in visible loss of neurons in 57%

(35%–75%) of this region across subjects (Figure S1F). Neurons

in the lesioned area are known to fire to reward-predictive cues

(Bissonette et al., 2013; O’Doherty et al., 2003, 2004; Oleson

et al., 2012; Roesch et al., 2009) and send output to VTA

(Bocklisch et al., 2013; Grace and Bunney, 1985; Groenewegen

et al., 1990; Mogenson et al., 1980; Voorn et al., 2004; Watabe-

Uchida et al., 2012; Xia et al., 2011), supporting the proposal that

this part of VS may influence dopaminergic prediction error

signaling as proposed in neural instantiations of temporal differ-

ence reinforcement learning (TDRL) models (Daw et al., 2006;

Joel et al., 2002).

Neurons were recorded in rats performing an odor-guided

choice task used previously to characterize signaling of reward

predictions and reward prediction errors (Roesch et al., 2007;

Takahashi et al., 2009, 2011). On each trial, rats sampled one

of three different odor cues at a central port and then responded

at one of two adjacent wells (Figure 1A). One odor signaled the

availability of sucrose reward only in the left well (forced left), a
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Figure 1. Apparatus and Behavioral Results

(A) Picture of apparatus used in the task, showing the odor port (�2.5 cm diameter) and two fluid wells.

(B) Line deflections indicate the time course of stimuli (odors and reward) presented to the animal on each trial. Dashed lines showwhen reward was omitted, and

solid lines show when reward was delivered. At the start of each recording session, one well was randomly designated as short (a 0.5 s delay before reward) and

the other, long (a 1–7 s delay before reward) (block 1). In the second block of trials, these contingencies were switched. In block 3, the delay was held constant

while the number of reward was manipulated; one well was designated as big reward in which a second bolus of reward was delivered (big reward), and a single

bolus of reward was delivered in the other well (small reward). In block 4, these contingencies were switched again. Blue arrows, unexpected short reward; red

arrow, short reward omission; green arrows, unexpected big reward; orange arrow, big reward omission.

(C and F) Choice behavior in last three trials before the switch and first eight and last eight trials after the switch of reward contingencies in delay (C) and number

blocks (F). Inset bar graphs show average percentage choice for high-valued (black) and low-valued (white) outcomes across all free-choice trials. Black line,

sham-lesioned rats (Sham, n = 9, 75 sessions); gray line, unilateral VS-lesioned rats (VSxU, n = 7, 71 sessions).

(D, E, G, andH) Behavior on forced-choice trials in delay (D and E) and number blocks (G andH). Bar graphs showpercentage correct (D andG) and reaction times

(E and H) in response to the high and low value across all recording sessions. *p < 0.05 or better (see main text); NS, nonsignificant. Error bars represent SEM.
second odor signaled sucrose reward only in the right well

(forced right), and a third odor signaled that reward was available

at either well (free choice). To induce errors in the prediction

of reward, we manipulated either the timing or the number of

reward delivered in each well across blocks of trials (Figure 1B).
Positive prediction errors were induced by making a previously

delayed reward immediate (Figure 1B, blue arrows in blocks

2sh and 3bg) or by adding more reward (Figure 1B, green arrows

in blocks 3bg and 4bg), whereas negative prediction errors were

induced by delaying a previously immediate reward (Figure 1B,
Neuron 91, 182–193, July 6, 2016 183



red arrow in block 2lo) or by decreasing the number of reward

(Figure 1B, orange arrows in block 4sm).

Recording began after the rats were shaped to perform the

task. Shaping was similar across the two groups, and there

were no significant differences in the number of trials in each

block in the recording sessions (ANOVA, F3,432 = 0.54, p =

0.66). As expected, sham-lesioned rats changed their behavior

across blocks in response to the changing reward, choosing

the larger/earlier reward more often on free-choice trials (75 ses-

sions; delay blocks, t test, t74 = 7.96, p < 0.01, Figure 1C; number

blocks, t test, t74 = 11.72, p < 0.01, Figure 1F) and responding

more accurately (delay blocks, t test, t74 = 12.01, p < 0.01, Fig-

ure 1D; number blocks, t test, t74 = 9.29, p < 0.01, Figure 1G)

and with shorter reaction times (delay blocks, t test, t74 = 5.81,

p < 0.01, Figure 1E; number blocks, t test, t74 = 3.06, p < 0.01,

Figure 1H) on forced-choice trials when the earlier or larger

reward was at stake. Rats with unilateral (VSxU) lesions showed

similar behavior (71 sessions; percent choice in delay blocks,

t test, t70 = 12.81, p < 0.01, Figure 1C; in number blocks, t test,

t70 = 8.29, p < 0.01, Figure 1F; percent correct in delay blocks,

t test, t70 = 10.39, p < 0.01, Figure 1D; in number blocks, t test,

t70 = 5.74, p < 0.01, Figure 1G; reaction times in delay blocks,

t test, t70 = 7.03, p < 0.01, Figure 1E; in number blocks, t test,

t70 = 3.06, p < 0.05, Figure 1H). Two-factor ANOVAs (group 3

reward number or group 3 reward timing) revealed neither

main effects nor any interactions involving group in free-choice

performance, percent correct, or reaction times in delay (F <

3.1, p > 0.08) or number (F < 0.7, p > 0.07) blocks. Thus, the

two groups showed similar differences in all our behavioral

measures in both block types.

Dopamine Neurons Signal Prediction Errors in
Response to Changes in Timing or Number of Reward
We identified putative dopamine neurons by means of a wave-

form analysis similar to that used to identify dopamine neurons

in primate studies (Bromberg-Martin et al., 2010; Fiorillo et al.,

2008; Hollerman and Schultz, 1998; Kobayashi and Schultz,

2008; Matsumoto and Hikosaka, 2009; Mirenowicz and Schultz,

1994; Morris et al., 2006; Waelti et al., 2001). Although the use of

waveform criteria has not been uniformly accepted for isolating

dopamine neurons (Margolis et al., 2006), this analysis isolates

neurons in rat VTA whose firing is sensitive to intravenous

infusion of apomorphine or quinpirole (Jo et al., 2013; Roesch

et al., 2007), and nigral neurons identified by a similar cluster

analysis in mice are selectively activated by optical stimula-

tion in tyrosine hydroxylase channelrhodopsin-2 mutants and

show reduced bursting in tyrosine hydroxylase striatal-specific

NMDAR1 knockouts (Jin and Costa, 2010). Although these

criteria may exclude some neurons containing enzymatic

markers relevant to dopamine synthesis (Margolis et al., 2006;

Ungless and Grace, 2012), only neurons in this cluster signaled

reward prediction errors in appreciable numbers in our previous

work (Roesch et al., 2007; Takahashi et al., 2011).

This approach identified as putatively dopaminergic 51 of 501

and 55 of 407 neurons recorded from VTA in sham- and VS-

lesioned rats, respectively (Figures S1A–S1C). These propor-

tions did not differ between groups (Chi-square = 2.4, df = 1,

p = 0.12). Of these, 30 neurons in sham- and 31 in VS-lesioned
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rats increased firing in response to reward (compared with a

500-ms baseline taken during the inter-trial interval before trial

onset). The average baseline activity and the average firing at

the time of reward were similar in the two groups, both for these

reward-responsive neurons as well as for the remaining dopa-

mine neurons that were not responsive to reward (Figure S1D).

Thus, VS lesions did not appear to have dramatic effects

on the prevalence, waveform characteristics, or reward-related

firing of putative dopamine neurons. Of note, neurons catego-

rized as non-dopaminergic did show significantly higher baseline

firing in the VS-lesioned rats (Figure S1E).

As in prior studies (Roesch et al., 2007; Takahashi et al., 2011),

we found that prediction error signaling was largely restricted to

reward-responsive, wide-waveform putative dopamine neurons

(see Figure S2 for analyses of error signaling in other popula-

tions). In sham-lesioned rats, the activity of these neurons

increased in response to an unexpected reward and decreased

in response to omission of an expected reward. In each case,

the change was largest at the start of the block, diminishing

with learning of the new reward contingencies as the block

proceeded. Firing to unexpected reward and its change with

learning were similar whether we changed the timing (Figures

2A and 2E) or number of reward (Figures 2B and 2F). To quantify

these effects, we analyzed the average firing rate on the first and

last 10 trials in blocks in which we changed in the timing (Fig-

ure 2I) or number (Figure 2J) of reward. Activity was taken at

the time of reward or reward omission in the relevant blocks,

as indicated by the matching colored arrows in Figure 1B. A

three-factor ANOVA (reward/omission 3 timing/number manip-

ulation 3 trial) of the trial-by-trial neural data plotted in Figures

2I and 2J revealed main effects of reward/omission (F1,29 =

15.0, p < 0.001) and a significant interaction between reward/

omission and trial (F19,551 = 6.15, p < 0.001), but no main effect

nor any interactions involving timing/number manipulation (F <

2.9, p > 0.10). Separate ANOVAs indicated main effects of trial

in each data series (p < 0.01), but no main effects or interactions

with manipulation (F < 2.7, p > 0.1). Comparisons to baseline

(gray lines, Figures 2I and 2J) revealed changes in firing initially

in response to unexpected reward or reward omission in

delay blocks (Figure 2I: reward/baseline 3 early/late phase,

F1,29 = 9.42, p < 0.01; omission/baseline 3 early/late phase,

F1,29 = 9.59, p < 0.01) and number blocks (Figure 2J: reward/

baseline 3 early/late phase, F1,29 = 8.97, p < 0.01; omission/

baseline3 early/late phase, F1,29 = 15.3, p < 0.01). Post hoc an-

alyses showed significant differences in firing versus baseline for

both reward and omission early in each type of block (Figure 2I:

reward, F1,29 = 12.65, p < 0.01: omission, F1,29 = 18.9, p < 0.01;

Figure 2J: reward, F1,29 = 8.11, p < 0.01; omission, F1,29 = 6.92,

p < 0.05), but not late in the block (F < 3.8, p > 0.05). In addition,

difference scores comparing each neuron’s firing early versus

late in these blocks were distributed significantly above zero

for unexpected reward (upper histograms in Figures 2I and 2J)

and below zero for reward omission (lower histograms in Figures

2I and 2J).

Notably, the effects of changing the timing versus number of

reward on the firing of these neurons were statistically indistin-

guishable inasmuch as the difference scores for unexpected

reward and omission for each manipulation did not differ
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Figure 2. Changes in Activity of Reward-Responsive Dopamine Neurons to Unexpected Changes in Timing and Number of Reward

(A–H) Three-dimensional heat plots represent activity in averaged across all reward-responsive dopamine neurons in sham (n = 30) (A, B, E, and F) and VS-

lesioned rats (n = 31) (C, D, G, and H) in response to introduction of unexpected delivery of short reward (A and C, blue arrows), unexpected big reward (B and D,

green arrows), omission of expected short reward (E and G, red arrows), and omission of expected big reward (F and H, orange arrows).

(I–L) Average firing during 500 ms after delivery of short reward (blue) and big reward (green), or omission of short reward (red) and big reward (orange) in sham

(I and J) and VS-lesioned rats (K and L). Error bars represent SEM. Gray dotted lines and gray shadings indicate baseline firing and SEM. t, significant interaction

versus baseline; *, significant difference from baseline early or late; ns, non-significant. Small insets in each panel represent distribution of difference scores

comparing firing to unexpected reward (top) and reward omission (bottom) in the early 5 versus late 10 trials in relevant trial blocks. Difference scores were

computed from the average firing rate of each neuron in the first 5 minus the last 10 trials in relevant trial blocks. The numbers in the upper right of each panel

indicate results of Wilcoxon signed-rank test (p) and the average difference score (u).

(M, N, P, and Q) Difference in firing between delivery and omission of short reward (M and P) and between delivery and omission of big reward (N and Q) in sham

(M and N) and VS-lesioned rats (P and Q). Dashed lines and gray shadings indicate average and 2 SEM of shuffled data. Error bars represent SEM.

(O and R) Distribution of difference scores comparing (M) versus (N) in sham (O) and (P) versus (Q) in VS-lesioned rats (R). The numbers in upper right of each panel

indicate results of Wilcoxon signed-rank test (p) and the average difference score (u).
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(Wilcoxon rank-sum test, p > 0.5). The similarity was also

apparent when we plotted the difference in firing upon delivery

of unexpected reward versus reward omission, trial by trial,

separately for changes in timing (Figure 2M) or number (Fig-

ure 2N). This difference was large initially in each data series

and then diminished after a small number of trials, approaching

a shuffled baseline. A two-factor ANOVA comparing these data

across the two manipulations found a significant main effect of

trial (F19,551 = 6.23, p < 0.001), but no main effect nor any interac-

tion with manipulation (F < 0.7, p > 0.75, see also difference

scores plotted in the histogram in Figure 2O). Together, these re-

sults suggest that our reward timing and number manipulations

were equally successful at generating reward prediction errors

in sham-lesioned animals.

VS Lesions Disrupt Dopamine Neuron Signaling of
Prediction Errors in Response to Changes in Timing but
Not Number of Reward
Ipsilateral lesions of the ventral striatum had a marked effect on

the firing of dopamine neurons. In particular, reward-responsive

dopamine neurons recorded in rats with ipsilateral VS lesions

showed very little prediction error signaling when the timing of

a reward changed (a delayed reward was made immediate, Fig-

ure 2C, or an immediate reward was delayed, Figure 2G). These

neurons nevertheless showed prediction error signaling when

reward number changed (new reward added, Figure 2D, or

removed, Figure 2H), although the changes in firing also seemed

somewhatmuted compared to those observed in sham controls.

These effects were again quantified by analyzing the average

firing of the reward-responsive dopamine neurons on the first

and last 10 trials in all blocks in which we changed the timing

(Figure 2K) or number (Figure 2L) of reward. A three-factor

ANOVA (reward/omission 3 timing/number manipulation 3 trial

number) of the neural data plotted in Figures 2K and 2L revealed

main effects of reward/omission (F1,30 = 15.4, p < 0.001), trial

(F19,570 = 1.83, p < 0.05), and a significant interaction between

reward/omission and trial (F19,570 = 3.46, p < 0.001). However,

in addition to these effects, which were similar to those seen in

sham controls, there was also a significant three-way interaction

involving the timing/number manipulation (F19,570 = 2.66,

p < 0.001). Separate ANOVAs revealed significant interactions

between trial and manipulation for both unexpected reward

(F19,570 = 1.91, p < 0.05) and reward omission (F19,570 = 1.67,

p < 0.05), and there were significant differences in firing on early

versus late trials in response to changes in reward number (p <

0.001) but not reward timing (F < 1.45, p > 0.10). Accordingly, dif-

ference scores comparing each neuron’s firing early versus late

in blocks where reward number was changed were distributed

significantly above zero for unexpected reward and below zero

for reward omission (histograms, Figure 2L); however, similar

scores computed when there was a change in reward timing

were not different from zero (histograms, Figure 2K). The distri-

butions of these scores also differed significantly across manip-

ulations (Wilcoxon rank-sum tests, p < 0.05), indicating that the

effects of changing the timing versus number of reward were

statistically different.

Comparisons to baseline (gray lines, Figures 2K and 2L) gener-

ally confirmed this difference between the effects of the two
186 Neuron 91, 182–193, July 6, 2016
manipulations. There were no changes in firing versus baseline

in response to manipulation of reward timing (Figure 2K:

reward/baseline3 early/late phase, F1,30 = 1.65, p = 0.21; omis-

sion/baseline3 early/late phase, F1,30 = 0.79, p = 0.38), whereas

there were changes in response to manipulation of reward num-

ber (Figure 2L: reward/baseline 3 early/late phase, F1,30 = 5.83,

p < 0.05; omission/baseline 3 early/late phase, F1,30 = 18.9, p <

0.01). Post hoc analyses showed significant differences in firing

versus baseline early only for an unexpected increase in reward

number (Figure 2K: reward, F1,30 = 7.66, p < 0.01).

The different effects of the twomanipulations were particularly

apparent when we plotted the difference in firing upon delivery of

unexpected reward versus reward omission, trial by trial, sepa-

rately for changes in timing (Figure 2P) or number (Figure 2Q)

of reward. For changes in reward number, this difference

was large initially, diminishing after a small number of trials to

approach a shuffled baseline value. However, for changes in

reward timing, this difference score was flat throughout the

block, showing only a difference due to reward receipt or omis-

sion. A two-factor ANOVA comparing these data across the two

manipulations found a significant interaction between trial and

manipulation (F19,570 = 2.65, p < 0.001, see also difference

scores plotted in the histogram in Figure 2R).

Finally, we directly compared data from sham- and VS-

lesioned rats. ANOVAs comparing data for number blocks (Fig-

ure 2J versus Figure 2L or Figure 2N versus Figure 2Q) found

no main effects nor any interactions involving group (F < 1.3,

p > 0.18), with the distributions of the scores comparing firing

early versus late in these blocks (histograms, Figure 2J versus

Figure 2L) not statistically different across groups (Wilcoxon

rank-sum test, addition: p = 0.96, omission: p = 0.52). These an-

alyses indicate that, within the limits of our statistical power, the

two groups showed very similar changes in firing in response to

the addition or omission of extra reward. On the other hand, we

found significant group interactions when comparing data from

timing blocks in Figure 2I versus Figure 2K (reward/omission 3

trial 3 group: F19,1121 = 2.63, p < 0.001) and in Figure 2M versus

Figure 2P (trial3 group: F19,1121 = 2.63, p < 0.001). Post hoc an-

alyses showed a significant interaction between group and firing

on early versus late trials in response to both unexpected reward

and reward omission (p < 0.01). Accordingly, the distributions

of the difference scores comparing firing changes in these

blocks (histograms, Figure 2I versus Figure 2K) were significantly

different between the groups (Wilcoxon rank-sum tests, p <

0.01), reflecting the fact that dopamine neurons recorded in

sham controls changed firing in response to changes in reward

timing, whereas those recorded in VS-lesioned rats did not. Dis-

tributions of difference scores plotted in Figures 2O and 3R were

also significantly different (Wilcoxon rank-sum test, p = 0.011).

Together, these analyses show that putative dopamine neurons

in VS-lesioned rats responded differently to changes in the

timing of the reward compared to putative dopamine neurons

recorded in sham-lesioned rats.

VS Provides Temporally Precise Reward Predictions to
the VTA
The in vivo results of our experiment suggest that temporal as-

pects of reward prediction can be dissociated from predictions
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Figure 3. Effects of Simulating a Lesion of Temporal Expectations in the Semi-Markov TDRL Model

(A–D) Simulated average prediction errors during 500 ms after delivery of short reward (blue) and big reward (green), or omission of short reward (red) and big

reward (orange) in the intact model (A and B) and in the lesionedmodel (C andD). Dotted lines in (C) and (D) show the expected pattern of prediction-error signals if

total reward predictions were lost. Dark and light lines in (C) and (D) show simulated prediction-error signals for the full lesion and partial lesion models,

respectively (colors indicate the same conditions as in A and B).

(E) State space representation of the task, with transitions between states marked in black arrows and the characteristic observation for each state marked in

gray. Note that the characteristic observation is only emitted with p = 0.7; otherwise, the state emits a null (empty) observation (p = 0.2) or any of the other five

possible observations (with p = 0.02 each). Below, the observation matrix shows the probability of each observation given each state and the transition matrix

shows the probability of each successor state given each state.

(F) Learnt dwell-time distributions at the end of block 1 (delay block) for state 2 in the short delay condition (blue) and state 3 in the long delay condition (red) for the

intact, partial lesion, and full lesion models.

(G) Similar to (F) but at the end of block 3 (size block) for state 2 in the big reward condition (green) and state 3 in the small reward condition (orange). The more

severe the lesion, more of the probability mass lies at infinity (equivalent to no prediction of state duration).
of the number of expected reward and that VS supports essential

information about the former, but perhaps not the latter, to VTA

dopamine neurons. To make concrete this interpretation, we

developed a TDRL model of the task using a framework that

explicitly separates learning of reward number from learning to

predict the timing of future reward. Briefly, rather than using

the standard TDRL framework in which event identity and event

timing are inextricable, we used a semi-Markov framework that
represents and learns about reward timing (and, more generally,

the duration of delays between events) separately and in parallel

to representing and learning about expected amounts of reward

(Daw et al., 2006).

In the model, the task is represented as a sequence of states

(Figure 3E), with the duration of each state being potentially

different. Key events in the task (e.g., appearance of an odor or

a reward) signal transitions between states; however, transitions
Neuron 91, 182–193, July 6, 2016 187



can also occur without an external signal, due to the passage of

time. Importantly, through experience with the task, the animal

learns the expected duration for each state, as well as the value

(i.e., expected amount of future reward) associated with the

state. The latter is acquired through a temporal-difference

learning rule, as in classic TDRL (see Experimental Procedures

for full details), but it is separate from learning about state dura-

tions, which occurs through averaging of previous durations of

each state. The separation of state durations from state values

allows the model to capture disruption to one function but not

the other (as evidenced in the dopamine signals) and consists

of a departure from commonly held assumptions regarding the

computational basis of prediction learning in the basal ganglia.

That is, our model suggests a completely different implementa-

tion of reinforcement learning in basal ganglia circuitry than is

commonly considered (Joel et al., 2002).

One important departure from classic TDRL is that in our

model, prediction error signals occur only on state transitions

and thus can be seen as ‘‘gated’’ according to the probability

of a state transition occurring at any given time. This probability

is 1 (or near 1, thus the ‘‘gate’’ is fully ‘‘open’’) when an external

event is observed, as when a new reward is delivered. However,

critically, the transition probability can also be high if there is a

precise expectation regarding the duration of a specific state

and this duration has terminated. It is in this case—when a state

is deemed to terminate due to the passage of time despite the

expected reward having not arrived—that a negative prediction

error signal will be gated. Thus, temporal expectations can con-

trol or gate prediction errors, by causing a transition between

states to be inferred even in the absence of an external event.

To test the predictions of the model, we simulated the evolu-

tion of state values, state durations, and the associated predic-

tion errors using the actual task event timings that each group

of rats experienced when performing the task. Model predic-

tion-error signals were transformed into an instantaneous firing

rate and then averaged and analyzed using the same epochs

as we used to analyze the neural data. For the control group

(full intact model), the simulations yielded the characteristic

pattern of prediction error signals observed in vivo in this study

and previously (Roesch et al., 2007; Takahashi et al., 2011). Spe-

cifically, the simulation produced positive prediction errors to un-

expected early or large reward and negative prediction errors to

unexpected reward omission (Figures 3A and 3B). These errors

were strongest early in each block, gradually disappeared over

subsequent trials, and the pattern was similar for errors induced

by changes in number versus timing of reward.

To simulate a VS lesion in the model, we prevented the model

from learning or using precise temporal expectations for the

duration of states. To do this, updates of state durations were

effectively ‘‘blurred’’ by decreasing the amplitude of the timing

‘‘kernel’’ that was used during learning (see Experimental Proce-

dures and Figures 3F and 3G; partial lesions were modeled by

decreasing the kernel by half, full lesions by decreasing it to

baseline). This simulated lesion captures the intuition that the

VS is critically involved in gating prediction errors according to

learned state durations, and therefore a loss of VS corresponds

specifically to (partially or fully) decreased amplitude of a signal

that tracks the expectation of a reward-related event occurring
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at that point within a trial. One effect of this ‘‘lesion’’ is to effec-

tively block the model from inferring a transition between states

without an observation—the model will wait in a state indefinitely

(or until the next observation of cue or reward) and is unable to

infer a transition in the case of a missing (or late) reward.

This timing-lesioned model produced results that were

remarkably similar to the firing of the dopamine neurons in VS-

lesioned rats. Specifically, the simulation produced positive

prediction errors in response to the delivery of new reward (Fig-

ure 3D, green line) but showed neither positive nor negative er-

rors in response to changes in reward timing (Figure 3C). These

results are identical to the data observed in vivo. Moreover, the

model did not register negative prediction errors when the addi-

tional rewards were omitted in number blocks (Figure 3D, orange

line). This is because the lesioned model could not use state

duration to infer a transition at the time of the expected (but

omitted) reward, and thus it did not gate a negative prediction-

error signal. Notably, our neural data were equivocal on whether

a negative prediction error occurred for this event. On the one

hand, there was not a significant difference in firing to reward

omission between groups and there appeared to be a significant

shift below zero in the activity of the individual neurons at the

time of omission in the number blocks. However, comparing

firing of the dopamine neurons recorded in the lesioned rats at

the time of reward omission to baseline at the start of these

blocks, the apparent decline in firing was not statistically signif-

icant. In any event, any discrepancy here is not necessarily at

odds with this prediction of the model, as it is possible that the

lesions were not equivalent to a complete loss of function (see

light lines in Figures 3C and 3D for simulation of the effects of

a partial lesion). We also simulated a lesion in which the width

of the kernel update to the state duration distributions was

increased (rather than its amplitude decreased) and the calcu-

lation of expected duration within a state was left intact. This

simulation produced similar results (Figure S3), suggesting that

the specific implementation of the lesion was not paramount,

as long as timing information in the model was degraded.

Finally we also tested the original hypothesis, commonly held

in the literature (Joel et al., 2002; O’Doherty et al., 2003; Willuhn

et al., 2012), that the VS serves as a (unitary) source of predic-

tions of both when and how much reward is predicted for VTA

dopamine neurons. To do this, in the lesioned model we set all

state values to zero and blocked their update during the task,

creating a situation where prediction errors must be computed

absent input regarding both the timing and number of predicted

reward. In this case, and as expected, the model generated

persistent prediction errors to reward delivery and no prediction

errors to reward omission (dotted lines in Figures 3C and 3D).

This pattern of results is clearly at odds with the in vivo data,

suggesting that the assumption embedded in classical TDRL

models—that predictions of reward number and of reward timing

go hand in hand (and thus are either present or absent as a

unit)—is incorrect.

DISCUSSION

Reward prediction errors are signaled by midbrain dopamine

neurons (Barto, 1995; Mirenowicz and Schultz, 1994; Montague



et al., 1996; Schultz et al., 1997). To do this, dopamine neurons

require predictions to compare to actual obtained reward

(Bush and Mosteller, 1951; Rescorla and Wagner, 1972; Sutton

and Barto, 1998). Theoretical and experimental work has sug-

gested that the VS is an important source of these predictions,

particularly to dopamine neurons in the VTA (Daw et al., 2005,

2006; Joel et al., 2002; O’Doherty et al., 2003, 2004; Seymour

et al., 2004). Here we tested this hypothesis, recording from

VTA dopamine neurons in rats with a lesioned VS, while they per-

formed a task in which positive and negative prediction errors

were induced by shifting either the timing or the number of ex-

pected reward. Sham-lesioned rats exhibited prediction error

signals in response to both manipulations, replicating our previ-

ous findings (Roesch et al., 2007; Takahashi et al., 2011). By

contrast, dopamine neurons in rats with ipsilateral VS lesions ex-

hibited intact prediction errors in response to increases in the

number of reward but no prediction errors to changes in reward

timing on the order of several seconds (and possibly also to

complete omission of expected reward). These effects were

reproduced by a computational model that used a non-tradi-

tional reinforcement-learning framework to separate learning

about reward timing from learning about reward number (‘‘state

value’’). Our results thus suggest a critical role for the VS in

providing information about the predicted timing of reward, but

not their number, to VTA dopamine neurons. These data and

our theoretical interpretive framework may require a rethinking

of the implementation of prediction-error computation in the

neural circuitry of the basal ganglia.

Before considering the implications of our findings, we

address some important caveats. One key determinant of our

findingsmay be the amount of training the rats underwent before

recording began—while our rats were trained extensively, it may

be that the VS has a broader role in supporting reward predic-

tions in very early stages of learning a task. It is also possible

that had we allowed less time for compensation by using revers-

ible inactivation, or lesioned the VS more completely or bilater-

ally, we might have observed effects of the lesion on both types

of prediction errors. In any case, our data suggest that delay-

induced prediction-error signaling is more sensitive to VS dam-

age than are prediction errors induced by changes in number

of reward. We also failed to observe any relationship between

the amount of damage and the loss or preservation of prediction

errors in our lesioned group (Figure 2R versus % damage yields

r = 0.08, p = 0.66). Even relatively modest damage to VS was

sufficient to entirely disrupt delay-induced errors with little effect

on those induced by number changes.

It also anempirical question ofwhether these resultswill gener-

alize to primates or other rodent species or to other midbrain re-

gions. While the waveform sorting approach we use is roughly

similar to the approach used to identify prediction-error signaling

dopamine neurons in primates (Bromberg-Martin et al., 2010;

Fiorillo et al., 2008; Hollerman and Schultz, 1998; Kobayashi

and Schultz, 2008; Matsumoto and Hikosaka, 2009; Mirenowicz

and Schultz, 1994;Morris et al., 2006;Waelti et al., 2001), and the

error signals we find in our neurons obey many of the same rules

as those demonstrated in comparable primate studies (Brom-

berg-Martin et al., 2010; Fiorillo et al., 2008; Kobayashi and

Schultz, 2008; Morris et al., 2006), it is possible that the influence
of VS on these signalsmay be different in other species. Thismay

be particularly true inmice, where dopamine neurons seemmore

prevalent in single-unit data (>50%of recordedneurons) andpre-

diction-error signals are often reported in populations whose

waveform features are largely indistinguishable from the other

populations (Cohen et al., 2012; Eshel et al., 2015; Tian and

Uchida, 2015). It is also possible that the influence of VS on dopa-

minergic error signals in other parts of midbrain differs fromwhat

we have observed in (mostly lateral) VTA.

As a last caveat, we note that our conclusions are based on a

relatively small proportion of our recorded neurons, smaller than

would be identified as dopaminergic by immunohistological

criteria (Li et al., 2013). While we did not pre-select neurons for

recording, it is possible that neurons with different firing corre-

lates were not visible to our electrodes. Nevertheless, the neu-

rons we isolated had waveform and firing correlates similar

to putative dopamine neurons in other studies in both rats (Jo

et al., 2013; Jo and Mizumori, 2015; Pan et al., 2005) and

primates (Bromberg-Martin et al., 2010; Fiorillo et al., 2008; Ko-

bayashi and Schultz, 2008; Morris et al., 2006), recorded in both

VTA and substantia nigra pars compacta. Further, most neurons

in lateral VTA of the rat are thought to be classical dopamine neu-

rons, meaning that they exhibit the same enzymatic phenotype

characteristic of dopamine-releasing neurons in the substantia

nigra (Li et al., 2013). As a result, we do not believe we are

missing substantial numbers of dopamine neurons in our classi-

fication. Consistent with this, we also analyzed activity from the

other neural populations that we recorded, but did not see any

evidence of significant dopamine-like error signaling (see Sup-

plemental Information, especially Table S1).

We now turn to the possible implications of our results. Most

importantly, our findings are inconsistent with the currently pop-

ular model in which VS supplies the reward predictions used by

VTA dopamine neurons to calculate reward prediction errors

(Daw et al., 2005, 2006; Joel et al., 2002; O’Doherty et al.,

2003, 2004; Seymour et al., 2004). If this model were correct,

removing VS input to dopamine neurons would have amounted

to removing all reward predictions, and therefore would have re-

sulted in persistent firing to all reward (now ‘‘unexpected’’) and

no signals to omission of reward, irrespective of themanipulation

(timing or number) that induced prediction errors. We did not

observe these results, suggesting that the strong version of

this hypothesis is not viable.

However, we did findmajor effects of VS removal on VTA error

signaling, but only when prediction errors were induced by

changing the timing of the reward. Here it is important to note

that even for these timing-dependent prediction errors, this is

not the effect we would have expected if we simply eliminated

timing predictions—while negative prediction errors would be

lost, positive errors would remain high in that case, as all reward

would be surprising. Instead, we found that positive errors were

also eliminated (as compared to the response of these neurons

to other unexpected reward), as if a reward was predictedwhen-

ever it arrived. That is, lacking VS input, putative dopamine neu-

rons knew that reward would appear but did not know (or care)

when. This suggests that VS is not necessary for predicting the

occurrence of reward; however it is necessary for endowing

that prediction with temporal specificity (e.g., that the reward is
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coming after 500 ms). Intriguingly, absent this information, any

timing of the reward was treated as the expected timing of the

reward.

A dissociation between knowing that reward is coming but not

when it should arrive directly contradicts the standard TDRL

framework in which predictions about reward timing and number

are inextricably linked (Montague et al., 1996; Schultz et al.,

1997; Sutton and Barto, 1998). However, this dissociation was

produced effectively in a model based on a semi-Markov frame-

work proposed by Daw et al. (2006) that learns about reward

timing and reward number in parallel. ‘‘Lesioning’’ this model

removing expectations for the duration between events in the

task and leaving all other aspects of prediction learning intact

produced the exact pattern of altered prediction-error signaling

seen in the VS-lesioned rats: a reward that came too early or

was delayed such that its timing became uncertain produced

no prediction error, even though there were robust prediction

error signals in response to changes in number of reward. The

model also predicted the loss of number-induced negative pre-

diction errors (Figure 3D, orange line). It is not clear from our

in vivo data whether this signal is indeed affected by the VS

lesion (Figure 2J versus Figure 2L, orange lines), as the low base-

line rates of dopamine neurons make suppression of firing

(or lack thereof) difficult to demonstrate reliably. In any case, if

one assumes that the lesions did not completely ablate the VS,

some residual negative prediction error might be expected

(Figures 3C and 3D, light lines).

Our modeling results link signaling from the VS with the gating

of prediction-error signals according to the learned timing of

reward, suggesting that activity in the VS might evolve within a

trial by tracking learned temporal expectations regarding the

timing of reward delivery (or other reward-predictive events).

Such a signal from the VS might thus be similar to adaptive

time representations found in the dorsal striatum in an instru-

mental task (Mello et al., 2015). A role for VS in constraining

reward predictions to specific (learned) time intervals is also

consistent with previous reports that place the VS at the center

of a neural timing circuit (Meck et al., 2008). Notably this function

is thought to depend on input from hippocampus (Meck, 1988;

Meck et al., 2013), which has been linked to keeping track of in-

ternal representations of time (Eichenbaum, 2014) and is known

to regulate VS input to VTA (Floresco et al., 2001). The loss of the

ability to track these temporal predictions absent a VS and its ef-

fect on the perception of negative prediction errors may also be

of relevance to the apparent role of VS in the perception of risk

(Dalton et al., 2014; St Onge et al., 2012; Stopper and Floresco,

2011), since an inability to perceive negative prediction errors

would dramatically reduce the apparent ‘‘riskiness’’ of a proba-

bilistic reward. One prediction of our model is that substituting

a small reward for reward omissionmight restore normal function

in such tasks.

A specific role of VS in signaling state timing can even be

observed in simple Pavlovian conditioning tasks—previous

work has shown that when rats with bilateral neurotoxic lesions

of VS are trained to associate long-duration cues with reward,

learning and the ultimate levels of responding are not affected

by the lesions, but the specific pattern of responding during

the cues is disrupted (Singh et al., 2011). Specifically, while
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non-lesioned controls exhibit progressivelymore conditioned re-

sponding as the reward period approached, rats with VS lesions

respond at constant levels throughout the delay to reward. This

is consistent with a failure to learn temporally precise predictions

but a conserved ability to learn that a reward is impending.

Finally, Klein-Flügge et al. (2011) compared fMRI responses in

VS and VTA in humans learning to predict the timing, but not

the number of variably timed reward. They showed that blood-

oxygen-level-dependent (BOLD) signals in the VS are sensitive

to information about timing, but not information about number,

whereas VTA prediction-error signals are sensitive to both.

Indeed, VS signals in that study were consistent with a role for

the VS in learning when reward will occur, showing larger re-

sponses to cues that predicted information about timing and to

reward that occurred within the expected timeframe. Here we

have shownmore directly that the VS supplies information about

temporal specificity of predictions to VTA neurons.

Single-unit studies show that signals related to reward number

or value are present in the VS, and many other reports indicate

that VS integrity can be critical to behaviors seemingly based

on value or even reward number (Berridge and Robinson, 1998;

Di Chiara, 2002; Hauber et al., 2000;McDannald et al., 2011; Nic-

ola, 2007; Steinberg et al., 2014). In fact, single-unit data from VS

in the same task as used here show that information about num-

ber is present inVSunit activity (Roeschet al., 2009), and ratswith

bilateral VS lesions tested in the same task used in our study

initially showed free-choice deficits (Burton et al., 2014), though

the deficits in delay blocks were significantly more severe than

those in the number blocks. Indeed, when analyzed separately,

VS lesioned rats showed a preference for larger reward on free-

choice trials but did not show a preference between immediate

versus delayed reward (M.R. Roesch, personal communication),

consistentwith our finding. Interestingly, with further training, rats

with bilateral VS lesions did learn to respond normally, even in the

delay blocks. The authors concluded that this recovery of normal

behavior must reflect compensation by other slower learning

mechanisms in dorsal striatum (Burton et al., 2014). Our data

from extensively trained rats suggest that these mechanisms

can operate independent of normal delay-induced dopaminergic

error signals from the VTA.

Our data suggest that even though VS neurons may signal in-

formation about the expected number of reward (Roesch et al.,

2009), this information may be redundant with inputs to VTA

from other areas, as VS lesions were not detrimental to (positive)

prediction-error signaling due to changes in reward number.

Indeed, information about reward number or simply the future

occurrence of reward is sufficiently fundamental that it is likely

signaled by a diverse array of areas impinging on the midbrain,

any one of which may be sufficient to support error signaling in

response to simply adding a reward. Neural responses to reward

or to cues that predict different numbers of reward are found in

many brain areas, including areas that have either direct or indi-

rect projections to VTA or its surrounds. Preserved number-

induced error signals in our recordings may therefore reflect

input from any of these areas. By contrast, our results suggest

that signaling ofwhen a reward is expected to occur is an aspect

of reward prediction that is mediated uniquely by circuitry that

converges on the VS.



EXPERIMENTAL PROCEDURES

Subjects

Male Long-Evans rats (n = 16) were obtained at 175–200 g from Charles River

Laboratories. Rats were tested at the NIDA-IRP in accordance with NIH

guidelines.

Surgical Procedures and Histology

Lesions were made and electrodes implanted under stereotaxic guidance; all

surgical procedures adhered to guidelines for aseptic technique. VS lesions

were made by infusing of quinolinic acid (Sigma) in Dulbecco’s phosphate

vehicle. Infusions of 0.4 ml quinolinic acid (20 mg ml�1) were made at 1.9 mm

anterior to the bregma, and 1.9 mm lateral to the midline, at a depth of

7.3 mm ventral to the skull surface. Sham controls received identical treatment

only no infusion was made. After this procedure, a drivable bundle of eight 25-

um diameter FeNiCr wires (Stablohm 675, California Fine Wire) chronically im-

planted dorsal to VTA in the left or right hemisphere at 5.2 mm posterior to

bregma, 0.7 mm laterally, and 7.0 mm ventral to the brain surface at an angle

of 5� toward the midline from vertical. Wires were cut with surgical scissors to

extend�1.5mmbeyond the cannula and electroplatedwith platinum (H2PtCl6,

Aldrich) to an impedance of �300 kOhms. Cephalexin (15 mg/kg by mouth

[p.o.]) was administered twice daily for 2 weeks post-operatively. The rats

were then perfused, and their brains removed and processed for histology

(Roesch et al., 2006).

Odor-Guided Choice Task

Recording was conducted in aluminum chambers approximately 18 in on each

side with sloping walls narrowing to an area of 12 in 3 12 in at the bottom.

A central odor port was located above two fluid wells (Figure 1A). Two lights

were located above the panel. The odor port was connected to an air flow

dilution olfactometer to allow the rapid delivery of olfactory cues. Odors

where chosen from compounds obtained from International Flavors and

Fragrances.

Trials were signaled by illumination of the panel lights inside the box. When

these lights were on, nosepoke into the odor port resulted in delivery of the

odor cue to a small hemicylinder located behind this opening. One of three

different odors was delivered to the port on each trial, in a pseudorandom

order. At odor offset, the rat had 3 s to make a response at one of the two

fluid wells. One odor instructed the rat to go to the left to get reward, a sec-

ond odor instructed the rat to go to the right to get reward, and a third odor

indicated that the rat could obtain reward at either well. Odors were pre-

sented in a pseudorandom sequence such that the free-choice odor was

presented on 7/20 trials and the left/right odors were presented in equal

numbers. In addition, the same odor could be presented on no more than

3 consecutive trials.

Once the rats were shaped to perform this basic task, we introduced blocks

in which we independently manipulated the number of the reward and the

delay preceding reward delivery (Figure 1B). For recording, one well was

randomly designated as short and the other long at the start of the session (Fig-

ure 1B, 1sh and 1lo). In the second block of trials, these contingencies were

switched (Figure 1B, 2sh and 2lo). The length of the delay under long conditions

followed an algorithm in which the side designated as long started off as 1 s

and increased by 1 s every time that side was chosen until it became 3 s.

If the rat continued to choose that side, the length of the delay increased by

1 s up to a maximum of 7 s. If the rat chose the side designated as long less

than 8 out of the last 10 choice trials, then the delay was reduced by 1 s to a

minimum of 3 s. The reward delay for long forced-choice trials was yoked to

the delay in free-choice trials during these blocks. In later blocks we held the

delay preceding reward constant while manipulating the number of reward

(Figure 1B, 3bg, 3sm, 4bg, and 4sm). The reward was a 0.05 ml bolus of 10%

sucrose solution. The reward number used in delay blocks was the same as

the reward used in the small reward blocks. For big reward, additional boli

were delivered after gaps of 500 ms.

Single-Unit Recording

Wires were screened for activity daily; if no activity was detected, the rat was

removed, and the electrode assembly was advanced 40 or 80 um. Otherwise
active wires were selected to be recorded, a session was conducted, and

the electrode was advanced at the end of the session. Neural activity was

recorded using Plexon Multichannel Acquisition Processor systems. Signals

from the electrodewires were amplified 203 by an op-amp headstage (Plexon,

HST/8o50-G20-GR), located on the electrode array. Immediately outside

the training chamber, the signals were passed through a differential pre-

amplifier (Plexon, PBX2/16sp-r-G50/16fp-G50), where the single-unit signals

were amplified 503 and filtered at 150–9,000 Hz. The single-unit signals

were then sent to the Multichannel Acquisition Processor box, where they

were further filtered at 250–8,000 Hz, digitized at 40 kHz, and amplified at

1–323. Waveforms (>2.5:1 signal-to-noise) were extracted from active chan-

nels and recorded to disk by an associated workstation.

Data Analysis

Units were sorted using Offline Sorter software from Plexon. Sorted files were

then processed and analyzed in Neuroexplorer and MATLAB. Dopamine neu-

rons were identified via a waveform analysis used and validated by us and

others previously (Jo et al., 2013; Roesch et al., 2007; Takahashi et al.,

2011; Jin and Costa, 2010). Briefly, cluster analysis was performed based on

the half time of the spike duration and the ratio comparing the amplitude of

the first positive and negative waveform segments. The center and variance

of each cluster was computed without data from the neuron of interest, and

then that neuron was assigned to a cluster if it was within 3 SD of the cluster’s

center. Neurons that met this criterion for more than one cluster were not

classified. This process was repeated for each neuron.

To quantify changes in firing due to reward delivery or omission, we exam-

ined activity in the 500-ms periods identified by the arrows in Figure 1B. The

start of this time window coincided with opening of the solenoid valve, and

the duration was chosen to encompass the maximum duration of opening

(actual open times were calibrated to maintain 0.05 ml boli and so could be

less than this). Importantly, no other trial event occurred until at least 500 ms

after the end of this timewindow. Thus, this period allowed us to isolate activity

related to delivery or omission of each individual reward bolus. Analyses were

conducted using MATLAB (MathWorks) or Statistica (StatSoft) as described in

the main text.

Computational Modeling

We simulated learning and prediction error signaling in the task using TDRL in

a semi-Markov framework with partial observability (Daw et al., 2006). Briefly,

in this approach, we assume the rats represent the behavioral task as a

sequence of states that each have an associated value, V, and a distribution

over dwell times in that state, D. Observations during the task, such as an

odor cue or the delivery of a reward in a well, signal a transition between states,

at which time a prediction error is signaled and used to update state values.

Additionally, transitions can occur without an external observation due to the

mere passage of time (e.g., at the time that a reward was expected but failed

to arrive, see below). That is, knowledge of the likely dwell time in a state (rep-

resented byD) can be used to infer a silent transition and gate the signaling of a

prediction error and the update of state values. To simulate a VS lesion in the

model, we prevented themodel from learning accurate dwell time distributions

for each state, thereby degrading the ability of the model to infer these silent

transitions when a reward is omitted or delayed. We describe the model in

more detail in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2016.05.015.
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Figure	  S1,	  related	  to	  Figure	  1:	   	  Iden�fica�on,	  waveform	  features	  and	  firing	  rates	  of	  puta�ve	  dopamine	  and	  non-‐dopamine	  
neurons.	  	  (a,	  b)	  Results	  of	  cluster	  analysis	  based	  on	  the	  half	  �me	  of	  the	  spike	  dura�on	  and	  the	  ra�o	  comparing	  the	  amplitude	  
of	  the	  first	  posi�ve	  and	  nega�ve	  waveform	  segments	  ((n	  –	  p)/(n	  +	  p)).	  	  The	  center	  and	  variance	  of	  each	  cluster	  was	  computed	  
without	  data	  from	  the	  neuron	  of	  interest,	  and	  then	  that	  neuron	  was	  assigned	  to	  a	  cluster	  if	  it	  was	  within	  3	  s.d.	  of	  the	  cluster’s	  
center.	   	  Neurons	  that	  met	  this	  criterion	  for	  more	  than	  one	  cluster	  were	  not	  classified.	   	  This	  process	  was	  repeated	  for	  each	  
neuron.	   	   Reward-‐responsive	   dopamine	   neurons	   (rew	   DA,	   n	   =	   30	   in	   sham,	   n	   =	   31	   in	   VSx),	   black;	   reward-‐nonresponsive	  
dopamine	  neurons	  (non-‐rew	  DA,	  n	  =	  21	  in	  sham,	  n	  =	  24	  in	  VSx),	  gray;	  neurons	  that	  classified	  with	  other	  clusters,	  no	  clusters	  or	  
more	  than	  one	  cluster	  (non	  DA,	  n	  =	  450	  in	  sham,	  n	  =	  352	  in	  VSx),	  open	  circles.	   	  Insets	  in	  each	  panel	  indicate	  loca�on	  of	  the	  
electrode	  tracks	  in	  sham	  (n	  =	  9)	  (a)	  and	  VS-‐lesioned	  rats	  (n	  =	  7)	  (b).	  	  (c)	  Bar	  graphs	  indica�ng	  average	  amplitude	  ra�o	  and	  half	  
dura�on	  of	  puta�ve	  dopamine	  neurons	   in	   sham	   (black)	  and	  VS-‐lesioned	   rats	   (white).	   	   (d)	  Average	  baseline	  firing	   (le�)	  and	  
average	  firing	  to	  reward	  of	  reward-‐responsive	  (rew	  DA)	  and	  nonreward-‐responsive	  (non-‐rew	  DA)	  dopamine	  neurons	  in	  sham	  
(black)	   and	  VS-‐lesioned	   (white)	   rats.	   (e)	  Average	  baseline	  firing	   (le�)	  and	  average	  firing	   to	   reward	   (right)	  of	  non-‐dopamine	  
neurons	  in	  sham	  (black)	  and	  VS-‐lesioned	  rats	  (white).	  *p	  <	  0.01	  or	  be�er.	  NS,	  nonsignificant	  (see	  main	  text).	  Error	  bars,	  s.e.m.	  	  
(f)	  Brain	  sec�ons	  illustrate	  the	  extent	  of	  the	  maximum	  (gray)	  and	  minimum	  (black)	  lesion	  at	  each	  level	  in	  VS	  in	  the	  lesioned	  
rats	  (n	  =	  7).	  (g)	  Pie-‐charts	  indicate	  popula�ons	  of	  reward-‐responsive	  and	  non-‐responsive	  non-‐dopamine	  neurons	  in	  sham	  (le�)	  
and	  VS-‐lesioned	  rats	   (right).	   	  Reward-‐responsive	  neurons	  were	  classified	  by	  comparing	  firing	  between	  baseline	  and	  reward	  
epoch	   (t-‐test,	   p	   <	   0.05).	   	   A	   neuron	   showing	   a	   significantly	   higher	   firing	   to	   reward	  was	   represented	   as	   Reward	   >	   baseline,	  
whereas	  a	  neuron	  showing	  a	  significant	  lower	  firing	  to	  reward	  was	  represented	  as	  Baseline	  >	  reward.	   	  Non-‐responsive	  was	  a	  
neuron	  not	  showing	  significant	  difference	  in	  firing.	  

+2.2	  +1.6	  +1.0	  +0.6	  

Half	  dura	  
0	  

0.2	  

0.4	  

0.6	  

0.8	  

0	  

0.05	  

0.1	  

0.15	  

0.2	  

Amp	  ra�o	  

ns	  ns	  

DA	  

0 

3 

6 

9 

12 

15 

18 

Baseline Reward 

Sp
ik
es
/s
ec

	  

*	   ns	  

11%	  17%	  

72%	  

13%	  

71%	  

16%	  

Reward	  >	  baseline	  
Baseline	  >	  reward	  
Non	  responsive	  

Sham	   VSx	  

a	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  b	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  c	  
	  	  
	  
	  
	  
	  
	  
	  
d	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  e	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  f	  
	  
	  
	  
	  
	  
	  
	  
g	  

2



0 5 10 15 20

2

4

6

-10-5 0 5 10
0

5

10

15

-10-5 0 5 10
0

5

10

15

0 5 10 15 20

2

4

6

-10-5 0 5 10
0

5

10

15

-10-5 0 5 10
0

5

10

15

0 5 10 15 20

2

4

6

-10-5 0 5 10
0

5

10

-10-5 0 5 10
0

5

10

0 5 10 15 20

2

4

6

-10-5 0 5 10
0

5

10

-10-5 0 5 10
0

5

10

Sp
ik
es
/s
ec

Sp
ik
es
/s
ec

a                             b                               c                              d
Unexpected short reward
Short reward omission

Unexpected big reward
Big reward omission

Short reward
delivery

Short reward
omission

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

Big reward
delivery

Big reward
omission

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

C
el
l c
o
u
n
t

Big reward
delivery

Big reward
omission

Short reward
delivery

Short reward
omission

Trial number
Last 10First 10

Trial number
Last 10First 10

Trial number
Last 10First 10

Trial number
Last 10First 10

Unexpected short reward
Short reward omission

Unexpected big reward
Big reward omission

u = 0.15
p = 0.81 

u = ‐0.96
p < 0.05 

u = 0.55
p = 0.11 

u = ‐0.14
p = 0.78

u = ‐ 0.38
p = 0.40 

u = 0.17
p = 0.63 

u = ‐ 0.20
p = 0.09 

u = ‐0.47
p = 0.36

Figure S2, related to Figure 2: Changes in activity of reward non‐responsive dopamine neurons and non‐dopamine
neurons to unexpected changes in timing and number of reward. (a – d) Average firing of reward non‐responsive neurons
(n = 21 in sham, n = 24 in VSx) during 500 ms after delivery of short reward (blue) and big reward (green), or omission of
short reward (red) and big reward (orange) in sham (a and b) and VS‐lesioned rats (c and d). Error bars, s.e.m. Small insets
in each panel represent distribution of difference scores comparing firing to unexpected reward (top) and reward omission
(bottom) early versus late in relevant trial blocks. (e – h) Distribution off difference scores in non‐dopamine neurons (n =
450 in sham, n = 352 in VSx) comparing firing to unexpected short reward (e, g) and unexpected big reward (f, h) in sham
(e, f) and VS‐lesioned rats (g, h). (i – l) Distribution off difference scores comparing firing to omission of short reward (i, k)
and omission of big reward (j, l) in sham (i, j) and VS‐lesioned rats (k, l). Difference scores were computed from the average
firing of each neuron in the first 5 and last 10 trials in relevant trial blocks. The numbers in upper right of each panel
indicate results of Wilcoxon signed‐rank test (p) and the average difference score (u).
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Figure	  S3,	  related	  to	  Figure	  3:	   	  Effects	  of	  an	  alterna�ve	  simula�on	  of	  the	   lesion	  of	  temporal	  expecta�ons	   in	  the	  semi-‐
Markov	   TDRL	  model.	   Loss	   of	   temporal	   expecta�ons	   was	   simulated	   by	   increasing	   the	   standard	   devia�on	   of	   the	   kernel	  
update	  for	  the	  learning	  of	  state	  dwell-‐�me	  distribu�ons,	  by	  a	  factor	  of	  5	  for	  a	  par�al	  lesion	  and	  50	  for	  a	  full	   lesion.	  (a-‐b)	  
Simulated	  average	  predic�on	  errors	  during	  500	  ms	  a�er	  delivery	  of	  short	  reward	  (blue)	  and	  big	  reward	  (green),	  or	  omission	  
of	   short	   reward	   (red)	  and	  big	   reward	   (orange)	   in	   the	   intact,	  par�al	  and	   full	   lesion	  models.	  Note	   that	   the	  expecta�on	  of	  
current	  state	  dura�on	  is	  not	  reduced	  in	  this	  lesion,	  and	  thus	  residual	  posi�ve	  predic�on	  errors	  to	  a	  reward	  delivered	  earlier	  
than	  expected	  remain.	  	  (c)	  Learned	  dwell-‐�me	  distribu�ons	  at	  the	  end	  of	  block	  1	  (delay	  block)	  for	  state	  2	  in	  the	  short	  delay	  
condi�on	   (blue)	   and	   state	   3	   in	   the	   long	   delay	   condi�on	   (red)	   for	   the	   intact,	   par�al	   lesion	   and	   full	   lesion	  models	   in	   an	  
example	  session.	  (d)	  Similar	  to	  (c)	  but	  at	  the	  end	  of	  block	  3	  (size	  block)	  for	  state	  2	  in	  the	  big	  reward	  condi�on	  (green)	  and	  
state	  3	   in	  the	  small	  reward	  condi�on	  (orange).	  Any	  probability	  mass	  that	  falls	  below	  zero	  dura�on	  is	  reassigned	  to	   lie	  at	  
infinite	  dura�on.	  
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Category	   reward-‐responsive	  
DA	  

reward	  non-‐
responsive	  DA	  

reward-‐responsive	  
non	  DA	  

reward	  non-‐
responsive	  non	  DA	  

#	  of	  cells	   n	  =	  30	   n	  =	  21	   n	  =	  55	   n	  =	  395	  

met	  Criteria	  1)-‐4)	   23	   0	   6	   8	  

PPE-‐NPE	  correla�on	  
p	  <	  0.01	  

NA	  
p	  =	  0.75	   p	  =	  0.39	  

r	  =	  -‐0.57	   r	  =	  -‐0.17	   r	  =	  -‐0.36	  

Table	  S1,	  related	  to	  Figure	  1:	   	  Single	  units	  mee�ng	  criteria	  for	  reward	  predic�on	  error	  signaling	  by	  popula�on	  in	  sham	  
rats.	   	   	  Popula�ons	  were	  iden�fied	  as	  dopaminergic/non-‐dopaminergic	  and	  reward/non-‐reward-‐responsive	  as	  described	  in	  
Figure	  S1.	  	  Neurons	  were	  classified	  as	  mee�ng	  criteria	  for	  predic�on	  error	  signaling	  at	  the	  �me	  of	  reward	  if	  they	  exhibited	  
1)	  increased	  firing	  to	  reward	  versus	  the	  empty	  well,	  2)	  or	  omission,	  3)	  a	  PPE	  index	  >1,	  and	  4)	  a	  NPE	  index	  <1.	  	  	  Twenty	  three	  
of	  30	  reward-‐responsive	  puta�ve	  dopamine	  neurons	  described	  also	  in	  the	  main	  text	  passed	  this	  screen	  as	  error	  signaling,	  
and	  they	  exhibited	  a	  significant	  and	  strong	  correla�on	  in	  their	  response	  to	  PPE	  and	  NPEs.	   	  None	  of	  the	  other	  popula�ons	  
contained	   more	   than	   a	   few	   neurons	   that	   passed	   the	   criteria	   and	   firing	   to	   PPE	   and	   NPE’s	   in	   these	   neurons	   was	   not	  
correlated.	  
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EXPERIMENTAL PROCEDURES 

Computational modeling: We simulated learning and prediction error signaling in the 
task using temporal difference reinforcement learning in a semi-Markov framework with partial 
observability (Daw et al., 2006). Briefly, in this approach, we assume the rats represent the 
behavioral task as a sequence of states that each have an associated value, V, and a distribution 
over dwell times in that state, D. Observations during the task, such as an odor cue or the 
delivery of a reward in a well, signal a transition between states, at which time a prediction error 
is signaled and used to update state values. Additionally, transitions can occur without an 
external observation due to the mere passage of time (e.g., at the time that a reward was expected 
but failed to arrive, see below). That is, knowledge of the likely dwell time in a state (represented 
by D) can be used to infer a silent transition, and gate the signaling of a prediction error and the 
update of state values. To simulate a VS lesion in the model, we prevented the model from 
learning accurate dwell time distributions for each state, thereby degrading the ability of the 
model to infer these silent transitions when a reward is omitted or delayed. We now describe the 
model in more detail.  

In accordance with the true task structure, we modeled the task using seven hidden states 
(s = 1,…,7; Fig. 3e). Formally, the task representation comprises also of an observation matrix O 
that gives the conditional probability of each observation given the underlying state, and a 
transition matrix T that defines the transition probabilities between states. We assumed that these 
two matrices are known to the rats, through their extensive training on the task. Figure 3e shows 
the model task representation with the possible transitions between the seven states marked by 
arrows, and the observation matrix O and transition matrix T. Observations included trial start 
(signaled by light on in the task), odor cues signaling the left and right wells, the first and second 
rewards, trial end, and a null (i.e., empty) observation. Following the true task structure, we 
assumed that each state gives rise to a single characteristic (non-empty) observation (though 
more than one state may have the same characteristic observation) that indicates a transition into 
that state. For example, observing the odor cue that signals the left well while in state 1 indicates 
a transition to state 3. Subsequent observation of a reward in the left well indicates entry to state 
5, the only possible successor state from state 3. Formally, this means that the observation matrix 
O has high probability (here, 0.7) for only one non-null observation for each hidden state, apart 
from the null observation, which is associated equally with all states (p=0.2, with the remaining 
possible observations each assigned a background probability of 0.02). In the transition matrix T, 
we included a some small (10-6) background transition probability between any two states, and 
apportioned the remaining probability equally amongst the possible transitions from each state 
(as marked in Fig. 3c). For simplicity, we treated free-choice trials to a certain side similarly to 
forced trials to that same side. Fully modeling the free choice cue and the choice behavior did not 
change any of the reported results. 
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“Partial observability” of states implies that states are not directly observable and are 
only probabilistically related to observations (as per the O matrix above), and that transitions 
between the states can also occur silently (i.e. with an empty observation), in which case the state 
transition must be inferred. This inference entails computing at every timepoint t+1 the 
probability of transitioning from state s at the previous timestep t, given all observations o until 
now, which we denote 𝛽𝛽 , : 

 
𝛽𝛽 , = 𝑃𝑃 𝑠𝑠 = 𝑠𝑠,𝜙𝜙 = 1 𝑜𝑜 ,… , 𝑜𝑜 . 

 
Here, 𝜙𝜙  is a flag that indicates whether or not a state transition occurred between time t and t+1. 
Using Bayes’ theorem,  

𝛽𝛽 , =   
𝑃𝑃 𝑜𝑜 𝑠𝑠 = 𝑠𝑠,𝜙𝜙 = 1) ∙ 𝑃𝑃(𝑠𝑠 = 𝑠𝑠,𝜙𝜙 = 1|𝑜𝑜 ,… , 𝑜𝑜 )

𝑃𝑃(𝑜𝑜 |𝑜𝑜 ,… , 𝑜𝑜 )  

The first term in the numerator is the probability of the current observation given that the animal 
just transitioned from state s on the previous time point, which can be computed directly using 
the observation matrix O and transition matrix T by integrating over the successor state at time 
t+1: 𝑇𝑇 , 𝑂𝑂 , . To calculate the second term in the numerator (which we denote 𝛼𝛼 , ), it is 
necessary to integrate over the possible durations d of the stay in state s since the time of the last 
non-empty observation 𝑡𝑡 :  

𝛼𝛼 , =
𝑂𝑂 , 𝐷𝐷 , 𝑃𝑃(𝑠𝑠 = 𝑠𝑠,𝜙𝜙 = 1|𝑜𝑜 ,… , 𝑜𝑜 )

𝑃𝑃(𝑜𝑜 ,… , 𝑜𝑜 |𝑜𝑜 ,… , 𝑜𝑜 )   , 

where Ds,d is the probability of dwelling d time in state s, which we assume the animals learn 
through experience by updating the estimated dwell times trial-by-trial as the task changed from 
block to block (details below), and  𝑂𝑂 ,  is the probability of the observation made on entry 
to state s at the start of the duration d. Critically, computing this term relies on Ds, the (learned) 
distribution of dwell times in state s, such that a strong temporal expectation of a transition from 
state s after duration d will increase 𝛼𝛼 ,  (and consequently increase 𝛽𝛽 , ) even in the absence 
of a concrete observation indicating state transition. This term is thus necessary for tracking the 
evolving expectation of a state transition based only on the passage of time, which is essential for 
inferring a state transition in the case of an omitted (or late) reward. Finally, the denominator in 
both equations is a normalization term that can be computed recursively by integrating the terms 
in the numerator over all possible states at times t (for 𝛽𝛽 , ) or t-d (for 𝛼𝛼 , ). A more detailed 
derivation of the components of 𝛽𝛽 ,  can be found in Daw et al. (2006).   

Prediction errors for each state were signaled on each time point t+1 according to 
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𝛿𝛿 , = 𝛽𝛽 , 𝑒𝑒 ,   𝑟𝑟 +   𝑒𝑒 , 𝐸𝐸 𝑉𝑉 −   𝑉𝑉 , 

 
where the term in brackets is analogous to the TD prediction error for fully-observable semi-
Markov decision problems (Bradtke and Duff, 1995), and the 𝛽𝛽 ,  term, which tracks the 
probability of a state transition, gates the prediction error. This gating by 𝛽𝛽 ,  means that 
prediction errors are maximally signaled only at the (inferred) time of state transition. The 
prediction error term itself (i.e. the expression within brackets) describes exponential discounting 
of both rewards and the value of future states based on an estimate of how long the animal has 
been in the current state s. Here, 𝑟𝑟  is the reward at the current timepoint, 𝐸𝐸 𝑉𝑉  is the 
expected value of the next state, 𝜏𝜏 is a discount factor (set to 0.002) and 𝐸𝐸 𝑑𝑑 ,  is the expected 
current dwell time in state s, used to discount the reward and value of this state. Since state 
transitions are not fully observable, the dwell time in any state is not known with certainty, 
therefore we use 𝐸𝐸 𝑑𝑑 , , computed by weighting all possible dwell times by their probability. 
Note that the maximal dwell time in the current state is the time that has passed since the last 
non-empty observation, 𝑡𝑡 , thus  

𝐸𝐸 𝑑𝑑 , =    𝑑𝑑 ∙ 𝑃𝑃 𝑑𝑑 = 𝑑𝑑|𝑠𝑠 = 𝑠𝑠,𝜙𝜙 = 1, 𝑜𝑜 ,… , 𝑜𝑜 .  

 
In the state-specific prediction error above, future rewards and states are therefore exponentially 
discounted according to an estimate of how long the animal has been in the current state. The 
total prediction error at time t+1 is the sum of the prediction errors for all states at this timepoint, 

𝛿𝛿 =    𝛿𝛿 ,  

Each state value is updated on each time point t+1 using the total prediction error 
according to 

 
𝑉𝑉 ← 𝑉𝑉 +   𝜂𝜂𝐸𝐸 , 𝛿𝛿  

 
where 0 < 𝜂𝜂 < 1 is the learning rate or step size parameter and  𝐸𝐸 , = max 𝛽𝛽 ,  is the 
eligibility trace for state s. The eligibility trace tracks the probability that a state has been 
transitioned through at some point since the start of the trial (i.e. since time 𝑡𝑡), thus allowing 
updating of all states preceding (and thus predictive of) the current state, similar to the TD (1) 
algorithm in the standard TDRL framework (Sutton and Barto, 1998).  
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To learn the dwell-time distribution in each state, 𝐷𝐷  was updated at the time of each non-
empty observation using an iterative Gaussian-kernel density-estimation procedure. The update 
rule is 𝐷𝐷 ←   𝐷𝐷 + 𝜂𝜂 (𝐾𝐾 − 𝐷𝐷 ), where 𝐾𝐾  is a Gaussian kernel,𝑁𝑁 𝑑𝑑,𝐶𝐶𝐶𝐶x𝑑𝑑 , centered on the 
estimate of the time since the last observation d, and 𝜂𝜂  is the dwell time distribution learning 
rate (set to 0.1). To account for known properties of scalar timing (Gibbon, 1977), the kernel was 
assumed to have a standard deviation proportional to the estimated duration d, with a fixed 
coefficient of variation 𝐶𝐶𝐶𝐶 = 0.2  (in accordance with empirical measurements of scalar timing 
noise, e.g. Gallistel et al., 2004). To ensure non-vanishing probabilities for all reasonable dwell 
times, we fixed a baseline probability of 10-4 for each time point. Using this learning rule, the 
dwell time distribution for each state asymptotically approached a Gaussian distribution centered 
on the mean duration of that state (based on timing of non-empty observations during the task). 

Given their extensive training on the task, we assumed the animals began each session 
with an average expectation for both value and expected dwell time in each state. Accordingly, 
mean initial value for states 1, 2 and 3 was 0.7 (the average value of these states over the first 
two blocks) and all other states were initialized to mean zero. On each simulated session, values 
for each state were randomly initialized from a normal distribution with these state-specific mean 
values and a standard deviation of 0.005. The learning rate was set to 𝜂𝜂 = 0.3 to ensure 
asymptotic values for each state were reached by the end of each block. Dwell-time distributions 
for the odor-cued states were initialized before each run with a Gaussian centered at 0.75s (the 
mean of the reward delay in the two wells at the start of a session) and with a standard deviation 
of 0.75s×𝐶𝐶𝐶𝐶. Dwell-time distributions for all other states were initialized to exponential 
distributions with a timescale of 10s. Simulations then used the actual task event timing from 
each neural recording session. As we did not explicitly model free-choice behavior, we replaced 
the free-choice cue on choice trials with the equivalent forced-choice cue for the chosen well in 
the task event timing sequences. As mentioned above, modeling the free choice trials separately 
did not qualitatively change any of the results. All parameters and initializations were chosen 
manually in order to achieve a qualitative fit to the neural data, but model results were not 
sensitive to specific parameter choices, and parameters affected model behavior as would be 
expected in a simple RL model (for example, setting a lower learning rate affects the time to 
asymptotic value for each state). Therefore, we did not attempt to formally fit the parameters to 
neural or behavioral data. In particular, results were not sensitive to initialization of either value 
or dwell time distribution in each state, with equivalent results obtained by setting initial values 
for all states to zero and all initial dwell time distributions to a uniform distribution over the 
range 0 to 50s. The main parameters of interest for modeling timing-related firing rates were the 
probability of receiving a null observation in each state (first column in the observation matrix in 
Fig 3e) and the precision of the learned dwell-time distributions for each state (controlled by the 
size and shape of the kernel for the update of the state dwell-time distributions). Together, these 
two model components control the possible size of negative prediction error signals to an omitted 
reward, the first by allowing a state transition to be inferred without a concrete observation (i.e. 
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by ensuring partial observability) and the second by ‘opening’ the gate on prediction error 
signals according to strong temporal expectations about state duration alone.  

To simulate a VS lesion in the model, we prevented the model from accurately learning 
the distribution of dwell times in each state during the task by reducing the amplitude of the 
Gaussian kernel 𝐾𝐾  in the dwell-time update by multiplying it by a ‘lesion’ fraction between 0 
and 1, and apportioning the remaining probability mass to infinite duration (Fig. 3f,g). A factor 
of 0 corresponds to a full lesion, in which the kernel update has zero probability mass at the 
current time, and thus the dwell-time distributions for each state remain at the uniform baseline 
uncertainty of 10-4 for all finite time points. For consistency, we also lesioned the ability of the 
model to track dwell time within a state by multiplying the estimation of the expected duration 
𝐸𝐸 𝑑𝑑 ,  by the same fraction (this latter part of the lesion is not critical to any of the results 
reported here; however, it makes predictions for correlates of discounting, e.g., reaction times for 
differently delayed rewards, which can be tested in future work). This ‘lesion’ therefore blocked 
the formation of precise temporal expectations regarding the duration of task states by acting on 
the two key terms in the model that involve integration over durations, 𝛼𝛼 ,  and 𝐸𝐸 𝑑𝑑 , .  To 
simulate a partial lesion, we set the lesion fraction to 0.5. Importantly, all other parameters in the 
model were left unchanged for both the partial and full simulated lesions.  

Finally, to transform the simulated total prediction error into equivalent firing rates, we 
averaged over  𝛿𝛿  in the same 500ms epochs as used for the neural data analysis and rescaled 
these signals to neural firing rate as follows: 

 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

 
For all simulations, baseline firing was set to 5Hz and positive and negative scale factors were 15 
and 30 respectively.	  
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