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The intersection between neuroscience and artificial intelligence (AI) research has created syner-
gistic effects in both fields. While neuroscientific discoveries have inspired the development of Al
architectures, new ideas and algorithms from Al research have produced new ways to study brain
mechanisms. A well-known example is the case of reinforcement learning (RL), which has stimulated
neuroscience research on how animals learn to adjust their behavior to maximize reward. In this
review article, we cover recent collaborative work between the two fields in the context of meta-
learning and its extension to social cognition and consciousness. Meta-learning refers to the ability
to learn how to learn, such as learning to adjust hyperparameters of existing learning algorithms
and how to use existing models and knowledge to efficiently solve new tasks. This meta-learning
capability is important for making existing Al systems more adaptive and flexible to efficiently solve
new tasks. Since this is one of the areas where there is a gap between human performance and current
Al systems, successful collaboration should produce new ideas and progress. Starting from the role of
RL algorithms in driving neuroscience, we discuss recent developments in deep RL applied to modeling
prefrontal cortex functions. Even from a broader perspective, we discuss the similarities and differences
between social cognition and meta-learning, and finally conclude with speculations on the potential
links between intelligence as endowed by model-based RL and consciousness. For future work we
highlight data efficiency, autonomy and intrinsic motivation as key research areas for advancing both

fields.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction illustrate their relevance to meta-learning both in Al and the brain

(Section 2). We further illustrate new insights for meta-learning

Development of artificial intelligence (Al) and discoveries in
neuroscience have been inspiration to each other. In this chapter,
we discuss the current development of meta-learning in the
intersection of Al and neuroscience. Meta-learning is particularly
an interesting area of research to be discussed from both angles
of Al and neuroscience, because it is considered as one of the key
ingredients to build a more general form of Al that can learn to
perform various tasks without having to learn them from scratch.

In this review, we will first introduce computational and em-
pirical results in model-based reinforcement learning (RL) and
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functions in the prefrontal cortex derived from deep learning im-
plementation (Section 3). Furthermore, we point out commonali-
ties and differences between meta-learning/meta-cognition and
social cognition, emphasizing the importance of computational
approaches to reveal them further (Section 4). Finally, we will
conclude with speculations on the potential link between model-
based meta RL and consciousness (Section 5).

A common thread across these topics is how both Al and the
brain might benefit from the ability to utilize models to guide
behavior and learning in the context of meta-learning, social
cognition, and consciousness. As such, we aim to offer model-
based reinforcement learning as a fundamental component of
intelligence.

0893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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2. Model-based reinforcement learning for knowledge trans-
fer

Reinforcement learning (RL) is a collection of algorithms de-
signed to learn a behavioral policy (that is, rules for choosing
actions) solely from ongoing experience of the rewarding or pun-
ishing consequences of those actions (Sutton & Barto, 1998). In RL,
the impetus for learning is to maximize benefit or minimize cost
and RL problems are typically formalized with respect to solving
a single specific task: how to efficiently find a goal location in a
spatial maze, or how to learn the best lever to press to trigger
the later delivery of food. However, biological agents do not
complete only one task in their lifetimes; humans and animals
engage in many diverse tasks, across disparate timescales, both
sequentially and in parallel. Learning to perform one task benefits
from experience on related tasks, a process of meta-learning. The-
ories of meta-learning, whether from a biological, behavioral or
artificial intelligence perspective, share the core idea that learning
should exploit relevant past experience, rather than begin anew
with each new task (Doya, 2002; Lemke et al.,, 2015; Vilalta &
Drissi, 2002). Behaviorally, the signature of meta-learning is the
speed-up of learning with repeated experience in a domain, this
has been variously described as the formation of ‘learning sets’
(Harlow, 1949) or the integration of experience into structured
knowledge known as a ‘schema’ (Bartlett, 1932; Tse et al., 2007).

The formal underpinning of RL relies on the concept of a
state: policies and values are defined conditional on the cur-
rent state, which is constructed from all relevant external and
internal information to summarize the current configuration of
a system (Minsky, 1967). For instance, the insertion of a lever
into an operant chamber is a critical part of the current state
of an instrumental task, and this event should be part of a state
representation for efficient learning in this environment. But the
notion of state is inherently flexible and critically depends on
the current task and goals of an agent, who may exploit more
or less knowledge about the generative statistics of the environ-
ment, their own current internal motivation and the outcomes
of past learning experiences as required (Langdon et al., 2019;
Nakahara & Hikosaka, 2012). This necessity to construct an appro-
priate state representation has led to the study of representation
learning in biological and artificial systems: algorithms and archi-
tectures for forming a state representation in order to efficiently
learn reward predictions and behavioral policies (Bengio, 2019;
Nakahara, 2014; Niv, 2019).

Right from the outset, RL has benefitted from the flow of ideas
between neuroscience and artificial intelligence, in its formaliza-
tion and extension of behavioral theories of associative learning,
which date in the psychological literature back to Pavlov and cul-
minate in the influential Rescorla-Wagner model of trial-by-trial
learning (Rescorla & Wagner, 1972). More recently, interest in RL
theories of biological learning has exploded with the identifica-
tion of phasic activity from midbrain dopamine (DA) neurons as a
‘reward prediction error’ (RPE) signal, the central teaching signal
in RL, which putatively drives the update of value and/or policy
representations in the brain (Eshel et al., 2015; Schultz et al,
1997; Watabe-Uchida et al., 2017). Careful study of the properties
of DA prediction error signals across various tasks can illuminate
the structure and content of the state representations that form
the basis of reward predictions in behaving animals. One recent
focus has centered on whether the reward predictions that drive
DA RPE signals are essentially model-based or model-free (Akam
& Walton, 2021; Dayan & Berridge, 2014; Langdon et al., 2018).
In RL, the classic distinction between model-based and model-
free algorithms speaks to the direct influence of a ‘world model’
in determining the likely transitions to future states, and thus
the computation of future value. Model-free RL, on the other
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hand, relies on learning algorithms in which value estimates are
cached, or stored, in the current state, rather than computed
using an internal model of the task. Internal models may also
sculpt learning through their influence on inferring the current
‘hidden’ state of the task in partially-observable environments
(Rao, 2010; Yu, 2010). Many influential RL accounts of the activity
of DA neurons during learning have been fundamentally model-
free, typically assuming a temporal-difference (TD) learning rule
(Sutton & Barto, 1990) over a representation that makes strict
assumptions about the features, temporal characteristics and cer-
tainty of the progression of states encountered during a task
(Ludvig et al., 2008; Montague et al., 1996; Schultz et al., 1997).

But recent evidence from DA RPE correlates has complicated
these fundamental assumptions at the heart of TD models of
reward learning in the brain, pointing to the role of internal task
models in the formation and update of reward predictions in the
brain (Nakahara et al., 2004). Foremost among these assumptions
is that rewards can be substituted; TD learning algorithms are
designed to aggregate reward amount irrespective of the ‘packag-
ing’ in which that reward arrives. However, phasic DA responses
are sensitive to unexpected changes in the flavor of a reward,
suggesting it may also carry an identity- or state-prediction error
signal alongside (or as a general version of) the more canonical
RPE (Gardner et al,, 2018; Takahashi et al., 2017). Second, TD
learning requires experience of a state in order to update the
cached value associated with that state. That is, TD learning
has no mechanism by which value can transfer between predic-
tive cues retrospectively. However, in a sensory preconditioning
paradigm, DA RPE signals do indeed reflect such a retrospective
transfer of value between cues, implying an internal model of the
associations between cues is exploited for the formation of re-
ward expectations in a new setting (Sadacca et al., 2016). Finally,
classic TD learning models of the phasic DA response require
a temporally precise state representation in order to achieve
the temporal specificity observed in DA RPE correlates (Fiorillo
et al,, 2008; Hollerman & Schultz, 1998). Yet the assumption of
time-point states required by these models precludes the general-
ization of value across moments in time. This is inconsistent with
recent findings on the impact of VS lesions on the temporal speci-
ficity of DA RPE correlates, which suggest predictions about the
timing and amount of upcoming rewards are neurally separable
(Takahashi et al., 2016), and can be accounted for instead by an
RL algorithm that learns about multiple properties of outcomes,
including their timing and amount, in parallel.

In sum, these findings suggest that the reward learning cir-
cuitry in the brain exploits model-based learning algorithms in
which multiple features of predicted outcomes are learned: their
flavor, other associated cues and their timing (amongst others),
in a way that allows them to be flexibly combined based on the
current configuration of a task (Langdon et al., 2018). Learning in
these algorithms is understood to be not just about ‘value’, but
an array of features that provide separate sources of information
about the broader structure of the ‘reward landscape’: how much
attention is required to await the reward, in what form will
it likely arrive, when should it be expected, how much effort
needs to be expended in this environment in order to obtain it?
While certainly more detailed than the simplest formulations of
model-free TD learning, the internal model implied by model-
based RL need not be prohibitively complex, sometimes requiring
only a coarse approximation of the real environmental statistics
(Akam et al., 2015; Park et al, 2020) (plus erie Boorman re-
view to appear). Yet, even in simple conditioning tasks, which
presumably require a relatively compact understanding of the
contingent relationship between predictive cues and outcomes,
phasic DA responses bear the striking hallmarks of inference
in the computation of the current state, confirming an internal



A. Langdon, M. Botvinick, H. Nakahara et al.

model of the task modulates reward predictions as they evolve
during a trial (Starkweather et al., 2017, 2018).

What then are the implications of brain-inspired model-based
RL for meta-learning in artificial learning systems? Model-based
RL algorithms in which task representations are learned concur-
rently with reward expectations are naturally suited for meta-
learning, in that any or all properties of the learned internal
model of the tasks can be selectively generalized to a new set-
ting, being accessible outside the reduced (model-free) construct
of value (Fig. 1). An internal model that provides information
about environmental regularities other than the strict reward-
expectation estimator of model-free RL allows for the transfer
(through inference) of this latent knowledge to a new setting. For
example, building a model of the transition structure between
states of the task, the different observation probabilities asso-
ciated with these states, likely state durations and expectations
about outcome identities can both facilitate learning in a single
task environment (task A) and provide structured knowledge that
can be applied to other tasks (here, task B and C). In this way,
learning in a new task may be started with relevant priors about
the contingent, temporal, effortful and attentional requirements
of a whole class of problems, accelerating learning and supporting
rapid behavioral adaptation to a novel environment.

3. Meta-learning in brains and machines

From the point of view of neuroscience, one of the most
interesting recent developments in artificial intelligence is the
rapid growth of deep reinforcement learning, the combination of
deep neural networks with learning algorithms driven by reward
(Botvinick et al., 2020). Since initial breakthrough applications to
videogame tasks (Mnih et al., 2015), deep RL techniques have de-
veloped rapidly, with successful applications to much richer tasks
(Schrittwieser et al., 2020; Vinyals et al.,, 2019), from complex
motor control tasks (Merel et al., 2019) to multi-agent settings
requiring both competition and cooperation (Jaderberg et al,
2019).

Deep RL brings together two computational frameworks with
rich pre-existing ties to neuroscience research, but also shows
how these can in principle be integrated, yielding artificial agents
that - like biological agents - learn simultaneously how to rep-
resent the world and how to act adaptively within it (Botvinick
et al., 2020). At the same time, however, dramatic differences
have been noted between the way that standard deep RL agents
learn, as compared with how humans and other animals learn.
Most striking is an apparent difference in learning speed or ‘sam-
ple efficiency’: Deep RL often requires much more experience
to arrive at an adaptive behavior than would a human learner
(Botvinick et al., 2019; Lake et al., 2017),

While this difference in learning efficiency may appear to
indicate a fundamental difference between biological learning
and deep RL, it is worth considering the fact that human and
animal learners gain their efficiency at least in part from the
fact that they do not learn entirely ‘from scratch.” Rather than
operating as a tabula rasa, biological learners bring a wealth
of past learning to bear on any new learning problem, and it
is precisely their preexisting knowledge that enables rapid new
learning. Psychologists have labeled this phenomenon learning to
learn and meta-learning (Botvinick et al., 2019).

Recent research has begun to investigate whether
meta-learning can be integrated into deep RL, with the same
efficiency payoffs seen in biological learning. Studies of learning
to learn in the machine learning context in fact date back at
least to the 1990s (Thrun & Pratt, 1998), with methods explored
both in deep learning (Hochreiter et al., 2001) and reinforcement
learning research (Dayan, 1993). However, it is only recently that
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the topic has been studied in the context of deep RL. Over the
past three years, though, meta-learning in deep RL - or as it is
increasingly called ‘meta-reinforcement learning’ - has become a
burgeoning area of Al research.

Many studies of meta-reinforcement learning propose novel
learning algorithms. Among these, a general motif is ‘taking gra-
dients of gradients’, that is, adjusting hyper-parameters of a net-
work (for example, parameters governing its initial state or the
operation of its weight-update procedure) by making changes in
a direction that would reduce some measure of error, such as the
temporal-difference error in a reinforcement learning algorithm
(Finn et al,, 2017; Xu et al., 2018).

While such approaches are potentially powerful, a different
and more minimalistic approach may, we believe, have more
immediate relevance to neuroscience. Here, no special, dedicated
mechanism is installed to support meta-learning. Instead, meta-
learning emerges spontaneously from more basic mechanisms.
The two ingredients that are necessary are (1) a learning system
that has some form of short-term memory, and (2) a training
environment that exposes the learning system not to a single
task, but instead to a sequence or distribution of interrelated
tasks. When these two ingredients are simultaneously present,
something remarkable occurs: The system slowly learns to use
its short-term memory as a basis for fast learning (Santoro et al,,
2016; Wang et al,, 2016).

To make this concrete, consider a recurrent neural network,
trained using reinforcement learning on a series of ‘bandit’ tasks.
Recurrent networks are, of course, endowed with a form of short-
term memory, since their recurrent connectivity supports main-
tenance of information over time through sustained patterns of
unit activity. The precise information that is so maintained, and
the way such information is represented, are of course deter-
mined by the network’s connection weights. In deep RL, those
weights are slowly adjusted through (typically) gradient-descent
learning. In the bandit scenario, such learning leads to weight
adjustments which, in turn, allow the network to 'keep around’
in its activation patterns information about past actions and re-
wards, precisely the information needed to adapt appropriately to
each new bandit problem. In sum, slow (weight-based) learning
gives rise to a much faster (activity-based) learning algorithm
(Botvinick et al., 2019; Duan et al., 2016; Santoro et al., 2016;
Wang et al,, 2016).

This emergent form of meta-reinforcement learning bears
some intriguing parallels with neuroscience. In particular, the two
forms of memory that make it work, weight-based and activation
based, map to synapse-based and activation based or ‘working’
memory in the brain. Indeed, the notions that both synapse-based
and working memory subserve reinforcement learning, and that
synapse-based learning serves to regulate the function of working
memory, have been deeply explored in computational neuro-
science (Chatham & Badre, 2015; Collins & Frank, 2012). These
themes bear a particularly strong connection to the function of
prefrontal cortex, given its putative role in working memory
(Nakahara & Hikosaka, 2012).

With these connections in mind, Wang and colleagues (Wang
et al., 2018) proposed a theory of prefrontal cortex (PFC) func-
tion, based on emergent meta-reinforcement learning. The the-
ory anchors on two functional-anatomical aspects of the PFC:
(1) its strong recurrent connectivity, supporting working memory
through sustained neural activation, (2) its participation in a
circuit running through the striatum, where dopamine plays a
pivotal role in modulating synaptic strength based on reward.
Computationally, these aspects of PFC correspond to the recurrent
connectivity and RL-based weight adjustment that drive emer-
gent meta-reinforcement learning, as studied in Al research. With
this in mind, Wang and colleagues (Wang et al.,, 2018) presented
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Fig. 1. Model-based reinforcement learning as a mechanism for meta-learning. (A) Model-based reinforcement learning algorithms allow for the acquisition and
application of structured knowledge about the environment during experience on a task. (B) This knowledge comprises a world model, that summarizes the
learned probabilistic relationship between successive states of the environment and how they depend on actions (transition structure), observations and cues in the
environment and the underlying hidden state (observation structure), temporal characteristics of task states (for e.g., their typical duration) and the relationship
between states and specific form of either rewarding or aversive outcomes (outcome identities). Other structured knowledge, such as required effort, attentional
demands and so on, may also be learned. (C) This model-based knowledge can act as a prior, sculpting expectations and actions even in entirely novel environments.
Either the entire world model, or selective parts of this knowledge, may be applied to accelerate learning in new tasks. (D) The behavioral signatures of meta-learning
are variously faster acquisition of correct responses, increased asymptotic accuracy or higher initial accuracy, along with faster initial and increasingly rapid responding

with experience on collections of tasks.

simulations demonstrating how emergent meta-RL can parsimo-
niously explain a range of otherwise poorly understood exper-
imental observations from the PFC and dopamine literatures.
These ranged from behavioral patterns reported in the earliest
work on learning-to-learn to Bayes-optimal adjustments in learn-
ing rate mediated by PFC representations, to single-unit coding
properties in bandit-like problems, to patterns of dopamine activ-
ity reflecting sensitivity to task structure. A particularly striking
result showed that patterns of behavior and dopamine activity
that had previously been attributed to ‘model-based’ reinforce-
ment learning mechanisms could in fact arise from ‘model-free’
reinforcement learning, in a meta-RL setting. This observation,
which has since been echoed in the Al literature (Guez et al,,
2019), opens up a new space of computational possibilities be-
tween pure model-free and model-based learning, providing a
new perspective on the varieties of RL operative in biological
systems (Botvinick et al.,, 2019).

In subsequent work building on the proposal from Wang and
colleagues (Wang et al., 2018), Ritter and colleagues studied how
emergent meta-RL might interact with an additional episodic
memory mechanism (Botvinick et al., 2019). Drawing on neuro-
science data concerning contextual reinstatement effects in pre-
frontal cortex, Ritter and colleagues (Ritter et al., 2018) showed
how meta-RL might sculpt episodic memory function in a way
that supports rapid retrieval of previously discovered solutions,
when previously solved problems recur after an intervening de-
lay. This extension of the meta-RL theory bears rich connections
with recent work indicating a central role for episodic memory in
human reinforcement learning (Gershman & Daw, 2017), opening
up new avenues for investigating this territory.

One important limitation of meta-RL research, in both the Al
and neuroscience realms, has been the simplicity of the tasks to
which it has been applied. A key question is whether the sorts of
mechanisms involved in emergent meta-RL (or indeed other al-
gorithmic varieties of meta-RL and meta-learning in general) are
sufficient to support the discovery of abstract structural princi-
ples, akin to those that humans work with in naturalistic domains
ranging from cooking to driving to computer use to scientific
research (Lake et al., 2017). In recent work, Wang and colleagues
(Wang et al., 2021) have introduced a video-game benchmark,
nicknamed “Alchemy”, which is specifically designed to test the
conceptual reach of current methods for meta-RL. Initial results,
reported by these investigators, suggest that current techniques
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do hit an identifiable ‘glass ceiling’, in terms of their ability to
discover and exploit abstract task structure. If this limitation can
be confirmed through convergent research, then it suggests that
new innovations in meta-learning may be required to push this
upper bound. If so, then human abilities for structure learning,
and their neural underpinnings, may serve as a useful guide for
further advances on the Al front.

4. Commonalities between social cognition and meta-learning

In this section, we discuss the relationship between social
cognition/learning and meta-cognition/learning. Meta-cognition
refers to additional, self-referential processes that work on top of
primary cognition and provides a foundation for meta-learning.
For instance, assessing the degree of confidence in making one’s
own decision and adapting the learning rate in response to en-
vironmental volatility are considered meta-cognition and meta-
learning, respectively (Doya, 2002; Fleming et al,, 2012; Yeung
& Summerfield, 2012). Social cognition and social learning are
summarized in a similar manner as additional or self-referential
processes that modulate and improve cognition and learning in
social contexts. For instance, decision making in a social context
requires taking into accounts not only gains of the self but also
of others (Fehr, 2009; Rilling & Sanfey, 2011). Also, while learn-
ing is typically associated with one’s own experience, it can be
improved additionally learning from observing others’ experience
of their choices and outcomes (Burke et al., 2010; Cooper et al,,
2012; Suzuki et al., 2012).

While meta-learning and social learning are discussed in dif-
ferent contexts, they both play contribute to learning processes.
Social contexts presuppose considerations of others such as pre-
dicting their behavior, and assessments of the effects of one’s own
actions on others and predicting what is in the mind of other
individuals. These socio-cognitive functions are considered as the
learning and inference of latent variables of other individuals.
That is, while the mental states of others are not directly ob-
servable from their behavior, we regard them as underlying the
observable behavior and as such we can model them as latent
variables. The learning and inference of those latent variables
adds to learning in social contexts. Whether social cognition and
learning involve self-referential processes as in meta-learning has
been a research question in this research area.
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This question has been addressed by a study by Suzuki et al.
(2012). They investigated how human participants learn to pre-
dict the value-based decisions by simulating other people’s
decision-making processes (Suzuki et al., 2012). Using fMRI com-
bined with computational modeling, they found that two types of
learning signals are essential for this task. One is called simulated-
others’ reward prediction error (sRPE), which is the difference
between the outcomes to others and the expected reward to
others, generated by simulation of value-based decision-making
for others. The other signal is called simulated-others’ action
prediction error (SAPE), which is the discrepancy between the
choice of others and the expected choice (probability) of oth-
ers, generated by the simulated decision-making process. The
SRPE keeps track of others assuming a common decision-making
process between the self and others, while the SAPE corrects
the deviations from the expectation for others' actual behav-
ior, reflecting the differences in the decision-making processes.
Furthermore, they found a form of self-referential property for
the internal simulation both for the learning signals and for the
decision signals. As the simulation theory in social cognition
suggests, brain areas associated with the sRPE (i.e., ventromedial
prefrontal cortex) also encoded signals for one's own decisions
and for predicting decisions of others. These results answer the
question above by supporting the notion that social cognition
involves self-referential processes (see Fig. 2).

Humans and other social animals often exhibit behavior for
the benefit of other individuals. For humans, it has been debated
whether such prosocial behavior originates from (ultimately) self-
regarding or from truly others’ regarding. Regardless of the the-
oretical position, cognition of others’ decision making seems to
involve conversion of others’ benefit or value into the self-oriented
decision-making process. Fukuda et al. (2019) investigated neural
underpinnings of this social value conversion (Fukuda et al,
2019). They assessed how a bonus reward for others is embedded
in one’s own value-based decisions, compared to the case where
the bonus was offered to the participants themselves. They found
that the bonus offer was processed for both others and the self
in left dorsolateral prefrontal cortex (IdIPFC), but uniquely for
others in the right temporoparietal junction (rTP]). The influence
of the bonus for others on one’s own decision was processed in
the right anterior insula (rAl) and in the vmPFC. Using dynamic
causal modeling and psycho-physiological interaction analysis,
they showed influences from the IdIPFC and rTP] to the rAl and
from the rAl to the vmPFC, suggesting a neural cascade of the
social value conversion, rTPJ/IdIPFC — rAl — vmPFC. Further-
more, this neural mechanism of social value conversion was
found to be different between selfish and prosocial individuals.
This conversion process is not meta-cognition per se but can still
be regarded as similar in its function to module and improve
self-regarding decision-making in social settings.

As we have seen in the two studies above, research in social
cognition and learning asks how social information (i.e., social
cues from others) modulates social functions. For example, our
interpretation of other people’s actions differ depending on our
knowledge of their intention (Cooper et al., 2010). On the other
hand, metacognition and meta-learning are studied in a more
general context. An arising question is whether social functions
are realized by dedicated social brain circuits or supported by
more general brain circuits. From evolutionary perspectives, one
might argue that the brain has adapted to social situations and
developed dedicated social brain circuits. Alternatively, one could
also argue that social functions may be embedded within more
general brain circuits. Whether and what social functions may
be viewed as part of general cognitive functions remains to be
studied in future research.

In this section, we discussed the relationship between social
cognition and meta-cognition. In social cognition, there are cases
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in which social functions lead to undesirable consequences. For
example conformity may be beneficial for harmonious relation-
ships in a group. However, it could lead to suboptimal choices.
Similarly, if we step back from meta and social functions and look
broadly at cognition and learning, there are abundant examples
suggesting that our behavior may be suboptimal. Such examples
include risk aversion and regret aversion, and a wide range of
cognitive heuristics (Gilovich et al., 2002; Tversky & Kahneman,
1974). It may be worth investigating meta and social functions
not only in relation to their benefits but also to their limitations
or sub-optimality, since such findings would reveal underlying
mechanisms.

Finally, in analogy with the historical role of computational
studies in propelling research into neural mechanisms underlying
RL, we expect that computational studies should shed a new light
on social cognition and meta-cognition/learning. As discussed
in earlier sections, RL frameworks have begun with studies of
conditioning (Sutton & Barto, 1990, 1998), followed by the finding
of dopamine neural responses associated with reward prediction
error (Montague et al., 1996; Schultz et al., 1997), leading now to
a much wider domains of cognition, decision-making and learn-
ing (Behrens et al., 2009; Dayan, 2012, 2012; Dayan & Nakahara,
2018; Kim & Hikosaka, 2015; Montague et al., 2012, 2006). Fertile
fields are open for computational studies that investigate the
benefits and associated limitations of meta-cognition and social
cognition from computational perspectives.

5. Consciousness and intelligence

Consciousness and intelligence have been treated as distinct
notions, because there is no a priori reason to believe that one
depends on the other. In this section, we challenge this view and
discuss possible links between consciousness and intelligence.
Specifically, we discuss the hypothesis that consciousness evolved
as a platform for meta-learning underlying general intelligence. In
this section, we discuss the functional aspects of consciousness
(i.e., access consciousness) rather than phenomenal experience
(or qualia), namely, observable cognitive functions that humans
and animals perform when they are conscious as opposed to
when they cannot report the content of consciousness.

Here, we provisionally use the term “general intelligence” as
the ability to efficiently solve multiple tasks, including tasks novel
to the agent, using knowledge and models learned through past
experiences. With this definition, intelligence is measured by the
efficiency of meta-learning and transfer learning. This definition
is in line with the various previous notions of intelligence such
as the formal definition by Hutter and colleagues (Hutter, 2000;
Legg & Hutter, 2007; Leike & Hutter, 2018) and more recently by
Chollet (2019).

Here, we discuss the following two possible methods that the
brain might use to solve a broader range of tasks than those
directly trained on and argue that they are linked with possible
functions of consciousness. The first method is internal simula-
tion using pre-trained forward models of the world. This is in
line with the model-based approach to meta-learning in RL (see
Fig. 1). The second method is to combine previously learned mod-
els in a flexible manner to build a solution to novel tasks. While
these are by no means the only ways to build general intelligence,
we focus on these solutions to novel tasks and discuss how those
functions are related to consciousness.

The first approach is to use internal simulation to find a policy
to a new task using world models learned through interactions
with the environment. Even when we are presented with new
goals, the models of the dynamics of the environment remains
the same, and an agent can use the models for internal simulation
to figure out how to solve a task in their imagination (Ha &
Schmidhuber, 2018; Hafner et al., 2020).
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Fig. 2. Schematic diagram for social learning and decision-making process. (A) Reinforcement learning (RL) model (a) and Simulation learning rooted on internal
process of reinforcement learning (b), adopted from supplemental Figure 1 (Suzuki et al., 2012). (a) Box indicates the subjects’ (S's) internal decision making process.
When the outcome is presented, the value of the chosen option (or the stimulus reward probability) is updated, using reward prediction error (RPE: discrepancy
between S's value and actual outcome). (b) Decision making process of subjects during the Other task (Suzuki et al, 2012) is modeled by Simulation-RLsRPE+sAPE
(S-RLsRPE+sAPE) model. The large box on the left indicates the subject’s internal process; the smaller box inside indicates the other’s (O's) internal decision making
process being simulated by the subject. The large box on the right, outlined by a thick dashed line, corresponds to what the other is ‘facing in this task’, and is
equivalent to what subjects were facing in the Control task (compare with the schematic in (a)). The hatched box inside corresponds to the other's internal process,
which is hidden from the subjects. As modeled by the S-RLsRPE+sAPE, at the time of decision, subjects use the learned simulated-other’s value to first generate the
simulated-other’'s choice probability (O’s Choice Prob), based on which they generate their own value (S's Value) and the subject’s choice probability for predicting
the other’s choice (S's Choice Prob). Accordingly, subjects then predict the other’s choice. Once the outcome is shown, subjects update the simulated-other’s value
using the simulated-other's reward and action prediction errors (SRPE and sAPE), respectively; sRPE is the discrepancy between the simulated-other’s value and
the other’s actual outcome, and sAPE is the discrepancy between the simulated-other’s choice probability and the other's actual choice, in the value level. The
simulated-other's action prediction error is first generated in the action level (denoted by sAPE' in the figure) and transformed (indicated by T in the open circle) to
the value level, becoming the sAPE to update the simulated-other’s value, together with the sRPE. (B). (a) Decision-making is driven by value (reward expectation)
when not involving other individuals. (b) By contrast, in social situations, value (reward expectation for the self) is complemented by social value (reward expectation
for other individuals); for this complement, social value needs a conversion to be merged with original value (called social value conversion). They together drive
decision-making.

While it remains a matter of debate what functions conscious- (Clark et al., 2002; Clark & Squire, 1998; Droege et al., 2021;
ness adds to biological systems, there are a few experimental Knight et al., 2006). These findings suggest that retention of
situations known to require consciousness for successful perfor- information over time involves consciousness.
mance. A typical example is an experimental condition called Another clue comes from experiments on the agnosia pa-
trace conditioning in classical conditioning (Clark et al., 2002; tient DF who had impairments in conscious object recognition

Clark & Squire, 1998; Droege et al., 2021; Knight et al., 2006). In (Goodale et al., 1991). When she was asked to indicate the orien-
the trace conditioning of the eye-blink, there is a non-overlapping tation of a slanted slit verbally or by adjusting a handle, she could
temporal gap between a conditioned stimulus (CS) such as a tone not report the orientation, suggesting that she had no awareness
and a following unconditioned stimulus (US) such as an air puff to of the orientation. However, she could post a letter through the
the eyes. Contrary to the trace conditioning, in delay conditioning, slit by adjusting the orientation of the letter in the right angle,
there is a temporal overlap between the offset of CS and the suggesting that she could use the orientation information for
onset of US. If the subject successfully keeps expecting US, they guiding action. This is a classic example that led to the proposal
close the eyelid in a non-reflective manner. Empirical evidence that the ventral pathway (where DF had a damage) is needed
suggests that only trace conditioning require consciousness for for conscious vision, whereas the dorsal pathway guides action
successful responses to CSs whereas delay conditioning did not without evoking conscious experience. Crucially, when she was
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shown the slit first, and then the light was turned off so that
she would have to wait for a few seconds before acting, then she
failed to reach the slit correctly (Goodale et al., 1994).

These experimental examples suggest that the unconscious ac-
tion system needs to be guided online by auditory or visual infor-
mation and to act on offline information retained from the recent
past, which requires the conscious perception of the cue tone or
the shape. In other words, “online systems” that process informa-
tion real time works without consciousness, but to maintain in-
formation over time, consciousness is necessary. This information
maintenance can be one functional benefit of consciousness.

By analyzing what is common among cognitive tasks that
seem to require awareness, Kanai et al. (2019) proposed the In-
formation Generation Theory (IGT) of Consciousness. This theory
proposes that a function of consciousness is to internally gener-
ate sensory representations of the past or the future event, not
happening in the present, thus allowing to bridge the temporal
gap.

According to the view presented there, interactions with inter-
nal generated representations allow an agent to perform a variety
of non-reflexive behaviors associated with consciousness such as
cognitive functions enabled by consciousness such as intention,
imagination, planning, short-term memory, attention, curiosity,
and creativity. Furthermore, the hypothesis suggests that con-
sciousness emerged in evolution when organisms gained the
ability to perform internal simulations using generative models.
This characterization of consciousness is in essence in line with
the functions of model-based RL and links a potential function
of consciousness to a possible mechanism of general intelligence
implemented in biological systems.

The second approach to general intelligence is to combine pre-
trained models in a flexible manner to establish a solution to a
new problem. Neural networks are functions that convert input
vectors into output vectors and as such can be combined in a
flexible manner as long as they have corresponding dimensional-
ity. Even if a new problem requires a transformation that cannot
be handled by a single function, a combination of previously
learned functions could produce the required transformation. For
example, consider a neural network f: x — y that outputs class
classification y from an image x and another network g: y — z
that converts the label of the class y to an audio output z. Both
f and g are neural networks that solve specific problems, but
we can compose g o f to establish a new solution that converts
an input image x to a speech signals z. When many pre-trained
networks are available for such flexible combinations, one can
configure a vast number of new networks simply by combining
them (Fig. 3). From the viewpoint of accomplishing general intel-
ligence, new tasks can be solved by finding a path from one node
to another in a directed graph consisting of pre-trained neural
networks.

To allow flexible combinations of neural networks, those net-
works need to be linked together via a shared representation.
Otherwise, those networks are disjoint and cannot be combined.
To date, functions of consciousness have not been discussed much
in terms of data compatibility across modalities in the brain. In
a recent paper, VanRullen and Kanai re-interpreted the Global
Workspace Theory (GWT) in terms of shared representations
across multiple, specialized modules in the brain (VanRullen &
Kanai, 2021). Briefly, GWT is a cognitive model of consciousness
(Baars, 1997, 2005; Dehaene et al., 1998) in which the brain
is divided into specialized modules for specific functions and
long-distance connections that connect those specialized mod-
ules. In GWT, the outputs from the fast, specialized modules are
broadcast and shared among those distinct modules. The net-
work of modules where information is shared is called the global
workspace and is thought to allow the system to solve a new
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problem by coordinating information coming from specialized
modules. This process allows flexible operations on the shared
information via slow and effortful processes. These fast and slow
processes roughly correspond to system 1 and system 2 modes of
thinking (Kahneman, 2013).

This is a re-interpretation and extension of the original GWT
offers a possible link between consciousness and intelligence.
As argued above, this architecture allows construction of a vast
number of new functions by combining existing neural networks
in a flexible manner. One can conceive consciousness as a plat-
form that enables flexible combinations of specialized modules
(Bengio, 2019). While this insight does not tell us whether an
Al system with global workspace has subjective experience, it
provides an inspiration for building Al systems that can adapt to
new tasks by applying existing knowledge from past experiences.

Moreover, this interpretation of GWT makes an example where
consideration of implementation of cognitive models with mod-
ern deep learning architectures helps refine cognitive concepts.
For example, the precise operation of broadcasting in GWT has
been open to multiple interpretations when one tries to com-
putationally implement it. Here, more concrete views emerge
once we consider the global workspace as shared latent space.
As such, it was argued that considering computational imple-
mentations of cognitive models with deep learning is useful for
clarifying sometimes vague concepts and processes discussed in
cognitive theories. Similar approaches should be applicable for
other known cognitive or psychological models.

Previously, Dehaene et al. (2017) proposed that two types of
information processing are associated with consciousness. One
is the selection of information for broadcasting across the sys-
tem for flexible applications for various purposes. The other is
metacognition to estimate the uncertainty of first-order process-
ing such as perception and memory (Shea & Heyes, 2010). In this
section, while we focused on the broadcasting function, we did
not explicitly discuss the role of metacognition in consciousness.
However, it is an important direction to consider the role of
metacognition in this context, as there has been a proposal that
links global workspace to metacognition (Shea & Frich, 2019).

In this section, we discussed possible links between conscious-
ness and intelligence and considered model-based approaches
as a common principle underlying both consciousness and in-
telligence. This insight came from consideration of possible im-
plementations of known cognitive functions with modern deep
learning architectures. This approach would be a fruitful direction
for the intersection of neuroscience and machine learning.

6. Future directions

In this review, we discussed how model-based RL in machine
learning informs neuroscience and vice versa in the context of
meta-learning, social cognition and consciousness. While biologi-
cally inspired approaches to Al have been often discussed, recent
work indicates that our notions of cognitive modules are also
refined by applications of Al developments for interpreting brain
functions.

There are a few research areas that would benefit from the
interdisciplinary approach. One is the issue of data efficiency in Al
research. While deep neural networks have been successful in the
ability to recognize and classify images, they tend to require huge
datasets of annotated (i.e., labeled) images to learn discriminative
features. The human visual system has the capability to learn
from much fewer examples. Lake et al. argued that such human-
like learning machines should (1) build causal models of the
world that support explanation and understanding, rather than
merely solving pattern recognition problems; (2) ground learning
in intuitive theories of physics and psychology to support and
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Fig. 3. An illustration of solving a broader range of tasks by combining pre-trained neural networks. Each arrow represents a neural network trained on a specific
task. The figure illustrates the idea that global workspace enables flexible combination of pretrained models. For example, the arrow from the image of a cat to the
word ‘cat’ represents an image recognition neural network, and another arrow from the world ‘cat’ to the text image of Cat (on the right) represents a network
transforming text data into text images. Once we have many pretrained networks, solving a new task corresponds to finding a path in the network of pretrained
networks. A more elaborated treatment of this idea has been discussed in VanRullen and Kanai (2021).

enrich the knowledge that is learned; and (3) harness composi-
tionality and learning-to-learn to rapidly acquire and generalize
knowledge to new tasks and situations (Lake et al., 2017). These
are all important features for meta-learning needed to accomplish
successful learning from small sample.

Yet another domain where meta-learning in neuroscience in-
forms Al research is implementation of autonomy. Even in mod-
ern Al systems, goals and reward functions are often hand-crafted
by human engineers, but this is crucial for Al systems to contin-
uously learn from the environment. Higher mammals including
humans are endowed with the ability voluntarily generate future
goals and reward functions and continue to learn throughout
their lifetime. One possible research direction for creating au-
tonomy is the intrinsic motivations such as curiosity and em-
powerment (Klyubin et al., 2005; Oudeyer, 2007). People engage
in actions that do not directly lead to survival or reproduc-
tion and rather lead to “their own sake” (Baldassarre et al,
2014; Berlyne, 1966). Various algorithms have been already pro-
posed in Al research and they are meta-cognitive in the sense
that curiosity is driven by expected prediction error. Data ef-
ficiency, autonomy and intrinsic motivation are all linked with
meta-cognition/learning and do have practical implications for
extending the horizon of current Al technologies. These shared
themes between neuroscience and Al research will be key for
driving discoveries in both fields.
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