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A B S T R A C T   

Computational models of addiction often rely on a model-free reinforcement learning (RL) formulation, owing to 
the close associations between model-free RL, habitual behavior and the dopaminergic system. However, such 
formulations typically do not capture key recurrent features of addiction phenomena such as craving and relapse. 
Moreover, they cannot account for goal-directed aspects of addiction that necessitate contrasting, model-based 
formulations. Here we synthesize a growing body of evidence and propose that a latent-cause framework can 
help unify our understanding of several recurrent phenomena in addiction, by viewing them as the inferred 
return of previous, persistent “latent causes”. We demonstrate that applying this framework to Pavlovian and 
instrumental settings can help account for defining features of craving and relapse such as outcome-specificity, 
generalization, and cyclical dynamics. Finally, we argue that this framework can bridge model-free and model- 
based formulations, and account for individual variability in phenomenology by accommodating the memories, 
beliefs, and goals of those living with addiction, motivating a centering of the individual, subjective experience of 
addiction and recovery.   

Introduction: addiction and model-free reinforcement learning 

Addiction is often defined as a chronic, relapsing condition1 char-
acterized by compulsive behaviors that continue despite adverse con-
sequences. As a result, many prominent computational models 
conceptualize addiction as an aberrant2 regime of the brain’s learning 
and decision-making systems [3,4]. In particular, early computational 
accounts of addiction focused on the effects of addictive substances on 
trial-and-error learning, or so-called model-free reinforcement learning 
(RL; Box 1), and the resulting hijacking of habitual behavior. There is a 
growing appreciation of alternative accounts that focus on deliberative 
planning/decision-making and model-based RL (see [4–6] for in-depth 
discussions of this literature), however we focus here on model-free 
RL as the most well-characterized account. 

One popular model-free RL account suggests that the unnaturally 
reinforcing properties of addictive substances give rise to features of 
addiction such as an inflated valuation of cues signaling drug rewards 
above and beyond those signaling non-drug rewards, and compulsive (i. 
e., hard to resist) habitual behaviors resulting from such overvaluation 
[7–9]. This view offers principled ways to model the effects of addiction 
observed in value-based decisions or economic choices [5,10–12]. It also 
explains connections between addiction and the neuromodulator 
dopamine, which is a major molecular target of many addictive sub-
stances, and is thought to be a critical element of model-free RL algo-
rithms such as temporal-difference (TD) learning in the brain – namely, 
a reward prediction error signal that is crucial for learning. 

For instance, addictive drugs have been hypothesized to give rise to a 
persistent, non-compensable version of the prediction error in TD 
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1 Note: We have deliberately eschewed the use of the word “disorder” here, in an effort to use non-pathologizing language around addiction, while acknowledging 
its disabling nature and recognizing that different individuals relate differently to their addiction  

2 Such models often implicitly assume that this “aberration” lies within the brain, but many authors have questioned this view, arguing for agnosticism and/or 
careful consideration of social determinants e.g. [1]. In our reformulation (similar to [2]), we attempt to take a biopsychosocial view of a system operating as usual, 
but under unusual circumstances. 
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learning algorithms that learn state values, leading to the overvaluation 
of drug-predictive cues [13]. In variants of TD learning that learn 
state-action values, extended drug exposure has been proposed to alter 
the basal reward level relative to which prediction errors are calculated, 
to account for the development of compulsive drug-taking actions and 
increased impulsivity [14]. Finally, several extensions of these models of 
addiction rely on actor-critic formulations, which use TD prediction 
errors to simultaneously update a “critic” that learns state values and an 
“actor” that separately learns action policies using signals from the critic 
(Box 1). Proposals for the influence of addictive drugs in these models 
range from aberrant learning that originates in the critic and conse-
quently affects the actor [15,16] to aberrant prediction-error signalling 
that affects both the critic and actor simultaneously [15,17], yielding 
compulsive habits. 

Challenges to model-free RL formulations of addiction 

Despite these successes in accounting for overvaluation and 
compulsion, purely model-free RL formulations fail to capture many 
crucial features of addiction phenomena such as outcome-specific 
craving (e.g. [18]), the dynamics of spiralling or relapse (e.g. [2]), 
and alterations in processes such as planning and goal-directed choice 
(e.g. [19,20]). This is due to the fact that most model-free RL formula-
tions rely on learning a scalar value for any given state or action that 
abstracts away information about specific forthcoming outcomes and 
uses cached past experiences rather than future goals for fast evaluation. 
Importantly, these models treat learning and unlearning as symmetric 
processes. Hence, although model-free RL formulations (and the 
habitual and/or dopaminergic systems they are associated with) are 
prominent in models of addiction, several authors have suggested that 
there is a need for additional theory development, and a complete ac-
count must involve model-based RL systems (Box 1), which rely on a 
predictive model of the world, hence retaining outcome sensitivity and 
being capable of flexible goal-directed planning [5,21,22]. 

In this vein, a separate line of investigation has emerged that focuses 
on modeling the process of Bayesian inference of variables such as 
outcomes or actions under a predictive world model, and alterations of 
this process in addiction [4,5]. For instance, reduced behavioral and 
neural sensitivity to Bayesian prediction errors in a stop-signal task was 
shown to predict relapse in individuals with methamphetamine depen-
dence [23]. Similarly, active-inference formulations (i.e., using a pre-
dictive model of preferred outcomes to infer the most likely actions) 
have demonstrated reduced sensitivity to unpleasant outcomes in sub-
stance use disorders [5]. Prominent models of craving also rely on 
model-based planning [24] or Bayesian inference accounts [25,26]. 

In an attempt to reconcile the effects of addictive substances on both 
model-free and model-based systems, some “dual systems” accounts of 
addiction invoke interactions between the two systems, such as partial 
model-based evaluation terminating in model-free values [19], changes 
in the competition between the two systems [5,12,27,28], or changes in 
substrates common to both such as biased samples from memory during 
evaluation [2] or replay [19] to account for craving, relapse and other 
seemingly goal-directed phenomena in addiction. Here we present a 
unified framework that offers explanations for several phenomena that 
challenge model-free formulations of addiction, and potentially bridges 
model-free and model-based explanations by reformulating the problem 
of reinforcement learning into one involving the discovery and inference 
of “latent causes”. 

Box 1. (Basic terminology)   
Reinforcement learning (RL): A computational theory for learning 

from feedback (rewarding or punish-
ing outcomes O) about the best ac-
tions A to take in an environment. 

State: A representation of sensory observations S, including internal 
or external cues, that acts as a substrate for learning. The goal of 

reinforcement learning is to specify what action to make in what 
state.  

Action policy: The probability of taking each action A in 
a given state S. 

Value: A typically scalar representation of the cumulative future 
reward expected from a given state V(S) or from a particular action 
taken in that state Q(S,A).  

Model-based RL: A form of RL that uses a learned internal 
model of the transitions between states in 
the world, and the outcome in each state, 
to simulate the consequences of actions.  

Model-free RL: A form of RL that uses past experience to 
learn values and/or policies through 
trial-and-error, without estimating a 
model of the world.  

Instrumental learning: A learning setting in which outcomes O 
are contingent on performing certain ac-
tions A in a given state S.  

Pavlovian learning: A learning setting in which outcomes O 
are predicted by the presence of a certain 
state S alone, without any action 
contingencies. 

Latent cause: A grouping of sensory observations ac-
cording to a hypothesized shared hidden 
variable ”generating” the sensory obser-
vations. The structure and presence of 
latent (hidden) causes must be inferred. 

The latent-cause framework 

A growing body of evidence has demonstrated the shortcomings of 
traditional model-free formulations of addiction, and has attempted to 
remedy them in multiple, seemingly distinct ways. However, one prin-
ciple that emerges from these attempts and unifies them is the 
“contextual” or “latent-cause framework”. According to the latent-cause 
framework, individuals engaging in real world reinforcement learning 
are not simply learning unitary associations between reinforcers and 
their antecedent cues or actions (such as values or policies in traditional 
model-free RL), but are simultaneously discovering the hidden “con-
texts” or “latent causes” underlying both cues and reinforcing outcomes 
in the environment [29,30]. This means that individuals are constantly 
segmenting their experiences into (an unknown number of) distinct 
latent causes, such that experiences only create or modify associations 
bound to the latent cause they are assigned to. Depending on the level of 
abstraction at which they are inferred, latent causes may correspond to 
different psychological constructs. These may be external to the indi-
vidual - ranging from “categories” e.g. a desirable object to an entire 
“context” such as a stressful situation - or internal, from discrete 
phenomenological “states” such as craving to an entire self-concept e.g. 
the addicted version of me. 

Formally, such a process of latent cause discovery can be captured 
using Bayesian nonparametric models [29] with “infinite-capacity” 
priors that allow agents to flexibly create new latent causes in the face of 
unfamiliar or changing experiences, store old latent causes in memory, 
and infer their recurring presence when familiar experiences are 
encountered. Importantly, latent causes are unobserved, learnt in an 
unsupervised fashion, and beliefs about their inferred presence are 
heavily shaped by one’s priors and past experiences such that two in-
dividuals with differing histories may arrive at different latent cause 
structures underlying the same set of experienced cues and reinforcing 
outcomes [31]. This flexibility in learnt latent structure sets these 
models apart from standard Bayesian inference accounts that typically 
assume a single, known latent structure, and allows these models to 
additionally capture the process of building a world model in the first 
place. Beyond addiction, such a framework has successfully accounted 
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for a wide variety of learning phenomena in humans and animals [30], 
and its neural underpinnings are beginning to be dissected in the pre-
frontal cortex and hippocampus [32–34]. 

The latent-cause framework deviates from standard model-free RL in 
a number of key ways: First, it puts cues and outcomes on the same level, 
and learns latent causes associated with both (Fig. 1a), hence retaining 
information about specific outcomes and enabling both cues and out-
comes to trigger memories or expectancies of each other, and of old 
latent causes, any of which could act as potential substrates of outcome- 
specific craving [18,24,35]. Second, it allows for the segregation of 

associations, values or policies into multiple separate representations 
(one for each latent cause), enabling the learning of distinct (and even 
conflicting) associations for different contexts (Fig. 1b). Hence, initial 
drug exposure could create learning of one set of associations, while 
later experiences such as spiraling into addiction, adverse outcomes, 
development of tolerance or abstinence from the drug could create a 
separate set of associations rather than modify the original association. 
The resultant protection of the original association leaves the individual 
vulnerable to relapse if and when the original latent cause is inferred to 
recur [2,36]. Similar ideas have been proposed and tested in the domain 

Fig. 1. The latent-cause framework and its utility in understanding craving and relapse. a-b. Differences between model-free RL (left column) and the latent- 
cause framework (right column). a. Outcome specificity of associations and craving states: Two outcome identities, O1 and O2, are paired with stimuli S1 and S2, 
respectively (middle). Left: Model-free RL abstracts away the outcome identities in favor of scalar values V (grey bars). Right: latent causes labelled C1 and C2 also 
represent abstractions, however, these are of both stimuli (cues) and outcomes, and retain outcome-specific expectations (colored bars) despite being “defocused” and 
generalizable, much like craving states. b. Asymmetry of learning and unlearning and vulnerability to relapse: In extinction, O1 that was initially paired with S1, 
no longer appears (middle). Left: In model-free RL, learning and unlearning are symmetric, such that the value of S1 first increases (when paired with O1) and then 
decreases in extinction (the first trial of extinction is marked by a dotted line). Right: In the latent-cause framework, the large change between acquisition and 
extinction can entail the formation of a new latent cause (pink) that is associated only with S1 and not with O1, leaving previously learnt knowledge (blue) intact, and 
therefore prone to relapse. c. Dynamics of latent-cause inference, craving and relapse: Simulation of the timecourse of latent-cause inference in reversal learning, 
showing potential connections to addiction phenomena. Early experience with an addictive substance leads to robust learning of drug associations and a strong policy 
of choosing the consumption action A1 (square), bound to a latent cause with strong expectations of reinforcing outcomes (blue). Following reversal (first dashed 
line), the act of consumption no longer gives rise to the same level of reinforcement, either due to tolerance (reduction in the hedonic value of the drug outcome) or 
other negative consequences of drug use, leading to abstinence and a drop in outcome expectations. This sudden change leads to the creation of a new latent cause 
(pink) that is not as strongly bound to the action policy or its outcome, and this new cause persists for some time. As time passes, exhaustion of this persistence or 
exposure to drug-related cues or contextual triggers increase the probability of inferring the return of the original drug-associated cause (blue). This leads to an 
increase in outcome expectations, resembling incubation of craving. Eventually, outcome expectations and/or craving may grow so large as to trigger a relapse event 
(second dashed line), resetting the cycle. 
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of fear learning and extinction [37] with applications to fear-related 
psychopathologies [38]. Finally, early protected latent causes could be 
sampled from memory in the future during decision evaluation or 
replay, leading to goal-directed behavior such as “chasing the first high” 
[2] and fully deliberative, model-based control that is nevertheless 
insensitive to devaluation [39]. In the following two sections, we 
introduce and briefly examine the consequences of the latent-cause 
framework for Pavlovian and instrumental learning, and its potential 
to explain core addiction phenomena that is not well captured by pure 
model-free RL accounts. 

Pavlovian latent causes and craving 

When applied to Pavlovian learning settings, the latent-cause 
framework has the potential to explain aspects of craving that model- 
free RL cannot. Since in this framework, individuals associate latent 
causes with both cues and reinforcing outcomes (rather than learn scalar 
values for cues in model-free RL), both cues and outcomes have the 
capacity to trigger inference of the associated latent cause, and conse-
quently, expectations of the other stimulus. Importantly, since outcome 
information is retained (rather than abstracted away), these expecta-
tions are outcome-specific (Fig. 1a). Latent states formed by drug-related 
cues and outcomes could potentially capture many properties of the 
subjective state of craving. The inferred, transient, presence of these 
latent states can be triggered by drug-associated or other contextual 
cues. In turn, the inferred states can give rise to outcome expectations 
and inflated values that are specific to both the drug outcome and the 
temporally restricted state of craving [18]. Moreover, since latent causes 
represent groupings of cues, outcomes and any surrounding context, 
they are expected to generalize to stimuli that resemble those cues and 
outcomes. Such restricted similarity-based generalization of 
drug-related cues and outcomes has been observed in states of craving 
[18,40], and is particularly evident in polydrug users whose cravings for 
specific drugs can be triggered by historically drug-associated moods 
[41]. This is also akin to the “defocusing” of outcome representations 
proposed by [42], which can enable the substitution of one addictive 
outcome with a similar one. 

The dynamics of learning and inference about latent causes may help 
shed further light on temporal features of craving – for instance, “in-
cubation of craving” [26,43,44], i.e. the phenomenon that craving re-
duces immediately after consumption but may increase steadily after a 
period of abstinence, with a characteristic timescale. Over the longer 
term, craving may continue to recur frequently (and with it the risk of 
relapse) or become more intermittent and even decrease, with longer 
adherence to abstinence. Such dynamics could potentially be captured 
by the distinct but linked timescales of inference and learning in the 
latent-cause framework (Fig. 1c). After abrupt change points, one might 
infer that transient latent causes have become inactive. The anticipation 
of their short-term return may increase gradually with the probability of 
the current transient latent cause terminating (e.g., after a temporary 
period of abstinence) or increase abruptly in the presence of a 
drug-related cue, outcome or antecedent context (e.g. a stressful event, 
[26]). However, the long-term recurrence of these latent causes may be 
determined by learnt priors over latent causes, which in turn may 
depend on their “popularity” – a latent cause that has been sampled from 
memory more (or less) often in the past may be expected to return more 
(or less) often in the future [2], acquiring a higher (or lower) learnt prior 
probability. Understanding individual differences in such priors and 
other components of learning and inference could potentially help 
disambiguate situations in which craving continues to recur and accel-
erate relapse from those in which it eventually reduces and leads to 
recovery [2,26]. It is worth noting here that while we are attempting to 
model the overall dynamics of craving in terms of an unobservable belief 
state similar to [26], empirical measures of craving differ significantly 
between human (self-report) and rodent (responding in extinction) 
studies, and appropriate care will be needed in order to map our 

predictions about latent craving states onto these vastly different 
observable measures. 

Instrumental latent causes and relapse 

When applied to instrumental learning scenarios, the latent-cause 
framework can account for the asymmetric dynamics of learning and 
unlearning of drug-related associations, and the phenomenon of relapse 
[2,36]. Akin to the situation-recognition module proposed in [36], the 
process of latent-cause inference has the potential to segregate learning 
during initial acquisition of a behavioral policy (Box 1) (e.g. initial drug 
consumption with large experienced payoffs) from learning during 
subsequent extinction or reversal of outcomes (e.g. abstinence, wors-
ening payoffs due to tolerance or increasing costs), and can explain why 
both drug consumption and rehabilitation may be less likely to gener-
alize outside the context they were learnt in [45]. Segregation of 
different experiences to separate latent causes makes old associations 
resistant to unlearning or counter-evidence, and prone to relapse 
(Fig. 1b). This can also explain behavior of “chasing the first high” 
despite the lack of recent experience of positive outcomes of drug con-
sumption [2], and accounts not only for the return of old policies (i.e. 
early drug consumption) but also their associated contextual memories 
(i.e. the first high). As in the Pavlovian case, such relapses (i.e., inference 
of resurgence of an old latent cause) can be triggered by drug-associated 
cues, passively re-experiencing drug outcomes (i.e. reinstatement, [46]), 
or antecedent contexts (e.g. a stressful state that prompted initial con-
sumption), and may be accompanied by outdated action-outcome ex-
pectations. Finally, latent causes associated with old policies may or may 
not be the same latent causes associated with outcomes, allowing for the 
possibility of craving and relapse to exist without each other [47], while 
still making one likely in the presence of the other – another potential 
axis of individual variability. 

Latent causes as a bridge between model-free and model-based 
formulations 

So far, we have considered the effect of latent-cause representations 
underlying values and policies that are still learnt through direct expe-
rience, similar to model-free associations. Going one step further, latent- 
causes could serve as building blocks of a predictive model of the world, 
acting as higher-order, partially observable state representations upon 
which model-based evaluation could take place. For instance, a drug- 
related cue could cause inference of a latent cause that effectively puts 
an individual into a state of craving or relapse, triggering either an old 
model-free habit, an outdated model-based evaluation [39] or a goal to 
alleviate craving and a model-based search in pursuit of this goal [24]. 
In this way, the latent-cause framework acts as a bridge between 
model-free and model-based formulations, offering a common substrate 
for both habitual and goal-directed aspects of addiction [19,21,47]. By 
bridging these model classes, the latent cause framework could poten-
tially provide new links between results couched in terms of model-free 
RL and the growing body of work on the bidirectional influences of 
substance use on model-based planning and goal-directed decision 
making [4–6]. 

Looking ahead: centering subjective experience 

Beyond its ability to account for a number of features of addiction 
phenomena, the latent-cause framework shifts the emphasis away from 
experience-derived model-free learning that “takes control” over 
behavior and thus seemingly removes agency from the individual, 
instead putting the focus on subjective aspects of that experience and 
how it may interact with the past to influence decision-making in 
context [1,48,49]. Under this view, exteroceptive and interoceptive 
experiences are filtered through an individual’s model of latent causes in 
the world, which have been shaped by their past experiences, prior 
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beliefs (both innate and learned) and goals. For instance, a person who 
expects – as a prior on how the world works – that latent causes are 
deterministic (also called a “black or white” cognitive bias, where events 
can be good or bad, safe or dangerous), would be more likely to infer 
segregated latent causes across conflicting experiences, which in turn 
can yield update-resistant beliefs or policies that may later resurface 
[50]. Such prior expectations can be due to both innate tendencies and 
life experiences, and may comprise a self-reinforcing cycle as inference 
in light of prior beliefs can update prior expectations for the future. This 
account therefore leaves room for – and can help explain – individual 
differences in phenomenology and responding to the same set of 
drug-related or therapeutic experiences, due to differences in individual 
histories and innate tendencies. Moreover, it emphasizes the importance 
and therapeutic potential of samples from past memories as well as 
alternate imagined futures, in particular predicting that strengthening 
alternate drug-unrelated memories and futures is likely to be more 
successful at supporting recovery than attempting to erase or curb 
drug-related ones [2]. 

Finally, the latent-cause framework can be applied to inference at 
many different levels of abstraction—all the way up to the individual’s 
own sense of self and agency, by treating the self-concept as a latent 
cause that groups together the characteristics, values and action policies 
of an individual to distinguish themselves from the environment. Indi-
vidual differences in inferring self v.s. environmental latent causes could 
yield different (and even conflicting) narratives of identity in addiction, 
from individuals conceptualizing their self as a persistent whole that 
goes through addiction and possibly recovery, to split senses of self (an 
addicted and a non-addicted identity with conflicting values and pol-
icies), to addiction as being a cause that is entirely extraneous to identity 
[51,52]. The expressive power of this framework offers the potential for 
future work to attempt modeling complex, personalized phenomena in 
addiction within a single framework, all the while recognizing the 
insufficiency and limitations of unified narratives [1,53]. 
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