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How do we learn what features of our multidimensional environment are relevant in a given task? To study the computational

process underlying this type of “representation learning,” we propose a novel method of causal model comparison. Partic-

ipants played a probabilistic learning task that required them to identify one relevant feature among several irrelevant ones. To

compare between two models of this learning process, we ran each model alongside the participant during task performance,

making predictions regarding the values underlying the participant’s choices in real time. To test the validity of each model’s

predictions, we used the predicted values to try to perturb the participant’s learning process: We crafted stimuli to either

facilitate or hinder comparison between the most highly valued features. A model whose predictions coincide with the learned

values in the participant’s mind is expected to be effective in perturbing learning in this way, whereas a model whose

predictions stray from the true learning process should not. Indeed, we show that in our task a reinforcement-learn-

ing model could help or hurt participants’ learning, whereas a Bayesian ideal observer model could not. Beyond informing

us about the notably suboptimal (but computationally more tractable) substrates of human representation learning, our

manipulation suggests a sensitive method for model comparison, which allows us to change the course of people’s learning

in real time.

We live in a rich, complex environment, in which we

are constantly bombarded with a wide variety of sensory

input. Even an action as simple as walking down the street

carries with it a large volume of low-quality information

in the form of people we see, places we walk by, cars,

colors, voices, noises, emotional content, etc. Intuitively,

one would imagine that given sufficient resources, it is

best to always represent every aspect of the environment

so that any detail can potentially be acted upon. However,

the “curse of dimensionality” (Bellman 1957) posits that

task representations that involve unnecessary stimulus

dimensions will not afford efficient learning and deci-

sion-making, where efficiency is measured in the number

of examples needed to learn the task. In particular, an

increase in the number of dimensions of the problem

(in our case, the dimensions of the environment that the

brain may represent) implies that the learner needs to

collect exponentially larger quantities of data to learn to

solve the problem. If we want learning to be feasible it is

therefore both computationally optimal and a practical

imperative to represent tasks with as compact a represen-

tation as possible.

What are the computational strategies that humans use

to learn a representation for a given task? To address this

question, we tested participants on a multidimensional

trial-and-error choice task, in which only one dimension

was relevant to predicting reward (Wilson and Niv 2012;

Niv et al. 2015). To test the explanatory power of different

models of learning dynamics, we developed a method

that compares two models against each other in terms

of their causal effects on behavior. Specifically, we

used each model to manipulate participants’ learning in

real time, and asked which model was more effective in

changing behavior. This is at the same time a novel, in-

tuitive measure of how well a model captures partici-

pants’ strategies, and it constitutes evidence that it is

possible to use model predictions to impact learning in

real time, by manipulating the stimuli that are presented

to the participant.

It goes without saying that trial-and-error learning de-

pends on what information is available to the learner.

Indeed, work in machine learning and information theory

has established how information in any given task might

be optimally selected so as to maximally discriminate

between competing hypotheses and accelerate learning

(optimal experimental design; Sebastiani and Wynn

2000). Although human learning does not always mirror

these optimal strategies, judicious choice of information

has been shown to improve learning, for instance of cat-

egory boundaries (Gureckis and Markant 2012) or speech

motor learning (Knock et al. 2000). Moreover, the order

in which information is presented is relevant to determin-

ing what is learned (Ritter 2007). We thus set forth to use

our candidate models to manipulate the timing and avail-

ability of information in such a way as to aid or hinder

participants’ learning trajectory.

This kind of effort to manipulate learning, however,

is heavily dependent on having a good model of how

participants structure and update their representations of

the environment. How to compare and select a “best”
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model for a complex cognitive process is not trivial

(Cutting et al. 1992; Pitt et al. 2002): Models that fit

the data better on some common goodness-of-fit mea-

sures may not fit better on other such measures; models

that posit very different processes may perform similar-

ly in terms of average fit (Townsend 1990; Rust et al.

1995); and a model that seems to describe behavior

better might do so because of a more flexible func-

tion form or different numbers of parameters, and not

necessarily because it better captures the underlying

cognitive processes (Busemeyer and Wang 2000). We

therefore developed an interventional method for model

comparison.

We used our candidate models to predict in real time

what hypotheses a participant might be testing and to

design stimuli that will make it easier or harder to distin-

guish between the competing hypotheses. We reasoned

that a model that does not capture the participants’ beliefs

about the available stimuli would not be effective at such

a manipulation of learning. In contrast, a model whose

predictions are well-matched to the cognitive processes

underlying participants’ behavior should allow us to ma-

nipulate learning in real time. In particular, while partic-

ipants played our multidimensional probabilistic learning

task, we inferred their value representations in real-

time using either a Bayesian or a reinforcement-learning

model. We used those inferred representations to present

participants with information that would either help

discriminate their competing hypotheses about which

dimension of the stimuli is relevant for reward, or specif-

ically hurt such a discrimination.

Despite much work suggesting that the human brain

is Bayes-optimal (Körding and Wolpert 2004; Beier-

holm et al. 2009), and in line with our previous findings

(Niv et al. 2015), our manipulation was only effective

when we based it on predictions of the reinforcement-

learning model. Our ability to manipulate the learning

process both precisely and in real time consists of a

proof of concept for the new proposed model-testing

tool, and is a step in the right direction in terms of

development of individualized tools to improve learning

in general.

METHODS

Participants

Twenty-five participants (16 females) recruited from

the Princeton University undergraduate community

gave informed consent and were compensated $12 an

hour plus a performance bonus of up to $5 depending

on their final score in the task. The average pay was

$15. Study materials and procedures were approved by

the Princeton University Institutional Review Board.

Task

Participants played a probabilistic learning task. Each

trial involved choosing one of three compound stimuli

displayed on the screen (see Fig. 1A). Each stimulus

was comprised of three features defined on three dimen-

sions: a color (red, yellow, or green), a shape (triangle,

square, or circle), and a texture (dots, plaid, or waves). No

two stimuli could share the same feature (i.e., there was

only one red stimulus, one triangle, etc., per trial). Choos-

ing a stimulus resulted in immediate feedback in the form

of either one or zero points. Participants were instructed

to try to obtain as many points as possible.

The task was designed so that, of the three dimen-

sions of a stimulus, only one dimension was relevant to

determining reward. Within that dimension, one feature

was the target feature–choosing the stimulus that con-

tained this feature led to one point 75% of the time and

zero points 25% of the time. Choosing any other sti-

mulus resulted in one point only 25% of the time. To

maximize their score, participants therefore had to ag-

gregate over previous choices and outcomes to learn

which feature is the target feature. Participants were ex-

plicitly instructed about these aspects of the task struc-

ture in advance.

The task consisted of 52 “games.” Participants were

informed that the target feature would not change within

a game, but would change between games. Ends of

games were explicitly signaled on-screen. The first 12

games (referred to as the baseline phase, described be-

low) included 30 trials each, whereas the remaining

games (the manipulation phase) consisted of 36 trials

each, for a total of 1800 trials. After each game, partic-

ipants were asked how difficult they found the game (on

a scale from very easy [1] to very difficult [9]; Fig. 1B)

and to identify the target feature in that game. They

could select any of the nine features, as well as an “I

do not know” option. If they did select a feature, they

were also asked to rate how confident they were about

their choice.

After the baseline phase, participants took a 1-min

break, during which we used their baseline phase data

to fit the free parameters of the two candidate models

we would later test in the manipulation phase. The re-

maining 40 games of the task comprised of the manipu-

lation phase, in which we manipulated stimuli according

to predictions from each model, to either help or hurt

participants’ learning (see below).

Modeling

The two models we compared represent two different

ways of thinking about human representation learning.

The first is a Bayesian model that assumes statistically

optimal updating of the posterior probabilities of each

feature being the target feature, and the second model

uses reinforcement-learning principles to update values

via trial and error. Both models compute the value of a

compound stimulus by estimating values of individual

features and combining them: The Bayesian model esti-

mates, for each feature, the posterior probability that it is

the target feature, whereas the reinforcement-learning

(RL) model learns the values of each feature based on

prediction errors. In both models, current values of stim-

uli depend on the history of choices and rewards.
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Bayesian model. The Bayesian model tracks the pos-

terior probability that each feature f is the target feature f�.
At the end of each trial, the posterior is updated by com-

bining the prior (i.e., the posterior from the previous trial)

and the likelihood of the observed data if f were the target

feature. The prior depends on the history of choices C and

rewards R, D1;t�1 ¼ fC1:t�1; R1:t�1g; from the beginning

of the game and up until the current trial (not inclusive).

The likelihood depends on the reward probabilities im-

posed by the experimenter; for instance, the likelihood of

a win if the chosen stimulus contains the target feature is

0.75.

At the beginning of the game, the prior is initialized

at 1/9 (all features are equally likely to be the target

feature). After each trial, the posterior is updated accord-

ing to

Pð f ¼ f �jD1:tÞ/ PðRtjf ¼ f �;CtÞPð f ¼ f �jD1:t�1Þ:
ð1Þ

The value of a stimulus S is then calculated as the

probability of obtaining a 1 point reward for choosing

that stimulus on the current trial t,

V ðSÞ ¼ PðR ¼ 1jS;D1;t�1Þ

¼
X

f [S
½PðR ¼ 1jf ¼ f �ÞPð f ¼ f �jD1;t�1Þ�

þ PðR ¼ 1jf � � SÞ

�
�

1�
X

f [S
Pð f ¼ f �jD1;t�1Þ

�
;

ð2Þ

where PðR ¼ 1jf ¼ f �Þ ¼ 0:75 for all features contained

in S, and PðR ¼ 1jf � � SÞ ¼ 0:25: The model can be

considered an ideal observer because it maintains a full

probability distribution over the identity of f� and updates

this distribution in a statistically optimal way.

Figure 1. The dimensions task. (A) Example trial—stimulus presentation, choice, positive feedback, new stimulus presentation. (B)
Query screens—difficulty ratings, identifying correct feature, confidence ratings. (C ) Simulations of model-based manipulation. The
manipulation was effective (“Help” improves performance as compared with “Hurt”) only when stimuli were manipulated according
to predictions from the same model that generated the choice data (top left, bottom right panels). The task was designed so that, of the
three dimensions of a stimulus, only one dimension was relevant to determining reward. Within that dimension, one feature was the
target feature—choosing the stimulus that contained this feature led to one point 75% of the time and zero points 25% of the time.
Choosing any other stimulus resulted in one point only 25% of the time. To maximize their score, participants therefore had to
aggregate over previous choices and outcomes to learn which feature is the target feature. Participants were explicitly instructed about
these aspects of the task structure in advance.
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To afford this model, the same temporal locality as the

reinforcement model (described below), we also allowed

some degree of decay for all feature posteriors toward a

uniform value of 1/9,

~Pð f ¼ f �Þ ¼ ð1� dÞPð f ¼ f �Þ þ d�1=9; ð3Þ

and used ~P instead of P in Equations 1 and 2 above.

Although suboptimal, the decay component has been

shown to significantly improve the models’ fit to behav-

ioral choices in our task (Niv et al. 2015).

Finally, we assumed that the probability of choosing

stimulus Si on each trial is proportional to the value of the

stimulus, according to the softmax probability choice

function:

Pðchoose SiÞ ¼
ebVðSiÞ

P3
j¼1 ebV ðSjÞ

: ð4Þ

The positive-valued inverse-temperature parameter b

sets the level of noise in the decision process, with large b

resulting in near-deterministic choice of the highest value

option, whereas small b results in high decision noise and

more random decisions. In all, this model has two free

parameters, b and the decay rate d.

Reinforcement-learning model. This model takes ad-

vantage of the fact that, in our task, features determine

reward independently, and uses reinforcement learning

to learn values for each of the nine features. The values

of all features were initialized at zero at the beginning of

each game; on each trial, values of the three features of

the stimulus that was chosen were then updated accord-

ing to

Vtð f Þ ¼Vt�1ð f Þ þ hðRt � Vt�1ðSchosenÞÞ;
8f [ Schosen;

ð5Þ

where h represents the learning rate, and ½Rt �
Vt�1ðSchosenÞ� is a prediction error—the discrepancy be-

tween the actual reward on the current trial and the

reward that was expected based on choosing this

stimulus.

Based on our previous findings (Niv et al. 2015), we

also included in this model a decay of the values of the

unchosen features to zero:

Vtð f Þ ¼ ð1� dÞVt�1ð f Þ, 8f � Schosen; ð6Þ

with d a free parameter determining the decay rate. As in

the Bayesian model, action probabilities were determined

by a softmax probability function on stimulus values

(Equation 4). The RL model thus had three free parame-

ters, the learning rate h, the softmax inverse temperature

b, and the decay rate d.

Model fitting. At the end of the baseline phase (de-

scribed above), participants were given a 1-min break

while the computer fit both models to their data. Free

parameters of both models were set for each participant

separately, and were selected so as to maximize the like-

lihood of the data from the baseline phase (12 games and

a total of 360 trials), by using the Matlab routine fmincon

and fitting the data five times, initializing at different

random starting points. Parameter values from the run

that obtained the best likelihood for the data were then

used to fully specify the model for the manipulation phase

of the experiment, in which we used each model to track

feature values in real time.

Real-Time Manipulation

In the remaining 40 games of our task, we aimed to

help or hurt learning by manipulating stimulus presenta-

tion. Specifically, we manipulated how the available fea-

tures (colors, shapes, and textures) were combined into

three different stimuli, so as to either make available or

obscure information about which feature is more likely to

be the target feature. This manipulation relies on the

idea—common to both models we tested—that while

playing the task, participants update values for each fea-

ture, with the goal of ultimately learning which is the

most rewarding feature. These feature values carry pre-

dictions regarding the reward associated with each feature

and thus can be seen as “hypotheses” as to which is the

target feature.

For every manipulated trial, to help learning, the high-

est-valued feature in each dimension was selected, and

each of the three stimuli presented to the participant was

designed to include only one of these three highest-valued

features. This manipulation facilitates hypothesis testing,

allowing participants to test one high-value feature inde-

pendently of the other two. Conversely, to hurt learning,

the three highest-valued features (one in each dimension)

were combined into a single stimulus, thus preventing the

participant from assigning credit for the feedback to just

one of the three competing features. Both types of manip-

ulation can potentially impact the rate of learning in the

game, but only as long as the inferred values are close to

the participants’ actual values (Fig. 1C).

In each manipulated game, we manipulated every other

trial from the fourth to the thirtieth trial for a total of 14

manipulated trials, using one of the two models and either

helping or hurting learning throughout the game. Because

our manipulation affects not only learning, but the like-

lihood to make the correct choice on the current trial, to

measure learning we analyzed choices only in nonmanip-

ulated (neutral) trials, in which stimuli were constructed

so as to specifically not include all three highest-valued

features in the same stimulus, nor separate them into three

different stimuli. (Therefore, in nonmanipulated trials,

one stimulus always contained exactly two of the high-

est-valued features—and these trials did not overlap with

either the helping or the hurting manipulation.)

Each of the 40 games in the manipulation phase con-

sisted of 36 trials, with 14 manipulated and 22 neutral

trials. The last six trials in each game were not manipu-
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lated so as to allow measurement of steady-state learning

at the end of the game.

RESULTS

To understand the dynamic process of learning a com-

pact and sufficient task representation in a multidimen-

sional environment, we tested human participants on a

probabilistic three-dimensional choice task. While they

played the task, we used the real-time trial-by-trial pre-

dictions from two competing models to manipulate the

presented stimuli so as to help or hurt learning. Success of

the causal manipulation would attest to congruence be-

tween the model and participants’ learning strategies.

As shown in Figure 2, the manipulation had a signifi-

cant effect on learning only in those games in which we

manipulated stimuli using the RL model (Fig. 2A), and

did not alter learning in games in which we manipulated

stimuli using the Bayesian model (Fig. 2B). For RL-ma-

nipulated games, average performance on the last six

trials of games (all nonmanipulated) in the Help condi-

tion (red line) was significantly better than in the Hurt

condition (black line). A two-way Performance � Ma-

nipulation repeated-measures ANOVA yielded a sig-

nificant interaction (F(1,48) ¼ 5.22, P ¼ 0.02) with no

main effects, and the average performance at the end

of the game was significantly higher in the Help than

the Hurt condition for RL-manipulated games (one-sid-

ed paired t-test, t(24) ¼ 2.25, P ¼ 0.01), but did not dif-

fer between conditions for the Bayesian-manipulated

games (t(24) ¼ 20.96, P ¼ 0.82).

Participants did not learn all the games, that is, for

some games, they could not identify the correct feature

when probed at the end of the game (Fig. 1B). The real-

time manipulation had an impact on the total number of

games learned (Fig. 2C): Here too a two-way Model �
Manipulation repeated-measures ANOVA showed a sig-

nificant interaction (F(1,48) ¼ 7.23, P ¼ 0.009) with no

main effects. When the RL model was used to manipulate

stimuli, the number of learned games differed signifi-

cantly depending on whether the game was designed to

help or hurt learning (F(1,24) ¼ 12.64, P , 0.01). On av-

erage, the Help condition resulted in an �30% increase in

the number of learned games. Conversely, when the

Bayesian model was used to manipulate stimuli, there

was no difference between the help and hurt conditions

(F(1,24) ¼ 0.77, P ¼ 0.73).

A similar pattern was observed in the average score per

game (Fig. 2D). For games manipulated using the RL

model, the average score (number of correct choices)

was higher in the Help condition than in the Hurt condi-

tion (paired t-test; t(24) ¼ 2.72, P ¼ 0.011). In contrast,

scores for the Help and Hurt conditions were similar

when the Bayesian model was used to manipulate the

stimuli (t(24) ¼ 21.91, P ¼ 0.07).

The impact of the stimulus manipulation was also evi-

dent in participants’ difficulty (Fig. 3A) and confidence

(Fig. 3B) ratings. For RL-manipulated games, participants

rated “help” games as easier compared with the “hurt”

Figure 2. Model-based manipulation of stimuli affects learning only when using predictions from the RL model, not from the Bayesian
model. (A) Learning curves for Help (red) and Hurt (black) conditions overlap when the manipulation used predictions from Bayesian
model. (B) When the manipulation used predictions from the RL mode, learning curves for the Help condition show significantly
better learning at the end of the game as compared with the Hurt condition. (Blue line) Data from the baseline phase. Similar effects of
the manipulation are also seen in C, the overall number of learned games, and D, the average score across games. Error bars: S.E.M.

HUMAN REPRESENTATION LEARNING IS NOT BAYESIAN 165



games (t(21) ¼ 22.23, P ¼ 0.03, paired t-test). This effect

was not present in the games manipulated using the Bayes

model (t(21) ¼ 0.734, P ¼ 0.47, paired t-test). A similar

pattern was seen in the confidence ratings (Fig. 3B), where

confidence in RL-manipulated “help” games was rated as

significantly higher than confidence in the “hurt” games

ðtð21Þ ¼ 2:57;P ¼ 0:01Þ; but ratings in games manipulat-

ed using the Bayesian model were not significantly differ-

ent across conditions ðtð21Þ ¼ �1:26;P ¼ 0:22Þ:

DISCUSSION

Using a multidimensional choice task, we investigated

the computational strategies by which humans determine

what dimensions of the environment are relevant for ob-

taining reward, and which can be safely ignored. The as-

sumption underlying our work is that naturalistic tasks

require such a representation learning process: In any giv-

en scenario, only a subset of information is relevant to the

task at hand, and, moreover, the particular environmental

dimensions that are relevant to one task are not necessarily

relevant for another. For instance, the color of cars is irrel-

evant for crossing the street, but relevant for hailing a taxi,

and the identity of the shops across the street is irrelevant to

both tasks (but of course not for the task of navigating to

the coffee shop).

To compare between qualitatively different accounts of

how humans may learn what dimension of the environ-

ment is relevant for the current task, we showcased a novel

method that compares two learning models by attempting

to use each model in a causal, real-time manipulation of

participants’ learning. That is, we used each model to

predict what hypotheses participants might be testing at

each point in time, and manipulated stimuli to either help

or hinder comparison of these hypotheses. This model-

based manipulation can affect learning only to the extent

that a model indeed captures participants’ underlying

learning process. We found that when stimuli were ma-

nipulated based on a RL model, games designed to help

learning resulted in faster and more complete learning

than games designed to hurt the learning process. In con-

trast, manipulating games using a Bayesian model had no

significant effect on learning. Our method thus provides a

stringent measure of how well each model captures peo-

ple’s strategies, and at the same time, our results provide

evidence that it is indeed possible to impact representation

learning in real time, by manipulating the stimuli that

people have access to.

Our method is related to the framework of “optimal

experimental design” in which experiments are designed

so as to optimally elicit information about the process

under investigation (Sebastiani and Wynn 2000; Atkinson

et al. 2007). Normative statistical principles from Baye-

sian inference can, in some cases, be used to select an

experimental design that will best resolve the details of

participants’ underlying cognitive processes (e.g., set the

free parameters of a model of the process under scrutiny;

Rafferty et al. 2012). One way to optimize our manipu-

lation would be to choose, on each trial, the stimulus

configuration that would allow participants to glean the

maximum (or minimum) amount of information regarding

the identity of the target stimulus, assuming participants’

underlying cognitive processes matched each of the can-

didate models. This manipulation, although more norma-

tive than the one we designed, is more computationally

intensive and, importantly, relies on further assumptions

regarding the optimality of participants’ actions. In partic-

ular, if participants are not selecting stimuli in an effort to

maximize information (e.g., because they are also maxi-

mizing reward), this manipulation may not be more ef-

fective than ours. It is due to this interaction between

information acquisition and reward acquisition that we

assessed performance only in nonmanipulated trials—

our “help” manipulation, although affording better infor-

mation, made it more difficult to obtain reward on manip-

ulated trials than did our “hurt” manipulation.

Rather than assume that the highest-valued features

correspond to the hypotheses that the participant is com-

paring, another alternative is to infer these hypotheses

using Bayesian inference. We have previously used such

a method in association with the dimensions task and

shown that recent choice history can effectively identify

tested hypotheses (Wilson and Niv 2012). However, in

Figure 3. Difficulty (A) and confidence (B) ratings reflect the fact that the manipulation was only effective in RL-manipulated games,
not in games manipulated using the Bayesian model. Error bars: S.E.M. Three subjects were excluded from this analysis, two because
they consistently did not rate difficulty/confidence, and one participant who reported reversing the difficulty scale for most of the
experiment.
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that work, inference was only optimal if we assume that

participants test one hypothesis at a time—an assumption

that is incompatible with our current results. If participants

were indeed focusing only on one hypothesis (feature) at

any point in time, then neither of our manipulations would

have affected learning.

Our findings join others (Eckstein et al. 2004) in sug-

gesting that human learning is not always Bayes-optimal

and, in particular, that humans do not solve the difficult

taskof representation learning in a Bayes-optimal way (see

also Wilson and Niv 2012; Niv et al. 2015). These findings

stand in contrast to multiple demonstrations of Bayes-op-

timality (Doya 2007) in perceptual decision-making (Gold

and Shadlen 2002; Knill and Pouget 2004), motor control

(Trommershäuser et al. 2003, 2005), multimodal integra-

tion (Körding and Wolpert 2004), reasoning (Oaksford

and Chater 1994), and even setting metalearning parame-

ters for reinforcement learning (Behrens et al. 2007; Yu

2007). However, whereas Bayesian inference may be com-

putationally feasible (and indeed, simple) in scenarios that

can be reduced to a several-alternative forced-choice de-

cision (Gold and Shadlen 2002) or a choice between lot-

teries (Wu et al. 2009), representation learning in natural

environments places much heavier computational de-

mands on the learning system. In particular, the dimen-

sionality of the environment is essentially unbounded

(given that dimensions such as previous actions and events

can be, and frequently are, relevant for task performance),

and whereas feedback is often available for one’s actions,

the environment does not provide any supervision regard-

ing one’s representations.

To overcome these difficulties, our results suggested

that humans might use a suboptimal but computationally

more tractable strategy based on reinforcement learning.

However, we note that we only compared two very dif-

ferent models, partly as a proof-of-concept for our novel

model-comparison method. It is entirely possible—in

fact, likely—that the feature-level RL model that we sug-

gested also falls short of fully capturing participants’

learning strategies. Future applications of this method

will hopefully delineate more precisely the workings of

representation learning in the human brain.

Finally, our “dimensions task” lends itself easily to

manipulation of presented information. Work on “active

learning” (Cohn et al. 1996) in categorization and per-

ceptual estimation tasks has used a related manipulation,

effectively allowing participants to design their experi-

ment optimally (Kruschke 2008; Castro et al. 2009; Gur-

eckis and Markant 2009; Juni et al. 2011; Markant and

Gureckis 2014). Some adjustments will likely be needed

to apply this model-comparison method to other task

structures, though we are optimistic as to the method’s

wider applicability (Nelson et al. 2010).

In sum, we have described a real-time manipulation of

information presented to participants, and have suggested

that basing this manipulation on predictions of different

models can allow for a new, sensitive and causal means

of model comparison. Using this method and a RL model,

we have shown that human representation learning can be

improved or hampered. Beyond the implications for ef-

fective, individual-difference-sensitive model selection,

such “access” to participants’ mental strategies suggests

exciting applications, particularly in the domain of edu-

cation and tailoring the flow of information toward indi-

vidual learning.
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