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Abstract
Rationale Pairing rewarding outcomeswith audiovisual cues in simulated gambling games increases risky choice in both humans
and rats. However, the cognitive mechanism through which this sensory enhancement biases decision-making is unknown.
Objectives To assess the computational mechanisms that promote risky choice during gambling, we applied a series of rein-
forcement learning models to a large dataset of choices acquired from rats as they each performed one of two variants of a rat
gambling task (rGT), in which rewards on “win” trials were delivered either with or without salient audiovisual cues.
Methods We used a sampling technique based on Markov chain Monte Carlo to obtain posterior estimates of model parameters
for a series of RL models of increasing complexity, in order to assess the relative contribution of learning about positive and
negative outcomes to the latent valuation of each choice option on the cued and uncued rGT.
Results Rats which develop a preference for the risky options on the rGT substantially down-weight the equivalent cost of the
time-out punishments during these tasks. For each model tested, the reduction in learning from the negative time-outs correlated
with the degree of risk preference in individual rats. We found no apparent relationship between risk preference and the
parameters that govern learning from the positive rewards.
Conclusions The emergence of risk-preferring choice on the rGT derives from a relative insensitivity to the cost of the time-out
punishments, as opposed to a relative hypersensitivity to rewards. This hyposensitivity to punishment is more likely to be induced
in individual rats by the addition of salient audiovisual cues to rewards delivered on win trials.
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Introduction

Whether designing smartphone apps to keep us engaged, or
electronic gambling machines (EGMs) to profit the casino,
game designers make frequent use of sound and light stimuli
to signal rewarding outcomes (Alter 2017; Dow Schull 2014).
Such an approach may seem like a superficially harmless way
to maintain players’ attention and interest. However, recent
data show unequivocally that the addition of such audiovisual

reward-paired cues to simulated gambling games can increase
risky decision-making (Barrus and Winstanley 2016;
Cherkasova et al. 2018). This effect was documented both in
humans playing a two-choice lottery task and in rats
performing the rat gambling task (rGT), a gambling-like par-
adigm in which they must avoid options paired with larger per
trial gains but disproportionately long time-out punishments
in order to maximize sugar pellet profits.

Gambling on EGMs is consistently reported as one of the
most problematic forms of gambling for those with gambling
disorder (GD) (Breen and Zimmerman 2002; Dowling et al.
2005; Griffiths et al. 1999), and GD is highly comorbid with
drug use and dependency (Petry 2000; Petry et al. 2005).
Risky decision-making is also predictive of greater severity
and poor treatment response in substance use disorder
(Bechara et al. 2001; Gonzalez et al. 2015; Stevens et al.
2013, 2015). Basal extracellular dopamine levels are lower
on average in the nucleus accumbens of rats trained on the
cued rGT, as compared to those trained in the absence of win-
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paired cues, in addition to exhibiting either enhanced risky
decision-making following cocaine self-administration, or
greater levels of cocaine intake (Ferland et al. 2019).
Understanding the mechanism through which sensory en-
hancement of wins can promote risky choice could therefore
provide valuable insight into the neurocognitive basis of ad-
diction vulnerability.

The incentive sensitization theory of addiction predicts that
dependence develops in those for whom drug-paired cues
dominate motivation and that sensitivity to reward-paired cues
in general represents a vulnerability factor for substance use
disorder (Berridge and Robinson 1998; Flagel et al. 2009,
2010, 2011; Meyer et al. 2012). Recent work has extended
this idea to other addictions (Limbrick-Oldfield et al. 2017;
Robinson et al. 2016; Rømer Thomsen et al. 2014). In support
of this general hypothesis, animals which preferentially ap-
proach a conditioned stimulus (CS) associated with reward
(“sign-tracking”) exhibit a range of neurobiological and be-
havioral changes associated with addiction (Saunders and
Robinson 2013). Such behavior is thought to reflect the en-
hanced attribution of incentive salience—a motivational
drive—to reward-associated cues. Following this line of rea-
soning, increased risky choice on the cued rGT may therefore
result from enhanced incentive motivation for cue-paired
rewards.

Experimental data collected to date provide little support
for this hypothesis. Risky choice on the cued rGT is not asso-
ciated with greater willingness to work for a CS (Ferland et al.
2019), although the absence of a significant correlation be-
tween these behavioral measures is far from definitive evi-
dence that the addition of sensory cues to the rGT has not
altered learning from rewards. When wins were paired with
sensory cues in a two-choice lottery task, human subjects did
not spend any longer gazing at reward magnitude information
when deciding which of two gambles to take, and the en-
hanced preference for the most uncertain outcome caused by
the cues did not scale with the size of the win as might be
expected if the cues were amplifying reward value
(Cherkasova et al. 2018). Instead, subjects spent significantly
less time fixating on the pie charts which depicted the proba-
bility of winning or losing. Furthermore, pupillometry analy-
ses during different phases of the task indicate that pupil dila-
tion is greater during the decision-making phase of the subse-
quent trial following a win in both the cued and uncued ver-
sions, yet this effect was significantly more pronounced in the
cued variant. Such data suggest that win-paired stimuli are not
enhancing risky choice through value-based attentional cap-
ture or similar mechanisms (Anderson et al. 2011), but may
instead alter some other aspect of outcome evaluation, such as
the processing of potential losses.

Computational modeling of behavioral data, grounded in
theories of reinforcement learning, can provide critical insight
into the likely mechanism through which subjects are

integrating rewarding versus punishing outcomes into the
evaluation of different options in a decision space. Such
models are strongest when based on large sample sizes, both
in terms of the number of unique individuals and the number
of data points available per subject (Vu et al. 2018). We there-
fore modeled trial-by-trial choice data from 246 rats learning
either the cued or uncued rGT, in order to extract the latent
learning dynamics that best describe the total likelihood of the
dataset. Our goals were to test whether the parameters that
govern learning from rewards or punishments differed be-
tween the cued and uncued rGT and between subjects that
ultimately developed a risky or optimal decision-making
profile.

Methods

Subjects

Subjects were male Long Evans rats, either purchased from a
commercial vendor (Charles River Laboratories, St. Constant,
QC, Canada) or bred in-house. Rats were pair- or trio-housed
in a climate-controlled colony room on a reverse 12-h light–
dark cycle (lights off 08.00; temperature 21 °C). Rats were
food restricted to 85% of their free feeding weight and main-
tained on 14 g of standard rat chow, plus the sugar pellets
earned in the task (~ 5 g per day). Water was available ad
libitum. Behavioral testing began at least 1 week following
the start of food restriction. All housing conditions and testing
procedures were in accordance with the guidelines of the
Canadian Council on Animal Care, and all protocols were
approved by the Animal Care Committee of the University
of British Columbia.

Behavioral data

Behavioral data was assembled from 14 projects completed
from May 2012 to November 2018. All rats were experimen-
tally naïve during task acquisition. Of these projects, 200 rats
were trained on the classic (uncued) version of the rGT, and
176 rats were trained on the cued version (crGT). Rats with
missing data or otherwise erroneous or ambiguous coding of
session data were excluded. This left a final count of 110 rats
in the classic condition and 136 rats in the cued condition.
Behavioral testing took place in 32 standard five-hole operant
conditioning chambers, each enclosed within a ventilated
sound-attenuating cabinet (Med Associates Inc., St. Albans,
VT, USA). These experimental chambers were configured
similarly to those previously described (Cocker et al. 2012;
Zeeb et al. 2010) and were controlled by software written in
Med PC by CAW running on an IBM-compatible computer.
Training sessions for each individual project occurred at a
consistent time within the dark phase of the light–dark cycle,
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although the time of training differed considerably between
projects.

Task training was consistent across all 14 projects. Rats
were first habituated to the operant chambers in two daily
30-min sessions, during which sucrose pellets were present
in the nose-poke apertures and food magazine. Rats were then
trained on a variant of the five-choice serial reaction time
(5CSRT) task, in which rats were required to make a nose-
poke response in one of the four apertures indicated by a 10-s
stimulus light. A correct response was rewarded by the deliv-
ery of one sugar pellet to the food magazine. The location of
the stimulus light varied between holes 1, 2, 4, and 5 during
the session. Sessions lasted 30 min and consisted of approxi-
mately 100 trials. Rats were trained until they reached a
criteria of ≥ 50 correct responses with ≥ 80% accuracy and
≤ 20% omissions.

A task schematic showing the trial structure of the uncued
and cued rGT is provided in Fig. 1 (Adams et al. 2017).
During the 30-min session, rats initiated a trial by making a
nose-poke response within the illuminated food magazine.
This response extinguished the traylight and was followed
by a 5-s intertrial interval (ITI). Any nose-poke responsemade
at the five-hole array during the ITI was recorded as a prema-
ture response and punished by a 5-s time-out period, during
which the house light was illuminated and no trials could be
initiated. Following the ITI, apertures 1, 2, 4, and 5 in the five-
hole array were illuminated for 10 s. A lack of response after
10 s was recorded as an omission, at which point the food
magazine was re-illuminated and rats could initiate a new trial.
A nose-poke response within one of the illuminated

apertures was either rewarded or punished according to that
aperture’s reinforcement schedule. Probability of reward var-
ied among options (0.9–0.4, P1–P4), as did reward size (1–4
sucrose pellets). Punishments were signaled by a light flash-
ing at 0.5 Hz within the chosen aperture, signaling a time-out
penalty which lasted for 5–40 s depending on the aperture
selected. The cued rGT was identical in structure, except for
the addition of 2-s compound tone/light cues that occurred
concurrently with reward delivery (Barrus and Winstanley
2016). Cue complexity and variability scaled with reward
size, such that the P1 cue consisted of a single tone and
illuminated aperture, whereas the P4 cue featured multiple
tones and flashing aperture lights presented in four different
patterns across rewarded trials. The task was designed such
that the optimal strategy to earn the highest number of su-
crose pellets during the 30-min session would be to exclu-
sively select the P2 option, due to the relatively high proba-
bility of reward (0.8) and short, infrequent time-out penalties
(10 s, 0.2 probability). While options P3 and P4 provide
higher per-trial gains of 3 or 4 sucrose pellets, the longer
and more frequent time-out penalties associated with these
options greatly reduce the occurrence of rewarded trials.
Consistently selecting these options results in fewer sucrose
pellets earned across the session and is therefore considered
disadvantageous. The position of each option for both the
uncued and cued rGT was counterbalanced across rats to
mitigate potential side bias. Half the animals in each project
were trained on version A (left to right arrangement: P1, P4,
P2, P3) and the other half on version B (left to right arrange-
ment: P4, P1, P3, P2).

a b c

d e

Fig. 1 Task and behavioral results. a Schematic of the (cued) rodent
gambling task (rGT). b, c Average choice preference across 20 sessions
on the classic and cued versions of the rGT. Stable choice preference is
established by session 20. d Average choice preference across sessions
18–20 shows that the cued rGTelicits greater choice of option P3, and to a

lesser degree, option P4, compared to the classic rGT. e The distribution
of individual preference scores (averaged per rat over sessions 18–20)
shows the increased prevalence of risk-preferring rats (i.e., score < 0) in
the group trained on the cued rGT. Dashed lines show the median and
dotted lines are the upper and lower quartiles of each distributionf
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Following training on the 5CSRT task, rats first completed
seven sessions of a forced-choice variant of the rGT, in which
rats were presented with only one of the four options in each
trial. This ensured that rats had equal exposure to each rein-
forcement contingency prior to training on the free-choice
version of the program. Rats received 5–6 training sessions
per week for all projects. The first 20 sessions are considered
to be the acquisition phase of the task (Zeeb and Winstanley
2011). During this phase, the majority of animals initially
sample among the four different options before settling on a
consistent choice preference. Following the 20th session of
the free-choice variant of the task, animals generally exhibit
a stable pattern of choice behavior across sessions.

Behavioral choice preference

Choice data from each rat was concatenated into one long
equivalent session. As per previous methods (Ferland et al.
2019; Zeeb and Winstanley 2011), a preference score was
calculated on average for sessions 18–20 by taking the differ-
ence in the fraction of choices (P1 + P2) − (P3 + P4). Rats with
a positive preference score at this stage of training were clas-
sified as optimal, while rats with a negative preference score
were classified as risk-preferring. Behavioral data was ana-
lyzed using the Python packages pandas (for analysis and
statistical tests) and seaborn (for visualization), including the
seaborn function violinplot for calculating the Gaussian kernel
density estimate of the distribution of individual choice pref-
erence scores in each group (as in Fig. 1e).

Reinforcement learning models

To analyze different learning dynamics on each version of the
rGT, we modeled trial-by-trial choice preference with a series
of reinforcement learning models (RL; Sutton and Barto
1998). Each of these models assumes choice preference on
every trial probabilistically follows a latent Q-value for each
option, which is iteratively updated on each trial according to
the experienced outcomes that follow a given choice. To focus
model fitting on the evolution of choice preference during the
learning phase, these models were fit to all valid choices on
each trial from the first five sessions for all rats in each group.
We chose to fit eachmodel to the uncued and cued rGT groups
separately to avoid the assumption that learning on each var-
iant of the task is governed by the same underlying process,
putatively captured by each RL model. Thus, we allowed for
the possibility that different RL models might perform better
at predicting choice for each of the task groups.

For each model, we assume the probability of choosing
option Px on each trial follows the current learned Q-values
for x = [1, 2, 3, 4] according to a softmax decision rule:

p Pxð Þ ¼ eβQx

∑4
y¼1e

βQy
;

where p(Px) is the probability of choosing option Px, Qx is the
learned latent value of option x, and β is the inverse tempera-
ture parameter that controls how strongly choice follows the
latent Q-values rather than a random (uniform) distribution
over the four options. In each learning model, we assume
learning of latent Q-values from positive outcomes follows a
simple delta-rule update:

Qnew
x ¼ Qold

x þ ηþ Rtr−Qold
x

� �
;

where η+ is a learning rate parameter that governs the step-size
of the update and Rtr > 0 is the number of pellets delivered on a
given (positive-outcome only) trial and Qx is the latent value
for the chosen option x on a given trial.

RL scaled punishmentmodel (four parameters) In the simplest
RL model, we assume that the equivalent punishment for a
time-out interval on each negative-outcome trial scales linear-
ly with the duration of the punishment:

Qnew
x ¼ Qold

x þ η− mT tr−Qold
x

� �
;

where Ttr > 0 is the experienced time-out duration in seconds
on a given (negative-outcome only) trial and m is a scaling
parameter that maps experienced duration into an equivalent
cost in pellets (i.e., has units pellets/s). Time-out intervals that
are indeed experienced as a negative outcome following from
the choice of option Px imply m < 0, though we do not place
this constraint on m during model fitting.

RL scaled + offset punishment model (five parameters) Our
second model incorporates an additional offset to the linear
transform between experienced time-out duration and the
equivalent cost of that outcome on a given trial:

Qnew
x ¼ Qold

x þ η− bþ mT tr−Qold
x

� �
:

Here, rather than constraining the linear transform between
experienced duration and equivalent cost for a negative out-
come following choice of option Px to be zero for zero dura-
tion, we model a nonzero intercept b, allowing a uniform cost
(or benefit if b > 0) to impact latent Q-values for all negative-
outcome trials.

RL independent punishment model (seven parameters)
Finally, we model individual punishment weights for each
outcome, allowing a nonlinear mapping between experienced
time-out duration and the equivalent cost of that outcome on a
given trial:

Qnew
x ¼ Qold

x þ η− ωxT tr−Qold
x

� �
:
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Here, the mapping between the experienced time-out dura-
tion on a given trial and the equivalent cost for that option is
controlled independently by ωx for each option Px. As for the
previous models, while ωx < 0 implies the time-out duration
associated with a given option is experienced as a cost, we do
not assume this constraint when fitting these models.

For every model, Q-values were initialized at zero for the
first session, and we assumed Q-values at the start of a subse-
quent session (on the next day for example) were the same as
at the end of the previous session (i.e., we modeled no inter-
session effects on learning). A second set of 3 RLmodels were
also fit to the data following the definitions above and with the
additional constraint η− = η+. These single learning rate RL
models are marked with a star (*) affixed to the model name.

Hierarchical model fitting

To analyze individual differences in the evolution of choice
preference on each version of the rGT, we fit a series of RL
models separately to the aggregate group choice data on each
of the uncued and cued rGT tasks. In short, each model was fit
to the entire set of choices for all rats in each group (i.e.,
uncued or cued) using Hamiltonian Monte Carlo sampling
with Stan to perform full Bayesian inference and return the
posterior distribution of model parameters conditional on the
data and the specification of the model (Carpenter et al. 2017).
In each case, we partially pooled choice data across individual
rats in a hierarchical model to simultaneously determine the
distribution of individual- and group-level model parameters.
This means we assumed individual parameters guiding learn-
ing for each rat were governed by a single (unimodal) group-
level distribution, parameterized by mean and variance
hyperparameters, for each individual-level parameter in the
model definition; reliable differences between group-level pa-
rameter estimates are interpretable in light of the differences in
the prevalence of optimal versus risk-preferring choice pref-
erences in the uncued versus cued rGT groups. We imple-
mented a noncentered parameterization (a.k.a. the “Matt
trick”) for group-level β, η+, and η− in each model, as this
has been shown to improve performance and reduce autocor-
relation between these group-level parameters in hierarchical
reinforcement learning models (Ahn et al. 2017).

Each model was fit with Stan using four chains with 1600
steps each (800 burn-in), yielding a total of 3200 posterior
samples. To assess the convergence of the chains, we comput-

ed the R̂ statistic (Gelman et al. 2013), which measures the
degree of variation between chains relative to the variation
within chains. The Stan development team recommends as a

rule of thumb that all parameters have R̂ statistics no greater

than 1.1. Across all six models, no parameter had R̂ > 1:05,
and the mode was 1.00, indicating that for each model all
chains had converged successfully. Similarly, the number of

effective samples approached 2000 for many parameters indi-
cating that the chains exhibited low autocorrelation.
Importantly, nomodel exhibited any divergent transitions sug-
gesting that there were no neighborhoods of the posterior dis-
tribution that the sampler was not able to explore sufficiently
well.

To measure the difference between group-level parameters,
we used highest density intervals (HDI; Kruschke 2014). The
HDI is the interval which contains the required mass such that
all points within the interval have a higher probability density
than points outside the interval. For example, a 95% HDI of
the posterior distribution for a parameter consists of those
parameter values that have at least some minimal level of
posterior credibility, such that the total probability of all such
values is 95%. Parameter values outside this range are unlike-
ly and thus have low credibility. To compare the overall per-
formance of each model, we computed the Watanabe–Akaike
information criterion (WAIC; Watanabe 2010), which, like
AIC or BIC, provides a metric to compare different models
fit to the same dataset. The WAIC is computed from the
pointwise log-likelihood of the full posterior distribution
(thereby assessing model fit) with a second term penalizing
for model complexity.

Results

As previously reported, the uncued and cued versions of the
rGT task elicit different patterns of choice preference on av-
erage for each group (Fig. 1b, c). After an initial learning
phase, choice preference averaged over rats and across ses-
sions 18–20 showed a clear preference for option P2—the
reward-maximizing option—in the uncued rGT group. This
average preference was significantly reduced in the cued rGT
group, with a concomitant increase in preference for option P3
(Fig. 1d; option × task: F(1, 980) = 14.23, p = 0.0002; uncued
vs cued: P1: t(197) = 2.76, p = 0.006; P2: t(240) = 5.24, p <
0.0001; P3: t(200) = − 6.98, p < 0.0001; P4: t(237) = − 1.15,
p = 0.25). At the level of individual rats, choice preference
varied widely, with a subset of individual rats in each group
displaying idiosyncratic preferences different from the aver-
age profile. The distribution of preference scores across rats
for each group shows a high degree of heterogeneity in choice
preference (Fig. 1e): a score > 0 indicates preference for the
largely reward-maximizing options, i.e., optimal, while a
score < 0 indicates a preference for the higher variability op-
tions, i.e., risk-preferring. On average, rats trained on the
uncued rGT have a positive preference score (median = 0.63,
Wilcoxon signed-rank test p < 0.001), while rats trained on the
cued rGT are evenly distributed between optimal and risk-
preferring choice preferences (median = 0.04, Wilcoxon
signed-rank test p = 0.61).
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Modeling learning dynamics on the rGT

We separately collated choice data from rats that performed
either the uncued or cued rGT and fit a series of RL models to
the full ensemble of behavioral responses for each group using
a hierarchical fitting procedure based on Hamiltonian Monte
Carlo (HMC; see “Methods”), a variant of Markov chain
Monte Carlo (MCMC) that samples the posterior distribution
of model parameters conditional on the data and the specifi-
cation of the model. These models treated choice on each trial
as probabilistically driven by latent Q-values for each option
P1–4, learned through trial-and-error experience of the asso-
ciated positive and negative outcomes. Each model sought to
parameterize different hypotheses about the effective “cost” of
the (presumably) negative time-out punishments with respect
to the rewarding pellet outcomes associated with each choice
option. These “equivalent punishment” parameters were esti-
mated for each model alongside separate learning parameters
for the two types of outcomes (positive learning rate η+ for
learning from pellet outcomes and negative learning rate η−

for learning from the time-out punishments) and an inverse
temperature parameter, β, that quantified the “noisiness” of
choice relative to the latent learned values of the options. A
second set of models (denoted *) assumed a single learning
rate for both positive and negative outcomes (i.e., η+ = η−).

We fit each RL model to all valid choice trials from ses-
sions 1 to 5 from all rats in each of the uncued and cued rGT
groups. Among the models tested, the independent punish-
ment weight RL model yielded the best fit to the data for each
of the classic and cued rGT groups (Fig. 2a; ΔWAIC > 0 for
all models compared to the independent punishment model).
In general, increasing the complexity of the mapping from
time-out duration to an equivalent punishment improvedmod-
el fit as assessed by WAIC, with the simple linear scaling
models fitting the least well and the independent punishment
scaling models fitting the best. Allowing for different learning
rates from positive and negative outcomes marginally im-
proved model fit for each class of equivalent punishment
models (apart from the scaled and offset punishment RL

model fit to the cued rGT group, in which any improvement
in model likelihood from the addition of an extra learning rate
parameter did not outweigh the additional complexity of this
model for this dataset).

To confirm the best-fitting independent punishment RL
model captured the dominant features of the behavioral data,
we simulated the probability of each choice option on each
trial for the full uncued and cued rGT datasets, using the pos-
terior samples of each individual-level model parameter
(Fig. 2b). Extracting the average model choice probabilities
for sessions 18–20 recapitulates the relative increase in pref-
erence for the P3 and P4 options on the cued versus uncued
rGT, indicating this model appropriately captures the relative
prevalence of risky versus optimal choice preference on the
two rGT variants (option × task: F(1, 980) = 15.89, p <
0.0001; uncued vs cued: P1: t(218) = 2.88, p = 0.004; P2:
t(240) = 3.29, p = 0.001; P3: t(215) = − 6.20, p < 0.0001; P4:
t(237) = − 1.52, p = 0.12).

Group-level differences in learning on the classic
and cued rGT tasks

Inspection of the posterior estimates of the group-level mean
parameters reveals key differences in learning for rats trained
on the uncued versus cued rGT (Fig. 3). Our hierarchical
modeling approach assumes individual estimates for each
model parameter follow a single group-level distribution pa-
rameterized by mean and variance hyperparameters; reliable
differences between group-level parameter estimates are inter-
pretable in light of the different prevalence of optimal versus
risk-preferring rats in each cohort. For the scaled punishment
and scaled + offset punishment models, the posterior estimates
for the mean group negative learning rate are credibly differ-
ent (95% HDI for the classic-cued mean η− distributions > 0).
In the independent punishment model, the posterior distribu-
tions for the scaling parameter ω3 for option P3 (that is, the
option primarily associated with the emergence of risk-
preferring choice in this task) is credibly different for the
uncued and cued rGT groups. For no model tested did the
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a bFig. 2 Model fits. a Difference in
WAIC between each model and
the independent punishment RL
model (withΔWAIC= 0). Lower
WAIC indicates a better
explanation of the data. Error bars
are SEM. b Average choice
probability (sessions 18–20) for
the dual-learning rate-indepen-
dent punishment RL model sim-
ulated with the posterior estimates
of the individual-level model pa-
rameters for each of the classic
and cued rGT
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posterior estimates for the group mean η+ reliably differ be-
tween groups trained on the two variants of the task.
Interestingly, mean weights parameterizing the cost of the four
time-out punishments in the independent punishment model
suggested some intervals did not modulate the latent value of
the corresponding choice option as an explicit cost (at least on
average); this result may indicate rats are more likely to select
a given choice option again after a time-out, in order to obtain
an expected reward that is only occasionally withheld.

To confirm the relationship between the differences in the
group-level posterior parameter distributions and the in-
creased number of risk-preferring rats on the cued rGT, we
performed a post hoc analysis in which we assigned rats from
each of the tasks to either a risk-preferring or an optimal
group, based on their preference scores from the end of train-
ing, and fit eachmodel to these identified groups. In each case,
a similar subset of the parameters that govern learning from
the time-out punishments showed credible differences (in the
same direction as the results above) between the risk-
preferring and optimal group distributions (scaled model: η−

and m; scaled + offset model: η−, m, and b; independent
model: η+, η−, m, and b) confirming the differences observed
between the cued and uncued rGT group parameters are in-
deed related to the establishment of risk-preferring choice in a
greater number of rats trained on the cued rGT. Model com-
parison for these two groups defined on preference score

identified the scaled + offset punishment RL model as the
most likely given these data, a result that may reflect the in-
dependent punishment RL model has more complexity than
necessary for these data that display more homogeneity in
choice preference.

Insensitivity to time-out punishments predicts risk
preference on the rGT

The group-level results described above suggest learning from
time-out punishments, rather than from rewarding outcomes,
differs between the uncued and cued rGT cohorts. To test
which model parameters are associated with the emergence
of risky choice, we compared mean posterior parameter esti-
mates at the individual level for optimal versus risk-preferring
rats within each task group (Fig. 4). For the scaled punishment
model, mean individual posterior estimates for m differed sig-
nificantly between optimal and risk-preferring rats in both the
uncued and cued rGTcohorts, as did β and η− for the cued rGT
cohort (Mann–Whitney U test, p < 0.01; Fig. 4a). Similarly,
the scaled and offset punishment model displayed differences
in individual estimates for model parameters that control
learning from negative outcomes: both η− and m differed sig-
nificantly between the optimal and risk-preferring rats in both
the uncued and cued rGT cohorts, as did individual β and b
parameters for the cued rGT cohort (Fig. 4b). In the
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Fig. 3 Group-level posterior estimates of model parameters. Asterisks
mark parameters for which the 95% HDI of the sample difference
between classic and cued rGT mean estimates was greater than zero,
indicating a credible difference. Dashed lines demarcate the 95% HDI
for each distribution. a Posterior estimates for the group mean β, η+, η−,

and m parameters for the scaled punishment RL model. b Posterior
estimates for the group mean β, η+, η−, m, and b parameters for the
scaled + offset punishment RL model. c Posterior estimates for the
group mean β, η+, η−, and ω parameters for the independent
punishment RL model
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independent punishment model, only the punishment duration
weights for options P2 and P4 differed significantly between
optimal and risk-preferring rats in both groups, along with the
weight for option P3 in the cued rGT cohort alone (Fig. 4c).

As individual choice preference is distributed broadly over
the interval [− 1, 1] for rats trained on the cued rGT, we next
tested whether any of the parameters that control the sensitiv-
ity to negative outcomes in these learning models could reli-
ably predict continuous preference scores at the end of training
for rats trained on each variant of the rGT task (Fig. 5). Across
each model tested, we found a subset of parameters that con-
trol the relative scaling of the time-out punishments relative to
rewards was highly predictive of individual rats’ ultimate pref-
erence scores on both the uncued and cued tasks (scaled mod-
el: uncued m R2 = 0.10, F(1, 108) = 11.75, p < 0.01, cued m
R2 = 0.22, F(1, 134) = 38.54, p < 0.01; scaled + offset model:
uncuedm R2 = 0.15, F(1, 108) = 18.68, p < 0.01, cuedm R2 =

0.20, F(1, 134) = 33.62, p < 0.01; independent punishment
model: uncued ω2 R

2 = 0.08, F(1, 108) = 9.868, p < 0.01 and
ω4 R

2 = 0.20, F(1, 108) = 27.03, p < 0.01, cued ω2 R
2 = 0.21,

F(1, 134) = 35.61, p < 0.01 and ω4 R2 = 0.10, F(1, 134) =
15.16, p < 0.01). While ω3 was highly predictive of preference
score for individual rats in the cued rGT group (cued ω3 R

2 =
0.11, F(1, 134) = 16.98, p < 0.01), this was not the case for the
uncued rGT group. Overall, these predictive relationships in-
dicate significantly lower effective punishment for a given
time-out duration for risky compared to optimal rats. In addi-
tion to these effects across tasks, we found η− estimates in the
scaled and offset punishment model fit to the cued rGT group
were reliably related to subsequent choice preference, with a
lower learning rate from negative outcomes significantly
predicting a reduced, i.e., riskier, preference score (cued η−

R2 = 0.07, F(1, 134) = 10.78, p < 0.01). Interestingly, the inde-
pendent punishment model showed a significant negative
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Fig. 4 a–c Individual-level mean posterior estimates of model parame-
ters. Top rows show the group-level distribution from which the individ-
ual estimates are sampled (parameterized by the average posterior mean

and variance estimates for each model parameter). Asterisks mark param-
eters which significantly differ at the individual level between optimal
and risk-preferring rats

classic: R2 = 0.10
cued:    R2 = 0.22

classic: R2 = 0.18
cued:    R2 = 0.20

classic: R2 = 0.20
cued:    R2 = 0.10

classic: R2 = 0.08
cued:    R2 = 0.21

independent
model

scaled 
model

scaled + offset 
model

Fig. 5 Punishment insensitivity predicts the degree of subsequent risk preference on both the classic and cued rGT tasks (p < 0.01 for all coefficients)
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relationship between individual η+ estimates and preference
score in the uncued (but not the cued) rGT group (uncued η+

R2 = 0.09, F(1, 108) = 10.48, p < 0.01). The predictive rela-
tionships between model parameters that regulate learning
from negative outcomes and subsequent choice preference
were largely preserved in the single learning rate models
(scaled* model: uncued m R2 = 0.11, F(1, 108) = 14.20,
p < 0.01, cuedmR2 = 0.30, F(1, 134) = 57.67, p < 0.01; scaled
+ offset* model: uncued m R2 = 0.15, F(1, 108) = 18.93,
p < 0.01, cued m R2 = 0.25, F(1, 134) = 44.82, p < 0.01; inde-
pendent punishment model: uncued ω2 no relationship, ω3 no
relationship and ω4 R2 = 0.23, F(1, 108) = 34.73, p < 0.01,
cued ω2 R

2 = 0.15, F(1, 134) = 23.24, p < 0.01, ω3 R
2 = 0.16,

F(1, 134) = 26.06, p < 0.01, and ω4 R2 = 0.20, F(1, 134) =
34.34, p < 0.01).

The “equivalent cost” of time-out durations is specific
to each choice option on the rGT

Each RL model we tested revealed an association between
altered learning from time-out punishments and the emer-
gence of risky choice on the rGT. To study the equivalent cost
imposed by the time-out punishments for optimal and risk-
preferring rats according to the tested RL models, we used
the average posterior estimate of the m, b, and ω parameters
for each individual rat to transform the time-out duration for
each choice option into its equivalent cost (in pellets; Fig. 6).
For each model, time-outs “cost” less for the risk-preferring
rats; this time-out insensitivity is in addition to a global insen-
sitivity to time-outs displayed by all rats performing the rGT,
as evidenced by the positive intercept for each model that
allowed this term to vary (and also thus better fit the behav-
ioral data as assessed by WAIC). Interestingly, the equivalent

cost of the time-outs for the best-fitting, independent punish-
ment RLmodel is highly nonlinear in duration, with 10 s time-
out for P2 and 30 s time-out for P3 shifting the latent valuation
of the respective option by almost the same amount for the
risky rats performing the cued rGT. This suggests that the
insensitivity to time-out punishments displayed by the risk-
preferring rats is at least partially specific to the more imme-
diately rewarding, though more variable, choice options.
While the profile of equivalent cost for each time-out duration
is nonlinear, it remains monotonic with duration, suggesting
the punishment insensitivity associated with risky choice on
the task is not completely independent of duration.

Discussion

Using a computational approach based on reinforcement
learning models, we show that risk-preferring rats are
hyposensitive to punishing time-outs associated with risky
choices, but not hypersensitive to the potential rewards, during
the early sessions of rGT training. Across all models tested,
individual parameter estimates pertaining to punishment sen-
sitivity (m, b, and ω) significantly predicted whether rats
would go on to develop a risk-preferring or optimal
decision-making pattern. The fact that this observation was
not restricted to a specific form of the model increases our
confidence that this finding is robust. Despite the clear eleva-
tion in preference for the risky options seen in the cued task,
choice in both versions of the rGTwas best fit by the same RL
model, as might be expected from the identical reinforcement
contingencies and trial structure. As such, we conclude that
the cued version of the rGT elicits an insensitivity to time-out
punishments more effectively in a larger number of subjects,

independent
model

scaled 
model

scaled + offset 
model

Fig. 6 Effective cost of time-out punishments for each option for optimal and risky rats under each dual-learning rate RL model
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rather than evoking a unique learning mechanism separate
from that adopted by the smaller fraction of risk-preferring
subjects on the uncued rGT task.

In all the models tested, the learning rate from rewards was
the same across the cued and uncued rGT at the group level,
even though significantly more subjects exhibited a prefer-
ence for the risky options on the cued task variant. In contrast,
the punishment learning rate was significantly lower in the
cued rGT, suggesting animals’ choice patterns are less influ-
enced by the experience of the punishing time-outs than those
in the uncued task. The model which best fit the data allowed
independent scaling of punishments against rewards for each
option, rather than assuming a linear relationship. This ap-
proach revealed that time-out insensitivity on loss trials di-
verged far more across task variants for P3 and P4. As such,
the time-out insensitivity induced by the addition of reward-
concurrent cues is unlikely to reflect a global blunting of the
perception of duration, but is instead uniquely manifest when
the probability and duration of the punishments is compara-
tively large, or when the variance in reward rate is relatively
high.

The finding that risky choice is driven by hyposensitivity to
punishments, rather than hypersensitivity to rewards, on the
uncued version of the task is perhaps surprising, but not nec-
essarily unexpected. However, the observation that this same
mechanism underlies the greater degree of risky choice on the
cued rGT seems more counterintuitive, given that the cues co-
occur with rewards and do not feature on punished trials.
Theoretically, the greater complexity of the cues associated
with wins on P3 and P4 could contribute to the selective
time-out insensitivity associated with these options, but such
an explanation cannot easily explain why risk-preferring ani-
mals on the uncued task exhibit poor learning from punish-
ments. Nevertheless, it will be important to explore in future
studies whether the scaling of cue complexity with reward size
is critical for the ability of win-paired cues to promote risky
choice, as the two features are currently confounded in the
existing cued rGT. One particular question that remains to
be explored in future work is to test whether using time-outs
as punishment is necessary for the induction of punishment
insensitivity by the win-paired cues. Indeed, it remains an
open question as to whether salient cues on rewarding out-
comes will induce time-out insensitivity even in settings that
do not involve probabilistic choice.

The nonlinearity of the scaling factor mapping punish-
ments on to units of rewards may, in part, be a function of
the reinforcement contingencies used, in that the punishments
associated with the larger rewards do not multiply in a linear
way (i.e., each increase in unit of reward is not matched by a
constant increment in punishment duration). However, if we
consider the punishment-to-reward ratio simply in terms of
pellets and seconds, the ratio increases from 5:1 to 10:1 as
the options transition from optimal (P1, P2) to risky (P3,

P4). Each longer punishment should therefore be more, rather
than less, effective at decreasing the latent value for these
options, if the cost of the time-outs is mediated by duration
alone. By design, the punishments are also considerably more
frequent after choice of the risky options. One line of reason-
ing might suggest these negative events should therefore be
more expected, and trigger less of a negative prediction error,
and thus less updating of the latent value for the corresponding
option. Repeated experience with punishment would therefore
lead over time to reduced learning from these negative events.
However, by the same analogy, the more intermittent delivery
of rewarding outcomes should generate stronger positive pre-
diction errors and amplify learning, yet we saw no evidence of
potentiated learning from rewards in the cued rGT, or in risk-
preferring animals. Obviously, the fact that rewards are deliv-
ered more frequently on P1 and P2 does not impair most
animals’ ability to learn that these options deliver maximal
reward over time, and to develop a stable preference for these
options. Indeed, in the absence of win-paired cues, this
reward-maximization approach is the most common choice
pattern observed.

Blunted learning from punishments is particularly pro-
nounced for option P3. This choice is associatedwithmaximal
uncertainty regarding whether the outcome will be a win or a
loss, given that the probability of either event is 0.5. As a
result, there is the greatest degree of variance in the sequence
of trial outcomes, and rewarded trials are highly likely to be
followed by nonrewarded trials. As summarized in the
“Introduction,” pairing wins with audiovisual cues in a two-
choice lottery task amplified the increase in pupil dilation
caused by winning during decision-making on the subsequent
trial. Pupil dynamics are largely influenced by the noradren-
ergic system, and this increase in pupil dilation could theoret-
ically reflect greater arousal induced by cued wins. Whether
this win-potentiated arousal is evident in rats performing the
cued rGT has yet to be determined, but is theoretically possi-
ble. Should this effect persist throughout a nonrewarded
choice on a subsequent trial and the experience of the time-
out penalty, it could contribute to altered processing of the
punishment signal. Given that wins followed by losses are
more likely on P3 and P4, updating of the value of these
options may be particularly vulnerable to cue-driven punish-
ment insensitivity. This hypothesis remains highly specula-
tive, but anticipatory skin conductance responses on the
Iowa Gambling Task have been linked to the degree of dis-
parity between wins and losses in human subjects (Tomb et al.
2002), suggesting that bigger differences between wins and
losses can increase arousal during decision-making, and hu-
man subjects find slot machine games which incorporate win-
ning sounds both physiologically and psychologically more
arousing (Dixon et al. 2014). Given that the same RL model
accounts for risky choice on both the cued and uncued tasks,
this line of reasoning would suggest that risk-preferring rats on
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the classic, uncued version experience more arousal following
risky wins, which then alters their ability to encode subsequent
losing outcomes effectively.

Alternatively, insensitivity to punishments in risk-
preferring rats may reflect alterations in the way in which
animals represent the structure of the task. Successful perfor-
mance of the rGT requires animals to use both rewarding and
punishing outcomes to update the value of each particular
option, i.e., to treat both types of outcomes as if they follow
from the same “state.” If animals instead represent wins and
losses as arising from independent states, this may result in
aberrant choice patterns, as learning from outcomes in one
state will not generalize to learning in another. Given that
experience of the reward is more salient, winning outcomes
may be more easily associated with the choice made. If losing
outcomes are not recognized as arising from the same state (or
action), animals would not devalue an option appropriately
based on the experience of the time-out penalties and exhibit
a bias toward options paired with the larger rewards. It is easy
to see how this misrepresentation of outcomes as independent
could be facilitated by the addition of salient audiovisual cues
to wins, in that one outcome is made more noticeable and
distinct from the other.

These hypotheses need not be mutually exclusive, and both
can be investigated empirically. If time-out sensitivity is driv-
en by the experience of a win on the previous trial, then poor
learning from losses should be particularly evident on “probe”
sessions in which win and loss trials are systematically inter-
leaved on a particular option. Developing a model in which
the parameters that control learning were allowed to vary dy-
namically over time would thus be able to detect such session-
specific alterations in learning. Furthermore, if elevated arous-
al caused by risky wins drives hyposensitivity to subsequent
punishments, then dampening the noradrenergic system may
decrease risky choice in risk-preferring animals, whereas am-
plifying noradrenergic signaling may have the opposite effect.
In the uncued, classic rGT, the noradrenaline reuptake inhib-
itor atomoxetine significantly decreased choice of P2 and
tended to increase choice of P3, providing some early support
for this hypothesis (Silveira et al. 2016), but the effects of
noradrenergic manipulations on the cued rGT, and in optimal
versus risk-preferring animals, have yet to be reported.

If time-out insensitivity is instead driven by a misinterpre-
tation of the latent state structure of the task, such that winning
and losing outcomes are interpreted as arising from separate
states, then increasing the perceptual similarity between wins
and losses should encourage re-integration of both outcomes
into the same state and enable more accurate valuation of each
option. As such, pairing delivery of both wins and losses after
choice of a particular option with the same audiovisual cues
could theoretically reduce cue-driven risky choice. Such a
suggestion may seem counterintuitive, given that features of
gambling products which increase the similarity between

winning and losing instead cause the player to misinterpret a
loss as a win, as in the case of losses disguised as wins
(LDWs) (Dixon et al. 2010), and the near-miss effect (Clark
et al. 2009; Griffiths 1991). Instead pairing losses with audio-
visual cues that likewise scale in complexity and salience with
the size of the penalty may combat cue-driven risky choice.
Indeed, such an approach has been successful in reducing the
ability of LDWs to motivate game play, largely by allowing
subjects to recognize these events as losses (Dixon et al.
2015).

Neuronal activity within the orbitofrontal cortex (OFC) has
been found to encode latent task states in rats, and this infor-
mation is thought to influence action selection through regu-
lating activity of striatal cholinergic interneurons (Stalnaker
et al. 2016; Takahashi et al. 2011; Wilson et al. 2014). If a
task-state representation is miscoded within the OFC,
resulting in risky choice, then silencing this region during
acquisition might be expected to attenuate the ability of win-
paired cues to amplify risky choice. Lesions to the OFC made
prior to acquisition of the uncued rGT did not alter preference
for P3 or P4, which was generally low in all animals, but did
increase preference for P1 over P2within the first five sessions
(Zeeb and Winstanley 2011). Although we interpreted this
effect as a difficulty in learning which option provided the
greatest reward over time, by biasing animals toward the op-
tion associated with greater reinforcement rate, it is possible
that this manipulation instead allowed for greater integration
of punishing outcomes with an option’s latent value, though
this conclusion is harder to reconcile with data from reversal
learning and devaluation studies suggesting impaired
updating of value following OFC damage (e.g., Chudasama
and Robbins 2003; Gallagher et al. 1999; Rudebeck and
Murray 2008). Nevertheless, data from rodent behavioral
studies show that the addition of cues can alter the role played
by this brain region in task performance (Zeeb et al. 2010),
such that silencing the OFC during acquisition of the cued
rGT could produce a distinct behavioral result. Another
unique hypothesis potentially generated by this computational
modeling approach concerns the impact of silencing the
basolateral amygdala. Previous work suggests dampening
output from this region promotes risky decision-making on
the uncued rGT by decreasing sensitivity to loss in optimal
decision-makers (Zeeb andWinstanley 2011). Given that risk-
preferring rats already fail to learn from these punishment
signals, shutting down this region may have limited effects
on acquisition or performance of the cued rGT, given the
larger proportion of animals that exhibit a bias toward the
risky options on this version of the task.

While we hope that the current model will prove heuristi-
cally useful, there are some limitations to the approach used
here. To date, we have only modeled data from male rats.
Research using both human and rodent subjects indicates that
females may explore options for longer, resulting in greater
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sampling of risky options, and that greater risky choice in
females may result from greater anxiety or stress sensitivity
(van den Bos et al. 2012, 2013; Georgiou et al. 2018; Zhang
et al. 2017). As such, it will be important to determine whether
variation in the same learning parameters predicts risk prefer-
ence in female rats. We have also not considered other behav-
ioral variables, such as reaction time or premature responding,
in the models presented here. Such measurements provide
valuable information regarding information processing speed
and motor impulsivity, and our previous meta-analysis indi-
cates that both of these indices correlate with risky decision-
making at the population level (Barrus et al. 2015).
Computational approaches could help determine whether rap-
id selection of options and/or responding prematurely at the
array precipitates, or results from, risky decisions.
Furthermore, does the outcome of a risky choice, be it a win
or a loss, differentially influence the decision speed on the
next trial, or the chances of a premature response being made?
We have also not accounted for other drivers of choice beyond
the updating of an option’s latent value, such as the tendency
to simply repeat the previous response (perseveration). These
approaches might account for more variance in the data and
improve the accuracy of the models’ predictions, but they will
inevitably require more parameters, increasing the chances of
overfitting.

An additional caveat pertains to the generalization of these
results beyond the first five sessions of training on the rGT
task. While our models were able to predict choice at the end
of training with relatively high accuracy, the mechanisms that
promote risk-preferring choice beyond session 5 remain to be
directly tested. Likewise, a more restrictive focus on only the
first session of trainingmay provide a more nuanced picture of
the establishment of risk-preferring choice in the very early
stages before choice preference becomes relatively stable
(which possibly occurs before session 5). In particular, a focus
on the first sessions of training may reveal subtle differences
in positive learning rate between the groups that are masked
by the dominant effect of the insensitivity to time-out punish-
ments evident after this early window. One approach to reveal
potential dynamic changes in the parameters that govern
learning on this task is to introduce parameters that vary with
increased experience on the task (for, e.g., by session), at the
cost of greatly increased model complexity.

Computational modeling of rodent behavioral data is, in
general, underutilized by the field of behavioral neuroscience.
Direct manipulations of brain regions and neurotransmitter
systems are powerful methods to determine causal relation-
ships between behavior and brain function, but computational
analyses of trial-by-trial data have allowed us to parse learning
from rewards versus punishments in a way that we would
have been unable to do otherwise. Combining these types of
computational approaches with in vivo manipulations has the
potential to maximize the knowledge available from our

experiments, and provide novel insights into the
neurocognitive basis of both naturally occurring individual
differences in decision-making and behavioral variation as a
result of experimental manipulations. Such synergy will hope-
fully accelerate our understanding of the brain processes that
contribute to both optimal and maladaptive decision-making
and their role in psychiatric disease.
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