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E D I T O R I A L

An evolving perspective on the dynamic brain: Notes from the 
Brain Conference on Dynamics of the brain: Temporal aspects of 
computation

1 |  INTRODUCTION

It is inescapable that we exist in a world that changes; so too 
must the brain perform its computational feats of perception, 
motor control, learning, memory, and speech online as the 
world and the brain's own state dynamically evolve. Recent 
theories have emphasized that neural computation might di-
rectly exploit dynamic principles as a powerful means of pro-
cessing inputs, exerting control over action, and regulating 
and updating internal state, rather than by the maintenance of 
static regimes of activity that attempt to counteract the inev-
itable process of time. A dynamic perspective on the brain, 
with a focus on the computational role of transient patterns 
of neural activity, has been energized by recent advances in 
recording technologies and analysis methodologies, which 
have revealed a diversity of patterned neural activity across 
multiple brain regions and over multiple timescales. In con-
junction, methodological advances in the analysis, interpreta-
tion, and perturbation of dynamic brain activity have yielded 
both fresh insight and novel questions regarding the compu-
tational nature of transient patterns of neural activity, and the 
regulation and control of the dynamic brain.

Last summer, neuroscientists from around the globe gath-
ered in Denmark for the Brain Conference on Dynamics of 
the brain: temporal aspects of computation, sponsored by 
FENS and the Lundberg Foundation and chaired by Gilles 
Laurent and Ila Fiete. The goal of this meeting was to dis-
cuss recent experimental findings and novel theoretical ideas 
on the role of dynamic neural activity in the computational 
repertoire of the brain, and to identify promising directions 
for future research. Below, we survey the research presented 
at the meeting, covering the state-of-the-art in the isolation 
and interpretation of dynamic brain activity across a range 

of model systems and in the support of varied behaviors. We 
have arranged this report thematically, to focus on the broad 
concepts that emerged during the meeting relevant for un-
derstanding the dynamics of neural computation, although 
many, if not all, speakers touched on several of these concepts 
in the course of presenting their research. Along the way, we 
highlight questions and considerations that arose as future di-
rections for the dynamic perspective on the brain.

2 |  SPACE: A FUNDAMENTAL 
SUBSTRATE FOR DYNAMIC 
NEURAL COMPUTATION

The key dimensions for representing a dynamic variable 
are space and time—accordingly, several talks focused on 
the neural representation of these quantities in the brain 
across a diverse range of behavioral tasks. Among these 
was an in-depth survey presented by Edvard Moser of the 
spatiotemporal properties of neural activity in the medial 
entorhinal cortex (MEC), a brain region which is, jointly 
with the hippocampus, thought to play an important role in 
spatial navigation (Moser, Moser, & McNaughton,  2017; 
Strange, Witter, Lein, & Moser,  2014). A subset of cells 
in the MEC fire according to a hexagonal grid pattern, dis-
playing high activity at spatial locations that repeat at a 
characteristic spatial scale for each sub-region (“module”) 
of MEC (Hafting, Fyhn, Molden, Moser, & Moser, 2005; 
Stensola et al., 2012). Influential “bump” attractor models 
posit that local circuit interactions are responsible for the 
establishment of these grid-like patterns of activity, with 
external input able to move the network state continuously 
among stable modes (McNaughton, Battaglia, Jensen, 
Moser, & Moser,  2006). Consistent with these models, 
Moser demonstrated that activity in MEC networks is in-
deed low dimensional, with structured pairwise correla-
tions between recorded neurons that are invariant across 
running and epochs of short-wave and REM sleep, estab-
lishing that intrinsic neural activity is constrained (at least 
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in part) by local interactions rather than solely by exter-
nal input (Gardner, Lu, Wernle, Moser, & Moser,  2019). 
Furthermore, Moser showed recent work demonstrat-
ing that MEC neural activity is not only constrained by 
a spatial grid structure, but also displays temporal struc-
ture—large multi-unit recordings in MEC during sensory-
deprived spontaneous locomotion (i.e., in the dark) display 
robust sequences of activity that are highly stereotyped, di-
rectional and consistently repeated on the timescale of tens 
of seconds, raising a challenge for attractor models of grid 
cell activity to account for this dynamic activity sustained 
intrinsically by the network across these long timescales.

Further extending our understanding of space in the 
brain, Michael Yartsev presented a series of findings on 
spatial representation in the flying Egyptian fruit bat, an 
animal in which three-dimensional space is the ethologi-
cally relevant domain for brain computation and behavioral 
control. These bats have sophisticated spatial navigation 
skills and are able to both travel hundreds of kilometers to 
a remembered location and then precisely move around that 
location to forage. In his talk, Yartsev focused on the ways 
in which bats' representation of 3D space must go beyond 
simply extending the strategies and representations that we 
know from 2D navigation. For example, a strategy in which 
neurons are sharply tuned to particular locations may be 
much less efficient in 3D, where there are many more lo-
cations to cover than in 2D. To highlight the characteris-
tic features of spatial representation in these bats, Yartsev 
showed two distinct modes of their movement through the 
air: these bats either perform large-scale commutes over 
tens or even hundreds of kilometers, or they perform local 
foraging at their destination by flying in and around trees. 
In both these modes, bats move in a very restricted domain 
of the huge movement space afforded by three dimensions 
and, because they cannot stop in midair, appear to plan 
a structured trajectory well before movement execution. 
These observations suggest that neurons might encode 
these stereotyped patterns with which bats traverse 3D 
space. To test whether the neural representation of space 
reflects the flying patterns observed in behavior, Yartsev 
presented neural data from the hippocampus of fruit bats, 
recorded wirelessly while they were flying around a room 
with multiple foraging sites. Apart from finding a large 
number of three-dimensional place cells, they found that 
a sizable fraction of the neurons they examined showed 
spatial tuning for the characteristic movement patterns. 
Finally, elevating the floor of the room revealed that these 
hippocampal neurons underwent remapping but main-
tained their spatial selectivity for particular flight trajecto-
ries. Yartsev observed that these hippocampal cells provide 
a complementary encoding of space to place cells, and that 
combining these representations can result in much better 
positional accuracy in three dimensions.

André Longtin presented an inherently dynamical solution 
to the widespread problem of how an animal might build a 
spatial map of a static environment, using electrosensation in 
the weakly electric fish as his model. The particular problem 
he addressed is one of converting information that is naturally 
represented in egocentric coordinates as an animal explores 
a space, such as encounters with landmarks, to an allocentric 
map where the representation does not depend on the location 
of the individual. In these fish, a region of the thalamus (the di-
encephalic preglomerular complex; PG) acts as a bottleneck in 
this transform, receiving egocentric sensory and motor infor-
mation from the optic tectum, and feeding it forward to higher 
areas known to be important for learning (allocentric) spatial 
representations. Neural recordings during object encounters 
reveal that while PG neurons do indeed receive information 
about object encounters in egocentric coordinates, individual 
neurons respond broadly to object encounters across the entire 
body, thus ignoring this spatial information. However, these 
neurons are strongly adapting and their responses thus reflect 
the time since the last object encounter. Longtin presented a 
model that showed how the fish might combine this temporal 
information with an estimate of its velocity to calculate the 
distance between objects in space, as needed to construct an al-
locentric map, and then demonstrated how a map constructed 
from these PG signals is consistent with the distribution of 
spatial and temporal behavioral errors displayed by these fish 
during navigation to a food target from different initial loca-
tions (Wallach, Harvey-Girard, Jun, Longtin, & Maler, 2018).

Complementary to the representation of space is the rep-
resentation of head direction. Neurons in the anterodorsal tha-
lamic nucleus and the postsubiculum of the rodent show head 
directional tuning, encoding an animal's heading direction with 
respect to the external environment. Adrien Peyrache showed 
that the representation of head direction is coherent across areas 
(thalamus and cortex) and across waking and sleep, consistent 
with an underlying attractor representation (also see Ila Fiete's 
talk, described below). Significantly, his analyses suggest that 
thalamocortical coordination in the head direction system is 
brain state independent. Peyrache next presented work further 
examining thalamocortical coordination, both in the head di-
rection system and more generally. In particular, replays during 
SWRs during sleep have been linked to memory consolidation, 
but the role of the head direction system during these replays 
is unclear. Peyrache showed that activity in the head direction 
system is precisely coupled to SWRs, reliably entering a partic-
ular set of stable states right before SWR onset. This coupling 
was homogeneous and specific to head direction neurons, with 
other neurons and nuclei in the thalamus showing a different 
pattern of couplings (Viejo & Peyrache, 2019). Peyrache ended 
by linking differences in coupling properties of thalamic neu-
rons to both the intrinsic properties of the neurons and their 
functional role in setting cortical state, suggesting a general or-
ganizational principle for thalamic responses.
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More generally, it is an open question how neural dynam-
ics could be spatially invariant, low dimensional and robust 
on the one hand and yet allow for flexible representations to 
be used in different contexts. Ila Fiete began her talk with the 
search for low-dimensional structure in neural activity, pre-
senting work identifying the low-dimensional representation 
of latent variables in the brain. She introduced a new method 
to extract smooth geometric structures (so-called “manifolds”) 
from neural population activity recordings using insights from 
topological analysis. When applied to the head direction sys-
tem, this method revealed a one-dimensional ring structure 
within the data, with the angular position on the ring encoding 
the animal's heading direction, allowing for excellent unsuper-
vised decoding of heading direction. This ring appeared to be 
an attractor, in that activity states that diverged from the ring 
flowed back on to it. Furthermore, the low-dimensional at-
tractor was preserved across wake and REM sleep, suggesting 
a rigid, invariant representational space (Chaudhuri, Gerçek, 
Pandey, Peyrache, & Fiete, 2019). She then used correlations 
between neurons across different environments and sleep 
recording data to show that the grid cell representation was 
similarly low dimensional (in this case, 2D; Trettel, Trimper, 
Hwaun, Fiete, & Colgin, 2019) and invariant across state. In 
the second half of the talk, Fiete presented work showing how 
such low-dimensional rigid representations could nevertheless 
be used to flexibly encode higher-dimensional cognitive vari-
ables. This work was driven by recent observations of spa-
tial-coding-like signals (particularly grid cell-like responses) 
in a number of abstract tasks and contexts, suggesting that 
invariant low-dimensional representations might be reused 
across contexts. The proposed coding scheme used multiple 
2D (or low-dimensional) grid cell modules to represent a 
higher-dimensional variable, with each module encoding a 2D 
projection of the higher-dimensional variable (Klukas, Lewis, 
& Fiete, 2020). Fiete showed how this modular scheme has 
several advantages over simply building a higher-dimensional 
grid representation. It is efficient, with the modular structure 
providing a representational capacity that grows exponentially 
with the number of modules, providing enough coding states 
to encode a high-dimensional variable. Moreover, the same 
architecture can be reused to encode variables of any dimen-
sion without reconfiguring the whole circuit. Thus, the grid 
cell representation is both rigid and flexible, able to represent 
an arbitrary continuous high-dimensional variable and update 
the representation by integrating an input signal encoding 
changes.

3 |  IMPLICIT AND EXPLICIT 
REPRESENTATIONS OF TIME

Dynamical systems provide an implicit code for time, yet it 
remains an open question to what extent temporal features of 

an environment or task are also explicitly represented by the 
brain. A number of talks interrogated the neural processing of 
explicitly temporal tasks to ask how neurons represent time 
for use as a feature in prediction, decision-making and action. 
Joseph Paton addressed this question in the context of a time-
based decision, in which the delay between consecutive tones 
indicates which of two alternatives should be selected in 
order to obtain reward. In this task, neural activity in the (dor-
sal) striatum of rats organizes into a sequential representation 
that tiles the relevant temporal interval. This dynamic repre-
sentation is flexible, in that subpopulations are “tuned” to a 
particular moment relative to the full interval (Mello, Soares, 
& Paton, 2015), and functional, in that the rate of progression 
through the neural sequence correlates with the likelihood of 
choosing the long duration option (Gouvêa et al., 2015). The 
implication that this sequence acts as a clock—that is, as a di-
rect representation of elapsed time—was confirmed through 
a series of experiments in which thermal manipulation was 
used to directly modulate the progression of the striatal tem-
poral representation, showing how cooling and heating the 
striatum (slowing and speeding the sequence respectively) 
produced a bidirectional and dose-dependent effect on choice 
behavior during the task. Interestingly, this manipulation did 
not alter the properties of movement itself, suggesting these 
striatal dynamics are indeed tracking time as a decision vari-
able for action, at least somewhat independent of the repre-
sentation and control of movement itself. But how then does 
this dynamic representation of elapsing time relate to the 
representation of movement, with which striatal activity has 
also long been associated? By controlling the spatial location 
of the trial initiation port, but not changing the locations of 
the “short” and “long” response ports, Paton and colleagues 
were able to demonstrate that the striatal representation of 
elapsed time is composed of separable movement-dependent 
and -independent subspaces. That is, a distinct fraction of 
the striatal population was insensitive to spatial location at 
trial initiation (forming an allocentric temporal representa-
tion unresponsive to the position of the mouse) and explained 
a relatively large fraction of the overall variance in these 
recordings. Moreover, these movement-dependent and -in-
dependent temporal representations were spatially distinct 
within the architecture of the striatum, suggesting a dorsal/
egocentric to ventral/allocentric organization of neural repre-
sentation within this brain structure.

Considering instead the representation of elapsed time 
subsequent to a decision, and during the anticipation of an 
upcoming reward, Angela Langdon presented a new model 
for the dynamic regulation of reward prediction by learned 
temporal expectations. This model proposes that the reward 
learning circuitry centering on the midbrain dopamine sys-
tem separately learns both the amount and timing of an up-
coming reward, rather than an aggregate value prediction 
as posited by many classic reinforcement learning models. 
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Looking at the impact of lesions of the ventral striatum (VS) 
on both dopamine prediction error signals and anticipatory 
behavior during an odor-guided choice task in rats showed 
that the temporal specificity of reward predictions, and thus 
temporally precise dopaminergic reward prediction errors, is 
critically dependent on an intact VS (Takahashi, Langdon, 
Niv, & Schoenbaum, 2016). However, dopamine prediction 
error signals to changes in the amount of reward were un-
affected, consistent with a neural separation between these 
two dimensions of reward prediction. Furthermore, by decod-
ing reward-related activity in neurons recorded from the VS 
during the same task, Langdon demonstrated that the neural 
representation of reward predictions in this region dynam-
ically varies with time and is segregated into distinct sub-
spaces that reflect the hidden block-wise structure of the task. 
This suggests that latent structure of multiple types, includ-
ing, but not limited to, temporal structure, is learned from ex-
perience during a task, and used to dynamically regulate the 
neural representations that support reward-guided behaviors.

In a thorough behavioral study of learned temporal ex-
pectations in a speeded response task in humans, Matthias 
Grabenhorst asked how probability is represented over time 
in the brain? Many influential models have suggested that 
humans and other animals predict the timing of events by 
computing the hazard rate: the conditional probability that an 
event is about to happen, given that it has not yet occurred. 
Using an elegant task design, in which the probability of the 
target event occurring at a particular moment in time was 
exponentially distributed or “flipped-exponentially” dis-
tributed (i.e., events became more likely at longer delays), 
Grabenhorst was able to demonstrate that the distribution of 
reaction times to the onset of the target reflect the reciprocal 
of the probability density of events in time, rather than the 
hazard rate, and that temporal uncertainty, which is usually 
assumed to monotonically increase in time, was also dynami-
cally modulated by this learned probability distribution. This 
result was replicated across visual, auditory, and somatosen-
sory modalities, suggesting the reciprocal probability density 
of events in time is a fundamental, and domain general, com-
putation in the brain (Grabenhorst, Michalareas, Maloney, & 
Poeppel, 2019).

4 |  NEW DIMENSIONS IN 
OLFACTORY SPACE

Research probing the nature of neural representations was 
not confined to the physical dimensions of space and time; 
several speakers focused on the neural representation of ab-
stract spaces. In particular, work presented probed the organ-
izational and dynamic structure of sensory representations in 
piriform cortex, a cortical structure in mammals dedicated 
to olfaction. Odor representations in piriform cortex are 

generally thought to be highly decorrelated across distinct 
odors and optimized for high discriminability, which would 
seem to require representations that are stable across time. 
However, work presented at the meeting complicated this 
picture, pointing both to shared structure in piriform repre-
sentations as well as changes over time in the representation 
of olfactory space.

Bob Datta began by asking whether odor representations 
in piriform cortex might actually reflect the shared chemical 
structure of the odorants? The presented results suggest they 
do: while responses in layer 2 of mouse piriform cortex are 
highly decorrelated, as is ideal for discrimination but poor 
for classification, responses in layer 3 are organized to reflect 
certain structures in odor chemical space and edit out oth-
ers. This odor chemical representation is actively reshaped 
by recurrent local circuits in cortex, which integrate both 
inputs from the olfactory bulb and recent odor experience, 
in order to produce an odor representation finely balanced 
between the demands of discrimination and generalization 
(Pashkovski et al., 2020).

Carl Schoonover & Andrew Fink proposed that piriform 
cortex is not primarily involved in odor identification per se 
and that instead it serves as a fast learning system for encod-
ing regularities in the olfactory environment—a short-term 
scratchpad for recent experiences. By testing the stability 
of odor responses to a panel of odors presented at varying 
intervals across days and weeks, they found that odor rep-
resentations in long-term recordings from populations of 
neurons in piriform cortex are stable over short periods (i.e., 
days) but are profoundly reorganized on a timescale of weeks. 
Schoonover and Fink hypothesized that this representational 
drift arises from the continuous encoding of odor memory 
traces, causing continuous overwriting of older ones. In this 
view, ongoing odor experience, for example arising from 
sampling odors in the home cage, will overwrite old memory 
traces, thereby causing the representations of infrequently en-
countered odors to change. Two further observations support 
this interpretation: daily experience with a set of odorants 
dramatically reduced the instability of their corresponding 
odor representations, although this experience-induced sta-
bilization lasted only so long as the animal continued to have 
regular experience with the stimuli. Critically, if daily odor 
presentation was halted, these odor neural representations be-
came labile once again.

The question of which dimensions of dynamic neural 
representation are invariant, and which might be flexibly 
controlled is a fundamental one that recurred through the 
meeting. While space and time are stable dimensions of the 
external environment, one feat of representation and compu-
tation in the brain is to perform abstraction over dimensions, 
as in the case of an egocentric to allocentric map transforma-
tion, or in the construction of an abstract space for odor repre-
sentation that generalizes over specific chemical signatures. 
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Which dimensions of neural representations are flexible in 
different brain areas, tasks and model systems, and which 
are invariant, yielding an irreducible feature of experience 
in all domains? Future efforts to answer this question will 
yield valuable insight into the fundamental organization of 
dynamic neural representations in the brain.

5 |  BIOPHYSICAL AND 
ENVIRONMENTAL CONSTRAINTS 
AND OPPORTUNITIES

A natural dynamic constraint on neural activity is smoothness, 
which appears in two guises. First, many variables encoded 
in the brain (or latent variables) are continuous over time and 
do not change dramatically on very short timescales. Second, 
the tuning curves of neurons are smooth, meaning that the 
responses to nearby stimulus values are similar. Exploiting 
these constraints, Jonathan Pillow discussed methods for 
identifying low-dimensional latent dynamical structure from 
neural data (Wu, Pashkovski, Datta, & Pillow,  2018; Wu, 
Roy, Keeley, & Pillow, 2017). Pillow showed how to formal-
ize these smoothness constraints by using appropriate prior 
distributions over both the latent variable and neural tuning 
curves, and combined these with a statistical model for spike 
generation and an inference method to estimate the latent 
variables. The resulting method has the appealing feature of 
allowing both the underlying latent dynamics and the tuning 
curves to be nonlinear (unlike most previous methods), and 
is able to extract complicated low-dimensional structure from 
data. Pillow showed how this method could be used to extract 
latent manifolds from neural responses in both the hippocam-
pus and the piriform cortex, recovering the underlying spatial 
map from hippocampal responses and a 2D odor representa-
tion from piriform cortex (where standard methods like prin-
cipal components analysis performed poorly).

The requirement of smoothness is also likely to shape the 
particular computational solutions used for a task. An exam-
ple of this was provided by Mark Churchland, who pointed 
out that the dominant signals in motor cortex do not seem to 
reflect either kinematic parameters of the movement or cor-
respond to muscle activity in a simple way. Instead, he argued 
that they corresponded to a dynamical system set up to drive 
muscular activity and that such a dynamical system required 
smoothness, either as a consequence of fundamental biophys-
ical constraints on what neurons can do, or from the need 
to make trajectories robust to noise-induced perturbations. 
For a dynamical system, smoothness requires that similar 
patterns of activity lead to future trajectories (or outcomes) 
that are also similar. Churchland formalized this requirement 
by defining a measure of trajectory “tangling” that is high 
when nearby states have very different derivatives (i.e., lead 
to different outcomes), and predicted that neural trajectories 

in motor cortex should have low tangling. Indeed motor cor-
tex shows much less tangling than either muscle responses 
or sensory cortex and a number of features of motor cortex 
responses can be predicted from the requirement of low tan-
gling (Russo et al., 2018).

Internal biophysical constraints are not the only restric-
tions on neural computation; the environment imposes its 
own dynamic constraints on the brain as well. Among these 
is the fundamental learning problem of credit assignment, 
in which an organism must learn what events or actions in 
a dynamic and multi-dimensional environment produced an 
outcome, even if the precipitating event is no longer pres-
ent. This problem is exacerbated by the stark mismatch in the 
timescales on which neural activity is typically observed to 
evolve (milliseconds to seconds) and the sometimes extended 
delay between events or actions and their associated outcome 
(which can arrive minutes, hours or even days after the pre-
cipitating event). Robert Gütig took this fundamental conun-
drum and showed a model in which a spiking neural network 
can solve the problem of spatiotemporal credit assignment 
when features (and their associated spiking neural responses) 
are fast, but feedback is relatively slow. He introduced the 
concept of “aggregate-label learning” to train a neural net-
work to emit a discrete number of spikes that matches a 
feedback signal that is proportional to the number of times a 
patterned cue was present. Algorithmically, this learning rule 
relies on the insight that while spike counts do not provide 
a finite, continuous gradient along which to adjust synaptic 
efficacies during learning, one can substitute the voltage re-
quired to elicit the next spike (Gütig,  2016). This solution 
produced a spiking neural network that responded to the oc-
currence of various temporally patterned inputs, embedded 
in noise and temporally divorced from the feedback signal 
used for training, with the appropriate number of spikes. In a 
novel extension, Gütig then showed how this same learning 
mechanism could be used in a “self-supervised” fashion, to 
train a spiking network to accurately identify spatially and 
temporally extended regularities directly from signals from 
the environment without explicit feedback.

As Wolfgang Maass pointed out, the architectures and al-
gorithms for learning in artificial neural networks far outstrip 
the capabilities of our models for biological learning. There 
exist a number of dynamical processes in the brain that likely 
play an important role in allowing the brain to do complex 
learning over time. Maass' talk focused on two powerful ideas 
from artificial neural networks that allow efficient temporal 
computing—Long Short-Term Memory networks (LSTMs) 
and Backpropagation through time (BPTT)—and showed 
how biophysical features of neurons may afford the brain 
similar capabilities. With a network of LSTMs, the individual 
units in the neural network are not biologically plausible neu-
rons but abstract nodes possessing several regulatory gates. 
LSTMs have been important in the construction of artificial 
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networks that can easily store information over time and 
learn long-term dependencies. Maass showed how adding 
a population of neurons with adapting thresholds to a spik-
ing network could allow a biologically constrained network 
to show performance nearly on par with artificial LSTMs 
(Bellec, Salaj, Subramoney, Legenstein, & Maass,  2018). 
Next, BPTT is the current gold standard for training artificial 
recurrent neural networks. In this algorithm, error signals are 
propagated backwards through time, so that a neuron's syn-
aptic weights can be modified depending upon its effect on a 
(much) later outcome. Maass showed how a combination of 
local eligibility traces at synapses (for which there are several 
candidate biological mechanisms) and top-down feedback 
signals (such as might arise from neuromodulation) could 
combine to provide a neural algorithm that is similar to BPTT 
(Bellec et al., 2018, 2019). In summing up, Maass argued that 
the temporal computing capabilities of the brain dramatically 
improve when one accounts for slow temporal processes and 
urged a more thorough accounting for neuronal biophysics on 
longer timescales in our models of the brain.

A theme that emerged from these talks is that biophysi-
cal and environmental constraints need not be simply under-
stood negatively, as barriers that organisms must overcome. 
They can also serve as priors, such as smoothness, which can 
be used to make data analysis techniques more specific and 
powerful. Furthermore, these constraints can also serve as 
resources for neural computation, as in the case of slow syn-
aptic and cellular timescales, that provide robust mechanisms 
to ensure stability and control over dynamic activity in the 
brain.

6 |  BRAIN STATES: AT THE 
INTERSECTION OF INTERNAL 
NEURAL DYNAMICS AND THE 
EXTERNAL WORLD

Neural dynamics have a very strong internal component, re-
flecting the role of both local circuit influences and the mod-
ulation of global brain state by different behavioral drives, 
such as hunger and sleep. In a fascinating demonstration of 
the complex relationship between behavior, neural state, and 
the environment, Jennifer Li and Drew Robson presented be-
havioral and whole-brain imaging results from freely moving 
larval zebrafish, in which the animals switch between hunting 
(exploitative) and exploratory behavioral states (Marques, 
Li, Schaak, Robson & Li 2020). These states shape numer-
ous aspects of behavior, affecting locomotor strategy, hunt-
ing probability, hunting accuracy and so on, as well as both 
coarse and fine motor movements. Intriguingly, Li & Robson 
showed that these behavioral states are themselves at least 
partially independent of both hunger and the presence of 
prey: for example, even after an unsuccessful hunting bout, 

fish will switch into the exploration state and ignore prey. 
At the neural level, they found that global brain state oscil-
lates along an axis in principal component space that reflects 
dorsal raphe neural activity. Identifying the neurons in the 
dorsal raphe that were most correlated with the transition into 
the exploitation (i.e., hunting) state led them to a model of 
zebrafish brain state alternation involving a distributed net-
work of trigger signals that feed into a generalized trigger 
signal from the dorsal raphe. This dorsal raphe trigger signal 
initiates the transition to the exploitation state, with time de-
pendence well modeled by a stochastic nonlinear oscillator, 
consisting of a short impulsive rise phase and long relaxation 
phase, and with the duration of the exploitation state set by 
the amplitude of the trigger signal. They ended by arguing 
that this dynamic behavioral state transition mechanism re-
flects an ancient and evolutionarily conserved system with 
parallels to serotonergic neuromodulation in C. elegans.

Stanislas Dehaene presented results on the triggering of 
conscious perception, a quite different but also seemingly 
global brain state. He introduced an appealingly simple 
method to decompose a cognitive task into a sequence of op-
erations by testing for stability in the underlying neural repre-
sentations. The method (King & Dehaene, 2014) proceeds by 
training a classifier (such as a support vector machine) to de-
code aspects of the stimulus from neural data at one moment 
in time, and then asks how this decoder generalizes to other 
points in time. If the representation is sequential, decoding 
performance should be high around the training point and low 
elsewhere (with the falloff determined by the timescale of the 
sequence). By contrast, if the representation is sustained, then 
the classifier should generalize well. Thus, how decoding 
generalizes across time may illuminate the temporal organi-
zation of mental representations. Dehaene applied this de-
coding approach to a masking task, where a picture is briefly 
flashed followed by a mask. The delay between the target and 
the mask affects whether the target is seen subliminally or 
consciously, and he asked what aspects of brain responses 
are correlated with conscious visibility. Their results showed 
evidence for early gradual unconscious evidence accumula-
tion in visual areas, that seemed sequential, followed by an 
all-or-none transition to a distributed metastable state that is 
sustained over time, involves prefrontal cortex (PFC), and is 
correlated with conscious perception (van Vugt et al., 2018). 
Interestingly, the early unconscious transient could be used to 
partially predict whether the stimulus would be consciously 
seen or not. Dehaene argued that this was evidence for a 
“global workspace” picture of consciousness, where many 
segregated unconscious processors exist in parallel and the 
transition to consciousness reflects the global availability of 
a piece of information.

Many cognitive tasks require the ability to flexibly switch 
between different brain states in different contexts. In a set of 
detailed studies of frontothalamic interactions in mice during 

 14609568, 2021, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.14963, W

iley O
nline L

ibrary on [24/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 3517EDITORIAL

a context-guided choice task, Michael Halassa showed how 
the thalamus is a critical node for the rapid reconfiguration 
of task-relevant dynamic representations in the PFC. In the 
task, a “rule” cue prior to each trial communicated which 
of a spatially conflicting visual or auditory cue should be 
chosen in order to receive a reward (i.e., “attend vision” or 
“attend auditory”). Rule-selective sequences in populations 
of PFC neurons coded for the context during the delay be-
fore the choice cues were presented (Schmitt et  al.,  2017). 
Training with an additional set of contextual cues demon-
strated that these sequences do indeed represent the rule 
and not simply the contextual cue itself (Rikhye, Gilra, & 
Halassa, 2018). Interestingly, these PFC sequences are not a 
purely local phenomenon: bilateral optogenetic inhibition of 
the mediodorsal thalamus (MD) specifically during the delay 
period diminished rule maintenance in PFC, suggesting MD 
coordinates with PFC to sustain rule representation during 
the task. Furthermore, MD also displays context-selective 
activity during the delay period, and based on inactivating 
PFC inputs to MD, appears to be computed from PFC re-
sponses that lack context selectivity. This contextual repre-
sentation then feeds back to cortex to exert two processes: 
amplification of context-relevant PFC inputs and suppression 
of context-irrelevant ones. In that manner, PFC input–out-
put patterns are configured in a context-appropriate manner 
(Rikhye et al., 2018).

Moving to a larger-scale picture of the relationship be-
tween internal states, external inputs and information pro-
cessing in the brain, Wolf Singer outlined a biophysically 
grounded general theory of cortical computation. In the first 
part of his talk, he contrasted two strategies by which neurons 
could encode relationships between features. One is a feed-
forward architecture, where units respond to specific con-
junctions of features (a so-called “labeled-line” code). This 
strategy is simple but computationally inefficient, requiring 
a very large number of neurons to encode the possible fea-
ture combinations. Moreover, it has trouble encoding rela-
tionships between features that are separated in time and with 
novel combinations, and does not account for the large num-
ber of lateral and feedback projections in the cortex. A sec-
ond strategy encodes relationships dynamically, exploiting 
the natural tendency of cortical networks to oscillate. Singer 
suggested that this tendency, when combined with recurrent 
connections endowed with Hebbian learning, allows cortical 
columns coding for related features to transiently synchro-
nize, converting related features into temporal correlations 
and thus binding them together. The temporal patterning 
coordinates the timing of spikes, allowing for the operation 
of learning rules. Such assembly codes coexist with the 
feedforward labeled-line codes, with synchronous patterns 
better able to drive the selection of conjunctive features in 
further layers. In the second part of his talk, Singer moved 
beyond assembly formation, highlighting that the framework 

described above does not account for high-dimensional and 
asynchronous activity patterns. He suggested that cortex acts 
as a high-dimensional coding space that is able to store prior 
information about stimuli, integrate these priors with input 
signals, and rapidly represent the resulting computations in 
an easy-to-read-out format for future classification and ac-
tion selection (Singer & Lazar, 2016). The lower-dimensional 
synchronized assemblies described above represent the read-
out of this Bayesian computation. Thus, resting state activity 
exhibits a high-dimensional correlation structure, reflect-
ing stimulus priors stored in synaptic weight distributions. 
Stimuli that match prior expectations (i.e., predicted stim-
uli) induce low-dimensional synchronized sub-states. These 
readout patterns are easily separable by downstream circuits. 
Moreover, they persist for some time in cortical activity, 
exhibiting fading memory (as in reservoir computing ideas 
of neural computation) and allowing for the encoding of se-
quences. An intriguing feature of this proposed framework 
is that the firing rates of neurons and their finer-timescale 
synchrony code for different aspects of stimuli, with firing 
rate signaling surprise and salience (e.g., a mismatch between 
sensory evidence and predictions) while synchrony (perhaps 
in the gamma band) signifies a match with prior expectation. 
Singer presented evidence supporting a number of predic-
tions of this framework and ended with a call for the devel-
opment of new mathematics to analyze high-dimensional 
dynamically evolving activity vectors.

The talks presented investigated internal brain states 
across scales, systems and levels of abstraction as they ranged 
from zebrafish hunting to human consciousness, and from the 
specifics of rule-switching in the mouse to a general theory 
of cortical computation. A common theme that emerged is 
the utility of using dynamics to study internal states, with 
two natural questions being how a given internal state shapes 
finer-timescale neural dynamics and what the dynamics of 
inter-state transitions are. Dynamics may thus offer an inte-
grative perspective on brain states, how they are formed and 
how they evolve, along with new ways to identify and define 
them across organisms.

7 |  SEQUENCES: A GENERAL 
MOTIF FOR DYNAMIC NEURAL 
COMPUTATION

The idea that computation in the brain uses transient se-
quences has a long history, ranging from stereotyped motor 
trajectories as seen in central pattern generators (Marder 
& Bucher, 2001) to more abstract and flexible sequences 
in the context of navigation and decision-making tasks 
(Buzsáki & Tingley, 2018; Harvey, Coen, & Tank, 2012). 
Of late this idea has regained computational prominence, 
with sequences of neural activity observed in a variety of 
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model systems, brain areas and behavioral computations. 
A number of talks exemplified this resurgence of interest 
in neural sequences and both Gilles Laurent and Michael 
Long showed extensive lists of the variety of brain areas 
and task domains in which neural sequences have now 
been found, including hippocampal replay and preplay, 
bird song encoding in the HVC, olfactory neural trajec-
tories, behavioral choice sequences in parietal and frontal 
cortex, basal ganglia dynamics and motor cortex dynam-
ics. In the context of this renewed interest, several talks 
focused on general purpose mechanisms for sequence gen-
eration and learning, inspired by the idea that sequences of 
neural activity might act as a temporal scaffolding, with 
neural representations or motor commands inheriting tem-
poral structure through binding to the appropriate stage in 
the sequence.

Sequences in the mammalian hippocampus, such as place 
cell trajectories, can be activated in response to behavior or 
can be internally generated in the absence of the correspond-
ing behavior, either as replays during sharp wave ripples 
(SWRs) or as theta sequences. These observations suggest 
that the hippocampus may act as a general-purpose sequence 
generator. Claudia Clopath synthesized a number of empiri-
cal features of hippocampal sequences to construct a model 
showing how CA3 neurons could form abstract sequences or 
a “temporal backbone,” which could then be used to flexi-
bly and rapidly learn desired spiking sequences in a down-
stream area (such as CA1) by binding them to the appropriate 
moment in the abstract sequence (Nicola & Clopath, 2019). 
Intriguingly, rather than these abstract sequences being 
learned at the behavioral timescale, in the model the default 
timescale at which these sequences evolve is set by the in-
trinsic theta rhythm—a pronounced component of hippo-
campal neural activity—allowing them to be learned using 
rapid Hebbian learning. Adding a second oscillatory input 
with a slightly different timescale to the sequence neurons 
(putatively from the medial septum) caused oscillatory inter-
ference between the input and the intrinsic theta oscillations, 
which served to dilate the timescale of the neural representa-
tion and produce activity that varied at the appropriate behav-
ioral timescale. The model suggested that during sharp-wave 
ripples (henceforth SWRs), when replay is seen, the external 
input drops (as is true for medial septal input) revealing the 
rapid intrinsic timescale.

In the rodent, when animals are active, hippocampal se-
quences are thought to be structured by the phase of the theta 
oscillations: activity at the early phase is thought to corre-
spond to an animal's current location, and activity at the later 
phase thought to correspond to future plans. This patterning 
by the theta oscillation has a counterpart at the level of the 
gamma oscillation, with so-called “fast” gamma rhythms 
reflecting periods of high CA1 coupling to the medial en-
torhinal cortex, possibly important for representing current 

location, and “slow” gamma reflecting high CA1 coupling 
to CA3, possibly linked to retrieving sequences and planning 
trajectories.

Laura Colgin and Matthew Wilson both presented com-
pelling evidence for the role of hippocampal sequences and 
frequency-based patterning in learned spatial behaviors. 
Laura Colgin showed results from a delayed match-to-sample 
spatial memory task in which a rat had to learn and remem-
ber the location of a reward across trials. She used Bayesian 
decoding of simultaneously recorded place cell ensembles to 
look at how place cell sequences developed across learning 
and whether these sequences were abnormal when animals 
failed to remember. As the animal learned the location of the 
reward, place cell sequences that predicted paths toward the 
reward developed. These sequences predicted longer paths in 
correct as opposed to error trials. Over the course of learn-
ing, replay of trajectories during SWRs also developed a bias 
to terminate at the goal location across correct but not error 
trials. Finally, preliminary data suggested that slow gamma 
power increased during the sample phase of error trials, sug-
gesting that slow gamma rhythms may interfere with memory 
encoding.

Matt Wilson showed results from a navigation task where 
a mouse had to run along an H-shaped maze. In one arm 
of the maze, the mouse had to turn in an experimenter-de-
termined direction. It then had to remember the direction 
in which it turned and turn in the same direction at the end 
of the next arm in order to receive reward. Thus, the task 
had a component where the mouse had to learn and encode 
the location of the reward and a second component where it 
had to retrieve the memory to get the reward. Wilson paired 
this task with theta-phase locked optogenetic stimulation 
of parvalbumin-positive interneurons neurons in area CA1. 
Intriguingly, activating inhibitory neurons did not lead to 
performance deficits. Instead, for the right combination of 
theta phase and task state, inhibiting CA1 lead to enhanced 
performance. Stimulation at the theta trough during the mem-
ory retrieval phase enhanced performance dramatically (by 
about 15% on a 65% baseline), and stimulation at the theta 
peak during memory encoding also enhanced performance. 
These results suggest that the hippocampus shifts between 
encoding and retrieval on every theta cycle, with the encod-
ing phase potentially driven by increased coupling to ento-
rhinal cortex and the retrieval phase displaying increased 
coupling to CA3. During the encoding phase of the task, the 
animal's current location is important but where it is going is 
not; the converse is true during the retrieval phase of the task. 
Given these two competing task demands, suppressing the 
task irrelevant component improves performance (Siegle & 
Wilson, 2014). Wilson then turned to the replay of sequential 
activity during SWRs. Such replay is thought to be important 
for reward learning, and Wilson asked if the relationship be-
tween reward learning and SWRs may be different between 
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sleep and quiet wakefulness. Using analyses of simultaneous 
recordings of neurons in the hippocampus and in the ventral 
tegmental area (which contains reward modulated dopamine 
neurons), he showed that while reward-related VTA neurons 
were coordinated to hippocampal replays during quiet wake-
fulness, the relationship was much weaker during sleep, and 
reward-related VTA neurons actually reduced their firing 
(Gomperts, Kloosterman, & Wilson,  2015). Thus, during 
sleep information seemed to be replayed but not reinforced 
in the reward system, suggesting that replays have different 
roles in different states.

In another model system known for producing neural se-
quences, Michale Fee posed the general question of how the 
songbird brain learns vocal behaviors consisting of a com-
plex sequence of motor gestures. While there are reinforce-
ment learning models that address this question, they require 
a good representation of the underlying state space in which 
learning should be performed. In the songbird, Fee argued 
that the premotor nucleus HVC acts as a simple sequence 
generation circuit, generating a sparse representation of time 
that provides an appropriate state space for song learning. 
Appropriate connections from HVC to a downstream motor 
area, RA, could then drive motor commands at the right 
times. Recordings of HVC neurons in young birds show how 
these sequences might emerge over the course of develop-
ment, starting from a single parent sequence (protosyllable). 
Over time, this sequence starts to split into two, with neu-
rons initially participating in both before becoming selective 
for one sequence or the other (Okubo, Mackevicius, Payne, 
Lynch, & Fee, 2015). This splitting continues, generating se-
quences selective for each syllable in the bird's adult song. 
Fee's proposal thus uses unsupervised learning to construct 
an inherently dynamical latent space that can then be used 
as a substrate for reinforcement learning (Mackevicius & 
Fee, 2018).

Michael Long began with the observation that despite 
widespread noise in the brain, dynamic sequences of neu-
ral activity can be surprisingly precise. This is true not just 
for responses to external sensory stimuli but, at least in the 
songbird, for internally generated sequences of activity. He 
considered a set of candidate models that might allow for 
such sequences. Learning on a set of randomly chosen ini-
tial synapses yielded activity sequences that either did not 
propagate through the network or were not sparse. A syn-
fire chain model (Abeles, Prut, Bergman, & Vaadia, 1994) 
yielded sequences that were composed of discrete steps un-
like the continuous sequences observed in the data. Finally, 
a “polychronization” model (Izhikevich, 2006) with a spread 
of synaptic delays allowed for sparse continuous sequences 
that propagated through the population. In a demonstration 
of a close theory–experiment loop, Long then looked for the 
source of these synaptic delays and used a combination of 
tracing studies, whole cell recordings and calcium imaging 

to argue that conduction delays from local axons showed the 
right distribution of timescales and are sufficient to account 
for the predicted delays. Thus, local conduction delays, which 
are often ignored in models of interacting neurons, may play 
an important dynamical role. A lively discussion followed, 
in which Wolf Singer pointed out that the myelination prop-
erties of axons change during learning (Sampaio-Baptista & 
Johansen-Berg,  2017), and Eve Marder noted that conduc-
tion velocity can change for bursts or due to changes in brain 
temperature (which can be caused by, e.g., the presence of 
an opposite-sex conspecific). Thus, we ended by discussing 
the exciting idea that conduction delays, amongt other cellu-
lar and biophysical variables that go beyond simple rate and 
spike dynamics, might be hitherto underexplored dynamical 
variables.

Taking a more abstract system-independent perspective, 
Giulio Bondanelli addressed coding with transient trajecto-
ries, which are closely linked to sequences. Classical popu-
lation coding typically assumes that unchanging stimuli are 
encoded by the steady-states or time-averaged firing rates 
of neurons, but neural responses exhibit strong temporal dy-
namics even when stimuli do not change. Moreover, stim-
ulus decoding is sometimes better during transient phases 
than when dynamics have converged to a fixed point (Mazor 
& Laurent, 2005). In a typical linear dynamical system, re-
sponses will decay away monotonically in the absence of 
a stimulus, making them poor candidates for coding with 
transients. Building on ideas from a class of linear systems 
called “non-normal,” Bondanelli presented a framework for 
encoding multiple stimuli in strongly amplified transient tra-
jectories by choosing the connectivity matrix to be the sum 
of appropriate low-rank pieces (Bondanelli & Ostojic, 2020), 
and showed that it could explain various observed features of 
auditory cortical neural data, such as non-monotonic transient 
activity at stimulus offset and better discriminability during 
the offset transient phase (Bondanelli, Deneux, Bathellier, & 
Ostojic, 2019).

While the various ideas regarding computing with neu-
ral sequences presented at the meeting were compelling, it 
remains an open question how general the proposed mecha-
nisms of sequence generation and computing with transient 
activity are across the brain. Working at the interface of the-
ory and experiment in the songbird vocal learning circuit or 
on hippocampal circuitry in spatial tasks in rodents affords 
a level of anatomical and neurological detail that lends cre-
dence to these theories, but potentially restricts their rele-
vance for understanding dynamic sequence-like activity in 
other brain areas or model systems. Is it perhaps the case that 
different areas have evolved different dynamic and circuit 
solutions to produce similar patterns of sequential activity? 
These questions remain to be answered, but the convergent 
picture arising from hippocampal circuits in mice and vocal 
song circuits in songbirds provides a promising place to start.
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8 |  SOCIAL INTERACTION AND 
COMMUNICATION: A DYNAMIC 
LOOP

In a more naturalistic setting, sensory processing and 
behavioral control must proceed within the context of 
a dynamic interaction with social partners as well as the 
environment. A number of talks emphasized this impor-
tant aspect of neural computation, focusing on communi-
cation and social interaction in songbirds, Drosophila and 
mice. In an elegant analogy to the development of language 
specificity during human development, Sarah Woolley 
presented work showing how the neural representation of 
song vocalizations varies across the auditory processing 
hierarchy of juvenile songbirds. In thalamoreceptive lay-
ers of auditory cortex the neural representation of a par-
ticular song is highly similar across individual birds, but 
differs greatly across birds in the deep output and second-
ary layers. Like language learning, the development of this 
song representation depends critically on the experience of 
hearing the tutor's song. Perhaps surprisingly, juveniles ex-
posed to a cross-species tutor, and thus a song with differ-
ent characteristic auditory features (“syllables”), learned to 
produce a song with the tutor's species-specific syllables 
remarkably well. Woolley then demonstrated the highly 
adaptive nature of the neural representation of song in the 
auditory cortex, which failed to display selective neural re-
sponses for own-species vocalizations in higher auditory 
areas in the cross-species tutored birds. Rather, auditory 
neural activity in birds that acquired a cross-species song 
showed selectivity for the acoustic features of the song 
“language” they had learned through experience (Moore & 
Woolley, 2019).

Successful communication occurs in a dynamic envi-
ronment in which the brain must continuously process in-
coming information and modulate behavioral output online 
as the interactive setting evolves. Mala Murthy presented 
her lab's work on dynamic communication, using courtship 
in Drosophila as a model system. Successful courtship is 
promoted by the male production of a song—produced 
by wing vibrations—while the female arbitrates the mat-
ing decision. Male song structure and intensity depend on 
the interactions between the male and the female; rather 
than repetitively executing stereotyped wing-vibration se-
quences, the male continuously modulates song production 
according to the social interaction (Coen et al., 2014). What 
then are the auditory features of the male song that female 
(and male) brains respond to? Murthy identified pC2 neu-
rons in the Drosophila brain of both sexes that act as au-
ditory pulse feature detectors, demonstrating a common 
brain response to this property of the male song. However, 
the relationship between this neural response and behav-
ior diverged for females and males: females slowed down 

when the pC2 neurons responded to a particular pulse rate, 
while males sped up and also sang. This dynamic feedback 
loop between the courting individuals through their com-
mon pC2 neurons allows both males and females to detect 
and modulate both locomotor activity and song produc-
tion in an inherently social behavior (Deutsch, Clemens, 
Thiberge, Guan, & Murthy,  2019). Additionally, Murthy 
presented work mapping auditory activity throughout the 
entire central brain of Drosophila (Pacheco, Thiberge, 
Pnevmatikakis, & Murthy, 2019). The discovery of wide-
spread and diverse auditory responses in nearly every brain 
region of both males and females suggests that courtship 
song has a strong modulatory impact on a variety of sen-
sory and motor processes. Murthy concluded with a call 
for more sophisticated tools to map behavior at the highest 
resolution (Calhoun, Pillow, & Murthy, 2019; Pereira et al., 
2019), in order to more precisely map the role of internal 
states on these dynamic acoustic courtship behaviors.

The social consequences of many ethologically relevant 
behaviors raise the question of whether socially relevant 
cues are represented differently in the brain from those that 
are non-social, and, as a consequence, whether distinctly 
social neural representations are implicated in impair-
ments of social behaviors. Tal Tamir showed neurons in 
the PFC of mice that responded preferentially to socially 
relevant olfactory cues, such as male or female odors, over 
non-social (food) olfactory cues. At the population level, 
neural activity in PFC showed a similar pattern at baseline, 
but followed distinct low-dimensional trajectories for so-
cial and non-social stimuli both during and after stimulus 
presentation. Interestingly, in neural populations recorded 
from Cntnap2 mice (a genetic model of autism), the sep-
aration between social and non-social representations in 
the PFC was greatly reduced. In a demonstration of brain 
dynamics over a relatively longer timescale, Tamir then 
showed that the separation between social and non-social 
neural representations in the PFC increased with experi-
ence over consecutive days in the wild-type mice, a refine-
ment of dynamic neural representation that failed to occur 
in the autism-model mice (Levy et al., 2019).

Together, these talks highlighted the importance of the 
social dimension of neural representation, a behavioral 
setting that remains relatively underexplored. Insight into 
neural computation will naturally benefit from a richer and 
more detailed understanding of the dynamic, interactive 
setting in which much of behavior takes place. Dynamical 
systems approaches to multi-agent systems suggest new 
frameworks for integrating empirical data from multiple 
brains and behavior and provide paradigmatic examples 
from artificial intelligence of competitive (such as gen-
erative adversarial networks) or cooperative computation 
(such as distributed decision-making systems) in an inter-
active social setting.
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9 |  THE DEVELOPMENT OF 
NEURAL DYNAMICS: LEARNING 
AND ORGANIZATION ACROSS 
MULTIPLE TIMESCALES

While the focus on dynamic neural activity has typically 
been at the timescale of seconds and minutes during a 
task, a major piece of the puzzle is uncovering how the 
brain is dynamically reorganized across the days, months, 
and years of development to support neural computation. 
Several speakers took this interesting perspective, probing 
how patterns of brain activity evolve through early life, 
when brain circuits are both substantially and relatively 
rapidly reshaped as an animal or human acquires new expe-
riences and novel abilities. Julijana Gjorgjieva asked how 
spontaneous brain activity might refine functionally spe-
cialized neural circuits in early development, even before 
any sensory experience has been acquired. She presented 
a biophysically realistic model of synaptic plasticity to 
show how spontaneous activity can establish remarkably 
precise fine-scale structure in the spatial organization of 
dendritic synapses (Kirchner & Gjorgjieva,  2019). Using 
a burst-timing-dependent plasticity rule based on the ac-
tion of neurotrophic factors in which postsynaptic calcium 
spread induces spatial competition, this model demon-
strates how functional synaptic clustering emerges in re-
sponse to spontaneous waves of activity in the developing 
retina. Gjorgjieva proposed that the critical ingredients of 
spontaneous activity and synaptic plasticity are already 
present in the early developing brain, allowing networks of 
neurons to wire themselves to the finely structured circuits 
observed in adulthood.

At the opposite end of the spatial scale, Shruti Naik 
showed how the macroscopic brain signal in scalp EEG of 
very young infants evoked by unfamiliar face stimuli evolves 
through development as they acquire sophistication in their 
ability to recognize faces. While averaging single trial re-
sponses reveals stereotyped features of the face-evoked 
event-related potential (ERP) by 12 weeks of age (tracking 
a developmental milestone in early visual areas), individual 
trial responses are highly variable, raising the question of 
how such dynamic variability in brain activity can support re-
liable face recognition. By quantifying this across-trial vari-
ability in face-evoked EEG activity of individuals between 2 
and 6 months of age, Naik demonstrated how the distribution 
of the latency of single-trial ERP-like events becomes grad-
ually more concentrated around the time of the mean ERP 
component—a quenching of variability around these stereo-
typed patterns of brain activity—in accordance with develop-
mental age. This suggests that the stabilization of single-trial 
dynamics around the large-scale activity patterns typically 
measured by the grand-average ERP is a critical stage of the 
maturating infant brain.

10 |  EVOLVING FLEXIBLE 
CONTROL OF THE DYNAMIC 
BRAIN

Over an even longer timescale, organisms have evolved a 
complex set of mechanisms by which to control the dynamic 
patterns of neural activity that support the various behaviors 
they perform. A major theme was the control of dynamic 
neural activity, asking the fundamental question of how com-
plex patterns of activity are reliably reproduced by an organ-
ism despite sometimes wild variation in sensory input and the 
broader environment.

Eve Marder asked how finely-tuned do the parameters 
that control intrinsic properties and synaptic efficacies of 
neurons need to be for “good enough” circuit activity? In 
other words, how variable can brains be and still produce 
successful behavior? She focused on the stomatogastric 
ganglion (STG) neurons of wild-type crabs (i.e., crabs that 
have evolved to be successful in their natural habitat, not a 
laboratory) responsible for producing the pyloric rhythm 
in this organism. She pointed to the variability in this 
three-neuron circuit across individuals: cell morphology 
is highly variable and wiring is inefficient and “tortuous.” 
And yet the pyloric rhythm is highly stereotyped despite a 
two- to sixfold variation in circuit parameters for different 
individuals, suggesting degenerate mechanisms by which 
this macroscopic dynamic pattern can be achieved in the cir-
cuit. Indeed, by generating families of models with differ-
ent conductance densities, she showed how distinct circuit 
mechanisms are able to achieve largely identical oscillatory 
patterns of activity (Gutierrez, O'Leary, & Marder, 2013; 
Prinz, Bucher, & Marder, 2004). These distinct model cir-
cuits reveal their difference in their response to perturba-
tion: a prediction borne out in the individual response of 
STG circuits to perturbations arising from temperature, pH 
and chemical manipulations. For instance, increasing tem-
perature will ultimately disrupt the pyloric rhythm for all 
individuals, but the temperature at which this occurs, and 
the dynamic patterns of activity produced as the pyloric 
rhythm fails were highly variable across individual STG 
preparations. This intriguing demonstration of dynamic de-
generacy in what is a relatively small and well-character-
ized circuit raises the interesting and important question of 
how neural circuits maintain stability and resistance to per-
turbation in an environment in which unexpected changes 
in conditions are bound to occur.

Despite the probable degeneracy in specific brain cir-
cuits and mechanism, Gilles Laurent pointed to the re-
markable prevalence of sequential neural activity across 
phylogenetically distinct organisms operating in hugely dif-
ferent environments. He proposed that this prevalence owes 
directly to the fact that the physical and biological world 
is dominated by correlations over many timescales; brains 
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have adapted over evolution toward common solutions for 
controlling behavior in such a world. He then traced three 
cases of transient neural dynamics across distinct model 
systems to highlight a fundamental motif of stereotyped 
and low-dimensional sequential trajectories that move away 
from, and then return to, a resting state (i.e., a fixed point in 
the state space). In the olfactory system of the arthropod, he 
showed how the population response of projection neurons 
of the antennal lobe to an odor stimulus traces out a dy-
namic trajectory that is highly stereotyped, and evolves on 
a low-dimensional manifold toward an odor-specific fixed 
point (Mazor & Laurent, 2005; Wehr & Laurent, 1996). In 
natural conditions, however, odors are brief, and this tran-
sient activity does not evolve rapidly enough to reach this 
fixed point. Interestingly, downstream Kenyon cells only 
decode the odor during the transient phase of the projection 
neuron population response, confirming that this dynamic 
pattern of activity is indeed the critical representation of 
the odor. Asking next how the dynamic response of a pop-
ulation of neurons might be controlled, Laurent introduced 
the chromatophore system of the cuttlefish. A pattern of 
chromatophores provide camouflage for the animal, and 
each are controlled by muscles to expand and contract, 
blanching the macroscopic pattern after a threat from the 
environment. By tracking the state of tens of thousands 
of chromatophores following a blanching event, Laurent 
and colleagues demonstrated that the global chromato-
phore state follows a stereotyped trajectory away from, and 
then back to the resting state. This stereotypy arises de-
spite the high dimensionality of the pattern itself, consis-
tent with the existence of a low-dimensional motor control 
representation that orchestrates this enormously complex 
spatiotemporal pattern (Reiter et  al.,  2018). Finally, he 
presented neural data from the dorsal cortex of turtles in 
response to the electrical stimulation of single neurons, 
demonstrating surprisingly reliable sequences of activity 
that propagate through tens of neurons in the local corti-
cal circuit after even single spikes are elicited in individual 
pyramidal neurons (Hemberger, Shein-Idelson, Pammer, & 
Laurent,  2019). That this is possible suggests a topology 
of excitation that effectively primes certain patterns of se-
quential activity to flow through the cortical circuit.

11 |  SUMMARY

Ultimately, the diversity of research presented at this Brain 
Conference revealed that we are at an exciting juncture in 
the study of the brain: theoretical and empirical progress 
has afforded a view of the building blocks of dynamic com-
putation in neural systems. The research presented pro-
vided a compelling picture of how transient neural activity 
can represent space, time and various features of a task, 

be it an abstract experimental manipulation or a natural-
istic feature in a social setting such as communication or 
mating. The frontier is now to press forward in our under-
standing of how dynamic computation in the brain is flex-
ibly controlled, and what mechanisms allow the reliable 
propagation of transient patterns of activity across different 
circuit architectures and in different environmental condi-
tions. One of the key concepts for debate that emerged 
was the tension between invariance and flexibility: neural 
dynamics are naturally constrained by specific local con-
nections, brain architecture, and biophysical mechanisms, 
yet time and again throughout the meeting, researchers pre-
sented patterns of neural population activity that displayed 
surprisingly similar dynamics despite different model 
systems, different stimuli, and different tasks and global 
behavioral states. Continuing the search to find the funda-
mental mechanisms by which dynamic neural activity is 
flexibly controlled to produce these diverse behaviors will 
be an exciting next chapter for the field.
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