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Highlights 

• The goal of cognitive behavioral therapy (CBT), a widely used method for many 

psychiatric conditions with a strong empirical evidence base, is to effect change in 

cognition, emotion, and behavior. 

• Concomitant with the development of CBT, cognitive neuroscientists and psychologists 

converged on a theoretical framework called reinforcement learning (RL) to explain trial-

and-error learning, behavioral decision-making, and their neural implementation. RL 

suggests that learning occurs and expectations (values) are updated when we experience a 

“prediction error” – a discrepancy between what we expected and what actually 

happened.  

• Humans employ both model-free and model-based decision-making mechanisms. The 

former depends on dopaminergic prediction-error-based learning, the ventral and 

dorsolateral striatum and portions of the amygdala, and reflects ingrained, less flexible, 

habitual behavior. The latter seems dopamine-independent, relies on the hippocampus, 

frontal cortex, and the dorsomedial striatum, and reflects flexible, prospective goal-

directed planning. 

• The CBT framework can be mapped directly to core concepts from RL. The cognitive 

aspects of CBT may be seen as targeting the model-based system, while the behavioral 

component of CBT is strongly related to the model-free learning system. 

• RL may aid in improving CBT through the development of more effective treatment 

protocols, quantification of individual parameters of the learning process to help better 

tailor CBT, and measurement of the effects of psychotherapy.  
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Introduction: Learning as a Basis for Mental Health Treatment  

Cognitive behavioral therapy (CBT; Beck AT 1976; Beck AT 2005), a leading method of 

psychotherapy, is a widely used treatment for many psychiatric conditions including anxiety 

disorders, mood disorders, post-traumatic stress disorder, obsessive-compulsive disorder, 

substance abuse and more. The goal of CBT, in particular the second wave of CBT on which we 

will focus (Beck JS 2011), is to effect change in cognition, emotion, and behavior, understanding 

that changing any one of these affects change in the other two due to their interdependence. This 

is done by teaching patients new thought (“cognitive”) and response (“behavioral”) patterns with 

the aim of eventually, through repeated practice and generalization, displacing maladaptive 

automatic tendencies. A key CBT principle is that emotional responses (e.g., feeling scared, 

anxious or sad) are not a direct consequence of external events, but rather are mediated by 

thoughts and internal schemas that filter external information and determine emotional and 

behavioral responses. By learning and practicing alternative interpretations and responses, we 

can therefore gain control over our emotional wellbeing. CBT has been widely tested in 

randomized control trials and has a strong empirical evidence base (Butler et al 2006; Hofmann 

et al 2012).  

Over the same time frame, research in cognitive neuroscience and psychology has 

converged on a theoretical framework called reinforcement learning (RL; Sutton and Barto 2018) 

to explain trial-and-error learning, behavioral decision making, and their neural implementation. 

The key idea is that choices are based on learned values of available options. These values reflect 

the subjective reward value of expected outcomes (which could be negative for aversive 

outcomes) and are learned through trial and error, by comparing actual outcomes to expectations. 

The principle is that when we experience a “prediction error” – a discrepancy between what we 

expected and what actually happened – learning occurs and expectations (values) are updated.  

RL theory has been widely tested in humans and animals, accumulating much support. 

Recent advances have extended the theory to explain multiple learning algorithms, and their 

respective decision processes, which occur in parallel in the brain (in particular, habitual versus 

goal-directed deliberative behavior; Daw, Niv, Dayan 2005), and to thinking about how learning 

is generalized or specialized to different scenarios (Gershman, Norman, Niv 2015). This 

enhanced RL framework can be mapped relatively directly onto key concepts from CBT.  
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The goal of this chapter is to flesh out the links between second-wave CBT and RL1. 

Because RL theory is defined in computational terms (see below), viewing CBT through the lens 

of RL can suggest ways to quantify the changes that a patient undergoes throughout treatment, 

and to potentially help determine which CBT intervention to employ at each stage of treatment. 

This highlights how developments in the growing field of “computational psychiatry” (Huys, 

Maia, Frank 2016; Montague et al 2012) could impact clinical practice.  

 

Reinforcement Learning in a Nutshell  

RL arose as a theory of animal learning, specifically Pavlovian and instrumental 

conditioning (Sutton and Barto 1990). In Pavlovian (“classical”) conditioning, a contingency 

between two events, one motivationally neutral and one motivationally relevant (e.g., the sound 

of a bell—a “conditional stimulus,” or CS—followed by receipt of food, an “unconditional 

stimulus” or US) is experienced repeatedly. As a result, through learning, the CS comes to 

predict the occurrence of the US. This prediction is evidenced (and can be measured) by 

behavioral responses (e.g., salivation, quickening heart rate – a host of “conditioned responses”) 

that automatically accompany said prediction. This type of learning is ubiquitous and can occur 

when a CS predicts the occurrence of a US (excitatory conditioning) or the absence of an 

otherwise available US (inhibitory conditioning). Importantly, learning may not enter awareness, 

and the automatic conditioned responses (which include emotions, increased heart rate, 

sweating) are very hard to override.   

This type of prediction learning is at the heart of RL theory (for a more detailed overview 

of RL in the brain, see Niv 2009). In RL, each stimulus (S) acquires a value V(S) that reflects the 

subjective scalar value of the USs it predicts. For example, the first time the bell is heard, its 

value may be zero. If the tone is followed by a US, the US’s reward value R (positive values for 

appetitive USs like food, and negative values for aversive USs like pain) is compared to the prior 

expectation 𝑉!"#(𝑆) to compute a prediction error, PE = R – 𝑉!"#(𝑆). The new value of the 

stimulus is then updated based on the prediction error: 𝑉$%&(𝑆) = 𝑉!"#(𝑆) + 𝛼 ∙ 𝑃𝐸 , where 𝛼	is 

a “learning rate” parameter between 0 and 1. This learning rule will update the value every time 

a prediction error is experienced, until the prediction error is zero (the prediction is correct). This 

 
1 Due to space limitations, we forgo discussion of the links between CBT and Bayesian inference processes (which 
are strongly linked to RL), and refer the reader instead to Moutoussis et al. (2017). 
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model of trial-and-error prediction learning has one parameter, 𝛼, that can differ between 

individual learners or for different situations (see appendix A1.1). 

When the environment changes considerably (e.g., a tone CS that once reliably predicted 

a shock US is no longer followed by shock), instead of updating 𝑉(𝑆), the learner may infer that 

the current tone is not the same as the old one, and thus initialize a completely new value 𝑉(𝑆'). 

The idea is that the learner makes inferences about the hidden (latent) causes of observed events, 

and learns different values for different inferred latent causes. Rather than thinking of S as a 

stimulus, it denotes an inferred state of the world, corresponding to a latent cause (Gershman, 

Blei, Niv 2010).  

In instrumental conditioning, actions that the learner chooses can affect whether they will 

or will not receive reinforcement. For example, pressing a lever may be reinforced with food, or 

with removal of an aversive sound. The learner must experiment with different actions and learn, 

through trial and error, which actions are effective in any given scenario. In RL terminology, the 

model for learning is similar to the prediction learning model; however, values are learned for 

each possible action a in each state (these values are called Q-values and denoted 𝑄(𝑎|𝑆), in 

contrast to the V-values for states, above). Again, learning proceeds based on prediction errors: 

after performing a chosen action in the current state, the outcome is used to compute a prediction 

error and update 𝑄(𝑎|𝑆).  

This learning mechanism is only one way to compute values. Rather than storing and 

updating values after each experience, one can instead learn a model of the environment: how 

states follow one another given each action (the state “transition structure”), and what states are 

rewarding or punishing. Armed with this model, the learner can mentally simulate the 

consequences of different actions (or, in Pavlovian scenarios where actions are irrelevant, the 

unfolding of events over time) to calculate their value. This alternative algorithm has been 

termed “model-based learning,” in contrast to the “model-free” trial-and-error learning algorithm 

described above (Daw, Niv, Dayan 2005).  

It appears that the brain uses both model-free and model-based methods for computing 

values and making decisions (Daw, Niv, Dayan 2005). The model-free system depends on 

dopaminergic prediction errors and a cortico-basal-ganglia-thalamocortical loop involving the 

ventral and dorsolateral striatum and portions of the amygdala (see appendix A1.2). It has been 

associated with habitual behavior – well learned response patterns that require considerable 
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experience with conflicting outcomes to learn new values and new actions. In contrast, the 

model-based system seems dopamine-independent, and relies on the hippocampus, frontal 

cortex, and a cortico-basal-ganglia-thalamocortical loop involving the dorsomedial striatum. This 

system has been associated with deliberative, so-called goal-directed behavior, and is more 

flexible in its action selection as it can incorporate new information into the task model without 

extensive experience. However, simulating future outcomes requires mental effort, and there 

may be limits to how deeply one can search a tree of future options. Neural and behavioral 

evidence show that both systems operate in the brain in parallel; however, one or the other may 

be controlling behavior at any point in time. For example, you may use model-based RL to 

explicitly plan to go shopping on the way home from work. However, listening to the radio as 

you drive, your model-free system may take over and lead you to turn towards home habitually 

despite your plan otherwise.  

In sum, RL theory suggests that to change behavioral responses, one can change the 

internal model of the task, which will affect deliberative planning (see also Moutoussis et al. 

2017). However, since much of our behavior is habitual and relies on a lifetime of learning from 

trial and error, more permanent change may require experiencing prediction errors that will 

slowly change the values that our model-free system assigns to states and actions. 

Pharmacological treatments that affect dopamine (commonly used for a variety of mental health 

conditions) can affect this latter process as it depends on dopaminergic prediction errors. 

Moreover, if a situation changes too much, the learner may infer a new state rather than update 

an old state value. In psychotherapy, such new inferences may be helpful as long as future 

experience is ascribed to the newly inferred latent cause. Yet, because the mental representation 

of the old latent cause remains, quiescent but unchanged, an associated maladaptive judgment or 

behavior can reappear if the individual infers that this cause has returned. In the examples below, 

we will flesh out the implications of these ideas for psychotherapy. 

 

Cognitive Behavioral Therapy in a Nutshell  

CBT is a problem-focused collaborative form of psychotherapy that aims to change 

maladaptive behavior and thought processes, and improve emotional regulation (Beck JS 2011). 

A core premise of CBT is that external events do not cause us to feel and do things, but rather 

our cognitions offer a subjective interpretation of events which, in turn, causes feelings and 
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actions. This interpretation is often automatic and implicit, building on a lifetime of previous 

experiences, and not a voluntary or conscious process. The profound implication is that we have 

some control over our emotional, cognitive and behavioral responses. By changing our 

interpretations, we can avoid responding maladaptively (for an example, see Appendix 2.1).  

How can interpretations be challenged and changed? Since emotions, thoughts and 

actions are inextricably linked, the therapist can choose which avenue may be most amenable to 

change for each individual. For example, actions and emotional responses can result from 

thoughts. In the method of cognitive restructuring these thoughts are challenged, their 

exaggerated or distorted nature is exposed, and alternatives are listed and practiced. This can 

help reduce the emotional response and enable alternative behavioral responses. Alternatively, 

exposures to seemingly dangerous (but actually safe) situations and experiencing their neutral 

outcomes can help reduce maladaptive automatic emotional responses (such as the autonomic 

fear response) that arise as “false alarms”. Once the emotional and bodily response is identified 

as a false alarm, one can additionally learn to turn off the alarm through relaxation and 

mindfulness techniques, or to wait it out knowing that there is no actual danger involved (for 

more detail, see Appendix A2.2). Moreover, reduction of the physiological stress itself enables 

increased flexibility of thought and action.   

 

Cognitive Behavioral Theory in Reinforcement Learning Terminology  

The CBT framework for understanding and treating dysfunction can be mapped quite 

directly to core concepts from RL (for mapping to the related framework of Bayesian inference, 

see Moutoussis et al. 2017). In RL terms, idiosyncratic response patterns emanate from state and 

action values learned from direct experience (or from modeling by others, e.g., our parents) 

through model-free trial and error, or computed on the fly from a learned world model. 

At a first pass, the cognitive aspects of CBT (e.g., cognitive restructuring) can be seen as 

targeting the model-based system. Cognitive distortions may manifest in or result from 

distortions in the learned (or assumed) model of the environment. For example, if one’s 

estimated probability of transitioning from any state to a state accompanied by punishment is 

exaggerated, then every plan of action in this model may seem dangerous, leading to avoidance 

behavior. This mapping of model-based RL to the cognitive aspects of CBT suggests several 

avenues for change, each exploited in CBT: one can attempt to change the model of the 
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environment, targeting the distorted transition estimates by challenging the validity of current 

assumptions, or by forcing oneself to execute a response plan that is estimated to produce 

negative outcomes and experiencing that these do not occur. This latter planned exposure will 

lead to changes both in the model of the environment and in learned action values used by the 

model-free system. In this way, both systems will promote healthier response patterns in the 

future.  

Indeed, the behavioral component of CBT is strongly related to the model-free learning 

system: by orchestrating experiences and exposures that will lead to prediction errors, predictive 

values of states and actions can be re-trained. Importantly, the model-free system may be (at 

least partly) inaccessible to cognitive methods – we cannot talk our amygdala and striatum into 

changing stored values without having experienced prediction errors. Indeed, a hallmark of 

model-free learning is that avoidance of relevant training experiences serves to maintain old 

values. Thus, after experiencing a traumatic event (e.g., a car accident), the more one avoids 

similar scenarios (e.g., by not driving) the longer the negative expected values will be 

maintained. They may even become engrained over time, and potentially generalized to other (no 

longer experienced) scenarios (although RL theory does not currently model this phenomenon). 

This may explain why exposure-based methods are critical for CBT, and cognitive restructuring 

cannot usually stand alone. For an RL account of why exposure methods work, see Appendix 

A2.3.  

Of note, RL theory and experimental findings suggest that model-based and model-free 

RL can occur even without direct experience, for example, by watching others behave and 

through mental simulation of internal models or replay of memories of previous experiences 

(Burke et al. 2010; Shohamy and Daw 2015). This may be a mechanism for runaway 

exaggerated values. Counterfactual learning from imaginary “what if” scenarios based on 

extreme and erroneous beliefs could lead to vastly distorted values, whereas real-world 

experience would better ground values in reality.  

In this sense, the model at the heart of model-based learning (and related training of 

model-free values using internal simulations) may be the main source of value distortions – this 

system relies more directly on sampling from episodic memory, where outlier (e.g., traumatic) 

events are strongly encoded and preferentially retrieved (Brown and Kulik 1977; Madan et al. 

2014; Rouhani and Niv 2019). This could lead to a distorted model that must be corrected 
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through direct experience tied to the actual statistics of events in the environment, rather than 

their distorted representation in memory.  

 

From Theory to Practice  

CBT practice provides different protocols for different diagnoses and underlying 

pathologies. Here we briefly discuss two examples to illustrate the link to RL theory, and point 

out how theoretical work in RL can further our understanding of the mechanisms of CBT 

treatment and development of better protocols (see Craske et al. 2014, for a similar approach 

using animal learning theory). We will then discuss the implications of these links to precision 

psychiatry, and how quantification of an individual’s learning and decision-making parameters 

can help tailor the therapeutic approach to each specific patient.   

 

Example: Prolonged Exposure for Treatment of Post-Traumatic Stress Disorder  

One of the best tested and most effective CBT methods for treating post-traumatic stress 

disorder (PTSD) is prolonged exposure (PE; Foa 2011). In PE, during imaginal exposures, the 

patient retells the story of the traumatic event in the first-person and present tense, and in as 

much detail as possible (mentioning all senses – vision, smell, etc.) in the safety of the clinic. 

The story is recorded, and the patient listens to it daily. In each of 6-8 therapy sessions, the 

patient retells the story (sometimes uncovering previously forgotten details) and receives the 

recording to listen to at home. Over time, putatively through a combination of desensitization/ 

habituation and re-organization of the memory through retelling, the traumatic memory becomes 

less potent and the patient recovers function: trauma-related thoughts become less intrusive, the 

patient no longer feels under constant threat, and aided by in vivo exposures, behaviors that had 

been avoided after the trauma are resumed.  

The theory behind PE suggests that for the protocol to be successful, two important 

conditions must be met: the retelling of the trauma has to gain access to the original fear 

construct (i.e., the original fear memory) and disconfirming evidence then has to be introduced 

(Foa and Kozak 1986). Although developed separately (with PE far predating the relevant RL 

theory; Gershman et al. 2017), this method is extremely well aligned with the RL playbook: 

disconfirming experiences of safety generate prediction errors, and access to the original fear 

construct ensures that new learning is applied to the original state and not to a new state. Indeed, 
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the protocol can cause much distress in the beginning – the patient is requested to revisit in detail 

memories that they have (unsuccessfully) tried to suppress for months and years, and to do so in 

an immersive way. If they are willing to do this, however, the method is very effective (Powers 

et al. 2010).  

The precise and quantitative nature of formal RL theory may help us improve exposure 

therapy, especially where current recommendations are in conflict with experimental and 

theoretical work in RL. For example, building on inhibitory learning theory, Craske et al. (2014) 

recommend maximizing “expectancy violation” (the discrepancy between a patient’s predicted 

and actual experience, i.e., the prediction error) during exposure to maximize learning of new 

safety associations that will compete with old trauma-related associations. However, the 

existence of multiple learning systems (model-based and model-free) suggests a more nuanced 

interpretation of some of their empirical results, and alternative methods for treatments. For 

example, one can modify the old association, that is, update previously learned values. Here, 

recent research suggests that large prediction errors can cause a learner to impute a new 

experience to a wholly different state, instead of revaluing an old state, thus leaving the original 

state value intact (Gershman et al. 2014; Gershman, Norman, Niv 2015). Indeed, experiments in 

rodents have shown that in the long-term, “gradual extinction” of a fear memory is more 

effective in modifying conditioned fear responding than abrupt extinction (Gershman et al. 

2013), which suggests that moderate prediction errors are more effective than large ones. The use 

of RL theory to understand the principles that underlie when prediction errors maximally 

overwrite existing learning vs. are relegated to new states, and measuring individual differences 

in such thresholds using behavioral tasks (see Summary), may eventually help predict what type 

of exposure will be most effective for each patient. 

An important caveat is that Pavlovian fear conditioning – the dominant animal model for 

PTSD and the experimental paradigm discussed above – assumes that learning is of a simple 

association between stimuli and an unavoidable aversive outcome. A traumatic memory is 

clearly more complex than a simple CS-US association, and more research is needed regarding 

how emotional events influence the organization of episodic memories (Cohen & Kahana, 2019; 

Talmi et al. 2019). Similarly, our understanding of PTSD could be increased through measuring 

individual differences in learning from positive versus negative prediction errors (Arkadir et al. 

2016) and work on generalization, and specifically why negative memories tend to be stronger 
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and generalize more widely than positive memories. More generally, understanding how 

boundaries between different situations (states) are drawn by the brain, and how these change 

over time (with and without experience of similar states), would be especially informative for 

treating PTSD.  

 

Example: Exposure and Response Prevention in Obsessive-Compulsive Disorder  

Obsessive-compulsive disorder (OCD) is characterized by obsessions (thoughts, e.g., 

“there are deadly germs on my hands that may make me very ill”) that increase subjective 

distress and anxiety, and compulsive actions that are performed to reduce this distress (e.g., 

washing hands, sometimes repeatedly). A prominent CBT treatment of OCD is exposure and 

response prevention (EXRP; Abramowitz 1996; Meyer 1966), wherein the patient is guided 

through a series of exposures to sources of distress while avoiding the action that would reduce 

the distress. The goal is for the patient to learn that 1) the distress subsides over time even 

without performing the compulsion (so they can forgo the compulsion), and 2) the terrible 

outcome that they thought would happen if the compulsion is not performed does not occur (they 

don’t die of a deadly disease).  

From an RL perspective, one can conceptualize OCD in terms of Q-values – the values of 

different actions in different states. In OCD, the values of many states become negative unless a 

specific action is executed. So while the Q-value a=“washing hands” is 0 for many states, the Q-

value of doing nothing in these states is presumably very negative. Performance of the obsession 

confirms the zero Q-value of the obsessive action (as nothing bad happens), yet prevents 

experiencing the outcome of not performing the obsession, so the value of other alternatives can 

remain erroneously negative. EXRP provides these learning experiences, which, through 

prediction errors, can retrain the negative values to 0. Moreover, because the value of a=“doing 

nothing” may generalize more widely to the value of the state in general, this training may 

generalize and prevent other obsessive actions (although, as mentioned, research on 

generalization in RL is in its infancy).  

The EXRP protocol also includes imaginal exposures, in which the patient is asked to 

imagine and write down the worst-case scenario outcome of not performing the obsession. This 

challenges traditional extinction-based theories of OCD treatment, because there is no 

expectancy violation in this method. Rather, the patient is asked to imagine exactly what they 
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fear will happen. RL theory may help explain why this is helpful: being forced to explicitly state 

the contingencies leading to the worst-case outcome may elaborate an otherwise sparsely-

represented world model such that the exact series of events will be clearly represented, together 

with their low transition probabilities. This explicitly-thought-through representation may 

thereby decrease the estimated probability of feared outcomes. 

 

Summary: Precision Psychotherapy – How Can Reinforcement Learning Theory Help?  

CBT has its roots in behaviorism and decades of experiments on animal learning. 

Harnessing ideas from the contemporary version of this rich body of knowledge – reinforcement 

learning theory – can help develop even more effective treatment protocols. For example, RL 

experiments have shown that people have a higher learning rate for actions they choose freely 

compared to those they are forced to execute (Cockburn, Collins, Frank 2014). This suggests that 

offering several options for actions in each situation may speed skill learning in CBT, and may 

explain why it is beneficial to involve patients in the planning of exposures. 

The quantitative nature of RL may also benefit precision psychiatry. The theory defines 

the dynamics of learning as a set of equations, and therefore allows quantification of individual 

parameters of the learning process using simple computerized decision-making tasks (Daw 

2011). Indeed, fitting RL models to trial-by-trial choices in simple laboratory tasks is a means of 

measuring parameters such as an individual’s learning rate (Niv et al. 2012), how this learning 

rate adapts to change in the environment (Behrens et al. 2007), differences in the rate of learning 

from positive versus negative prediction errors (Arkadir et al. 2016), the initial value ascribed to 

new choice options (Wittmann et al. 2008), and the tendency to use model-free versus model-

based values in decision making (Gillan et al. 2016). Much current research in the field of 

computational psychiatry attempts to relate these parameters to psychopathologies, and to 

discover individual differences that may be transdiagnostically linked to mental illness (Bennett, 

Silverstein, Niv 2019; Huys, Maia, Frank 2016; Montague et al. 2012). The hope is that 

measuring quantities that relate to the mechanisms underlying psychiatric illnesses in an 

objective way that does not rely on self-report will allow more precise treatment predictions.  

Applied to CBT, this approach can also assist in measuring individual parameters of 

learning that can help a therapist better target the treatment methods, and track progress over 

time. For example, knowing that a patient’s model-free learning is slower than their model-based 
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learning can help set the pace for exposures relative to cognitive restructuring methods, or assist 

in determining which method would be more effective. Moreover, overall impaired trial-and-

error learning can suggest that CBT will not be an effective method for this patient, and perhaps 

pharmacological treatment should be the first line of action. In this way, we may make progress 

on the long-sought-after goal of assigning patients to the most effective treatment (Cohen 2018). 

Finally, parameters from RL models may be useful for measuring the effects of 

psychotherapy. As examples, a decrease in the tendency to assign negative values to novel 

stimuli (Wittmann et al. 2008) may reflect reduction in over-generalizing negative prior 

knowledge, and increased flexibility in making choices (i.e., how willing a person is to explore 

options that do not have the highest value; Wilson et al. 2014) may track improvement due to 

treatment. Arguably, the goal of CBT is to provide patients with more flexible response options. 

By tracking flexibility using a simple computerized task administered repeatedly throughout the 

course of treatment, one can potentially determine when improvements have reached asymptote. 

In this way, RL theory – together with the set of tasks used to measure parameters of the learning 

process – can help develop precision psychotherapy, a therapeutic approach that uses objectively 

measurable indices of learning to most effectively help an individual.  
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Appendix 1: Reinforcement Learning 

A1.1 Understanding Learning Rates in Reinforcement Learning 

Another way to write the RL update equation 𝑉$%&(𝑆) = 𝑉!"#(𝑆) + 𝛼 ∙ (𝑅	–	𝑉!"#(𝑆)) is 

𝑉$%&(𝑆) = 𝑉!"#(𝑆) ∙ (1 − 𝛼) + 	𝛼 ∙ 𝑅. This form highlights that learning is a weighted average 

between old knowledge 𝑉!"#(𝑆) and new experience R, with the learning rate 𝛼 determining the 

weighting of old and new information: high learning rates prioritize new experiences and cause 

the effects of old events to be “forgotten,” whereas low learning rates allow values to reflect the 

effect of more past events. We emphasize that there is no single “correct” learning rate – in a 

stable but noisy environment it is advantageous to average over many events, whereas following 

an abrupt change it makes sense to learn quickly from new events (Yu and Dayan 2005). Indeed, 

experiments show that humans adjust their learning rate across tasks, and even within a task, in 

response to volatility as well as other factors (McGuire et al. 2014; Nassar et al. 2012). 

Therefore, even this extremely simplified one-parameter model can be used to describe 

interesting behavior that (normatively) adapts to task demands, and may potentially be disrupted 

due to mental illness.  

 

A1.2 A Circuit for Model-Free Reinforcement Learning 

Neurally, dopamine signaling is widely believed to correspond to RL prediction errors 

(Barto 1995; Montague, Dayan, Sejnowski 1996; Schultz, Dayan, Montague 1997). Numerous 

studies have shown that phasic dopamine bursts or pauses appear at times in a task where, in 

theory, the animal should be experiencing a prediction error. In humans, functional 

neuroimaging studies have identified a similar signal in the blood-oxygenation activity recorded 

in the ventral striatum (Hare et al. 2008) – an area that receives dense dopaminergic projections. 

Indeed, the striatum, which receives widespread projections from sensory, motor and associative 

cortical areas, is thought to be the area representing the values of states and actions. Learning in 

cortico-striatal synapses is modulated by dopamine, with dopamine concentration determining 

whether long-term changes in synapses will strengthen the synapse (long-term potentiation; 

when there is a surge of dopamine above baseline) or weaken it (long-term depression; when 

there is a dip in dopamine concentration below baseline) (Reynolds et al. 2001). This mechanism 

can easily implement the above-described trial-and-error learning algorithm, as positive 

prediction errors signaled by phasic increases in dopamine concentration would lead to more 
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firing of striatal neurons in the presence of the state or the state and action in the future (signaling 

the now-higher expected value) and vice-versa for negative prediction errors (dips in dopamine 

firing).  

 

Appendix 2: Cognitive Behavioral Therapy  

A2.1 Example application of CBT principles to an event 

Imagine someone interrupts you in a discussion. This event can raise different thoughts 

and interpretations, ranging from “how annoying, X is always so inconsiderate” to “what I was 

saying was probably not interesting...I bet everyone was relieved when he changed the topic”. 

Each will lead to a different emotional response (e.g., feeling anger, insult, self-doubt) and 

different behavioral responses (e.g., try to speak over the interrupter; fall silent and speak less in 

this group in the future). According to CBT theory, individuals have internal schemas – 

ingrained beliefs that “filter” incoming information, biasing its subjective interpretation. For 

example, the schema “I am not good at anything” will favor the interpretation that one’s 

contribution was boring or incorrect, whereas the schema “the world is against me” may favor 

the interpretation that an aggressive work environment has fostered a culture of interruption that 

must be fought.  

 

A2.2 Exposure-Based Methods 

Recognizing that maladaptive thought, emotion and behavior patterns that reach clinical 

significance are usually long-entrained, the focus of CBT is to have repeated new learning 

experiences in which the patient can practice skills acquired in therapy until they have been 

perfected. For example, a socially anxious patient may first practice skills during planned 

exposures with a warm and encouraging fellow therapist from their therapist's practice. In this 

low-stakes interaction, the patient can practice tolerating distress, inhibiting the urge to escape or 

to deploy safety behaviors, and redirecting attention outward when it turns to negative self-

judgments. The patient can then generalize these skills by performing them in more difficult 

situations, such as with a fellow-therapist confederate who now acts impassively or hostilely, and 

in less controlled settings, such as with a boss or with strangers. Through repeated exposure and 

practice (ideally, every day), fears will typically decrease and skills will become habitual. These 
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skills then serve as a resource the patient can draw upon if fear later returns or if a life situation 

elicits heightened concern about negative judgment.  

In practice, to plan the exposures, first the patient and therapist will create a scale, usually 

from 0-10, where 0 is no distress and 10 is the most distress possible. This scale will be 

populated with events at different levels: perhaps for a patient who suffers from social anxiety, 

watching TV at home is a “0”, talking to the cashier at the supermarket is a “3”, asking a stranger 

for directions on the street is a “5”, making small-talk with a taxi driver is a “7”, and going to a 

party where they don’t know anyone is a “10”. Exposures are then planned from level 3 or so 

and are gradually increased: first, the patient will practice going to the supermarket and saying 

“hello” to the cashier each time. When this has ceased to be threatening, perhaps they will 

purchase a small item at a kiosk where they have to ask the attendant for the item, climbing to 

level “4”. After each set of exposures, the scale can be re-evaluated for all events (some might 

now be less threatening than they were in the past) and the patient, with the therapist’s guidance, 

chooses the next level/action that they find feasible to expose themselves to, and plans a new set 

of exposures. Depending on the diagnosis and the individual’s learning propensities (e.g., 

whether they learn best model-based or model-free, and what their individual learning rate is), 

each exposure may need to be repeated a few or more times.  

 

A2.3 Exposures and Reinforcement Learning Prediction Errors 

One reason for the gradual nature of exposures is obvious: the patient will not agree to do 

something too distressing, and even if they do it, they may decide to terminate the therapy due to 

the high level of distress. However, RL theory suggests at least two more reasons for why 

gradual exposure is more effective. First, rewards and punishments are not merely external: if a 

socially anxious patient goes to a party on their own for their first exposure, their high subjective 

level of distress will function as an outcome for the action. If their initial estimate of the value of 

the action of “going to a party” was very low, this severe-distress outcome will only confirm this 

prediction. As a result, there will be no prediction error, and no new learning. The exposure will 

have failed. Instead, a well-planned exposure at a low level of predicted distress (level 3) can 

lead to learning to the extent that the exposure is planned so well that the patient experiences less 

distress than expected. This can be achieved by discussing all possible outcomes and their 

cognitive appraisal, and planning for how to mitigate any distress that arises. The goal is for the 
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patient to experience that the event that they predicted would lead to level 3 distress will not be 

as bad as they thought, and distress may even dissipate to level 0 over time without escaping the 

situation. This will cause a prediction error that will result in learning.  

A second advantage of gradual exposure is that prediction errors are not too large. 

Research suggests that large prediction errors prompt the creation of a new state (Gershman, 

Blei, Niv 2010). This new state will then be updated with the new information, but the old value 

will remain unchanged. According to RL theory, to unlearn old maladaptive state and action 

values, one should experience prediction errors that are not too small (otherwise there will be no 

learning) and not too large (as they will cause state-splitting). CBT exposures seem tailored to 

deliver exactly such prediction errors.  
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