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Dopaminergic prediction errors in  
the ventral tegmental area reflect  
a multithreaded predictive model

Yuji K. Takahashi    1 , Thomas A. Stalnaker    1, Lauren E. Mueller1, 
Sevan K. Harootonian2, Angela J. Langdon    3,4  & Geoffrey Schoenbaum    1,4 

Dopamine neuron activity is tied to the prediction error in temporal 
difference reinforcement learning models. These models make significant 
simplifying assumptions, particularly with regard to the structure of 
the predictions fed into the dopamine neurons, which consist of a single 
chain of timepoint states. Although this predictive structure can explain 
error signals observed in many studies, it cannot cope with settings where 
subjects might infer multiple independent events and outcomes. In the 
present study, we recorded dopamine neurons in the ventral tegmental area 
in such a setting to test the validity of the single-stream assumption. Rats 
were trained in an odor-based choice task, in which the timing and identity 
of one of several rewards delivered in each trial changed across trial blocks. 
This design revealed an error signaling pattern that requires the dopamine 
neurons to access and update multiple independent predictive streams 
reflecting the subject’s belief about timing and potentially unique identities 
of expected rewards.

Evidence has tied phasic activity in dopamine neurons to the predic-
tion error in temporal difference reinforcement learning (TDRL) mod-
els1–5. Yet these models make significant simplifying assumptions, 
particularly with regard to the structure of the predictions fed into 
the hypothesized TDRL comparators—the dopamine neurons—which 
usually consist of estimates of the current and future scalar values of 
a single chain of timepoint states. Although this predictive structure 
has been sufficient to explain the error signals observed in many 
studies6–14, it can fall short under a variety of conditions. One early 
example of such a condition occurred in studies in which the timing 
of the reward varied. The original TDRL implementations predicted 
that a delayed reward appearing earlier than expected should result 
in suppressed activity—a negative prediction error—later in the trial 
when the reward would normally have been expected. This was not 
observed in the data7,15,16; instead, when a delayed reward appeared 
early, it induced an increase in firing when it occurred but no 

suppression at its later ‘omission’. Thus, the biological system reacted 
as if the earlier appearance of the reward somehow predicted its later 
omission, that is, that the animal realized the reward had arrived early 
and did not expect a second reward. To account for this, a model was 
introduced that incorporated a reset in the prediction mechanism 
triggered by the terminal event ending the trial—the appearance of 
the reward17. More recent models attributed the apparent reset of 
reward expectations to changes in belief about the hidden state of 
a task, allowing a transition to the intertrial interval to be inferred 
after delivery of a variably timed reward18–20; although intuitive, this 
‘fix’ does not address what governs the identification of the terminal 
event, especially in more naturalistic settings in which there would be 
no clear termination of a series of potential rewards, or in which some 
rewards in the series might differ in features besides their timing. In 
the present study, we investigated this question, taking as our starting 
point the observation that changes in reward timing seem to reset 
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Fig. 1 | Task design, behavior and identification of putative dopamine 
neurons. a, Picture of apparatus used in the task, showing the odor port (~2.5 cm 
in diameter) and two fluid wells. b, Deflections indicating the time course of 
stimuli (odor and reward) presented to the animal on each trial. The dashed lines 
show when a reward was omitted and the solid lines when a reward was delivered. 
At the start of each recording session, one well was randomly designated to 
deliver a single drop of flavored milk (chocolate or vanilla) after a short delay 
(0.5 s). In the other well, one drop of the other-flavored milk was delivered after 
a long delay (1.0- and 2.0-s delay on first 2 trials, respectively, and 3.0-s delay 
thereafter). In both wells, a single drop of water—the terminal reward—was also 
delivered at a 5.0-s delay from well entry. In the second and fifth blocks, both 
delay and flavors were switched (delay-flavor switch) compared with the previous 
block. In the third and fourth blocks, the delay was switched without changing 
the flavors (delay-only switch). c, Chocolat (Cho)- and vanilla (Van)-flavored 
milk shown as equally preferred in two-flavor choice tests (one-way analysis of 
variance (ANOVA), F1,15 = 0.27, P = 0.61). The white lines represent the average and 
the gray lines the s.e.m. (n = 16 sessions collected from 8 rats). NS, not significant. 
d, Choice of high valued side before (Prev) and early and late after delay-only 
(left) and delay-flavor (right) switches. The rats selected the well where the first 
reward was delivered after a short delay more often on free-choice trials after 
learning (two-way ANOVA: chocolate, F2,406 = 152.1, P < 0.01; vanilla, F2,202 = 166.0, 
P < 0.01). The error bars represent the s.e.m. e–g, Reaction time (e), percentage 
incorrect choices (f) and percentage of trials (g) in which rats failed to wait for 

terminal reward on short (Sh) and long (Lo) forced-choice trials of each flavor. 
The rats responded faster when the first reward was delivered after a short delay 
(two-way ANOVA: chocolate, F1,101 = 12.1, P < 0.01; vanilla, F1,101 = 10.8, P < 0.01), 
made slightly more incorrect responses on short delay trials (two-way ANOVA: 
chocolate, F1,101 = 5.13, P = 0.03; vanilla, F1,101 = 5.92, P = 0.02) and were equally 
successful in waiting for the terminal reward on both trial types (two-way ANOVA: 
chocolate, F1,101 = 0.17, P = 0.68; vanilla, F1,101 = 0.03, P = 0.86). Importantly, there 
were no main effects or any interactions with block type (delay-only versus  
delay-flavor) for choice behavior (three-way ANOVA, F values <1.9, P values  
>0.14, see d), reaction time (three-way ANOVA, F values <0.01, P values >0.92 (e)) 
or percentage of incorrect or failed trials (three-way ANOVA, F values <0.19,  
P values >0.66 (f, g)). The white lines represent the average and the gray lines the 
s.e.m. (n = 102 sessions collected from 8 rats). h, Result of cluster analysis based 
on the half-time of the spike duration and the ratio comparing the amplitude 
of the first positive and negative waveform segments ((n – P)/(n + P)). Black, 
reward-responsive putative dopamine (DA) neurons (reward DA, n = 120); gray, 
reward (rew)-nonresponsive putative dopamine neurons (nonrew. DA, n = 41); 
open circle, putative nondopamine neurons (non-DA, n = 195). i, Violin graphs 
indicating average amplitude ratio (amp. ratio) and half-time of spike duration of 
putative dopamine neurons (black) and nondopamine neurons (white). The red 
lines represent average and the gray lines the s.e.m. (n = 356 cells collected  
from 8 rats).
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the predictive mechanism. We trained rats in an odor-based choice 
task, in which the timing of one of multiple rewards moved in each 
block. In some blocks, only the timing of this reward changed; in other 
blocks, we also changed its identity as it moved in time. As predic-
tions in TDRL models do not include information about the identity 
of events, this manipulation allowed us to determine whether and 
how a change in identity is incorporated into the internal models or 
beliefs reflected in the dopaminergic error signals. Importantly, the 
occurrence of a different reward early in a trial may be inferred to be 
a ‘bonus’ extra reward that does not reset other predictions and thus 
indicates that the initially expected reward is still to come. Finally, to 
further test the prediction reset mechanism, we broke the common 
relationship between the occurrence of a reward and termination of 
the trial. This was done by adding a second unflavored water reward 
at the end of every trial at a fixed delay. As we show, this separation 
revealed that the early appearance of a delayed reward has variable 
results on prediction-error signaling, which require the dopamine 
neurons to access multiple, largely independent predictive streams.

Results
Neurons were recorded during performance of an odor-guided 
choice task in which the rats sampled one of three different odor 

cues at a central port on each trial, and then had to respond at either 
a left or a right well to receive two drops of reward (Fig. 1a,b). These 
three trial types were pseudorandomly ordered and distributed in 
approximately equal proportions. One odor signaled reward avail-
ability in the left well (forced choice left), a second odor signaled 
reward availability in the right well (forced choice right) and a third 
odor signaled availability of reward at either well (free choice). In 
each block of trials, one of two equally preferred flavored milk solu-
tions (chocolate or vanilla, Fig. 1c) was delivered after a short delay 
(0.5 s) following a correct entry into one well, and the oppositely 
flavored milk was delivered after a longer delay (1 s on the first trial, 
2 s on the second trial and 3 s on subsequent trials) following a cor-
rect entry into the other well. In either well, the same amount of 
water was also delivered at 5 s after correct well entries, serving to  
terminate trials.

Rats were trained on the task before the start of recording, and, 
then, during recording, we manipulated the delay to the first reward and 
its flavor across four transitions between five blocks of trials (Fig. 1b).  
At the transitions after the first and fourth blocks, both delay  
and flavor of the first reward were switched, whereas only delay was 
switched at the other two block transitions. This allowed us to directly 
compare, for each neuron, its response to changes in reward timing 
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Fig. 2 | Changes in activity of reward-responsive dopamine neurons to shifts 
in reward timing and flavor. a,b, Heat plots representing average activity at 
the beginning and end of delay-only (a) and delay-flavor switch (b) blocks. Note 
that, on trials 1 and 2 of the long-delay blocks, the reward is delayed in steps. The 
arrows highlight epochs analyzed in the text, including time of delivery of short 
reward (blue), omission of short reward (red), omission of long reward (green) 
and delivery of terminal reward (black). c,e, Distributions of difference scores 
comparing firing with short reward delivery (left) and omission (right) on the first 
and last five trials of delay-only (c) and delay-flavor switch blocks (e).  

The numbers in each panel indicate the results of two-sided Wilcoxon’s signed-
rank test (P) and the average difference score (u) (n = 120 cells collected from 8 
rats). d,f, Average firing after delivery (blue) and omission of short reward (red) 
on initial trials and trials at the end of delay-only (d) and delay-flavor (f) switch 
blocks. The changes in firing in response to delivery and omission of the short 
reward were maximal at the beginning of the block and then diminished with 
learning in both block types (two-way ANOVA, F > 30.3, P < 0.01). The error bars 
represent s.e.m. (n = 120 cells collected from 8 rats).
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with its response to changes in reward timing combined with reward 
identity.

The rats responded to both transition types (delay-only and 
delay-flavor) by preferentially selecting on free-choice trials the well 
in which the first reward was delivered after a short delay (Fig. 1d).  
On forced-choice trials, they also responded faster at the well 
(measured from odor port withdrawal) when the first reward was 
to be delivered after a short delay (Fig. 1e), although they also made 
slightly more errors (Fig. 1f ). There were no differences in their 
success at waiting for the terminal reward on correct trials (Fig. 1g) 
and there were no differences in any of these effects by block type 
(delay-only versus delay-flavor). See figure captions for supporting  
statistics.

Dopamine neurons signal errors in response to unexpected 
delivery or omission of reward
Putative dopamine neurons were identified by means of a cluster analy-
sis based on spike duration and amplitude ratio (Fig. 1h,i); these fea-
tures were modeled after those used to distinguish dopamine neurons 
recorded in primates7, and they have been shown to selectively identify 
TH+ (tyrosine hydroxylase-positive) neurons in Long–Evans rats21. The 
cluster analysis identified 161 of 356 neurons recorded in the ventral 
tegmental area (VTA) as dopaminergic. Of these, 120 increased firing to 
reward and are analyzed in the main text. As expected, these putative 
dopamine neurons increased firing whenever a reward was delivered 
with a timing that was unexpected, as occurred on short delay trials at 
the start of both delay-only and delay-flavor switch blocks (Fig. 2a,b,  
dark/light blue arrows). This increase in activity was highest in the first 
few trials and then declined, consistent with signaling of the prediction 
error and not the event itself (Fig. 2c–f). A comparison of the errors 
evoked by early reward according to its flavor and block type showed 
that, although each difference showed a distribution, they were sta-
tistically indistinguishable from zero and the corresponding magni-
tudes were correlated across the two flavors (Fig. 3a) and block types  
(Fig. 3b), in accord with the similar valuation and sensory content of 
the two flavored milk solutions. These same cells also suppressed firing 
when an expected short reward was delayed (Fig. 2a,b, dark/light red 
arrows and Fig. 2c–f), which was inversely correlated with the increased 
firing to unexpected early reward across the population (Fig. 3c). In 
addition, these cells showed changes in activity to the high and low 
value cues with learning in each block that correlated with value as 
indexed by changes in free-choice behavior (Extended Data Fig. 1).

Reset of the dopaminergic error mechanism by early reward is 
specific rather than global
We next assessed whether these dopamine neurons would lack sup-
pressed firing after the early delivery of a delayed reward, as has been 
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and last five trials of delay-only (dark green) and delay-flavor switch blocks (light 
green). Three-way ANOVA (switch type × early/late × trial) showed a significant 
three-way interaction (F4,476 = 3.16, P = 0.01) and direct comparisons between two 
types of switches revealed that dopamine neurons fired significantly less on the 
first omission in the delay-flavor blocks than in the delay-only blocks (two-sided 
Student’s t-test, t = 2.522, P = 0.006). Activity on this specific trial was unlike 
activity on any of the other trials, as was behavior (licking, Extended Data Fig. 4),  
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from 8 rats).
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shown in primates7,15,16. We found that, when a delayed reward appeared 
early (without any change in its identity), the dopamine neurons did 
not suppress firing at the time it had been expected (Fig. 2a, dark green 
arrow and Fig. 4a, left panel, 4b, darker line). As discussed, this result is 

inconsistent with the original ‘no reset’ TDRL models, which predict the 
suppression of firing at the time of the (now omitted) delayed reward 
(Fig. 5a, dark green arrow). The absence of this suppression has been 
explained by incorporating a reset of the reward expectation to zero 
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states to be inferred. Below each model schematic, heat maps show the simulated 
reward prediction error responses for the corresponding model. Each model 
predicts the same pattern of reward prediction error (RPE) responses irrespective 
of the flavor condition of the block. Arrows highlight epochs analyzed in the text, 
including time of delivery of short reward (blue), omission of short reward (red), 
omission of long reward (green) and delivery of terminal reward (black). The 
bottom panels are average RPE at 0.5 s after cue onset (short delivery/omission), 
3 s after cue onset (long delivery/omission) and at the time of the terminal reward. 
Models produced qualitatively similar changes in activity to the cues (Extended 
Data Fig. 5).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | May 2023 | 830–839 835

Article https://doi.org/10.1038/s41593-023-01310-x

following the early unexpected appearance of the reward (Fig. 5b, dark 
green arrow). Notably, however, our data are not fully consistent with 
this altered model, because such a global reset leaves the subsequent 
terminal reward unpredicted, resulting in a maximal positive error to 
this event that does not reduce with experience (Fig. 5b, black arrows). 
Contrary to this prediction, we observed relatively low activity to the 
terminal reward when the delayed reward moved early (Fig. 2a,b, black 
versus blue arrows and Fig. 6a, right panel, 6b, black line).

This global reset model also fails to explain why the same neurons 
shown to reset in the delay-only blocks (Fig. 2a, dark green arrow) 
exhibited a significant suppression of firing to the omission of the 
delayed reward when the flavor was also changed (Fig. 2b, light green 
arrow and Fig. 4a, right panel, 4b, lighter line). This difference in the 
neural response to omission of the delayed reward in delay-only versus 
delay-flavor blocks was observed in both transitions in our five-block 
design and thus did not depend on the order of training (that is, whether 
the delay-only or delay-flavor block was first; Extended Data Fig. 2); and 
it was present even though the subjective value of the two rewards was 
not different, as per consumption tests and behavior in the task (Fig. 1). 
Indeed, sorting the blocks according to which flavor was numerically, 
if nonsignificantly, preferred in this test showed that the effect was 
present in both situations (Extended Data Fig. 3). Thus, although early 
delivery of a delayed reward did reset some expectations, this reset 
appeared to affect only expectations for that specific reward; expecta-
tions for the terminal reward remained unchanged, as did expectations 
for the delayed reward when the identity was not held constant.

For completeness, we also considered whether the delivery of the 
first reward might reset expectations by initiating a sequential predic-
tion for the terminal reward, following theoretical work in which a reset 
has been implemented as an inferred transition between hidden states 
of a task18. Such a model did prevent suppression of firing at the time 
of the (omitted) delayed reward (Fig. 5c, green arrow); however, it also 
generated a negative error just prior (Fig. 5c, 0.5 s before the green 
arrow), corresponding to the learned timing of the terminal reward 

relative to the first reward in this sequential prediction. Furthermore, 
like the global reset, this model also predicted a large positive error 
to the terminal reward when it finally did occur on these trials (Fig. 5c, 
black arrow, short delay blocks). Neither of these features was observed 
in the dopaminergic response (Fig. 2a,b and Fig. 6).

Finally, we tried a sequential-reset model in which there were two 
temporally distinct, sequential predictions—one initiated when the 
first reward occurred at 0.5 s and another when the first reward was 
delivered later. This model eliminated the suppression of firing at 
the time of the (omitted) delayed reward without generating an early 
negative prediction error (Fig. 5d, dark green arrow) and produced 
subtle effects of reward titration evident on the first two trials of the 
long-delay blocks (Fig. 5d, trials 1–2 of long blocks); on these trials, 
there is a negative error of ~2 s after the titrated first reward, reflecting 
the learned gap between the long and terminal rewards, followed by 
a positive error to the actual terminal reward when it appears. These 
errors are weakly present in the actual data (Fig. 2a,b, trials 1–2 of 
long blocks and Fig. 7c, right panel, 7d, black line), indicating only a 
subtle influence of these sequential expectations. However, similar 
to all single-stream models that we considered, this model could not 
reproduce—even qualitatively—the effect of changes in reward identity 
on the reset mechanism.

Dopamine neurons access and update multiple predictive 
streams
One way to achieve a reset that is selective with respect to different, 
potentially independent outcomes is to allow dopamine neurons to 
access and update several different, multithreaded predictive streams 
that reflect not only the timing and value of expected rewards but also 
their specific features or identity (Fig. 8a,b). In this framework, chains 
of predictive states are associated with the identity of the outcome 
they anticipate; even a single cue can support a rich predictive model 
with multiple threads if associated through experience with differ-
ent identities of outcomes. Such an architecture would allow an early 
reward to reset the expectation for the first reward without affecting 
the expectation for the separate and unique terminal reward in our 
task (Fig. 8c,d, black arrows). Furthermore, it could also account for 
a different neural pattern of firing if the moving reward changes its 
features, as in the delay-flavor blocks of our task. Specifically, a model 
with access to multiple identity-specific predictive streams should not 
reset the expectation for a later reward when receiving an early reward 
of different identity. This is because this early reward may represent 
an additional reward, not a later reward arriving early. In other words, 
when the timing alone changes, the dopamine neurons reflect an infer-
ence that this represents a movement of the reward; however, when 
reward identity also changes, they reflect this as the appearance of one 
reward and the disappearance of another. Consistent with this idea, 
licking behavior—reflecting an expectation of a reward by the rat at 
least—was significantly higher during omission of the delayed reward 
when flavor had changed than when it had not, especially at the start 
of the block when the maximal neural suppression was observed in 
the delay-flavor blocks (Extended Data Fig. 4). This pattern of results 
and the associated modeling suggests that dopamine neurons, or the 
information streams that they are receiving, consider the sensory fea-
tures of expected events—in this case, the flavor of a liquid reward—in 
making the determination of whether a single event has arrived early 
(and therefore should no longer be expected) or a new event has been 
introduced. These data, and the relatively stable firing to the terminal 
reward, indicate that dopamine neurons access a multithreaded predic-
tive model of expected rewards.

Discussion
We recorded dopamine neurons in rats engaged in a new task in which 
the timing and identity of expected rewards were manipulated. As 
expected, when a delayed reward was given earlier than expected, 

0 2 4 6 8 10

2

4

6

–10 –5 0 5 10
0

10

20

30

40

50

–10 –5 0 5 10
0

10

20

30

40

50

Short reward in
delay-only blocks
Terminal reward in
delay-only blocks

Sp
ik

es
 p

er
 s

First 5 Last 5

Trial number

C
el

l c
ou

nt

u = 1.23
P < 0.01 

u = –0.02
P > 0.10 

Short reward
delivery

(first 5–last 5)

Terminal reward
delivery

(first 5–last 5)

a b

Fig. 6 | Comparison of changes in activity of reward-responsive dopamine 
neurons to terminal reward and short reward in delay-only blocks.  
a, Distributions of difference scores comparing firing with short (left) and 
terminal reward on the first and last five trials of short trials in delay-only 
blocks. The statistics in each panel indicate the results of two-sided Wilcoxon’s 
signed-rank test (P) and the average difference score (u) (n = 120 cells collected 
from 8 rats). b, Average firing to short (blue) and terminal (black) reward on 
the first and last five short trials in delay-only switch blocks. Three-way ANOVA 
(reward type × early/late × trial) revealed a significant main effect of reward type 
(F1,118 = 4.87, P = 0.03) and a significant interaction between reward type and early/
late (F1,118 = 36.5, P < 0.01). A direct comparison revealed a significant main effect 
of reward type in early trials (two-way ANOVA, F1,118 = 11.9, P < 0.01), but not in 
later trials (F1,118 = 0.57, P = 0.45). The error bars represent the s.e.m. (n = 120 cells 
collected from 8 rats).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | May 2023 | 830–839 836

Article https://doi.org/10.1038/s41593-023-01310-x

we found that dopamine neurons responded to the unexpected early 
reward but did not suppress firing to its later omission, indicating that 
the later reward was no longer expected after the early arrival. This 
result replicates findings in primates showing that early reward deliv-
ery can reset or nullify expectations for later reward7,15,16. However, our 
findings show that this reset is not general, but applies only to expecta-
tions for that specific reward. This specificity was evident in two ways. 
First, the same neurons showed no changes in firing to a unique and 
temporally fixed reward that occurred later at the end of each trial and, 
second, they also suppressed firing on omission of a delayed reward 
if the early reward was of a different flavor (that is, when a different 
reward was obtained earlier than expected). As we show, these effects 
cannot be modeled by current TD algorithms that use, and generate, a 

single stream of general scalar value predictions; instead they require 
that dopamine neurons access a multithreaded predictive stream, 
contributing prediction errors to each thread separately.

Importantly. this is probably just one example of the ability of the 
biological system—the dopamine neurons—to utilize a more complex 
and varied state space than is typically envisioned. Although such 
complexity in the underlying state space is at odds with our current 
models, it should not be surprising to us as neuroscientists. TDRL mod-
els were intended as a simplified heuristic, to illustrate properties of 
the learning system, but are unlikely to accurately reflect the complexi-
ties of the ultimate biology. Although it was sufficient to include one 
stream of scalar predictions to explain previous data, this should not 
be taken as a definitive account of the capabilities of the TDRL learning 
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The statistics in each panel indicate the results of two-sided Wilcoxon’s signed-
rank test (P) and the average difference score (u) (n = 120 cells collected from 
8 rats). b, Average firing to short (blue) and terminal (black) reward on the 
first and last five trials of short trials in both blocks. Four-way ANOVA (reward 
type × switch type × early/late × trial) revealed significant main effects of reward 
type (F1,119 = 63.5, P < 0.01), early/late (F1,119 = 88.2, P < 0.01) and trial (F4,476 = 11.6, 
P < 0.01), and a significant interaction between reward type and early/late 
(F1,119 = 41.7, P < 0.01). There were no main effects or interactions involving 
switch type (F < 1.95, P > 0.10). Direct comparisons revealed that activity was 
significantly higher for terminal reward in the early and late trials (two-way 
ANOVA, F > 12.3, P < 0.01) (n = 120 cells collected from 8 rats). c, Distributions 
of difference scores comparing activity during short reward omission (left) and 
2 s after delayed reward on the first two and last five trials in both blocks. Note 
that, as the 2-s period is confounded by delivery of the terminal reward from the 

third trial on, the last five trials used baseline firing, which is illustrated by the 
gray dotted line in d. The statistics in each panel indicate the results of two-sided 
Wilcoxon’s signed-rank test (P) and the average difference score (u) (n = 120 
cells collected from 8 rats). d, Average firing to short reward omission (red) and 
2 s after delayed reward (black) on the first and last five trials in both blocks. As 
this 2-s period is confounded by delivery of the terminal reward from the third 
trial on, the gray dotted line illustrates baseline firing. Four-way ANOVA (reward 
type × switch type × early/late × trial) revealed significant main effects of reward 
type (F1,119 = 84.8, P < 0.01), early/late (F1,119 = 50.8, P < 0.01) and trial (F4,476 = 43.9, 
P < 0.01), and a significant interaction among reward type, early/late and trial 
(F4,476 = 3.13, P = 0.02). There were no main effects or interactions involving switch 
type (F < 1.5, P > 0.10). Direct comparisons revealed that activity was significantly 
lower for omission of the short reward than in the 2-s period after delayed reward 
in both the early and the late trials (three-way ANOVA, F > 50.0, P < 0.01).  
A direct comparison of activity on the first two trials to short reward omission, 
the period 2 s after delayed reward and baseline, revealed that each was 
statistically different from the other two (three-way ANOVA, F > 23.0, P < 0.01). 
The error bars represent the s.e.m. (n = 120 cells collected from 8 rats).
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system without targeted testing of the limitations such a representation 
implies. Accordingly, the field has recently seen a growing number of 
correlative and causal reports implicating dopaminergic error signals 
in situations more complex than these models can easily explain. Two 
of these are especially relevant to the current results. One involves 
reports that dopamine neurons signal errors in the prediction of sen-
sory features of expected events in both rats and humans21–23. These 
signals are not salience signals, because they are anti-correlated with 
the firing of the same neurons on reward omission, which is an obvi-
ously salient event21, and the sensory content of the prediction error 
can be decoded from their pattern22. Instead, such activity appears to 
reflect a sensory prediction error, an idea supported by causal data 

showing that dopamine transients are involved in learning in response 
to unexpected changes in the sensory content of both rewarding24,25 
and neutral events26. The current data add to these previous results, 
confirming that the predictive framework underlying dopaminergic 
prediction-error firing incorporates information about the sensory 
features of expected rewards, while further showing that predictions 
about rewards of different identities can be maintained independently. 
Such a multithreaded signal is consistent with the need to track mul-
tiple independent features of our environments. It is interesting that 
having independent predictions of rewards of different flavors would 
give rise to the sensory prediction errors observed in these previous 
studies21–23.
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Fig. 8 | Prediction error responses in a TDRL model with multithreaded 
predictions are sensitive to reward identity. a, Schematic of the hidden-state, 
multithreaded, prediction TDRL model. Trials begin in the background state (bg), 
which acquires no value expectations. On observing the cue, multiple sequences 
of states can be initiated. A single sequence, or ‘thread’, predicts a single outcome 
identity; on delivery of the correct flavored reward, an identity-specific reset 
can be inferred. b, Simulated belief state for the last trial of block 1 and the first 
4 trials of block 2 in well 2. On each trial, the probability of transition from the 
background state to each of the identity-specific threads is updated according 
to the rewards that are actually received. c,d, Heat maps of the simulated reward 

prediction-error responses after delay-only switch (c) and delay-flavor switch 
(d) for the model in which the dopamine neurons have access to a multithreaded 
predictive model that reflects not only the timing or value of expected rewards 
but also their features or identity. Arrows highlight epochs analyzed in the text, 
including time of delivery of short reward (blue), omission of short reward (red), 
omission of long reward (green) and delivery of terminal reward (black). The 
bottom panels are average RPE at 0.5 s after cue onset (short delivery/omission), 
3 s after cue onset (long delivery/omission) and at the time of the terminal 
reward. Models produced qualitatively similar changes in activity to the cues 
(Extended Data Fig. 5).
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A second area in which dopamine has been implicated that is 
relevant to the current findings is its role in tracking latent causes or 
so-called belief states20,27,28. The current data support this proposal 
because the determination of whether to recognize the early reward 
in our task as either relocated from later or new is entirely based on an 
internal belief of the subject. It is akin to the visual perception trick 
in which a dot moves behind a piece of paper, only to emerge shortly 
thereafter on the other side. Is it the same dot or a new one? Visual 
processing areas integrate variables regarding speed, size, color and 
our understanding of how the world works to infer the answer to this 
question. This same sort of inference process is at work in the current 
experiment, and evident in the subjects’ behavior and the recorded 
dopamine neurons’ firing patterns; dopamine neuron activity in the 
delay-only and delay-flavor blocks reflects the impact of this internal 
belief state, which is probably dependent on input from a subset of 
areas impacting on the VTA, particularly the prefrontal regions key to 
inference and creating cognitive maps involving hidden states29 and 
known to impact dopamine neuron signaling30–33.

Consistent with this emphasis on belief state, it is worth noting 
that we do not intend to imply that the flavor of an expected reward 
or even its external identity is the only variable that might be used to 
distinguish predictive streams. Flavor is just the feature we used here; 
any other feature might contribute to determining that an expected 
event is unique and unrelated to other events and thus deserving of 
its own predictive stream, including features relevant to value such as 
size, number, current need and even the general context of the task. For 
instance, if some trials involved three rewards, an early reward may be 
treated as an extra one, rather than the delayed reward arriving early. 
Conversely, it is possible that dopamine neurons in the current design 
would behave very differently if the subject were extremely deprived, 
which might promote generalization across the two flavors. Indeed, 
our data probably already reflect some degree of generalization; the 
suppression is clearly evident on the first trial but not thereafter, sug-
gesting partial but not complete separation of the predictive streams 
in our particular task. Similarly, we do not require the multiple predic-
tions evident in our data to operate entirely in parallel. Although not 
modeled here, one can imagine designs in which sequential predictions 
between the different rewards, as we have modeled, might be nested 
within or coexist with parallel predictive streams. Indeed, although 
we did not do it here, the principle of multithreaded predictions can 
be easily extended to more sophisticated task representations such 
as semi-Markov state representations19,34, which will then be able to 
account for both the temporal and the sequential dependence of 
reward predictions, as well as the complex outcome specificity of these 
predictions that we demonstrate here. These unanswered questions 
notwithstanding, our findings show concretely that dopamine neurons 
parse much more detailed, multilayered and complex predictive input 
than typically envisioned. This has implications not only for the vari-
ous sources of afferent input, which must be less interchangeable and 
contain higher-resolution information than currently thought, but also 
for the output, which is likely to be distributed and multidimensional, 
providing much more information to downstream areas regarding 
prediction errors than currently assumed.
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Methods
These experiments received ethical approval from the National Insti-
tute on Drug Abuse Animal Care and Use Committee under animal 
study protocols 18-CNRB-108 and 20-CNRB-108.

Subjects
Eight male Long–Evans rats (Charles River Labs), aged approximately 
3 months at the start of the experiment, were used in the present study.

Stereotaxic surgery
All surgical procedures adhered to guidelines for aseptic technique. 
For electrode implantation, a drivable bundle of eight 25-μm diameter 
FeNiCr wires (Stablohm 675, California Fine Wire) was chronically 
implanted dorsal to the VTA in the left or right hemisphere at 5.3 mm 
posterior to bregma, 0.7 mm laterally and 7.5 mm ventral to the brain 
surface at an angle of 5° toward the midline from vertical. Wires were 
cut with surgical scissors to extend ~2.0 mm beyond the cannula and 
electroplated with platinum (H2PtCl6, Sigma-Aldrich) to an impedance 
of 500–900 kΩ. Cephalexin (15 mg kg−1 orally) was administered twice 
daily for 2 weeks postoperatively.

Histology
All rats were perfused with phosphate-buffered saline followed by 
4% paraformaldehyde (Santa Cruz Biotechnology Inc.). Brains that 
received only electrode implantation were cut in 40-μm sections and 
stained with thionin.

Odor-guided choice task
Recording was conducted in aluminum chambers. A central odor 
port was located in one wall above two fluid wells. Two lights were 
located above the panel. The odor port was connected to an air flow 
dilution olfactometer to allow the rapid delivery of olfactory cues. 
Odors were chosen from compounds obtained from International 
Flavors and Fragrances. Trials were signaled by illumination of the 
panel lights inside the box. When these lights were on, nosepoke into 
the odor port resulted in delivery of the odor cue to a small hemi-
cylinder located behind this opening. One of three different odors 
was delivered to the port on each trial, in a pseudorandom order. At 
odor offset, the rat had 3 s to make a response at one of the two fluid 
wells. One odor instructed the rat to go to the left to get a reward, a 
second odor instructed the rat to go to the right to get a reward and 
a third odor indicated that the rat could obtain a reward at either 
well. Odors were presented in a pseudorandom sequence such that 
the free-choice odor was presented on 7 of 20 trials and the left/right  
odors were presented in equal numbers. In addition, the same odor 
could be presented on no more than three consecutive trials. Once 
the rats were shaped to perform this basic task, we introduced 
blocks in which we manipulated the delay preceding reward delivery  
(Fig. 1b). For recording, one well was randomly designated as short 
and the other as long at the start of the session (Fig. 1b). On short 
trials, a drop of chocolate- or vanilla-flavored milk was delivered at 
0.5 s and a drop of water was delivered at 5.0 s after the rats entered 
the fluid wells. On long trials, a drop of the other-flavored milk was 
delivered at 1.0 s on the first trial, 2.0 s on the second trial and 3.0 s 
on the third trial and thereafter. In addition, a drop of water was also 
delivered at 5.0 s on all trials; this terminal reward ensured that the 
rats would remain in the well during the delays on both the short and 
the long trial types. Once rats exhibited biased choice behavior in 
the initial block, we switched the delays to the flavored reward in the 
two wells, across four transitions. At the first and fourth transitions, 
we also switched the flavor of the two rewards when we switched 
the delays. All blocks were 30- to 50-trials long; block switches were 
triggered when rats chose the short reward side on at least seven of 
the last ten free-choice trials.

Single-unit recording
Wires were screened for activity daily; if no activity was detected, 
the rat was removed and the electrode assembly was advanced 40 
or 80 μm. Otherwise, active wires were selected to be recorded, 
a session was conducted and the electrode was advanced at the 
end of the session. Neural activity was recorded using Plexon Mul-
tichannel Acquisition Processor systems. Signals from the elec-
trode wires were amplified 20× by an op-amp headstage (Plexon 
Inc., catalog no. HST/8o50-G20-GR), located on the electrode 
array. Immediately outside the training chamber, the signals were 
passed through a differential preamplifier (Plexon Inc., catalog 
no. PBX2/16sp-r-G50/16fp-G50), where the single-unit signals 
were amplified 50× and filtered at 150–9,000 Hz. The single-unit 
signals were then sent to the Multichannel Acquisition Processor 
box, where they were further filtered at 250–8,000 Hz, digitized 
at 40 kHz and amplified at 1–32×. Waveforms (>2.5:1 signal:noise) 
were extracted from active channels and recorded to disk by an 
associated workstation.

Data analysis
Units were sorted using Offline Sorter software from Plexon Inc. Sorted 
files were then processed and analyzed in NeuroExplorer and MATLAB. 
Dopamine neurons were identified via a waveform analysis. Briefly 
cluster analysis was performed based on the half-time of the spike 
duration and the ratio comparing the amplitude of the first positive 
and negative waveform segments. The center and variance of each 
cluster were computed without data from the neuron of interest, and 
then that neuron was assigned to a cluster if it was within 3 s.d. of the 
cluster’s center. Neurons that met this criterion for more than one 
cluster were not classified. This process was repeated for each neuron. 
Putative dopamine neurons that showed an increase in firing to reward 
compared with baseline (400 ms before reward) were further classified 
as reward responsive (Student’s t-test, P < 0.05). To analyze neural 
activity to reward, we examined firing rate in the 400 ms beginning 
100 ms after reward delivery.

Computational modeling
We modeled dopaminergic prediction-error signals during the 
task using variations of the original temporal difference (TD) algo-
rithm35,36, applied in a partially observable environment18,20,37. In TD 
learning, reward predictions take the form of a value expectation V, 
which is the expected cumulative discounted future reward at each 
timepoint t:

V (t) = E [
∞
∑
τ=t

γτ−tR (τ)] ,

where 0 ≤ γ ≤ 1 exponentially discounts reward R delivered at τ and E[·] 
denotes the expectation (that is, the average).

Rather than model timepoints during a trial using the complete 
serial-compound (CSC) representation4,38, we assume that each trial is 
represented as a Markovian sequence of hidden (that is, latent) discrete 
states s ∈ {1,… ,N}, in which the current state must be inferred using 
knowledge of the transition structure between hidden states (described 
by the transition matrix Tst→st+1 = P (st+1|st)) and the relationship between 
the possible observations that occur during the task and state transi-
tions during a trial (described by the observation matrices 
Ost→st+1 [ot+1] = P (ot+1|st+1, st)). This partially observable setting allows 
us the flexibility to model different criteria for inferring a reset of 
reward predictions contingent on the observations made during a trial, 
along with different assumptions about the latent, possibly distributed, 
structure of reward predictions in the task. Thus, rather than learning 
a value for each timepoint, values are learned for each element of the 
belief state, which is the probability distribution over hidden state 
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occupancy at each timepoint. Following Bayes’ rule, the belief state 
evolves from t to t + 1 according to:

bs (t + 1) = P (st+1|ot+1, st) ∝ ∑
st
P (ot+1|st+1, st)P (st+1|st)P (st)

where the proportionality is resolved by normalizing the probability 
of all possible states st+1 to sum to 1.

In each model, we assume a single ‘background’ state (denoted 
bg) that does not accrue any value (that is, cannot be associated with a 
reward prediction), whereas all other states are grouped into ‘threads’—
chains of states (denoted by c; see below) through which the model 
progresses one timepoint after another. This progression can be inter-
rupted by inferring a reset—a transition to the zero-value background 
state rather than continued progression within a predictive thread—
contingent on observation of certain events (specific details for each 
model are given below). We model only reward expectation during the 
task and not the choice, by representing entry to each reward well as 
a cue. Throughout, we assume the space of possible observations is 
fixed, with o ∈ {empty (that is, no event), cue, Rvanilla, Rchocolate, Rterminal}.

Single-thread classic TDRL model without reset. In our single-thread 
TDRL model, the estimated value at time t is the linear combination of 
learned predictive weights over the belief state at the current timepoint:

V (t) = ∑
s
ws (t)bs (t) .

Value estimates for the current and next timestep are used to 
compute a prediction error:

δ (t) = Rt+1 + γV (t + 1) − V (t) ,

which is used to update the predictive weights via a TD(λ) learning rule:

ws (t + 1) = ws (t) + ηesδ (t) ,

with learning rate 0 ≤ η ≤1. We decay all learned weights according to 
ws ← (1 − κ)ws  between successive trials with decay constant 0 ≤ κ ≤1 
(where 1 is complete decay of learned predictive weights to 0 over a 
single timestep and 0 is no decay). Although decay is not typically 
included in the classic TD algorithm, we include it here to account for 
the residual phasic dopaminergic response to predicted rewards that 
is apparent in the empirical results. As mentioned above, the predictive 
weight for the background state is fixed at 0. This TD(λ) learning rule 
uses eligibility traces, es, to allow the update of predictive weights for 
states that have been occupied previous to the current timepoint in a 
given trial. Eligibility traces evolve according to:

es (t) = γλes (t − 1) + bs (t) ,

with the constraint that 0 ≤ es ≤ 1. This means the eligibility trace for a 
state is set to the current belief in occupancy of that state (a maximum 
of 1), and then decays with time constant λ over future timepoints 
during a trial.

Importantly, and following the complete serial-compound stimu-
lus representation commonly used in TDRL models39, the transition 
and observation probabilities of this model do not include a reset of 
the single chain of predictive states once this chain has been initiated 
by observing the cue. State transitions in this model are Tbg→bg = 0.5 
(for the transition from the background state to itself), Tbg→c0 = 0.5  
(initiating the single thread of states corresponding to a trial), Tcj→cj+1 = 1 
(continuing the thread) and TcN→bg = 1 (thread termination back to the 
background state, for the intertrial interval), where cj denotes the 
ordered states within a predictive thread (j = 0, …, N states). All other 

transition probabilities are 0, meaning that all trials have the same 
structure traversing the single thread of consecutive states. The obser-
vation matrices contain the probability of each unique observation 
being emitted during the transition from st → st+1; only observation 
probabilities that correspond to permissible transitions are  
nonzero: Obg→bg [{empty,Rvanilla,Rchocolate,Rterminal}] = 0.25, Obg→c0 [cue] = 1, 
Ocj→cj+1 [{empty,Rvanilla,Rchocolate,Rterminal}] = 0.25 and OcN→bg[empty] = 1.

Single-thread classic TDRL model with reset. Within the single- 
thread state representation, we model a reset of reward predictions  
as an inferred transition to the zero-value background state of the  
task. This inference process is controlled by the combination of state 
transition probabilities contained in T and the transition-specific  
observation probabilities in O. The within-predictive chain transition 
structure is modified from the previous model to allow for the  
equal possibility of either continuation or reset from any state cj: 
Tcj→bg = 0.5, Tcj→cj+1 = 0.5. Whether a reset is actually inferred at any 
timepoint depends on the current observation; in this model, we  
apply a reset on observing any one of the three possible rewards  
by allowing an observation of a reward to be possible only with a transi-
tion to the background state: Ocj→bg [{Rvanilla,Rchocolate,Rterminal}] = 0.33, 
Ocj→cj+1 [{Rvanilla,Rchocolate,Rterminal}] = 0 and Ocj→cj+1 [empty] = 1, that is, con-
tinued progression within the single thread of predictive states once 
it has been initiated is possible only with an accompanying empty 
observation.

An inferred transition to the background state also resets eligibility 
traces es for all states within the single chain:

es = es ⋅ ∑
s
bs (t) ,

for all s ∈ {c0,… , cN} . This means that the eligibility of any state for 
update is limited by the maximum state occupancy in that thread; once 
a (complete) reset has been inferred, this term is zero, effectively wiping 
out the eligibility of within-thread states for future updates of their 
predictive weights.

Single-thread classic TDRL model with sequential reset. We also 
consider a model in which a reset involves the initiation of a new chain 
of states on delivery of the first reward, rather than a transition to the 
nonpredictive background state. This sequential-reset model has only 
a single thread active at any point during the trial, and the second 
thread is initiated on observing the first reward (of either flavor). The 
transition structure for this model is amended from the previous 
single-chain models to allow for the equal probability of continuation 
of the first thread (A) or initiation of the second thread (B): 
TAj→B1 = 0.5, TAj→Aj+1 = 0.5,  where B1 is the first state of the second thread. 
Probability of continuation of the second thread is split with the prob-
ability of transition to the background like the previous reset model: 
TBj→bg = 0.5, TBj→Bj+1 = 0.5 . Here, the null observation is uniquely mapped 
to the continuation of A or B, whereas observation of a reward is associ-
ated with transition from A to B and B to background.

Single-thread classic TDRL model with delay-specific sequential 
reset. This model is a modification of the single-thread sequential-reset 
model above, in which one of two distinct threads is initiated on receiv-
ing the first reward, depending on the delay to that first outcome. 
Transition structure for this model allows for the equal probability of 
continuation of the first thread (A) or initiation of the second thread 
(B): TAj→B1 = 0.5, TAj→Aj+1 = 0.5,  for all states j up to and including t = 0.5 s, 
and continuation or initiation of a third thread C for all states j later 
than this timepoint: TAj→C1 = 0.5, TAj→Aj+1 = 0.5.

Note that T and O for these single-thread TDRL models are fixed 
and have been constructed to result in low state uncertainty; a single 
discrete state is occupied at each timepoint to make these models 
equivalent to TD models developed with the CSC representation, while 
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allowing for an inferred reset of the hidden state of the task based on 
the sequence of observations during a trial.

Multithread TDRL model. To account for the identity specificity of 
the dopaminergic prediction-error responses, we modeled multiple 
predictive threads of task states, cj[A], where j indexes the ordered 
states within a thread (as above) and A indexes the different threads. 
We introduce a new TD(λ) algorithm in which value expectations are 
specific to the expected outcome identities:

VA (t) = ∑
s
MA,sws (t)bs (t) ,

where A∈ {vanilla, chocolate, terminal} for this task. The matrix MA,s 
controls the mapping between states and the identity-specific value 
expectations to which they contribute; for simplicity, we assume that 
a thread of reward-predictive states does not generalize across differ-
ent outcome expectations, requiring all states within a single predic-
tive thread A to map to a single outcome identity. This means that we 
constrain MA,s to be 1 for all states within a predictive thread A and 0 
otherwise. Throughout the main text we thus name each predictive 
thread by the outcome identity to which it uniquely maps. (Note that 
predictive weights in this case need only be indexed by state s.)

Prediction errors in this model are thus also vectorized, with one 
element per outcome identity:

δA (t) = RA (t + 1) + γVA (t + 1) − VA (t) .

This vector prediction-error signal is used to update the predictive 
weights of each state:

ws (t + 1) = ws (t) + ηes (Us,AδA (t)) ,

where Us,A controls the mapping between prediction errors in each 
channel and states. In the present study, we take Us,A = MT

A,s (that is, the 
inverse of the matrix MA,s,) such that the identity-specific 
prediction-error maps back to the corresponding thread of predictive 
states. Eligibility traces for each state follow the same dynamics as 
previously described and weights decay between successive trials by 
ws ← (1 − κ)ws  for all states s that had nonzero eligibility during the 
trial. Note that this TD learning rule reduces to the single thread update 
for A ∈ {1} and MA,s = 1 for all s. Here, noting the correlated sensitivity 
of individual units to rewards of different identities, we assume that 
the identity-specific vector prediction-error signal is distributed 
across the population of dopamine neurons and model the average 
population response as the average over threads for comparison to 
the data.

The transition probabilities for the multithread TDRL model con-
trol which predictive threads are initiated on observation of the cue. 
The transition matrix is similar to that for the single-thread TDRL model 
with reset, with Tcj[A]→cj+1[A] = 0.5 and Tcj[A]→bg = 0.5 within each thread, 
and all transitions between threads set to 0, that is, Tcj[A]→ck[B] = 0.   
Unlike the previous models, which have fixed transition probabilities, 
in the present study we also update the probability of initiating a spe-
cific thread of predictive states based on the observations made within 
each trial. At the completion of a trial, transition probabilities to initiate 
each predictive thread are thus learned as follows:

Tbg→c0[A] = Tbg→c0[A] + ηT [1 − Tbg→c0[A]]

if the outcome corresponding to A was delivered on that trial, and

Tbg→c0[A] = Tbg→c0[A] + ηT [0 − Tbg→c0[A]]

otherwise40.

Observation probabilities for transitions to and from the background  
state in this model are similar to the single-thread TDRL model with 
reset, with Obg→bg [empty] = 0.5,Obg→bg [{Rvanilla,Rchocolate,Rterminal}] = 0.167 
and Obg→c0[A,B,C] [cue] = 0.33. To determine which specific observations 
trigger a reset of each predictive thread by allowing a transition to the 
background state to be inferred, we set for each predictive thread a 
nonzero probability of observing the specific outcome corresponding 
to the channel identity on transition to the background state: 
Ocj[A]→bg [{RA}] = 1 .  I n  a d d i t i o n ,  Ocj[A]→cj+1[A] [{empty}] = 0.5,  a n d 
Ocj[A]→cj+1[A] [{RB,RC}] = 0.25,  where B and C are the outcome types that 
do not match the corresponding channel identity of predictive  
thread A.

Model simulations. For simplicity, and to explain the recording results 
presented in this manuscript, we model only the processes of reward 
prediction and learning, ignoring the (separate) mechanism of action 
selection. For this, we used a simplified representation of the task in 
which entry into a reward well is modeled as the onset of a cue (specific 
to that well) and reward delivery follows the same temporal and identity 
contingencies as in the empirical task, with a fixed block length of 50 
trials. We simulated each trial using a timestep of 0.1 s for a total dura-
tion of 9 s. Parameters for the single-thread learning models were 
η = 0.4, γ = 0.95, λ = 1 and κ = 0.1. Parameters for the multithread TDRL 
model were the same, with the addition of ηT = 0.5 for learning the 
transition probabilities between the cue and the start of each thread.

Statistics and reproducibility
This section has been added to comply with journal policies. The study 
was designed to allow each session to contain relevant manipulations 
to address the a priori hypothesis motivating the study, thus most of 
our analyses were within sessions and subjects/neurons. Within this 
framework, the presentation of cues and trial types, and precise tim-
ing of the switches and the organization of the initial trial block were 
chosen pseudorandomly, by rules in the computer program running 
the task or by an experimenter when outside the session. The experi-
menter was not blind to the conditions of the experiment. No statistical 
method was used to predetermine sample size or specific tests applied; 
rather, sample sizes were chosen, based on previous similar work, as 
those required to demonstrate robust prediction-error correlates, 
and statistical tests were chosen based on their appropriateness for 
the design and to maintain consistency with previous studies19,21,33. 
No animals or data points were excluded from the analyses. Data dis-
tribution was assumed to be normal, but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The dataset and all scripts used in the present study are available at 
https://github.com/YouGTakahashi/ultra_delay_analysis for the unit 
analyses and at https://github.com/ajlangdon/multithreadTD for the 
modeling.

Code availability
The dataset and all scripts used in the present study are available at 
https://github.com/YouGTakahashi/ultra_delay_analysis for the unit 
analyses and at https://github.com/ajlangdon/multithreadTD for the 
modeling.
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Extended Data Fig. 1 | Activity to the odor cues changes with value and free 
choice behavior across trial blocks and does so similarly for the two block 
types. (a) Average firing in the reward-responsive dopamine neurons during 
presentation of the high and low value cues. Average firing is plotted for the first 
and last 5 trials of the Delay-Only and Delay-Flavor blocks. Activity increased to 
the high value cue, paired with the early reward, across each block (Three-way 
ANOVA, Trial x value, F9,1071 = 9.46, p < 0.01), and there was no difference in the 
pattern across switch types (F’s < 1.86, p’s > 0.06). Error bars represent SEM. 
n = 120 cells collected from 8 independent rats. (b) Relationship between the 

change in firing to the high and low value cues and the change in free choice 
behavior. The difference in firing to the high and low value cues in the first (blue) 
and last (red) 5 trials of all the blocks is plotted against the percentage of choice 
of the short reward during these same trials. The two measures were strongly 
correlated (scatter plot) reflecting the shift in both measures from early to late 
(blue to red in the distribution plots) within each block (Two-sided Wilcoxon 
ranksum test, cue, p < 0.01; choice, p < 0.01). n = 120 cells collected from 8 
independent rats. Note all models implemented in the main text also produced 
changes in signal to the cues that differed by value (see Extended Data Fig. 5).
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Extended Data Fig. 2 | Changes activity of reward-responsive dopamine 
neurons to omission of a delayed reward in delay-only and delay-flavor 
blocks do not depend on order of switches. Displays as in Fig. 5a of main text 
except that (a) shows data from blocks 2 and 3 data in which the delay-flavor 
block preceded the delay-only block, and (b) shows data from blocks 4 and 5 in 
which the delay-only block preceded the delay—flavor block. Statistics in each 

panel indicate results of Wilcoxon signed-rank test (p) and the average difference 
score (u). Comparisons of the distributions in panels a and b showed that they 
were not different (Two-sided Wilcoxon rank sum test) within either delay-only 
(p = 0.48) or delay-flavor switches (p = 0.60). n = 120 cells collected from 8 
independent rats.
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Extended Data Fig. 3 | Changes activity of reward-responsive dopamine 
neurons to omission of a delayed reward in delay-only and delay-flavor 
blocks do not depend on non-significant numerical differences in subjects’ 
consumption of the two flavors (Fig. 1c). Displays as in Fig. 5a of main text 
except that (a) shows data involving omission of the numerically-higher reward 
and (b) show data involving omission of the numerically-lower reward. Statistics 

in each panel indicate results of Wilcoxon signed-rank test (p) and the average 
difference score (u). Comparisons of the distributions in panels a and b showed 
that they were not different (Two-sided Wilcoxon rank sum test) within either 
delay-only (p = 0.29) or delay-flavor switches (p = 0.88). n = 120 cells collected 
from 8 independent rats.
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Extended Data Fig. 4 | Licking behavior during omission of long reward. 
(a) Average lick rate in 2 sec after an omission of delayed reward on first trial 
and average of last 5 trials in the Delay-Only (dark-blue) and the Delay-Flavor 
(light-blue) switches. Two-way ANOVA (early/late x switch types) revealed 
a significant main effect of early/late (F1,51 = 9.47, p < 0.01) and a significant 
interaction between early/late and switch type (F1,51 = 5.18, p < 0.05). A step down 
comparison revealed that lick rates in the first trial were significantly higher than 
those in the last trials after a Delay-Flavor switch (F1,51 = 9.90, p < 0.01, light-blue), 
but not after a Delay-Only switch (F1,51 = 0.54, p > 0.10, blue). Lick rates on the 

first trial in the Delay-Flavor switch were significantly higher than those in the 
first trial after a Delay-Only switch (Two-way ANOVA, F1,51 = 4.11, p = 0.04), but 
not during the last 5 trials (F1,51 = 0.85, p > 0.10). Error bars represent SEM. n = 53 
sessions collected from 8 independent rats. (b) Distributions of difference 
scores comparing lick rates on the first and last trials after Delay-Only (left) and 
Delay-Flavor (right) switches. The numbers in each panel indicate results of 
Two-sided Wilcoxon signed-rank test (p) and the average difference score (u). 
n = 53 sessions collected from 8 independent rats.
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Extended Data Fig. 5 | Simulated prediction error response to the cue in high and 
low value blocks for each TDRL model. Simulated reward prediction error responses 
to the cue in the (a) single thread TDRL model without reset, (b) single thread TDRL 
model with reset, (c) single thread TDRL model with sequential reset, (d) single 

thread TDRL model with delay-specific sequential reset and the (e) multithread TDRL 
model for each of the delay and delay-flavor block switches. All models predicted 
qualitatively similar changes in activity to the high value (blue) and low value (red) cues 
across first and last 5 trials of delay-only and delay-flavor block switches.

http://www.nature.com/natureneuroscience
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Give P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection Data was acquired using Plexon hardware (MAP Systems) and software and behavioral control was implemented using custom programs 

written in C++.

Data analysis Data was analyzed using Plexon software (Offline Sorter v4) combined with custom scripts written in Matlab (v2016-2020).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Study examining neural correlates (single unit firing) of errors in reward prediction.  Data are quantitative.

Research sample Subjects are Long-Evans rats of an age, sex, and number to conform to prior studies from our lab showing prediction error correlates 

on which this study is built.

Sampling strategy Neural activity was acquired daily as rats completed training sessions using driveable fine-wire microelectrodes and recording on 

MAP systems from Plexon.   Subsequently units from completed sessions were sorted and subjected to a standard waveform-based 

cluster analysis to separate them and classify them as putative dopamine neurons according to established procedures as described  

in the text using Offline Sorter v4.  The numbers of rats, sessions, and ultimately neuron and dopamine neuron count were based on 

what is known to reveal robust error signaling in the control blocks in prior work in this task.  Factors in the design were 

pseudorandomized by computer or experimenter where possible and appropriate; the experimenter was not blind to experimental 

condition.

Data collection Data was acquired by computer using Plexon hardware and software, combined with custom programs for behavioral control written 

in C++.  

Timing November 2017-December 2018

Data exclusions No data were excluded from analyses.

Non-participation No subjects were eliminated or dropped from the analyses.

Randomization There is only one experimental group.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male Long-Evans rats, aged ~3 months at the start of the experiment

Wild animals No wild animals were used in the study.

Field-collected samples No field collected samples were used in the study.

Ethics oversight These experiments received ethical approval from the National Institute on Drug Abuse Animal Care and Use Committee under 

animal study protocols 18-CNRB-108 and 20-CNRB-108.  
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