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a b s t r a c t

A wealth of research focuses on the decision-making processes that animals and humans employ when
selecting actions in the face of reward and punishment. Initially such work stemmed from psychological
investigations of conditioned behavior, and explanations of these in terms of computational models.
Increasingly, analysis at the computational level has drawn on ideas from reinforcement learning, which
provide a normative framework within which decision-making can be analyzed. More recently, the fruits
of these extensive lines of research have made contact with investigations into the neural basis of
decision making. Converging evidence now links reinforcement learning to specific neural substrates,
assigning them precise computational roles. Specifically, electrophysiological recordings in behaving
animals and functional imaging of human decision-making have revealed in the brain the existence
of a key reinforcement learning signal, the temporal difference reward prediction error. Here, we first
introduce the formal reinforcement learning framework. We then review the multiple lines of evidence
linking reinforcement learning to the function of dopaminergic neurons in the mammalian midbrain and
to more recent data from human imaging experiments. We further extend the discussion to aspects of
learning not associated with phasic dopamine signals, such as learning of goal-directed responding that
may not be dopamine-dependent, and learning about the vigor (or rate) with which actions should be
performed that has been linked to tonic aspects of dopaminergic signaling.We endwith a brief discussion
of some of the limitations of the reinforcement learning framework, highlighting questions for future
research.

© 2008 Elsevier Inc. All rights reserved.
A fundamental question in behavioral neuroscience concerns
the decision-making processes by which animals and humans se-
lect actions in the face of reward and punishment, and their neural
realization. In behavioral psychology, this question has been inves-
tigated in detail through the paradigms of Pavlovian (classical) and
instrumental (operant) conditioning, andmuch evidence has accu-
mulated regarding the associations that control different aspects
of learned behavior. The computational field of reinforcement
learning (Sutton & Barto, 1998) has provided a normative frame-
work within which such conditioned behavior can be understood.
In this, optimal action selection is based on predictions of long-
run future consequences, such that decision making is aimed at
maximizing rewards and minimizing punishment. Neuroscientific
evidence from lesion studies, pharmacological manipulations and
electrophysiological recordings in behaving animals have further
provided tentative links to neural structures underlying key com-
putational constructs in these models. Most notably, much evi-
dence suggests that the neuromodulator dopamine provides basal
ganglia target structures with phasic signals that convey a reward
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prediction error that can influence learning and action selec-
tion, particularly in stimulus-driven habitual instrumental behav-
ior (Barto, 1995; Schultz, Dayan, & Montague, 1997; Wickens &
Kötter, 1995).
From a computational perspective, Pavlovian conditioning

(Yerkes & Morgulis, 1909) is considered as a prototypical instance
of prediction learning — learning the predictive relationships
between events in the environment such as the fact that the
scent of home-cooking usually predicts a tasty meal (e.g. Sutton
and Barto (1990)). Instrumental conditioning, on the other hand,
involves learning to select actions thatwill increase the probability
of rewarding events anddecrease the probability of aversive events
(Skinner, 1935; Thorndike, 1911). Computationally, such decision
making is treated as attempting to optimize the consequences
of actions in terms of some long-term measure of total obtained
rewards (and/or avoided punishments) (e.g. Barto (1994)). Thus,
the study of instrumental conditioning is an inquiry into perhaps
the most fundamental form of rational decision-making. This
capacity to select actions that influence the environment to
one’s subjective benefit is the mark of intelligent organisms,
and although animals such as pigeons and rats are capable
of modifying their behaviors in response to the contingencies
provided by the environment, choosing those behaviors that will
maximize rewards and minimize punishments in an uncertain,
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often changing, and computationally complex world is by no
means a trivial task.
In recent years computational accounts of these two classes

of conditioned behavior have drawn heavily from the framework
of reinforcement learning (RL) in which models all share in
common the use of a scalar reinforcement signal to direct learning.
Importantly, RL provides a normative framework within which
to analyze and interpret animal conditioning. That is, RL models
(1) generate predictions regarding the molar and molecular forms
of optimal behavior, (2) suggests a means by which optimal
prediction and action selection can be achieved, and (3) expose
explicitly the computations that must be realized in the service of
these. Different from (and complementary to) descriptive models
that describe behavior as it is, normative models study behavior
from the point of view of its hypothesized function, that is,
they study behavior as it should be if it were to accomplish
specific goals in an optimal way. The appeal of normative models
derives from two primary sources. First, because throughout
evolution animal behavior has been shaped and constrained by
its influence on fitness, it is not unreasonable to view particular
behaviors as optimal or near-optimal adaptations to some set
of problems (Kacelnik, 1997). This allows for the generation of
computationally explicit and directly testable hypotheses about
the characteristics of those behaviors. Second, discrepancies
between observed behavior and the predictions of normative
models are often illuminating as they can shed light on the
neural and/or informational constraints under which animals
make decisions, or suggest that animals are, in fact, optimizing
something other than what the model has assumed.
Adopting Marr’s (1982) famous terminology, normative com-

putational models span both the computational level in which the
problem is defined (as they stem from an objective, such as max-
imizing future reward) and the algorithmic level of its principled
solution. The relevance of RLmodels to human and animal learning
and decision-making has recently been strengthened by research
linking directly the computational and algorithmic levels to the
implementation level. Specifically, extracellular recordings in be-
having animals and functional imaging of human decision-making
have revealed in the brain the existence of a key RL signal, the tem-
poral difference reward prediction error. In this reviewwewill focus
on these links between the theory of reinforcement learning and
its implementation in animal and human neural processing.
The link to the level of a neural implementation requires a

(perhaps not obviously motivated) leap beyond the computer-
science realm of RL, into an inquiry of how the brains of animals
and humans bring about complex behavior. We believe that this
connection between neuroscience and reinforcement learning
stands to benefit both lines of research, making (at least) two
important contributions. First, although behavioral predictions
are extremely useful for the purpose of testing the relevance of
RL to animal and human decision-making, neural data provide
an important source of support and constraints, grounding the
theory in another level of empirical support. This is especially
true for a theory that makes clear predictions about learning –
a fundamentally unobservable process, and its underlying hidden
variables (such as prediction errors). Because different learning
processes can lead to similar choice behavior, neural evidence
is key to selecting one model of learning over another. Prime
examples of this are the arbitration between different variants
of RL based on dopaminergic firing patterns (Morris, Nevet,
Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, & Schoenbaum,
2007), or the separation versus combination of model-based and
model-free approaches to RL based on lesion studies (Daw, Niv,
& Dayan, 2005), which we will discussed below. The fact that
animals and humans clearly solve the RL problem successfully
despite severe constraints on real-time neural computation
suggests that the neural mechanisms can also provide a source
for new theoretical developments such as approximations due
to computational limitations and mechanisms for dealing with
continuous and noisy sensory experience. A second contribution
that a wedding of the computational and algorithmic levels to
the neural implementation level allows, which is of even greater
importance, is to our understanding of the neural processes
underlying decision-making in the normal and abnormal brain.
The potential advantages of understanding learning and action
selection at the level of dopamine-dependent function of the basal
ganglia cannot be exaggerated: dopamine is implicated in a huge
variety of disorders ranging from Parkinson’s disease, through
schizophrenia, major depression, attentional deficit hyperactive
disorder etc, and ending in decision-making aberrations such as
substance abuse and addiction. Understanding the computational
and algorithmic role of dopamine in learning and action selection
is a first step to reversing or treating such unfortunate conditions.
In the following, we first introduce the formal RL frame-

work (for a comprehensive textbook account of RL methods, see
Sutton and Barto (1998)). We then review (in Section 2) the mul-
tiple lines of evidence linking RL to the function of dopaminergic
neurons in the mammalian midbrain. These data demonstrate the
strength of the computational model and normative framework
for interpreting and predicting a wide range of (otherwise con-
fusing) neural activity patterns. Section 3 extends these results to
more recent data from human imaging experiments. In these ex-
periments, the combination of RL models of choice behavior and
online imaging of whole-brain neural activity has allowed the de-
tection of specific ‘hidden variables’ controlling behavior (such as
the subjective value of different options) in the human brain. In
Section 4, we discuss aspects of learning not associated with pha-
sic dopamine signals, such as goal directed learning (which may
be relatively dopamine-independent) and learning about the vigor
(or rate) with which actions should be performed (whose neural
underpinning has been suggested to be tonic levels of dopamine in
the striatum). We conclude with a discussion of some of the limi-
tations of the RL framework of learning, and highlight several open
questions.

1. Reinforcement learning: Theoretical background

Themodern form of RL arose historically from two separate and
parallel lines of research. The first axis is mainly associated with
Richard Sutton, formerly an undergraduate psychology major, and
his doctoral thesis advisor, Andrew Barto, a computer scientist.
Interested in artificial intelligence and agent-based learning
and inspired by the psychological literature on Pavlovian and
instrumental conditioning, Sutton and Barto developed what is
today the core algorithms and concepts of RL (Barto, Sutton, &
Anderson, 1983; Sutton, 1978; Sutton & Barto, 1990, 1998). In the
second axis, stemming from a different background of operations
research and optimal control, electrical engineers such as Dimitri
Bertsekas and John Tsitsiklis developed stochastic approximations
to dynamic programming methods (which they termed ‘neuro-
dynamic programming’), which led to similar reinforcement
learning rules (e.g. Bertsekas and Tsitsiklis (1996)). The fusion
of these two lines of research couched the behaviorally-inspired
heuristic reinforcement learning algorithms in more formal terms
of optimality, and provided tools for analyzing their convergence
properties in different situations.

1.1. The Rescorla–Wagner model

The early impetus for the artificial intelligence trajectory
can be traced to the early days of the field of ‘mathematical
psychology’ in the 1950’s, within which statistical models of
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learning were considered for the first time. In a seminal
paper Bush and Mosteller (1951) developed one of the first
detailed formal accounts of learning. Together withKamin’s (1969)
insight that learning should occur only when outcomes are
‘surprising’, the Bush and Mosteller ‘linear operator’ model found
its most popular expression in the now-classic Rescorla–Wagner
model of Pavlovian conditioning (Rescorla & Wagner, 1972). The
Rescorla–Wagner model, arguably the most influential model of
animal learning to date, explained puzzling behavioral phenomena
such as blocking, overshadowing and conditioned inhibition (see
below) by postulating that learning occurs only when events violate
expectations. For instance, in a conditioning trial in which two
conditional stimuli CS1 and CS2 (say, a light and a tone) are
presented, as well as an affective stimulus such as food or a
tail-pinch (the unconditional stimulus; US), Rescorla and Wagner
postulated that the associative strength of each of the conditional
stimuli V (CSi)will change according to

Vnew(CSi) = Vold(CSi)+ η

[
λUS −

∑
i

Vold(CSi)

]
. (1)

In this error correcting learning rule, learning is driven by the
discrepancy between what was predicted (

∑
i V (CSi) where i

indexes all the CSs present in the trial) andwhat actually happened
(λUS , whosemagnitude is related to theworth of the unconditional
stimulus, and which quantifies the maximal associative strength
that the unconditional stimulus can support). η is a learning
rate that can depend on the salience properties of both the
unconditional and the conditional stimuli being associated.
At the basis of the Rescorla–Wagner model are two important

(and innovative) assumptions or hypotheses: (1) learning happens
only when events are not predicted, and (2) predictions due to dif-
ferent stimuli are summed to form the total prediction in a trial.
Due to these assumptions, themodel could explain parsimoniously
several anomalous features of animal learning such as why an al-
readypredictedunconditional stimuluswill not support condition-
ing of an additional conditional stimulus (as in blocking; Kamin,
1969); why differently salient conditional stimuli presented to-
gether might become differentially associated with an uncondi-
tional stimulus (as in overshadowing; Reynolds (1961)); and why
a stimulus that predicts the absence of an expected unconditional
stimulus acquires a negative associative strength (as in inhibitory
conditioning; Konorski (1948) and Rescorla and Lolordo (1968)).
Furthermore, the model predicted correctly previously unknown
phenomena such as over-expectation (Kremer, 1978; Rescorla,
1970).
The Rescorla–Wagner model explains a large collection of

behavioral data with one elegant learning rule, however, it suffers
from twomajor shortcomings. First, by treating the conditional and
unconditional stimuli as qualitatively different, it does not extend
to the important phenomenon of second order conditioning. In
second order conditioning if stimulus B predicts an affective
outcome (say, fruit juice, or electric shock) and stimulus A predicts
stimulus B, then stimulus A also gains reward predictive value. This
laboratory paradigm is especially important given the prevalence
of second (or higher) order conditioning in every-day life, a prime
example for which is the conditioning of humans to monetary
outcomes, which are second order predictors of a wide range
of affectively desirable unconditional stimuli such as food and
shelter. The second shortcoming of the Rescorla–Wagner rule is
that its basic unit of learning is a conditioning trial as a discrete
temporal object. Not only does this impose an experimenter-
oriented parsing of otherwise continuous events, but it also fails to
account for the sensitivity of conditioning to the different temporal
relations between the conditional and the unconditional stimuli
within a trial (that is, whether they appeared simultaneously or
serially, their order of appearance, and whether there was a time
lag between them).
1.2. Temporal difference learning

To overcome these two problems, Sutton and Barto (1990)
suggested the temporal difference learning rule as a model of
prediction learning in Pavlovian conditioning. Temporal-difference
(TD) learning is an extension of the Rescorla–Wagner model that
also takes into account the timing of different events. Prima facie
the distinctions between the two model are subtle (see below).
However, the differences allow the TD model to account for
higher order conditioning and make it sensitive to the temporal
relationships within a learning trial (Sutton & Barto, 1990). As will
be discussed in Section 2, the TDmodel is alsomore consistentwith
findings regarding the neural underpinnings of RL.
In TD learning, the goal of the learning system (the ‘agent’) is

to estimate the values of different states or situations, in terms of
the future rewards or punishments that they predict. For example,
from a learning standpoint, the TD model assumes that the goal
of a rat running in a novel arena is to learn the value of various
positions in the arena in terms of obtaining any available rewards.
One way to do this would be to estimate for each location the
average total amount of reward that the rat could expect to receive
in the future, when starting from that location. This departure from
Rescorla andWagner’s framework, inwhich predictions are only of
the immediately forthcoming reward, turns out to be key.
In order to formally introduce TD learning, let us depart for the

moment from animal conditioning and human decision-making.
Consider a dynamic process (called a Markov chain) in which
different states S ∈ S follow one another according to some
predefined probability distribution P(St+1|St), and rewards are
observed at each state with probability P(r|S). As mentioned, a
useful quantity to predict in such a situation is the expected sum
of all future rewards, given the current state St , which we will call
the value of state St , denoted V (St). Thus

V (St) = E
[
rt + γ rt+1 + γ 2rt+2 + · · ·

∣∣ St]
= E

[
∞∑
i=t

γ i−t ri

∣∣∣∣∣ St
]

(2)

where γ ≤ 1 discounts the effect of rewards distant in time on the
value of the current state. The discount rate was first introduced in
order to ensure that the sum of future rewards is finite, however,
it also aligns well with the fact that humans and animals prefer
earlier rewards to later ones, and such exponential discounting is
equivalent to an assumption of a constant ‘interest rate’ per unit
time on obtained rewards, or a constant probability of exiting the
task per unit time. The expectation here is with respect to both
the probability of transitioning from one state to the next, and the
probability of reward in each state. From this definition of state
values it follows directly that

V (St) = E [ rt | St ]+ γ E [ rt+1| St ]+ γ 2E [ rt+2| St ]+ · · · (3)

= E [ rt | St ]+ γ
∑
St+1

P(St+1|St) (E [ rt+1| St+1]

+ γ E [ rt+2| St+1]+ · · ·) (4)

= P(r|St)+ γ
∑
St+1

P(St+1|St)V (St+1) (5)

(assuming here for simplicity that rewards are Bernoulli dis-
tributed with a constant probability P(r|St) for each state). This
recursive relationship or consistency between consecutive state
values lies at the heart of TD learning. The key to learning these val-
ues is that the consistency holds only for correct values (ie, those
that correctly predict the expected discounted sum of future val-
ues). If the values are incorrect, therewill be a discrepancy between
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the two sides of the equation, which is called the temporal differ-
ence prediction error

δt = P(r|St)+ γ
∑
St+1

P(St+1|St)V (St+1)− V (St). (6)

This prediction error is a natural ‘error signal’ for improving
estimates of the function V (St). If we substitute this prediction
error for the ‘surprise’ term in the Rescorla–Wagner learning rule,
we get

V (St)new = V (St)old + η · δt , (7)

which will update and improve the state values until all prediction
errors are 0, that is, until the consistency relationship between all
values holds, and thus the values are correct.
However, returning to prediction learning in real-world scenar-

ios, we note that this updating scheme (which is at the basis of a
collection of methods collectively called ‘‘dynamic programming’’;
(Bellman, 1957)) has one major problem: it requires knowledge
of the dynamics of the environment, that is, P(r|St) and P(St+1|St)
(the ‘‘world model’’) must be known in order to compute the pre-
diction error δt in Eq. (6). This is clearly an unreasonable assump-
tion when considering an animal in a Pavlovian conditioning task,
or a human predicting the trends of a stock. Werbos (1977) in his
‘‘heuristic dynamic programming methods’’, and later Barto, Sut-
ton, and Watkins (1989) and Bertsekas and Tsitsiklis (1996), sug-
gested that in a ‘‘model-free’’ case in which we can not assume
knowledge of the dynamics of the environment, the environment
itself can supply this information stochastically and incrementally.
Every time an animal is in the situation that corresponds to state
St , it can sample the reward probability in this state, and the prob-
abilities of transitions from this state to another. As it experiences
the different states repeatedly within the task, the animal will ob-
tain unbiased samples of the reward and transition probabilities.
Updating the estimated values according to these stochastic sam-
ples (with a decreasing learning rate or ‘step-size’) will eventually
lead to the correct predictive values. Thus the stochastic prediction
error

δt = rt + γ V (St+1)− V (St) (8)

(where rt is the reward observed at time t , when in state St , and
St+1 is the next observed state of the environment) can be used as
an approximation to Eq. (6), in order to learn in a ‘‘model-free’’ way
the true predictive state values. The resulting learning rule is

Vnew(St) = Vold(St)+ η(rt + γ Vold(St+1)− Vold(St)). (9)

Finally, incorporating into this learning rule the Rescorla–Wagner
assumption that predictions due to different stimuli Si comprising
the state of the environment are additive (which is not the only
way, or necessarily the most sensible way to combine predictions,
see Dayan, Kakade, and Montague (2000)), we get for all Si present
at time t

Vnew(Si,t) = Vold(Si,t)

+ η

rt + γ ∑
Sk@t+1

Vold(Sk,t+1)−
∑
Sj@t

Vold(Sj,t)

 , (10)
which is the TD learning rule proposed by Sutton and Barto (1990).
As detailed above, the formal justification for TD learning as a
method for optimal RL derives from its direct relation to dynamic
programming methods (Barto, Sutton, & Watkins, 1990; Sutton,
1988;Watkins, 1989). This ensures that using TD learning, animals
can learn the optimal (true) predictive values of different events in
the environment, evenwhen this environment is stochastic and its
dynamics are unknown.
Indeed this rule is similar, but not identical, to the Rescorla–
Wagner rule. As in the Rescorla–Wagner rule, η is a learning rate
or step-size parameter, and learning is driven by discrepancies be-
tween available and expected outcomes. However, one difference
is that in TD learning time within a trial is explicitly represented
and learning occurs at every timepoint within a trial. Moreover, in
the specific tapped delay line representation variant of TD learn-
ing described in Eq. (10), stimuli create long-lastingmemory traces
(representations), and a separate value V (Si,t) is learned for every
timepoint of this trace (for instance, a stimulus might predict a
reward exactly five seconds after its presentation). A second and
more important difference is in how predictions, or expectations,
are construed in each of the models. In TD learning, the associative
strength of the stimuli (and traces) at time t is taken to predict not
only the immediately forthcoming reward rt , but also the future
predictions due to those stimuli that will still be available in the
next time-step

∑
Sj@t+1

V (Sj,t+1), with γ ≤ 1 discounting these
future delayed predictions.

1.3. Optimal action selection

The above holds whenever the probabilities of transitioning
between different states of the environment are fixed, as in
Pavlovian conditioning (in which the animal can not influence
events by means of its actions) or in situations in which the
animal has a fixed behavioral policy (Sutton, 1988). Butwhat about
improving action selection in order to obtain more rewards? That
is, what about instrumental conditioning? Since the environment
rewards us for our actions, not our predictions (be they correct as
they may), one might argue that the ultimate goal of prediction
learning is to aid in action selection.
The problem of optimal action selection is especially difficult

in those (very common) cases in which actions have long-term
consequences (such as in a game of checkers), or inwhich attaining
outcomes requires a series of actions. The main problem, in these
cases, is that of credit assignment (Barto et al., 1983; Sutton, 1978;
Sutton & Barto, 1998) – how to figure out, when reaching the
outcome (for instance, a win or a loss), what actions (perhaps
in the distant past) were key to obtaining this outcome. The
correct assignment of credit is crucial for learning to improve the
behavioral policy: those actions that ultimately lead to rewards
should be repeated, and those that lead to punishment should
be avoided. This is true in the animal domain as well: when
reaching a dead-end in a maze, how will a rat know which of its
previous actions was the erroneous one? RL methods solve the
credit assignment problem by basing action selection not only on
immediate outcomes, but also on future value predictions such as
thosewe discussed above, which embody predictions of long-term
outcomes.
How does action selection then interact with state evaluation

(for instance, using TD learning as above)? First, note that given
predictive state values, the best action to select is the one that
leads to the state with the highest value (e.g. McClure, Daw, and
Montague (2003)). In fact, Samuel’s 1959 checker player, the first
notable application of TD learning (even prior to its conception in
its modern form), used this method to select actions. However,
this necessitates knowledge of how transitions between states
depend on actions, that is, what is the probability of transitioning
to each state, given a specific action. What if such knowledge is
not available? For example, imagine deciding whether to buy or
to sell a stock on the stock market – clearly this decision would be
trivial if only you knewwhether the stock’s pricewould increase or
decrease as a result of your (and the rest of the market’s) actions.
But what can a human or a rat do in the completely model-free
case, ie, without knowledge of how different actions will influence
the state of the environment?
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1.3.1. Actor/Critic methods
In one of the first RL papers, which was inspired by neural-

network models of learning, Barto et al. (1983) showed that the
credit assignment problem can be effectively solved by a learning
system comprised of two neuron-like elements. One unit, termed
the ‘‘adaptive critic element (ACE)’’, constructed an evaluation of
different states of the environment, using a temporal-difference-
like learning rule from which the TD learning rule above was
later developed. This evaluation was used to augment the external
reinforcement signal and train through a trial-and-error process
a second unit, the ‘‘associative search element (ASE)’’, to select
the correct action at each state. These two elements were the
precursors of the modern-day Actor/Critic framework for model-
free action selection which has been closely associated with
reinforcement learning and action selection in the brain.
The insight in the ASE–ACE model, first due to Sutton (1978),

is that even when the external reinforcement for a task is delayed
(as when playing checkers), a temporal difference prediction error
can convey, at every timestep, a surrogate ‘reinforcement’ signal
that embodies both immediate outcomes and future prospects, to
the action just chosen. This is because, in the absence of external
reinforcement (ie, rt = 0), the prediction error δt in Eq. (8)
becomes γ V (St+1) − V (St), that is, it compares the values of two
consecutive states and conveys information regarding whether
the chosen action has led to a state with a higher value than the
previous state (ie, to a state predictive of more future reward)
or not. This means that whenever a positive prediction error is
encountered, the current action has improved prospects for future
rewards, and should be repeated. The opposite is true for negative
prediction errors, which signal that the action should be chosen
less often in the future. Thus the agent can learn an explicit policy
— a probability distribution over all available actions at each state
π(S, a) = p(a|S), by using the following learning rule at every
timestep

π(S, a)new = π(S, a)old + ηπδt (11)

where ηπ is the policy learning rate and δt is the prediction error
from Eq. (8).
Thus, in Actor/Critic models, a Critic module uses TD learning to

estimate state values V (S) from experience with the environment,
and the same TD prediction error is also used to train the Actor
module, which maintains and learns a policy π (Fig. 1). This
method is closely related to policy improvement methods in
dynamic programming (Sutton, 1988), and Williams (1992) and
Sutton, Mcallester, Singh, and Mansour (2000) have shown that in
some cases the Actor/Critic can be construed as a gradient climbing
algorithm for learning a parameterized policy, which converges to
a local maximum (see also Dayan and Abbott (2001)). However,
in the general case Actor/Critic methods are not guaranteed to
converge on an optimal behavioral policy (cf. Baird (1995) and
Konda and Tsitsiklis (2003)). Nevertheless, some of the strongest
links between RL methods and neurobiological data regarding
animal and human decision making have been related to the
Actor/Critic framework. Specifically, Actor/Critic methods have
been extensively linked to instrumental action selection and
Pavlovianprediction learning in the basal ganglia (e.g. Barto (1995),
Houk, Adams, and Barto (1995) and Joel, Niv, and Ruppin (2002)),
as will be detailed below.

1.3.2. State-action values
An alternative to Actor/Critic methods for model-free RL, is to

explicitly learn the predictive value (in terms of future expected
rewards) of taking a specific action at a certain state, that is,
learning the value of the state-action pair, denoted Q(S, a).
In his Ph.D. thesis, Watkins (1989) suggested Q-learning as a
modification of TD learning that allows one to learn suchQ-values
Fig. 1. Actor/Critic architecture: The state St and reinforcement signal rt are
conveyed to the Critic by the environment. The Critic then computes a temporal
difference prediction error (Eq. (8)) based on these. The prediction error is used
to train the state value predictions V (S) in the Critic, as well as the policy π(S, a)
in the Actor. Note that the Actor does not receive direct information regarding
the actual outcomes of its actions. Rather, the TD prediction error serves as a
surrogate reinforcement signal, telling the Actor whether the (immediate and
future expected) outcomes are better or worse than previously expected. Adapted
from Sutton and Barto (1998).

(and brings TD learning closer to dynamic programming methods
of ‘policy iteration’; Howard (1960)). The learning rule is quite
similar to the state-value learning rule above

Q(St , at)new = Q(St , at)old + ηδt (12)

albeit with a slightly different TD prediction error driving the
learning process

δt = rt +max
a
γQ(St+1, a)−Q(St , at) (13)

where the max operator means that the temporal difference is
computed with respect to what is believed to be the best action at
the subsequent state St+1. This method is considered ‘off-policy’ as
it takes into account the best future action, even if this will not be
the action that is actually taken at St+1. In an alternative ‘on-policy’
variant called SARSA (the acronym for state-action-reward-state-
action), the prediction error takes into account the next chosen
action, rather than the best possible action, resulting in a prediction
error of the form:

δt = rt + γQ(St+1, at+1)−Q(St , at). (14)

In both cases, action selection is easy given Q-values, as the best
action at each state S is that which has the highest Q(S, a) value.
That is, learningQ-values obviates the need for separately learning
a policy. Furthermore, dynamic programming results regarding
the soundness and convergence of ‘policy iteration’ methods (in
which a policy is iteratively improved through bootstrapping of
the values derived given each policy; Howard (1960) and Bertsekas
and Tsitsiklis (1996)) ensure that if the proper conditions on
the learning rate are met and all state-action pairs are visited
infinitely often, both Q-learning and SARSA will indeed converge
to the true optimal (in case of Q-learning) or policy-dependent
(in the case of SARSA) state-action values. Interestingly, recent
electrophysiological recordings in non-human primates (Morris
et al., 2006) and in rats (Roesch et al., 2007) suggest that
dopaminergic neurons in the brain may indeed be conveying a
prediction error that is based on state-action values (rather than
state values, as in the Actor/Critic model), with the former study
supporting a Q-learning prediction error, and the latter a SARSA
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prediction error. Whether these results mean that the brain is not
using an Actor/Critic scheme at all, or whether the Actor/Critic
framework could be modified to use state-action values (and
indeed, the potential advantages of such a scheme) is still an open
question (Niv, Daw, & Dayan, 2006)

2. Neural correlates of reinforcement learning

In recent years, RL models such as those briefly described
above have been applied to a wide range of neurobiological
and behavioral data. In particular, the computational function of
neuromodulators such as dopamine, acetylcholine, and serotonin
have been addressed using the RL framework. Among these
neuromodulatory systems, the dopamine system is the most
studied, perhaps due to its implication in conditions such as
Parkinson’s disease, schizophrenia, anddrug addiction aswell as its
long-suspected functions in reward learning andworkingmemory.
It is in elucidating the role of dopamine signals in the brain, that
computational models of learning in general, and TD learning in
particular, have had their most profound impact on neuroscience.
The link between dopamine and RL was made in the mid

’90s. On the background of a dominant hypothesis that viewed
dopamine as the brain’s reward signal (Wise, Spindler, de Wit,
& Gerberg, 1978; Wise, Spindler, & Legault, 1978), pioneering
extracellular recordings in the midbrain of awake and behaving
moneys for the lab of Wolfram Schultz showed that dopaminergic
neurons did not simply signal the primary motivational value of
rewarding stimuli such as food and water. In these experiments,
recordings were done while the monkeys underwent simple
instrumental or Pavlovian conditioning (Ljungberg, Apicella, &
Schultz, 1992; Romo & Schultz, 1990; Schultz, Apicella, &
Ljungberg, 1993). Surprisingly, although the recorded cells showed
phasic bursts of activity when the monkey was given a rewarding
sip of juice or a morsel of apple, if food delivery was consistently
preceded by a tone or a light, after a number of trials the
dopaminergic response to reward disappeared. Contrary to the
‘‘dopamine equals reward’’ hypothesis, the disappearance of the
dopaminergic response to reward delivery did not accompany
extinction, but rather it followed acquisition of the conditioning
relationship – as the cells ceased to respond to rewards the
monkeys began showing conditioned responses of anticipatory
licking and arm movements to the reward-predictive stimulus.
Indeed, not only the monkeys responded to the tone – the neurons
now began responding to the tone as well, showing distinct phasic
bursts of activity whenever the tone came on. This was also true
for the difference between self-initiated reaching for reward, in
which case dopamine neurons responded phasically to touching
the reward, versus cue-initiated movements, in which case the
neurons responded to the cue rather than to the reward. These
resultswere extremely puzzling, as is evident by the conclusions of
those early papers, which portray a handful of separate functions
attributed to different types of dopaminergic responses, and reflect
the dire need for a unifying theory.

2.1. The reward prediction error hypothesis of dopamine

And a unifying theoretical interpretation was not long to
follow. In the mid ’90s a number of theoreticians interested in
computer science and computational neuroscience recognized the
unmistakable fingerprint of reinforcement learning signals in these
data, and suggested that the phasic firing of dopaminergic neurons
reflects a reward prediction error (Barto, 1995; Montague, Dayan,
Nowlan, Pouget, & Sejnowski, 1993; Montague, Dayan, Person,
& Sejnowski, 1995; Montague, Dayan, & Sejnowski, 1994, 1996).
Indeed, the hallmark of temporal difference prediction errors is
that they occur only when motivationally significant events are
unpredicted. This explains why dopaminergic neurons show burst
firing to rewards early in training (when they were unexpected),
but not later in training, after the animal has learned to expect
reward on every trial. Similarly, early in training neutral cues that
precede the reward should not cause a prediction error (as they
themselves are not rewarding), but later in training, once they
have acquired predictive value (ie, V (cue) > 0), an unexpected
onset of such a cue should generate a prediction error (as δt =
rt+γ V (cue)−V (no cue) = γ V (cue) > 0), and thus dopaminergic
firing. Fig. 2 illustrates these effects in a simulation of TD learning,
and, for comparison, in the activity of dopaminergic neurons (from
Schultz et al. (1997)). The simulation is of a Pavlovian conditioning
scenario in which a tone CS is followed two seconds later by a
foodUS; the electrophysiological recordings are from an analogous
instrumental task in which a cue signaled the availability of
reward, provided the monkey responded correctly with a rapid
reaching movement. Panels (a,d) illustrate the prediction error to
the appetitive US early in training, and panels (b,e) show responses
after training – now shifted to the time of the unexpected CS,
rather than the US. Moreover, in trials in which the US is not
delivered, a negative reward prediction error occurs at the precise
time of the expected US delivery, as is illustrated by panels
(c,e). The discrepancies between the simulation and the dopamine
neuron firing patterns in terms of the magnitude and spread
of the prediction errors at the time of the reward likely result
from the temporal noise in reward delivery in the instrumental
task, and the asymmetric representation of negative and positive
prediction errors around the baseline firing rate of these neurons
(Niv, Duff, & Dayan, 2005). Note that the prediction error to the CS
occurs only if this cue is not itself predicted by earlier events. For
instance, training with an earlier cue (CS2) that reliably precedes
this CS, would result in the dopaminergic response shifting to
CS2, that is, to the earliest possible cue that predicts the reward
(Schultz et al., 1993). The fact that an unexpected cue that predicts
reward generates a prediction error similar in all aspects to that
generated by an unexpected reward, is the reason that second
order conditioning can occur,with a predictive cue supporting new
conditioning as if it were itself a reward.
The close correspondence between the phasic dopaminergic

firing patterns and the characteristics of a temporal difference
prediction error led Montague et al. (1996) to suggest the reward
prediction error hypothesis of dopamine (see also Schultz et al.
(1997)). Within this theoretical framework, it was immediately
clear why dopamine is necessary for reward mediated learning in
the basal ganglia. The link with RL theory provided a normative
basis for understanding not onlywhy dopamine neurons fire when
they do, but alsowhat the function of these firing patternsmight be.
If dopamine signals a reward prediction error, this could be used
for prediction learning and for action learning in dopaminergic
targets. Indeed, behaviorally the shift in dopaminergic activity
from the time of reward to the time of the predictor (Takikawa,
Kawagoe, & Hikosaka, 2004) resembles the shift of behavioral
responding from the time of the US to that of the CS in
Pavlovian conditioning experiments (Hollerman & Schultz, 1998;
Schultz et al., 1997). Furthermore, there is physiological evidence
for dopamine-dependent (or even dopamine-gated) plasticity in
the synapses between the cortex and the striatum (Arbuthnott,
Ingham, & Wickens, 2000; Reynolds, Hyland, & Wickens, 2001;
Wickens, Begg, & Arbuthnott, 1996; Wickens & Kötter, 1995).
The above basic characteristics of phasic dopaminergic re-

sponding have since been replicated in many variants (e.g. Bayer
and Glimcher (2005), Hollerman and Schultz (1998), Schultz
(1998), Takikawa et al. (2004) and Tobler, Dickinson, and Schultz
(2003)). In fact, recent work investigating the detailed quantita-
tive implications of the prediction error hypothesis has demon-
strated that the correspondence between phasic dopaminergic
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Fig. 2. (a–c) Temporal difference prediction errors in a Pavlovian conditioning task. A tone CS is presented at random times, followed 2 seconds later by a juice US. (a) In
the beginning of training, the juice is not predicted, resulting in prediction errors at the time of the juice US. With learning, the prediction error propagates backward within
the trial (trials 5 and 10 are illustrated; Niv et al., 2005) as predictive values are learned Eq. (9). (b) After learning, the now-predicted US no longer generates a prediction
error. Rather, the unpredicted occurrence of the tone CS is accompanied by a prediction error. (c) The unexpected omission of the US causes a negative prediction error at
the time in which the US was expected, as in this trial reality was worse than expected. In these simulations the CS was represented over time with the commonly used
serial compound state representation (Kehoe, 1977; Sutton & Barto, 1990), and there was no discounting (γ = 1). Other representation schemes make different predictions
for how the prediction error propagates backward, but do not differ in their predictions for the activity patterns in a fully learned task. (d–f) Firing patterns of dopaminergic
neurons inmonkeys performing an analogous instrumental conditioning task. Each raster plot shows action potentials (dots)with different rows representing different trials,
aligned on the time of the cue (or the reward). Histograms show activity summed over the trials plotted below. (d) When a reward unexpectedly obtained, dopaminergic
neurons respond with a phasic burst of firing. (e) After conditioning with a predictive visual cue (which, in this task, predicted a food reward if the animal quickly performed
the correct reaching response), the reward no longer elicits a burst of activity, and the phasic burst now occurs at the presentation of the predictive cue. (f) When the food
reward was unexpectedly omitted, dopaminergic neurons showed a precisely-timed pause in firing, below their standard background firing rate. Subplots (d–f) adapted
with permission from Schultz et al. (1993).
firing and TD prediction errors goes far beyond the three basic
characteristics depicted in Fig. 2. For instance, using general linear
regression, Bayer and colleagues have rigorously shown that the
contribution of previously experienced rewards to the dopaminer-
gic response to the current reward is exactly according to an ex-
ponentially weighted average of past experience, as is implied by
the TD learning rule (Bayer & Glimcher, 2005; Bayer, Lau, & Glim-
cher, 2007). Moreover, conditioned stimuli predicting probabilis-
tic rewards or rewards of different magnitudes have been shown
to elicit a phasic dopaminergic response that is proportional to the
magnitude and/or probability of the expected reward (Fiorillo, To-
bler, & Schultz, 2003; Morris, Arkadir, Nevet, Vaadia, & Bergman,
2004; Tobler, Fiorillo, & Schultz, 2005, Fig. 3a, b) and firing pat-
terns in tasks involving probabilistic rewards are in accord with a
constantly back-propagating error signal (Niv et al., 2005, Fig. 3b,
c). With regard to delayed rewards, recent results from recordings
in rodents show that dopaminergic activity to a cue predicting a
delayed reward is attenuated in proportion to the delay (Fig. 4), as
would be expected from a signal predicting the expected sum of
discounted future rewards (Roesch et al., 2007). Impressively, even
in sophisticated conditioning tasks such as blocking and appetitive
conditioned inhibition, dopaminergic responses are in line with
the predictions of TD learning (Tobler et al., 2003, 2005; Waelti,
Dickinson, & Schultz, 2001). Finally, measurements of extracellu-
lar dopamine in behaving rodents using fast scan cyclic voltamme-
try have confirmed that phasic changes in the level of dopamine in
target structures (specifically, in the striatum) also conform quan-
titatively to a prediction error signal (Paul Phillips, personal com-
munication; see also Day, Roitman, Wightman, and Carelli (2007),
Knutson, Delgado, and Philips (2008) and Walton, Gan, Barnes,
Evans, and Phillips (2006)), despite the nonlinear relationship be-
tween dopamine neuron firing and actual synaptic discharge of the
transmitter (Montague et al., 2004).
The prediction error theory of dopamine is a computationally

precise theory of how phasic dopaminergic firing patterns are
generated. It suggests that the input that dopaminergic neurons
receive from their diverse afferents (which include the medial
prefrontal cortex, the nucleus accumbens shell, the ventral
pallidum, the central nucleus of the amygdala, the lateral
hypothalamus, the habenula, the cholinergic pedunculopontine
nucleus, the serotoninergic raphe and the noradrenergic locus
coeruleus; Christoph, Leonzio, and Wilcox (1986), Floresco,
West, Ash, Moore, and Grace (2003), Geisler and Zahm (2005),
Matsumoto andHikosaka (2007) and Kobayashi andOkada (2007))
conveys information about current motivationally significant
events (rt ), and the predictive value of the current state V (St),
and that the circuitry in the dopaminergic nuclei uses this
information to compute a temporal difference reward prediction
error. Moreover, it suggests that dopamine provides target areas
with a neural signal that is theoretically appropriate for controlling
learning of both predictions and reward-optimizing actions.
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Fig. 3. Dopaminergic firing patterns comply with the predictions of TD learning. (a) Phasic responses to a cue predicting reward are proportional to the magnitude of the
predicted reward (adapted with permission from Tobler et al., 2005). (b, c) When different cues predict the same reward but with different probabilities, the prediction
error at the time of the cue is proportional to the predicted probability of reward (red (left) rectangles; compare panel b (simulation) to panel c (data)). However, due to the
low baseline firing rate of midbrain dopaminergic neurons, negative prediction errors can only be encoded asymmetrically about the base firing rate, with a shallower ‘dip’
in firing rate to encode negative prediction errors as compared to the height of the ‘peak’ by which positive prediction errors are encoded. As a result, when rewards are
probabilistic, averaging over rewarded and unrewarded trials will create an apparent ramp leading up to the time of the reward (green (right) rectangles; compare panel b
(simulation) to panel c (data)). Panel b adapted with permission from (Niv et al., 2005), panel c adapted with permission from (Fiorillo et al., 2003).
Following the analogy between the dopamine signal and the
temporal difference prediction error signal in Actor/Critic models
(Joel et al., 2002), it has been suggested that dopaminergic signals
originating in the ventral tegmental area and terminating in
ventral striatal and frontal areas are used to train predictions, as in
the Critic (Barto, 1995; Waelti et al., 2001), while a similar signal
reported by dopaminergic neurons in the substantia nigra pars
compacta to dorsal striatal target areas, is used to learn an action-
selection policy, as in the Actor (Houk et al., 1995; Joel & Weiner,
1999; Miller & Wickens, 1991; Wickens & Kötter, 1995).
As should be the casewhen researching the basic characteristics

of a neural signal, the studies mentioned above mostly used rather
simple Pavlovian or instrumental tasks, in which trials include one
unambiguous stimulus and one reward. Given the accumulation
of positive results, it seems that the time is now ripe to test the
reward prediction error theory of dopamine in more complex
scenarios, for instance situations in which there are a number
of conflicting predictive cues, tasks in which several actions are
necessary to obtain an outcome, or tasks in which there are several
possible outcomes to choose from. In these cases the theory is not
as prescriptive – there are different ways to combine predictive
cues, or to generate a prediction error that does or does not
depend on the actual chosen action (ie, SARSA, Q-learning and
Actor/Critic that were detailed in Section 1.3, as well as others
like advantage learning (Baird, 1993) that we did not detail), thus
electrophysiological evidence is key to informing the RL theory and
constraining the algorithm actually used by the brain.
Several studies have recently made progress in this direc-

tion. Morris et al. (2006) trained monkeys in a standard in-
strumental task in which cues predicted reward with different
probabilities. In some trials, however, the monkeys were given a
choice between two of these cues. Single unit recordings in the
substantia nigra pars compacta showed that in these trials the
cue-elicited dopaminergic firing matched best the prediction er-
rors corresponding to the cue that would subsequently be cho-
sen (even though the monkey could only signal its choice sec-
onds later). This is contrary to the straightforward predictions of
an Actor/Critic mechanism, and more in line with SARSA learning.
Interestingly, recordings from the ventral tegmental area of rats
performing a more dynamic odor-discrimination task (Roesch
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Fig. 4. Average firing rate of 19 dopaminergic neurons, recorded in rats performing an odor-discrimination task in which one of the odors predicted that a reward would
be delivered in a food-well, with some delay. Color indicates the length of the delay preceding reward delivery from 0.5 to 7 s. Activity is aligned on odor onset (left) and
food-well entry (right). Note that the response to the (not fully predicted) reward is similar in all trial types (with the earliest rewards perhaps better predicted, and thus
accompanied by smaller prediction errors), but the response at the time of the predictive cue depends on the predicted delay of the reward, with longer predicted delays
eliciting a smaller dopaminergic response. Adapted with permission from Roesch et al. (2007). (For a color version of this figure, the reader is referred to the web version of
this article.)
et al., 2007) were taken to suggest that dopmainergic activity in
choice scenarios was better described by Q-learning. There are
many differences between these two studies, including the animal
species, the dopaminergic nuclei in which recordings were made,
the task and the amount of training (or overtraining) of the ani-
mals, any of which could be invoked to explain their different re-
sults. However, the detailed activation patterns in the latter study,
as well as results from a task in which monkeys engaged in a diffi-
cult random-dot motion discrimination task (Nomoto, Watanabe,
& Sakagami, 2007), suggest that predictions (and thus prediction
errors) can be sensitive to the information available at every time-
point, with stimuli represented before a choice is made, and cho-
sen cues represented only later. These findings suggest a possible
reconciling between the different results in terms of different rep-
resentations in the tasks, and further highlights the need to study,
from a theoretical point of view, as well as an experimental one,
the effects of different state representations on TD learning.
As precise as the prediction error hypothesis of dopamine is,

other open questions are abounding. Many of these will likely
require modifications and enhancements of the currently highly
simplified basic theory (Dayan & Niv, 2008). One extremely
pressing issue is that of prediction of aversive events such as
pain. Interestingly, dopaminergic neurons do not seem to be
involved in the signaling or prediction errors for aversive outcomes
(Mirenowicz & Schultz, 1996; Tobler et al., 2003; Ungless, Magill,
& Bolam, 2004), although they do signal negative prediction errors
due to the absence of appetitive outcomes (Bayer et al., 2007).
Despite the behavioral similarities between the loss of a reward
and the receipt of a punishment, these seem to be separated
in terms of prediction learning, and it is currently far from
clear what the substrate for aversive prediction learning might
beDaw, Kakade, andDayan (2002) andNakamura,Matsumoto, and
Hikosaka (2008).
We should alsomention that there are alternative psychological

theories regarding the role of dopamine in conditioned behavior
(for a recent review, see Berridge (2007)). These include Redgrave
and colleagues’ ‘incentive salience’ (e.g. Horvitz (2000), Redgrave
and Gurney (2006) and Redgrave, Prescott, and Gurney (1999)),
Berridge and Robbinson’s ‘wanting’ versus ‘liking’ (e.g. Berridge
(2007) and Berridge and Robinson (1998)), and ideas about
dopamine signaling uncertainty (Fiorillo et al., 2003). A discussion
of the merits and pitfalls of the different theories is beyond the
scope of this review. Moreover, such a discussion unfortunately
involves the unsatisfactory comparison of qualitative suggestions
to a quantitatively precise theory, rendering it difficult for any
definitive conclusions to be reached. Nevertheless, it is our
personal opinion that, in as far as these theories are indeed
fundamentally different from the prediction error theory (which
is not always clear), to date no alternative has mustered as
convincing and multidirectional experimental support as the
prediction error theory of dopamine.

2.2. RL correlates in functional imaging of human decision-making

Although animals can display complex decision-making behav-
ior that is still well beyond our current understanding of the brain,
ultimately we are interested in understanding human decision-
making and how (and whether) it is related to the RL framework.
While the characteristics of human conditioning are similar to
those of animal conditioning, the possibility of instructing subjects
verbally allows for much more elaborate paradigms in human ex-
periments. Of course, our ability to measure neural processes in
humans is much more limited. One technique that has been used
extensively to study the underpinnings of RL in the human brain
is functional magnetic resonance imaging (fMRI), in which corre-
lates of neural activity can bemeasured non-invasively, albeit with
a low signal-to-noise ratio (necessitating averaging over many tri-
als or subjects) and poor temporal and spatial resolution (seconds
and millimeters, respectively).
One advantage of fMRI is that it allows imaging of activity

throughout the entire brain, rather than in only a small population
of neurons. This also has disadvantages, in terms of the statistical
analysis of the enormous volume of data collected even in a single
experimental session. One might argue that fMRI thus places a
premium on using precise computational models for data analysis.
A model-driven analysis allows us to make precise hypotheses
regarding hidden variables that control learning and decision-
making, such as state values or prediction errors, and search
for these in the brain. Using the computational model we can
quantitatively specify the dynamics of the hidden variable even
within a non-stationary task, and search the brain for a signal with
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a similar temporal profile. Identifying a neural correlate for such a
signal advances our understanding of the brain in away thatwould
not be possible without the model, and can also lend powerful
support for the model that gave rise to the specific values of the
hidden variable.
Amore pervasive disadvantage of fMRI investigations, however,

is that the neural underpinnings of the measured blood oxygen
level dependent (BOLD) signal are unclear. Some studies suggest
that the BOLD signal in a brain area correlates with local
field potentials in that area (signals that are themselves poorly
understood, but are thought to be related to the overall dendritic
synaptic activity within a volume of tissue), and thus reflects
the input activity impinging on an area, rather than the (output)
spiking activity of neurons within that area (Logothetis, 2003;
Logothetis & Wandell, 2004). However, in these studies the
correlation between BOLD and local field potentials was only
slightly stronger than the (weak) correlation with spiking activity,
making the results inconclusive. Furthermore, it is not clear
that BOLD reflect the same underlying neural processes in all
brain areas. For instance, because dopamine can directly affect
the dilation and contraction of local blood vessels, it can affect
BOLD measurements directly in brain areas in which extracellular
concentration of dopamine is pronounced (Attwell & Iadecola,
2002; Krimer, Muly,Williams, & Goldman-Rakic, 1998). Dopamine
is also known to affect local oscillatory activity (Costa et al., 2006),
a prominent determinant of local field potentials, and thus perhaps
BOLD. Indeed, these caveats go both ways: since dopamine is a
major neuromodulator of interest in RL, its direct measurement
is actually of major interest. However, despite its possible direct
effect on BOLD signals, one cannot interpret BOLD measurements
as reflecting dopaminergic activity per se (Knutson & Gibbs, 2007).
Keeping these caveats in mind, we now turn to the specific use of
RL models in fMRI studies of learning and decision making in the
human brain.
The first fMRI studies to search for prediction errors in humans

implicated the nucleus accumbens and the orbitofrontal cortex
(Berns, McClure, Pagnoni, & Montague, 2001; Knutson, Adams,
Fong, & Hommer, 2001; Pagnoni, Zink, Montague, & Berns, 2002),
both major dopaminergic targets. O’Doherty, Dayan, Friston,
Critchley, and Dolan (2003) and McClure, Berns, and Montague
(2003) then used a hidden-variable analysis such as the one
described above, to identify the neural correlates ofmodel-derived
TD prediction errors. These studies again implicated the nucleus
accumbens (the ventral striatum) as well as the putamen (the
dorsolateral striatum). O’Doherty et al. (2004) then showed that
fMRI correlates of prediction error signals can be dissociated in
the dorsal and ventral striatum according to whether active choice
behavior is required in order to obtain reward (ie, instrumental
conditioning) or not (Pavlovian conditioning). In the passive
prediction-learning task the reward prediction error was evident
only in the ventral striatum, while in the active choice task it
was evident in both the ventral and the dorsolateral striatum.
These findings supported a previously suggested mapping of an
Actor/Critic architecture in the basal ganglia, according to which
the ventral striatum includes a prediction-learning Critic, and the
dorsal striatum hosts a policy-learning Actor (Joel et al., 2002, but
see Section 2.3 for amore detailed parcellation of goal-directed and
habitual instrumental learning in the dorsomedial and dorsolateral
striatum, respectively).
Indeed, correlates of prediction errors in the dorsal and

ventral striatum have now been seen in multiple studies (e.g. Li,
McClure, King-Casas, and Montague (2006), Preuschoff, Bossaerts,
and Quartz (2006) and Schönberg, Daw, Joel, and O’Doherty
(2007)). As mentioned, although single unit recordings do not
show prediction error encoding in the striatum, these results
are in line with the fact that the striatum is a major target of
Fig. 5. Time course of different ‘hidden variables’ of interest in the TD model. The
bell predicts a rewarding cup of coffee some time later. At the time of the cue, the
phasic prediction error δt = rt + Vt+1 − Vt equals the magnitude of the predicted
reward Vt+1 (assuming here, for simplicity, γ = 1). The expected value signal
corresponding to Vt also becomes positive at this time, and stays elevated until
the time of the expected reward. At the time of the reward, a phasic cue might
signal the occurrence of the reward, but no prediction error occurs if the reward
was predicted. Figure adapted with permission from Niv and Schoenbaum (2008).

dopaminergic influence. Indeed, dopaminergic manipulations (e.g.
administration of dopamine enhancers (agonists)) or dopamine
receptor blockers (antagonists) in such tasks have been shown
to influence both the BOLD measurement of prediction-error
activity and learning and action selection (Pessiglione, Seymour,
Flandin, Dolan, & Frith, 2006), and recent results show that better
learners show a higher correlation of striatal BOLD with a reward
prediction error (Schönberg et al., 2007). However, fMRI results
cannot isolate dopaminergic activity from other activity in the
brain (specifically, from the effects of other striatal afferents),
and might not differentiate inhibitory from excitatory afferent
activity, as is illustrated by the fact that BOLD correlates of positive
prediction errors for pain and punishment have also been found in
the striatum (Jensen et al., 2007;Menon et al., 2007; Seymour et al.,
2004).
Note, also, thatmost fMRI analyses consist of searching for areas

in the brain where the measured BOLD is correlated with some
signal of interest. In particular, the assumption is that multiple
signals in one brain area may be linearly multiplexed, and one
can uncover the component signals via linear regression. As a
result, it is not easy to distinguish between different correlated
components of RL models, for instance, prediction errors and state
values, especially at the time of the predictive cue (Fig. 5). This
is because the prediction error at the time of the cue is δt =
V (cue)−V (baseline), which, is obviously linearly related to V (cue).
Indeed, many studies have implicated the striatum in representing
the anticipated value of outcomes (e.g. Delgado, Locke, Stenger,
and Fiez (2003), Knutson et al. (2001) and Knutson, Fong, Bennett,
Adams, and Hommer (2003)), and it is not always clear whether
the measured activation is distinct from that attributable to a
prediction error. In any case, electrophysiological data show that
the striatum is definitely a viable candidate for representing state
values (e.g. Samejima, Ueda, Doya, and Kimura (2005) and Schultz,
Apicella, Scarnati, and Ljungberg (1992)).
Studies involving both gains and losses have further implicated

the striatum in the anticipation of losses and not only gains,
with decreases in BOLD signals correlated with the anticipated
loss. Moreover, the degree of deactivation to losses compared
to activation to gains (‘neural loss aversion’) in the nucleus
accumbens and the prefrontal cortex was predictive of individual
differences in behavioral loss aversion (Tom, Fox, Trepel, &
Poldrack, 2007). Finally, outcome values themselves (as well as
subjective preferences) have been associated with activations
in areas such as the ventromedial prefrontal cortex and the
orbitofrontal cortex (e.g. Knutson, Fong, Adams, Varner, and
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Hommer (2001), Knutson et al. (2003), McClure et al. (2004)
and O’Doherty, Deichmann, Critchley, and Dolan (2002)). These
activations as well need to be convincingly dissociated from other
potentially correlated signals such as TD errors.
While outlining the contribution of fMRI to elucidating the

neural underpinnings of RL, it is clear from the above that fMRI
results can reveal only so much. One way to overcome the
different interpretational caveats is to synthesize results from
electrophysiological recordings with those from fMRI. Another
approach that is gaining popularity is the use of functional
imaging in combination with pharmacological challenges (e.g.
Knutson and Gibbs (2007) and Pessiglione et al. (2006)) or with
radioligand labeled positron emission tomography (e.g. Zald et al.
(2004)) to test in humans more directly the causal predictions and
pharmacological hypotheses of RL models, respectively. In any case,
the promise of model-driven analysis of imaging data has yet to
be fully realized, and the link between computational models of
learning and the brain does not end with the identification of
the reward prediction error signal. For example, recent work has
used such a ‘hidden-variable’ analysis within an RL framework to
investigate the neural substrates of exploration (Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006) and a hierarchical RL model has
been used to demonstrate that the brain tracks the volatility (or
rate of change) of the environment (Behrens, Woolrich, Walton, &
Rushworth, 2007).

2.3. Evidence for multiple reinforcement learning systems in the brain

While dopamine is critical to many learning and behavioral
processes in the brain, animals can learn to select actions correctly
even in the absence of dopamine (Berridge, 2005, 2007). This is
perhaps not so surprising, as converging lines of evidence suggest
that animals and humans have a number of parallel decision-
making systems at their disposal (Daw et al., 2005; Dickinson &
Balleine, 2002), only a subset of which are dopamine dependent.
Key to identifying these different systems is the fact that a
certain behavior (for instance, simple lever-pressing by a rat) can
have wholly different characteristics in different situations: early
in training this behavior can show flexibility and sensitivity to
changes in the task or in the animal’s motivational state, while
the same lever-pressing behavior can become inflexible and slow
to adapt to any change after considerable training (e.g. Adams
and Dickinson (1981), Adams (1982) and Killcross and Coutureau
(2003)). The amount of training is not the only determinant of
the degree of flexibility of learned behavior (e.g. Balleine, Garner,
Gonzalez, and Dickinson (1995) and Dickinson, Nicholas, and
Adams (1983)), but the link between over-training and the folk-
psychological notions of ‘‘habits’’ has bestowed upon the inflexible
form of behavior the name ‘‘habitual responding’’, while the more
flexible instrumental actions are called ‘‘goal-directed’’ (Balleine,
2005; Balleine & Dickinson, 1998; Dickinson, 1985; Dickinson
& Balleine, 2002). To complicate matters further, some forms
of behavior seem wholly inflexible in that they are innately
specified reactions to learned predictions (Dayan, Niv, Seymour,
& Daw, 2006). These fall into the class of Pavlovian responses,
and it is not clear whether they are also driven by two types of
value predictions: flexible outcome-specific predictions (similar to
those underlying goal-directed instrumental behavior), and less-
flexible general affective predictions (as in habitual instrumental
behavior).
This suggested multiplicity of neural controllers may be sur-

prising – why not use the best controllers at all times? Careful
consideration of the characteristics of real-world learning situa-
tions, together with the properties of different RL strategies, can
offer insight into the advantages of combining different controllers
as well as explain their different behavioral characteristics. Recall
that the exposition of RL above began with a definition of pre-
dictive values (as the expected sum of future rewards), and then
suggested different ways to learn or estimate such values. If dif-
ferent methods are available, perhaps the brain uses more than
one? Daw et al. (2005) have suggested that since each method
has different advantages and disadvantages, the brain should use
each method in the circumstances for which it is best. They sug-
gested to identify habitual action selection with behavior based on
cached values – those values learned through prediction errors and
slow trial-and-error experience with the environment. These are
the classic ‘‘model-free’’ RL methods, for which action selection is
easy, however, much training is needed in order to obtain accurate
value estimates. Goal-directed behavior, on the other hand, was
identified with online dynamic-programming-like computation of
values through forward search or forward simulation of the conse-
quences of actions using an estimated model of the environment
(ie, estimated probabilities of transitions between states and re-
ward probabilities at each state). These ‘‘model-based’’ methods
are more accurate and adjust flexibly to changes in circumstances,
however, their computation is costly in terms of neural resources
and time, and so they should be used only sparingly – perhaps only
in those situations in which there is not yet enough data to in-
form the ‘‘model-free’’ system. Daw et al. (2005) further postulated
that the brain arbitrates between these parallel systems based on
the uncertainty associated with their evaluations: when the two
systems ‘recommend’ different courses of action, the recommen-
dation that is most accurate is the one that should be followed.
Assessing the accuracy of the evaluations of the two systems nor-
matively depends on variables such as amount of training (which
decreases uncertainty in the habitual system) and depth of the nec-
essary forward search (which increases uncertainty in the goal-
directed system).
These theoretical considerations align surprisingly well with

both behavioral and neural data. Behaviorally, the circumstances
that favor goal-directed behavior are those in which there is not
yet sufficient experience for the model-free system to build on,
such as early in training or when there are several actions leading
to several outcomes (each of which has been sampled to a lesser
extent). To the contrary, when a rather long sequence of possible
events needs to be mentally simulated in order to evaluate a
course of action in the model-based system, behavior tends to
be habitual, determined by model-free evaluations instead. Other
conditions favoring habitual responding are excessive training and
simple scenarios in which only one action needs be evaluated.
Even the fact that behavior on some schedules of reinforcement
habitizes more readily than on other schedules (namely, interval
and ratio schedules, respectively) can be understood within this
framework: in interval schedules many behavioral policies lead to
similar rates of reward, and thus policy learning can enjoy a large
degree of generalization. In contrast, in ratio schedules different
policies lead to different amounts of reward, and learning about
one policy cannot generalize to another. This means that, given the
same number of training sessions, the effective amount of learning
experience per policy is smaller in a ratio schedule as compared
to an interval schedule, and thus the uncertainty associated with
the habitual system would be higher and behavior would remain
goal-directed in ratio schedules.
Neurally, work from the lab of Bernard Balleine has implicated

separate cortico-basal-ganglia loops (Joel & Weiner, 1994; Parent
& Hazrati, 1993) in each of these evaluation and decision making
systems (see Balleine (2005) for a review). Specifically, the so-
called ‘limbic loop’, including areas such as the ventral striatum,
the basolateral amygdala and the orbitofrontal cortex, has been
associated with Pavlovian prediction learning and evaluation
(Cardinal, Parkinson, Hall, & Everitt, 2002; Holland & Gallagher,
1999; Killcross & Blundell, 2002). The acquisition and expression
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of ‘action-outcome’ (forward model) associations in the goal-
directed instrumental system has been localized to the ‘associative
loop’ which includes the dorsolateral prefrontal cortex (or its
homologue in rats, the prelimbic cortex) and the caudate nucleus
(dorsomedial striatum in rats) (Balleine & Dickinson, 1998;
Killcross & Coutureau, 2003; Yin, Knowlton, & Balleine, 2005; Yin,
Ostlund, Knowlton, & Balleine, 2005). Finally, ‘stimulus-response’
(cached policy) habitual behavior, which had previously been
associated with the striatum in general, has recently been more
specifically localized to the ‘sensorimotor loop’ originating in
sensorimotor cortices, and involving the putamen (dorsolateral
striatum in rats) (Yin, Knowlton, & Balleine, 2004).
The interactions between these interconnected loops (Joel &

Weiner, 1994), and indeed the implementation of arbitration
between the different systems, are less well understood. One
candidate area for arbitration between goal-directed and habitual
control is the rat infralimbic cortex (Killcross & Coutureau, 2003),
but the story here is only beginning to unfold. Another avenue
for future research, the flexible model-based action selection
system is, as of yet, under-constrained both computationally and
behaviorally. This complex system may be easier to study in
humans, where the use of instructions can prevent the need for
extensive training (and thus habitization of responding). Indeed,
recent fMRI investigations in the lab of John O’Doherty have begun
to see fruit from such a program. In one study, human goal-directed
behavior was tested using the outcome devaluation protocol that
has been developed for such studies in rats (Valentin, Dickinson, &
O’Doherty, 2007). The neural results implicated the orbitofrontal
cortex in the flexible evaluation of expected outcomes that is at
the heart of goal-directed behavior. Another set of papers in which
model-free TD learningwas contrastedwithmodel-based learning
algorithms that exploit the higher order structure of a serial-
reversal task, implicates the ventromedial prefrontal cortex and
the anterior cingulate cortex in computations that are explicitly
based on task structure (Hampton, Bossaerts, & O’Doherty, 2006;
Hampton & O’Doherty, 2007).

2.4. Tonic dopamine and the choice of response vigor

Keen-eyed readers may have noticed that there is one aspect
criticallymissing in our various accounts of reinforcement learning
and decision-making in the brain. Indeed, it is something of a cu-
riosity that although the tradition in animal experimentation is to
investigate the determinants of rates of responding (as in Skinner’s
investigations of key-pecking in pigeons or leverpressing in rats,
so called ‘free-operant’ experiments because the animal is free to
choose when to respond and no trial structure is imposed on be-
havior), RL models of conditioning have concentrated exclusively
on discrete choices of actions at pre-specified timepoints. Our is-
sue is not only with laboratory paradigms: real-life decisions most
often take place in continuous time, and one could argue that every
choice of action, even that in a discrete trial setting, is accompanied
by a choice of the speed or vigor with which that action will be per-
formed. Such a decision gives rise to response rates in free operant
behavior, to running times in mazes, and to reaction time data in
discrete settings. It also interacts with the effects of motivation on
behavior — a hungry rat running down a maze in search of food
will run faster than a sated rat.
In this final subsection we will briefly discuss the application

of RL methods to decisions about how fast (or with what vigor)
to behave, and the neural implications of such a model. Despite
the emphasis on discrete actions, RL theory does exist that
deals with continuous time: this is average reward reinforcement
learning in a semi-Markov decision process (Daw & Touretzky,
2002; Doya, 2000; Schwartz, 1993). Building on this theoretical
framework, we have recently proposed an RL model of optimal
rates of responding (Niv, Daw, & Dayan, 2005). In this model of
instrumental conditioning, every choice of action is accompanied
by a choice of a latency with which to perform that action.
Furthermore, responding incur costs inversely proportional to the
chosen latency, such that vigor is costly. Finally, the goal of the
decision-maker is to obtain the highest possible net rate of rewards
minus costs per unit time. The results of themodel showed that the
fundamental characteristics of free operant response rates could be
explained as the consequences of the optimal choice of response
rates in different tasks (Niv, 2007). Moreover, the model was used
to derive a normative explanation for how motivational states
should affect the rates of responding (Niv, Joel, & Dayan, 2006).
Importantly, the average reward RL framework highlights an

important factor that determines optimal responding: the net rate
of rewards, that acts as the opportunity cost of time. Consider, for
instance, a rat pressing a lever in order to obtain food. Suppose
that its presses had previously earned food at an average rate of
four pellets per minute. When contemplating whether to devote
five seconds to executing the next leverpress, the potential benefit
of this action (ie, the probability of its generating reward, and the
magnitude of this reward) should be weighed against both the
costs of performing the action at this speed, and the opportunity
cost of time, ie, the potential loss of (on average) 1/3 reward
pellet due to devoting time to this action rather than continuing to
behave according to the previous policy. Because the opportunity
cost of time is similar for all actions, the model predicts that when
the net reward rate is higher (for instance, due to a benevolent
experimenter, or due to the rat being hungry, which renders
each food pellet subjectively more valuable), all actions should
optimally be performed faster (Niv, Daw, Joel, & Dayan, 2007; Niv
et al., 2006).
How does this relate to neural reinforcement learning?

Alongside the emphasis on only the discrete choice aspect of
decision-making, the prediction error theory of dopamine also
concentrated on only one aspect of dopaminergic activity and
influence: the effect of phasic dopaminergic signaling on learning
and plasticity. However, dopamine neurons operate in both a
phasic and a tonic mode (Bergstrom & Garris, 2003; Floresco et al.,
2003; Goto & Grace, 2005; Grace, 1991; Weiner & Joel, 2002), and
affect not only synaptic plasticity, but also membrane potentials
and neural excitability (which may be particularly sensitive
to tonic levels of dopamine; Nicola, Surmeier, and Malenka
(2000) and Schultz (2002)). Indeed, the effects of dopaminergic
manipulations such as lesions, antagonism or agonism, are first
and foremost seen in the vigor of ongoing behavior, rather
than in learning processes. For instance, 6-hydroxydopamine
injections into the ventral striatum that kill dopaminergic neurons
projecting to that area, profoundly reduce the rate of instrumental
responding (for a review see Salamone and Correa (2002)). As a
result, dopamine in the striatum has been linked to invigorating
Pavlovian and instrumental responding (Ikemoto & Panksepp,
1999; Salamone & Correa, 2002).
Combining these lines of evidence, we have suggested that

the net rate of reward, the critical determinant of response
rates across the board, might be represented by tonic levels of
dopamine in the striatum (Niv et al., 2005, 2006). Different from
phasic dopaminergic activity that changes on the timescale of
milliseconds, and presumably exerts its main effect inside its
target synapses, the tonic level of dopamine is the slowly-changing
background level of the neuromodulator in the extrasynaptic fluid,
hypothesized to change very slowly (on the order of minutes),
bridging across events such as trials in an experiment. If tonic
dopamine really does convey the net reward rate, it is now



Y. Niv / Journal of Mathematical Psychology 53 (2009) 139–154 151
clear why higher levels of dopamine (for instance, as a result
of amphetamine administration) would result in overall faster
responding, and why dopamine depletion (as in Parkinson’s
disease) would induce lethargy. Recent work supporting this
hypothesis has shown that the overall vigor of instrumental
responding depends on the balance between the so-called direct
and indirect pathways from the striatum to the output of the
basal ganglia (Lobo, Cui, Ostlund, Balleine, & Yang, 2007), and
that the lateral habenula controls the tonic levels of dopamine in
the striatum, withmanipulations exerting prolonged effects (more
than one hour long) on the degree of locomotion of rats (Lecourtier,
Defrancesco, & Moghaddam, 2008). Moreover, It conveniently
turns out that if the tonic level of dopamine simply reflects
spillover from phasic prediction error signals, averaged over a
longer timeframe due to slow reuptake, it follows computationally
that it would, by default, equal the net rate of obtained rewards.
This ‘tonic dopamine hypothesis’ thus dovetails neatly both with
the computational prediction error theory of phasic dopamine and
with psychological theories about dopamine’s role in energizing
responses. It provides the first normative explanation for the
critical role that tonic levels of dopamine play in determining the
vigor of responding, and suggests a route bywhich dopamine could
mediate the effects of motivation on response vigor.

3. Challenges and future directions

RLmodels are nowused routinely to design and interpret awide
range of learning and decision-making experiments. However, one
of the reasons that RL models have been successful is that they are
highly simplified models, accounting for fundamental phenomena
while eschewing the necessary complexities that accompanymore
detailed explanations. We have already discussed some possible
extensions and fertile areas for futurework throughout this review.
In this last section, we highlight a few more theoretical challenges
that await this area of active research.
The first challenge is hinted to by responses of dopamine

neurons to stimuli not clearly related to reward prediction. It
has long been known that novel stimuli cause phasic bursts in
dopamine neurons (Schultz, 1998), although they are not (yet)
predictive of any outcome, aversive or appetitive. However, new
learning is not done on the background of a blank slate. It is
reasonable to think that generalization to previously encountered
stimuli would play a role in the initial appraisal of a novel
stimulus. If the experimental (or the general ecological) scenario
is such that animals have learned to expect that stimuli predict
rewards (as is the case in many experimental situations), it is
not surprising that new stimuli will be treated optimistically.
Kakade and Dayan (2002) addressed this possibility directly, and
furthermore suggested that the novelty responses can function as
‘novelty bonuses’ — quantities that are added to other available
rewards (rnewt = rt + novelty(St)) and enhance exploration of
novel stimuli. Kakade and Dayan showed how this simple idea can
account in detail for the reported novelty responses of dopamine
neurons (for instance, for the observation that the novelty burst is
frequently followed immediately by a dip of the firing rate below
baseline) yet still explain how they also communicate a reward
prediction error. Recent fMRI work has demonstrated directly the
existence of such additive novelty bonuses and their influence on
choice behavior, in a situation in which novelty was explicitly not
related to reward predictions (Wittmann, Daw, Seymour, & Dolan,
2008). The general issue which this line of work only begins to
touch upon, is that of generalization: how does learning from one
task affect subsequent learning. This fundamental question is still,
for the most part, awaiting a normative computational account.
A second intriguing avenue of research deals with more

complex tasks, for instance, those which have hierarchical
structure. A quintessential example of this is the everyday task
of making coffee, which comprises several high-level ‘modules’
such as ‘grind beans’, ‘pour water’, ‘add sugar’, each of which,
in turn, comprises many lower-level motor actions. Hierarchical
reinforcement learning (Barto & Mahadevan, 2003; Parr & Russell,
1998; Sutton, Precup, & Singh, 1999) is an active area of research
exploring the ways in which RL systems can take advantage of
the hierarchical structure of real-world tasks, in order to mix-
and-match previously learned action modules. One question that
frequently arises in these theoretical studies is, where do these
previously learnedmodules come from, or, more importantly, how
does an agent learn useful modules (e.g. Simsek and Barto (2004)
and Stolle and Precup (2002)). In animal learning, at least part of
this answer is clear: usefulmodules come fromprevious tasks. This
again raises the issue of generalization — how to transfer learning
from one task to another effectively. But, above and beyond the
issue of learning of modules, the hierarchical RL framework raises
many tantalizing questions regarding the neural implementation
of hierarchical control (Botvinick, 2008; Botvinick, Niv, & Barto,
2008).
A third challenge is due to the nature of temporal difference

learning, and specifically, its strong dependence on temporal
representations. Behavioral results suggest that interval timing is
extremely inaccurate,with the standard deviation of the prediction
of an interval being proportional to themean length of the interval
(Gallistel & Gibbon, 2000; Gibbon, 1977). Simple variants of TD
learning are extremely sensitive to timing noise, with even very
small amounts of noise devastating the predictive power of the
model, and resulting in pronounced prediction errors at the time
of reward delivery, even in thoroughly learned tasks. The puzzle is
whether the high degree of noise in behavioral timing is consistent
with the temporal sensitivity displayed by neural prediction error
signals. In any case, deriving such precisely-timed predictions
despite considerable timing noise likely necessitates a more
complex account for timing within a semi-Markov framework
(Daw, Courville, & Touretzky, 2002, 2006)
The final area of research that we would like to mention

here, has actually been waiting in the sidelines all along. Even
simple experimental paradigms such as extinction (inwhich a once
predicted reward ceases to appear) and conditioned inhibition
(in which a cue predicts that an otherwise expected reward will
not occur) do not yet have satisfactory computational models.
The RL framework is exposed for its excessive simplicity by
basic behavioral phenomena such as spontaneous recovery from
extinction, or the fact that the inhibitory value of a conditioned
inhibitor does not extinguish when this cue is presented alone.
Temporal difference models that treat extinction merely as the
unlearning of predictive values, can not explain spontaneous
recovery. Similarly, modeling conditioned inhibitors as having
negative predictive value cannot explain why this value is
maintained even when it is consistently paired with no reward
(‘‘0’’) rather than a negative outcome. Clearly, conditioning is more
than learning and unlearning of additively combined values. One
recent model that suggested that negative prediction errors result
in the inference of a new state S and new learning about this
state, explained how both the original conditioned values and the
new extinction knowledge can co-exist (Redish, Jensen, Johnson, &
Kurth-Nelson, 2007). Further modeling work awaits.

4. Conclusions

To summarize, computational models of learning have done
much to advance our understanding of decision making in the
last couple of decades. Temporal difference reinforcement learning
models have suggested a framework for optimal onlinemodel-free
learning, which can be used by animals and humans interacting
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with the environment in order to learn to predict events in the
future and to choose actions such as to bring about those events
that are more desirable. Investigations into the decision-making
behavior of both animals and humans support the existence of
such a mechanism, controlling at least some types of decision-
making behavior. The prediction error hypothesis of dopamine
has further linked these algorithmic ideas to possible underlying
neural substrates, specifically, to learning and action selection
in the basal ganglia modulated by phasic dopaminergic signals.
Converging evidence from awide variety of recording and imaging
methods supports this hypothesis. Neural investigations of the
underpinnings of RL, in turn, have highlighted some holes in
the current theory (e.g. dopaminergic novelty responses), and
have suggested extensions to the RL framework (e.g. combining
different RL controllers within one agent).
It thus seems that reinforcement learning has been most

powerful (and unfortunately for neuroscience, almost unique), in
tying together Marr’s (1982) three levels: computation, algorithm
and implementation, into one coherent framework that is used
not only for gleaning understanding, but also for shaping the next
generation of experimental investigations.Whether the theory can
be elaborated to account for results of future experimentation
without losing its simplicity and elegance, or whether it is
eventually abandoned and replaced by a newer generation
of computational learning theories, reinforcement learning has
already left its permanent mark on the study of decision making
in the brain.
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