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SUMMARY

Little is known about the relationship between
attention and learning during decision making. Us-
ing eye tracking and multivariate pattern analysis
of fMRI data, we measured participants’ dimen-
sional attention as they performed a trial-and-error
learning task in which only one of three stimulus
dimensions was relevant for reward at any given
time. Analysis of participants’ choices revealed
that attention biased both value computation dur-
ing choice and value update during learning. Value
signals in the ventromedial prefrontal cortex and
prediction errors in the striatum were similarly
biased by attention. In turn, participants’ focus of
attention was dynamically modulated by ongoing
learning. Attentional switches across dimensions
correlated with activity in a frontoparietal attention
network, which showed enhanced connectivity
with the ventromedial prefrontal cortex between
switches. Our results suggest a bidirectional inter-
action between attention and learning: attention
constrains learning to relevant dimensions of the
environment, while we learn what to attend to via
trial and error.

INTRODUCTION

The framework of reinforcement learning (RL) has been instru-

mental in advancing our understanding of the neurobiology of

trial-and-error learning and decision making (Lee et al., 2012).

Yet, despite the widespread success of RL algorithms in explain-

ing behavior and neural activity on simple learning tasks, these

same algorithms become notoriously inefficient as the number

of dimensions in the environment increases (Bellman, 1957; Sut-

ton and Barto, 1998). Nevertheless, animals and humans faced
with high-dimensional learning problems on a daily basis seem

to solve them with ease.

How do we learn efficiently in complex environments?

One possibility is to employ selective attention to narrow

down the dimensionality of the task (Jones and Cañas, 2010;

Niv et al., 2015; Wilson and Niv, 2012). Selective attention pri-

oritizes a subset of environmental dimensions for learning

while generalizing over others, thereby reducing the number

of different states or stimulus configurations that the agent

must consider. However, attention must be directed toward

dimensions of the environment that are important for the

task at hand (i.e., dimensions that predict reward) to provide

learning processes with a suitable state representation (Gersh-

man and Niv, 2010; Wilson et al., 2014). What dimensions are

relevant to any particular task is not always known and might

itself be learned through experience. In other words, for atten-

tion to facilitate learning, we might first have to learn what to

attend to. We therefore hypothesize that a bidirectional inter-

action exists between attention and learning in high-dimen-

sional environments.

To test this, we had human participants perform a RL task with

compound stimuli—each comprised of a face, a landmark, and a

tool—while we scanned their brain using fMRI. At any one time,

only one of the three stimulus dimensions was relevant to pre-

dicting reward, mimicking real-world learning problems where

only a subset of dimensions in the environment is relevant for

the task at hand. Using eye tracking and multivariate pattern

analysis (MVPA) of fMRI data, we obtained a quantitative mea-

sure of participants’ attention to different stimulus dimensions

on each trial. We then used trial-by-trial choice data to test

whether attention biased participants’ valuation of stimuli, their

learning fromprediction errors, or both processes.We generated

estimates of participants’ choice value and outcome-related pre-

diction errors using the best-fitting model and regressed these

against brain data to further determine the influence of attention

on neural value and prediction error signals. Finally, we analyzed

trial-by-trial changes in the focus of attention to study how atten-

tion was modulated by ongoing experience and to search for

neural areas involved in the control of attention.
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Figure 1. The Dimensions Task

(A) Schematic illustration of the task. On each trial,

the participant was presented with three stimuli,

each defined along face, landmark, and tool

dimensions. The participant chose one of the

stimuli, received feedback, and continued to the

next trial.

(B) The fraction of trials on which participants

chose the stimulus containing the target feature

(i.e., the most rewarding feature) increased

throughout games. Dashed line: random choice,

shading: SEM.

(C) Participants (dots) chose the stimulus that

included the target feature (correct stimulus)

significantly more often in the last five trials of a

game as compared to the first five trials (t24 =

15.42, p < 0.001). Diagonal: equality line.
RESULTS

25 participants performed a learning task with multidimensional

stimuli and probabilistic reward (‘‘Dimensions Task,’’ Figure 1A).

On each trial, participants chose one of three compound stim-

uli—each comprised of a face, a landmark, and a tool—receiving

point rewards. In any one game, only one stimulus dimension

(e.g., tools) was relevant for predicting reward. Within that

dimension, one ‘‘target feature’’ (e.g., wrench) was associated

with a high probability of reward (p = 0.75) and other features

were associated with a low probability of reward (p = 0.25).

The relevant dimension and target feature changed every 25 tri-

als, and this change was signaled to participants (‘‘New game

starting’’). Through trial and error, participants learned to choose

the stimulus containing the target feature over the course of a

game (Figures 1B and 1C). We defined a learned game as one

in which participants chose the target feature on every one of

the last five trials. By this metric, participants learned on average

11.3 (SE = 0.7) out of 25 games. The number of learned games

did not depend on the relevant dimension (F(2,24) = 0.886,

p = 0.42).

Attention-Modulated Reinforcement Learning
We obtained two quantitative trial-by-trial measures of partici-

pants’ attention to each dimension. First, using eye tracking,

we computed the proportion of time participants looked at

each dimension on each trial. Second, using MVPA, we quanti-
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fied face-, landmark-, and tool-selective

neural activity on each trial (Norman

et al., 2006; see Experimental Proced-

ures). Each measure provided a vector

of three ‘‘attention weights’’ per trial, de-

noting the proportion of attention toward

each of the dimensions on that trial.

Average attention weights were similar

across dimensions (Figures S1 and S2),

indicating that neither measure was

biased toward a particular dimension.

The two measures were only moderately

correlated (r = 0.34, SE = 0.03), suggest-
ing that the separate measures were not redundant. We there-

fore used their smoothed product as a composite measure of

attention on each trial, which we incorporated into different RL

models (see Experimental Procedures).

Attention can modulate RL in two ways. First, attention can

bias choice by differentially weighing features in different dimen-

sions when computing the value of a composite, multidimen-

sional stimulus. Second, attention can bias learning such that

the values of features on attended dimensions are updated

more as a result of a prediction error. To test whether and how

attention modulated learning in our task, we fit four different RL

models to the trial-by-trial choice data. In all four models, we

assumed that participants chose between the available stimuli

based on their expected value, computed as a linear combina-

tion of ‘‘feature values’’ associated with the three features of

each stimulus, and that feature values were updated after every

trial using a prediction error signal (Figure 2) (Rescorla and

Wagner, 1972; Sutton and Barto, 1998). In the ‘‘uniform atten-

tion’’ (UA) model, all dimensions were weighted equally when

computing and updating values. That is, the value of a stimulus

was the average values of all its features, and once the outcome

of the choice was revealed, the prediction error was equally

divided among all features of the chosen stimulus. In the ‘‘atten-

tion at choice’’ (AC) model, the value of each stimulus was

computed as a weighted sum of feature values, with attention

to the respective dimensions on that trial serving as weights.

All dimensions were still weighted equally at learning. In contrast,



Figure 2. Schematic of the Learning Models

At the time of choice, the value of a stimulus (V) is a linear combination of its

feature values (v), weighted by attention weights of the corresponding

dimension (fF, fL, fT = attention weights to faces, landmarks, and tools,

respectively). In the UA and ALmodels, attention weights for choice were one-

third for all dimensions. Following feedback, a prediction error (d) is calculated.

The prediction error is then used to update the values of the three features of

the chosen stimulus (illustrated here only for the face feature), weighted

by attention to that dimension and scaled by the learning rate (h). In the UA and

AC models, all attention weights were one-third at learning.
in the ‘‘attention at learning’’ (AL) model, the update of feature

values was differentially weighted by attention; however, all di-

mensions were equally weighted when computing the value of

stimuli for choice. Finally, the ‘‘attention at choice and learning’’

(ACL) model combined the AC and AL models so that both

choice and learning were biased by attention. The free parame-

ters of each model were fit to each participant’s choices (see

Experimental Procedures; Table S1).

Both Choice and Learning Are Biased by Attention
To assess howwell the models explained participants’ behavior,

we used a leave-one-game-out cross-validation procedure to

compute the likelihood per choice for each participant (Experi-

mental Procedures). The higher the average choice likelihood,

the better the model predicted the data of that participant. As

a second metric for model comparison, we computed the

Bayesian information criterion (BIC; Schwarz, 1978) for each

model. In all cases, using the composite attention measure pro-

vided a better fit to the data than if we used theMVPAmeasure or

the eye-tracking measure alone (Figure S4); hence, we use the

composite attention measure in subsequent analyses unless

otherwise noted (see Figures S1–S3 for characterization of the

three attention measures).

Bothmodel-performancemetrics showed that the ACLmodel,

in which attention modulated both choice and learning, outper-

formed the other three models (Figure 3). Average likelihood

per trial for the ACL model was highest for 21 of 25 subjects,

on average significantly higher than that for the AC (t24 = 4.72,

p < 0.001), AL (t24 = 6.70, p < 0.001), and UA (t24 = 8.61,

p < 0.001) models (Figure 3A). Both the AC and AL models

also yielded significantly higher average likelihood per trial than

the UA model (AC: t24 = 8.03, p < 0.001; AL: t24 = 7.20, p <

0.001). Model comparison using BIC confirmed that the ACL

model has the lowest (i.e., best) BIC score (Figure 3B). Moreover,
the average likelihood per trial of the ACL model diverged signif-

icantly from that of the other models early in the game, when per-

formance was still well below asymptote (as early as trial 2 for AL

and UA and from trial 7 for AC; Figure 3C). These results were not

driven by the learned portion of games (in which participantsmay

have focused solely on the relevant dimension), as they held

when tested on unlearned games only (Figure S5).

The ACL model used the same set of attention weights for

choice and learning; however, previous theoretical and empirical

work suggest that attention at choice might focus on stimuli or

features that are most predictive of reward (Mackintosh, 1975),

whereas at learning, one might focus on features for which there

is highest uncertainty (Pearce and Hall, 1980). To test whether

attention at learning and attention at choice were separable,

we took advantage of the higher temporal resolution of the

eye-tracking measure. We considered eye positions from

200 ms after stimulus onset to choice as indicating ‘‘attention

at choice’’ and eye positions during the 500 ms of outcome pre-

sentation as a measurement of ‘‘attention at learning.’’ Attention

at choice and attention at learning on the same trial were moder-

ately correlated (average r = 0.56), becoming increasingly corre-

lated over the course of a game (F(24,24) = 4.95, p < 0.001;

Figure S6). This suggests that as participants figured out the rele-

vant dimension, they attended to the same dimension in both

phases of the trial. When we fit the ACL model using attention

at choice to bias value computation and attention at learning to

bias value update, the model performed slightly, but signifi-

cantly, better than the ACL model that used whole-trial attention

weights for both choice and learning (Figure S7). This suggests

that attentional processes at choice and at learning may reflect

dissociable contributions to decision making (see also Supple-

mental Experimental Procedures).

Overall, these results suggest that attention processes biased

both how values were computed during choice and how values

were updated during learning. Notably, the partial attention

models (AC and AL) also explained participants’ behavior better

than the model that assumed uniform attention across dimen-

sions (UA), providing additional support for the role of attention

in participants’ learning and decision-making processes.

Neural Value Signals and Reward Prediction Errors Are
Biased by Attention
Having found behavioral evidence that attention biased both

choice and learning, we hypothesized that neural computations

would exhibit similar biases. Previous work has identified two

neural signals important for RL processes—an expected value

signal in the ventromedial prefrontal cortex (vmPFC; e.g., Hare

et al., 2011; Krajbich et al., 2010; Lim et al., 2011) and a reward

prediction error signal in the striatum (e.g., O’Doherty et al.,

2004; Seymour et al., 2004). Our four models made different as-

sumptions about how attention biases choice and learning and,

as such, generated different estimates of expected value and

prediction error on each trial.

To test whichmodel wasmost consistent with the neural value

representation, we entered the trial-by-trial value estimates of

the chosen stimulus generated by all four models into a single

GLM (GLM1 in Experimental Procedures). This allowed us to

search the whole brain for clusters of brain activity whose
Neuron 93, 451–463, January 18, 2017 453
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Figure 3. The ‘‘Attention at Choice and

Learning’’ Model Explains Participants’

Choice Data Best

(A) Average choice likelihood per trial for each

model and each participant (ordered by likelihood

of the model that best explained their data) shows

that the Attention at Choice and Learning (ACL)

model predicted the data significantly better than

other models (paired t tests, p < 0.001). This

suggests that attention biased both choice and

learning in our task. Solid lines: mean for each

model across all participants.

(B) BIC scores aggregated over all participants

also support the ACLmodel (lower scores indicate

better fits to data).

(C) Average choice likelihood of the ACL model

was significantly higher than that of the AL and UA

models from the second trial of a game and on-

ward (paired t tests, p < 0.05) and was higher than

that of the ACmodel from as early as trial 7 (paired

t tests against AC model, *p < 0.05). By the end

of the game, the ACL model could predict choice

with �70% accuracy. Error bars, within-sub-

ject SE.
variance was uniquely explained by one of the models while

simultaneously controlling for the value estimates of the other

models. Results showed that activity in the vmPFC was signifi-

cantly correlated with the value estimates of the ACLmodel (Fig-

ure 4A), suggesting that the computation and update of the value

representation in vmPFC was biased by attention. No clusters

were significantly correlated with the value estimates of the AC

and AL model; one cluster in the visual cortex was significantly

correlated with the value estimates of the UA model (Table S2).

Next, we investigated whether neural prediction error signals

were also biased by attention. For this, we entered trial-by-

trial prediction error regressors generated by each of the four

models into a single whole-brain GLM (GLM2 in Experimental

Procedures). Prediction errors generated by the ACL model

were significantly correlated with activity in the striatum (Fig-

ure 4B; Table S2), the area most commonly associated with

prediction error signals in fMRI studies. Prediction error esti-

mates of the other models were not significantly correlated

with any cluster in the brain. Together, these results provide

neural evidence that attention biases both the computation of

subjective value as well as the prediction errors that drive the

updating of those values.

Attention Is Modulated by Value and Reward
In our previous analyses, we demonstrated that attention biased

both choice and learning. In the subsequent analyses, we focus

on the other side of the bidirectional relationship, examining

how learning modulates attention. As a measure of participants’

attention bias (i.e., how strongly participants were attending to

one dimension rather than the other two), we computed the stan-

dard deviation (SD) of the three attention weights on each trial.

Low SD corresponded to relatively uniform attention, while high

SD implied that attention was more strongly directed to a subset

of dimensions.
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Participants’ attention bias increased over the course of a

game (linear mixed effects model, main effect of trial: t(24) =

2.79, p = 0.01), and the increase was marginally greater for

learned games than for unlearned games (trial number3 learned

games interaction: t(22.5) = 1.8, p = 0.08, Figure S3A), as ex-

pected from a narrowing of attention when participants learn

the target feature and relevant dimension. In parallel, the corre-

lation between the vectors of attention weights for consecutive

trials increased steadily over the course of a game, consistent

with attention becoming increasingly consistent across trials

(main effect of trial number: t(24.0) = 5.6, p < 0.001, Figure S3B).

This effect was alsomore pronounced for learned games than for

unlearned games (trial 3 learned games interaction: t(36.5) =

2.96, p = 0.005).

Next, we asked whether learned value (i.e., expected reward)

modulated where participants directed their attention. We

found that the most strongly attended dimension was often

also the dimension with the feature of highest value (M = 0.61,

SE = 0.02; significantly higher than chance, p < 0.001 bootstrap

test, see Supplemental Experimental Procedures), suggesting

that attention was often directed toward aspects of the stimuli

that had acquired high value. We then tested the interaction be-

tween expected reward and the strength of the attention bias. A

tercile split on the trials based on the strength of attention bias

revealed that the proportion of trials in which attention was

directed to the dimension with the highest feature value was

higher when attention bias was strong (first tercile, M = 0.72,

SE = 0.03) than when attention bias was moderate (second

tercile, M = 0.61, SE = 0.02) and weak (third tercile, M = 0.49,

SE = 0.02) (p < 0.001 for all differences, Figure 5A).

We also predicted that feature values would modulate atten-

tion such that the greater the difference in feature values across

dimensions, the greater the attention bias toward the feature of

the highest value. To test this prediction, we performed a tercile
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Figure 4. Neural Value and Reward Prediction Error Signals Are

Biased Both by Attention for Choice and by Attention for Learning
(A) BOLD activity in the vmPFC was significantly correlated with the value

estimates of the ACL model, controlling for the value estimates of the AC, AL,

and UA models.

(B) BOLD activity in the striatum correlated with reward prediction errors

generated by the ACL model, controlling for reward prediction error estimates

from the AC, AL, and UAmodels. In sum, the ACLmodel’s predictions for value

and prediction errors best corresponded to their respective neural correlates.
split of each participant’s data based on the standard deviation

of the values (SDV) of the highest-valued feature in each dimen-

sion, a measure of the difference in feature values across dimen-

sions. Attention bias was stronger on high SDV trials than on

middle (p = 0.030) and low (p = 0.027) SDV trials (Figure 5B)

and marginally higher for the middle SDV trials compared to

the low SDV trials (p = 0.067). Taken together, these results sug-

gest that learned values modulated where participants attended

to and the strength of their attention bias.

Building on these results, we hypothesized that attention

switches would be more likely when feature values were similar

across dimensions. We defined an attention switch as a change

in the maximally attended dimension. Our attention measure-

ments suggested that participants switched their focus of atten-

tion on approximately one-third of the trials (M = 8.28 [SE = 0.4]

switch trials per 25-trial game). Switches were more frequent on

low SDV trials than on middle (p = 0.014) and high (p = 0.004)

SDV trials. Switches were also more frequent on middle SDV tri-

als than on high SDV trials (p = 0.002) (Figure 5C). To determine

the influence of recent reward on attention switches, we ran a lo-

gistic regression predicting attention switches from outcome

(reward versus no reward) on the preceding five trials. We found

that absence of reward in previous trials (up to four trials back)

was a significant predictor of attention switches on the current

trial t (p < 0.01), with regression coefficients decreasing and no

longer significantly different from zero at trial t-5 (t24 = 1.72,

p = 0.09; Figure 5D). In other words, participants weremore likely

to switch their focus of attention after a string of no reward, and

feedback on more recent trials had a greater influence than trials

further back in the past.

Finally, we complemented these analyses with a model-

based analysis of attention. Here, we compared different

models of the trial-by-trial dynamic allocation of attention (see

Experimental Procedures). In particular, we tested whether
attention allocation could be better explained by choice history

(i.e., attention was enhanced for features that have been previ-

ously chosen), reward history (i.e., attention was enhanced for

features that had been previously rewarded), or learned value

(i.e., attention was enhanced for features associated with higher

value over the course of a game). Cross-validated model com-

parison revealed that the empirical attention data were best ex-

plained by a model that tracked feature values. In particular, the

‘‘Value’’ model outperformed the next-best ‘‘Recent Reward

History’’ model for both the eye-tracking (lowest root-mean-

square deviation [RMSD] in 17/25 subjects, paired-sample t

test, t(24) = 2.77, p < 0.05, Figure 5E) and composite attention

(lowest RMSD in 18/25 subjects, paired-sample t test, t(24) =

2.41, p < 0.05, Figure S8) measures. For the MVPA data, the

Value model did not significantly improve upon the predictions

of the Recent Reward History model (lowest RMSD in 16/25

subjects, paired-sample t test, t(24) = 1.02, p = 0.31, Figure 5F);

however, it still performed significantly better than the ‘‘Recent

Choice History’’ model (paired-sample t test, t(24) = 3.83,

p < 0.001).

In summary, both model-based and model-free results sug-

gest that attention was dynamically modulated by ongoing

learning. As participants learned to associate value with features

over the course of a game, attention was directed toward di-

mensions with features that acquired high value (which, in our

task, are also the features that are most predictive of reward)

in accord with Mackintosh’s theory of attention (Mackintosh,

1975). The greater the feature values in a dimension, the stron-

ger the attention bias was toward that dimension. Conversely,

when feature values across dimensions were similar, attention

was less focused and switches between dimensions were

more likely. Finally, attention was better explained as a function

of learned value rather than simpler models of reward or choice

history.

Attention Switches Correlate with Activity in a
Frontoparietal Control Network
Our results suggest that ongoing learning and feedback dynam-

ically modulated participants’ deployment of attention. How

might the brain be realizing these attention dynamics? To

answer this, we searched for brain areas that were more active

during switches in attention. As in our previous analyses, we

labeled trials on which the maximally attended dimension was

different from that of the preceding trial as switch trials and

the rest as stay trials. A contrast searching for more activity

on switch rather than stay trials (GLM3 in Experimental Proced-

ures) showed clusters in the dorsolateral prefrontal cortex

(dlPFC), intraparietal sulcus (IPS), frontal eye fields (FEF), pre-

supplementary motor area (preSMA), precuneus, and fusiform

gyrus (Figure 6; Table S3). These brain regions are part of a fron-

toparietal network that has been implicated in the executive

control of attention (Corbetta and Shulman, 2002; Petersen

and Posner, 2012). Our results suggest that this attentional-

control system also supports top-down allocation of attention

during learning and decision making in multidimensional

environments.

We next asked whether this network was activated only

by attention switches, or perhaps it was involved in the
Neuron 93, 451–463, January 18, 2017 455
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Figure 5. Attention Is Modulated by Ongoing

Learning

(A) Proportion of trials in which the most attended

dimension was the dimension that included the

highest-valued feature. This proportion, in all cases

significantly above chance, was highest in trials with

strong attention bias as compared to those with

moderate and weak attention bias.

(B) Trialswith a higher SDof thehighest values across

dimensions (SDV) showed stronger attention bias.

(C) The probability of an attention switch was highest

on low SDV trials. Overall, the greater the difference

between feature values, the stronger the attention

bias and the less likely participants were to switch

attention. Black lines: means of corresponding null

distributions generated from a bootstrap procedure

in which attention weights for each game were re-

placed by weights from a randomly selected game

from the same participant.

(D) Coefficients of a logistic regression predicting

attention switches from absence of reward on the

preceding trials. Outcomes of the past four trials

predicted attention switches reliably.

(E and F) Comparison of models of attention fitted

separately to the eye-tracking (E) and the MVPA (F)

measures, according to the root-mean-square de-

viation (RMSD) of the model’s predictions from the

empirical data (lower values indicate a better model).

Plotted is the subject-wise average per-trial RMSD

calculated from holdout games in leave-one-game-

out cross-validation (Experimental Procedures). The

Value model (dark grey) has the lowest RMSD. Error

bars, 1 SEM. ***p < 0.001; **p < 0.01; *p < 0.05.
accumulation of evidence leading up to an attention switch. The

latter hypothesis would predict that activity in these regions

would ramp up on trials prior to a switch. To test for this, we

defined regions of interest (ROIs) in the dlPFC, IPS, and preSMA

using Neurosynth (http://neurosynth.org). For each ROI, we ex-

tracted the mean time course during each run and modeled

these data using a GLM with regressors for attention switch tri-

als, as well as four trials preceding each switch (GLM4 in Exper-

imental Procedures). In all three ROIs, we found that activity

increased only on attention-switch trials and not the trials pre-

ceding them, suggesting that this network was involved in

switching attention rather than accumulating evidence for the

switch (Figure 7).
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Enhanced Functional Connectivity
between vmPFC and Frontoparietal
Network between Switches
Finally, we searched for the neural mecha-

nism mediating the interaction between

learning and attention. For this, we per-

formed a psychophysiological interaction

(PPI) analysis that searched for brain areas

that exhibit enhanced functional connectiv-

ity with the vmPFC that is specific to switch

trials or to stay trials (GLM5 in Experimental

Procedures). This showed that connectivity

between parts of the frontoparietal atten-
tion network and vmPFC differed according to whether partici-

pants switched attention on the current trial or not: bilateral

dlPFC and preSMA (as well as the striatum and ventrolateral

PFC) were significantly anti-correlated with vmPFC on stay trials,

above and beyond the baseline functional connectivity between

these regions (Figure 8; Table S4). This suggests that as value—

signaled by the vmPFC—increased, activity in the dlPFC and

preSMA decreased, reducing the tendency to switch attention

between task dimensions (and vice versa when the value signal

decreased). The connectivity on switch trials was not signifi-

cantly different from baseline. However, we note that interpreta-

tions of the direction of interaction are difficult as they are relative

to the baseline connectivity between vmPFC and other regions

http://neurosynth.org
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Figure 6. Neural Correlates of Attention

Switches

BOLD activity in a frontoparietal network was

higher on switch trials than on stay trials.
(as modeled in the GLM), and therefore the above interpretation

should be treated with caution.

DISCUSSION

Learning and attention play complementary roles in facilitating

adaptive decision making (Niv et al., 2015; Wilson and Niv,

2012). Yet, there has been surprisingly little work in cognitive

neuroscience addressing how attention and learning interact.

Here, we combined computational modeling, eye tracking, and

fMRI to study the interaction between trial-and-error learning

and attention in a decision-making task. We used eye tracking

and pattern classification of multivariate fMRI data to measure

participants’ focus of attention as they learned which of three di-

mensions of task stimuli was instrumental to predicting and ob-

taining reward. Model-based analysis of both choice and neural

data indicated that attention biased how participants computed

the values of stimuli and how they updated these values when

obtained reward deviated from expectations. The strength and

focus of the attention bias was, in turn, dynamically modulated

by ongoing learning, with trial-by-trial allocation of attention

best explained as following learned value rather than the history

of reward or choices. Blood-oxygen-level-dependent (BOLD)

activity in a frontoparietal executive control network correlated

with switches in attention, suggesting that this network is

involved in the control of attention during reinforcement learning.

Our study builds on a growing body of literature in which RL

models are applied to behavioral and neural data. Converging

evidence suggests that the firing of midbrain dopamine neurons

during reward-driven learning corresponds to a prediction error

signal that is key to learning (Lee et al., 2012; Schultz et al.,

1997; Steinberg et al., 2013). The dopamine prediction error

hypothesis has generated much excitement, as it suggests

that RL algorithms provide a formal description of the mecha-

nisms underlying learning. However, it is becoming increasingly

apparent that this story is far from complete (Dayan and Niv,

2008; O’Doherty, 2012). In particular, RL algorithms suffer from

the ‘‘curse of dimensionality’’: they are notoriously inefficient in

realistic, high-dimensional environments (Bellman, 1957; Sutton

and Barto, 1998).
N

How can the RL framework be

extended to provide amore complete ac-

count of real-world learning?Akey insight

is that learning canbe facilitatedby taking

advantage of regularities in tasks. For

example, humans can aggregate tempo-

rally extended actions into subroutines

that reduce the number of decision points

forwhichpolicies have tobe learned (Bot-

vinick, 2012). Here, we highlight a parallel

strategywherebyparticipants employ se-
lective attention to simplify the state representation of the task.

While real-world decisions often involve multidimensional op-

tions, not all dimensions are relevant to the task at hand. By

attending to only the task-relevant dimensions, one can effec-

tively reduce the number of environmental states to learn about.

In our task, for example, attending toonly the facedimension sim-

plifies the learning problem to one with three states (each of the

faces) rather than27statescorresponding toall possible stimulus

configurations. Selective attention thus performs a similar

function as dimensionality-reduction algorithms that are

often applied to solve computationally complex problems in the

fields of machine learning and artificial intelligence (Ponsen

et al., 2010).

Drawing on theories of visuospatial attention (Desimone and

Duncan, 1995), we conceptualized attention as weights that

determine how processing resources are allocated to different

aspects of the environment. In our computational models of

choice behavior, these weights influenced value computation

in choice and value update in learning. Several previous studies

have taken a similar approach to investigate the relationship be-

tween attention and learning (Jones and Cañas, 2010; Markovi�c

et al., 2015; Wilson and Niv, 2012; Wunderlich et al., 2011), and

recently, we demonstrated that neural regions involved in control

of attention are also engaged during learning in multidimensional

environments, providing neural evidence for the role of attention

in learning (Niv et al., 2015). These prior studies, however,

have relied on inferring attention weights indirectly from choice

behavior or from self-report.

Here, we obtained a direct measure of attention, independent

of choice behavior, using eye tracking andMVPAanalysis of fMRI

data. Attention and eye movements are functionally related

(Kowler et al., 1995; Smith et al., 2004) and share underlying neu-

ral mechanisms (Corbetta et al., 1998; Moore and Fallah, 2001).

Attention is also known to enhance the neural representation

of the attended object category (O’Craven et al., 1999), which

can be decoded from fMRI data using pattern classification (Nor-

man et al., 2006). Therefore, as a second proxy for attention, we

quantified the level of category-selective neural patterns of

activity on each trial. By incorporating attention weights derived

from the two measures into computational models fitted to
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Figure 7. The Frontoparietal Attention

Network Is Selectively Activated on Switch

Trials

Left: ROIs in the frontoparietal attention network

defined using Neurosynth. Right: regression co-

efficients for switch trials (t) and four trials pre-

ceding a switch (t-1 to t-4). Mean ROI activity

increased at switch trials (regression weights for

trial t are significantly positive), but not trials

preceding a switch. Error bars, SEM. **p < 0.01,

*p < 0.05, Tp < 0.1.
participants’ choices, we provide evidence for the influence of

attention processes on both value computation and value updat-

ing during RL.

Previous work has shown that value computation is guided by

attention (Krajbich et al., 2010) and that value signals in the

vmPFC are biased by attention at the time of choice (Hare

et al., 2011; Limet al., 2011). For example, Hare et al. (2011) found

that when attention was called to the health aspects of food

choices, value signals in the vmPFC were more responsive to

the healthiness of food options, and participants weremore likely

to make healthy choices. Here, we extend those findings and

demonstrate that attention biases not only value computation

during choice, but also the update of those values following feed-

back. Another neural signal guidingdecisionmaking is the reward

prediction error signal, which is reflected in BOLD activity in the

striatum, a major site of efferent dopaminergic connections

(O’Doherty et al., 2004; Seymour et al., 2004). We found that

this prediction error signalwas alsobiasedbyattention, providing

additional evidence that RL signals in the brain are attentionally

filtered.

But how does the brain know what to attend to? To facilitate

choice and learning, attention has to be directed toward stimulus
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dimensions that are relevant to obtaining

reward, such that learning processes op-

erate on the correct state representation

of the task. However, at the beginning of

each game in our task, participants did

not know which dimension is relevant.

Our results suggest that without explicit

cues, participants can learn to attend to

the dimension that best predicts reward

and dynamically modulate both what

they attend to and how strongly they

attend based on ongoing feedback.

These findings are consistent with the

view of attention as an information-

seekingmechanism that selects informa-

tion that best informs behavior (Gottlieb,

2012). In particular, a model in which

attention was allocated based on learned

value provided the best fit to the empir-

ical attention measures. Notably, this

model is closely related to Mackintosh

(1975)’s model of associative learning,

which assumes that attention is directed
to features that are most predictive of reward.

An alternative view of how attention changes with learning was

suggested by Pearce and Hall (1980). According to their model,

attention should be directed to the most uncertain features in the

environment—that is, the features that participants know the

least about and that have been associated with more prediction

errors. In support of this theory, errors in prediction have been

shown to enhance attention to a stimulus and increase the

learning rate for that stimulus (Esber et al., 2012; Holland and

Gallagher, 2006). The seemingly contradictory Mackintosh and

Pearce-Hall theories of attention have both received extensive

empirical support (Pearce and Mackintosh, 2010). Dayan et al.

(2000) offered a resolution by suggesting that when making

choices, one should attend to the most reward-predictive fea-

tures, whereas when learning from prediction errors, one should

attend to the most uncertain features. When we separately as-

sessed attention at choice and attention at learning in our task,

we found that the two measures were correlated. Nevertheless,

amodel with separate attention weights at choice and learning fit

participants’ data better than the same model that used the

same whole-trial attention weights at both phases. Our results

thus support a dissociation between attention at choice and
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Figure 8. vmPFC and Frontal Attention Re-

gions Were Anticorrelated on Stay Trials

A PPI analysis with vmPFC activity as seed re-

gressor and two task regressors (and PPI

regressors) for switch trials and for stay trials

revealed that activity in the dlPFC, preSMA,

vlPFC, and striatum (not shown) was anti-

correlated with activity in the vmPFC specifically

on stay trials, above and beyond the baseline

connectivity between these areas.
learning, although further work is clearly warranted to determine

how attention in each phase is determined. In particular, our task

was not optimally designed for separately measuring attention at

choice and attention at learning as the outcome was only pre-

sented for 500 ms, during which participants also had to

saccade to the outcome. Our task is also not well suited to test

the Pearce-Hall framework for attention at learning because, in

our task, the features associated with more prediction errors

are features in the irrelevant dimensions that participants were

explicitly instructed to try to ignore.

Neurally, our results suggest that the flexible deployment of

attention during learning and decision making is controlled by

a frontoparietal network that includes the IPS, FEF, precuneus,

dlPFC, and preSMA. This network has been implicated in the ex-

ecutive control of attention in a variety of cognitive tasks (Cor-

betta and Shulman, 2002; Petersen and Posner, 2012), and the

dlPFC in particular is thought to be involved in switching among

‘‘task sets’’ by inhibiting irrelevant task representations when

task demands change (Dias et al., 1996; Hyafil et al., 2009).

Our findings demonstrate that the same neural mechanisms

involved in making cued attention switches can also be triggered

in response to internal signals that result from learning from feed-

back over time. We interpret these findings as suggesting that

the frontoparietal executive control network flexibly adjusts the

focus of attention in response to ongoing feedback, such that

learning can operate on the correct task representation in multi-

dimensional environments.

How does the frontoparietal network know when to initiate an

attention switch? Behavioral data suggested that outcomes on

preceding trials influenced participants’ decision to switch their

focus of attention. BOLD activity in this network, however, was

only higher on the trial of the switch and not on the preceding

trials, suggesting that the frontoparietal network was involved

in mediating attention switches rather than accumulating
N

evidence for the switch. Given our

finding that learned value influenced the

focus and magnitude of attention bias,

we also tested for a functional interaction

between value representations in the

vmPFC and attentional switches. We

found evidence of increased anti-corre-

lation between vmPFC and a subset of

areas in the frontoparietal network on tri-

als in which attention was not switched,

supporting a role for high learned values

in decreasing the tendency to switch
attention, and of low values in instigating attentional switches.

However, we note that the temporal resolution of the BOLD

signal prevents us from making strong claims about the direc-

tionality of information flow.

In summary, our study provides behavioral and neural evi-

dence for a dynamic relationship between attention and

learning—attention biases what we learn about, but we also

learn what to attend to. By incorporating attention into the rein-

forcement learning framework, we provide a solution for the

seemingly computationally intractable task of learning and deci-

sion making in high-dimensional environments. Our study also

demonstrates the potential of using eye tracking and MVPA to

measure trial-by-trial attention in cognitive tasks. Combining

such measures of attention with computational modeling of

behavior and neural data will be useful in future studies of how

attention interacts with other cognitive processes to facilitate

adaptive behavior.

EXPERIMENTAL PROCEDURES

Participants

29 participants were recruited from the Princeton community (10 male, 19 fe-

male, ages 18–31, mean age = 21.1). Participants were right handed and pro-

vided written, informed consent. Experimental procedures were approved by

the Princeton University Institutional Review Board. Participants received $40

for their time and a performance bonus of up to $8. Data from four participants

were discarded because of excessive head motion (>3 mm) (one participant)

or because the participant fell asleep (three participants), yielding an effective

sample size of 25 participants.

Stimuli

Stimuli were comprised of nine gray-scale images consisting of three famous

faces, three famous landmarks, and three common tools. Stimuli were pre-

sented using MATLAB software (MathWorks) and the Psychophysics Toolbox

(Brainard, 1997). The display was projected to a translucent screen, which par-

ticipants could view through a mirror attached to the head coil.
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Experimental Task

On each trial, participants were presented with three compound stimuli, each

defined by a feature on each of the three dimensions (faces, landmarks, and

tools), vertically arranged into a column. Row positions for the dimensions

were fixed for each participant and counterbalanced across participants.

Stimuli were generated by randomly assigning a feature (without replacement)

on each dimension to the corresponding row of each stimulus. Participants

had 1.5 s to choose one of the stimuli, after which the outcome was presented

for 0.5 s. If participants did not respond within 1.5 s, the trial timed out. The in-

ter-trial interval (ITI) was 2 s, 4 s, or 6 s (truncated geometric distribution,

mean = 3.5 s), during which a fixation cross was presented. Stimulus presen-

tations were timelocked to the beginning of a repetition time (TR). In any one

game, only one dimension was relevant for predicting reward. Within that

dimension, one target feature predicted reward with high probability. If partic-

ipants chose the stimulus containing the target feature, they had a 0.75 prob-

ability of receiving reward. If they chose otherwise, they had a 0.25 probability

of receiving reward. The relevant dimension and target feature were randomly

determined for each game. Participants were told when a new game started

but were not told which dimension was relevant or which feature was the target

feature. Participants performed four functional runs of the task, each consist-

ing of six games of 25 trials each.

Localizer Task

We used a modified one-back task to identify patterns of fMRI activation in

theventral visual streamthatwereassociatedwithattention to faces, landmarks,

or tools. Participants observed a display of the nine images similar to that used

for the main task. On each trial, they had to attend to one particular dimension.

Participantswere instructedto respondwithabuttonpress if thehorizontal order

of the three images in theattendeddimension repeatedbetweenconsecutive tri-

als. Theorder of the imagesoneach trialwaspseudo-randomly assignedso that

participants would respond on average every three trials. Participants were told

whichdimension toattend toat thestart ofeach run, and theattendeddimension

changed every one to five trials, signaled by a red horizontal box around the new

attended dimension. The sequence of attended dimensions was counterbal-

anced (Latin squaredesign) tominimize order effects. On each trial, the stimulus

display was presented for 1.4 s, during which participants could make their

response. Participants received feedback (500 ms) for hits, misses, and false

alarms, but not for correct rejections (where a fixation cross was presented for

500ms instead).Each trialwas followedbyavariable ITI (2s, 4 s, or 6 s, truncated

geometric distribution, mean = 3.51 s). Participants performed two runs of the

localizer task (135 trials each) after completing the main task.

Eye Tracking

Eye-tracking data were acquired using an iView X MRI-LR system (SMI

SensoMotoric Instruments) with a sampling rate of 60 Hz. System output

files were analyzed using in-house MATLAB code (see ‘‘Measures of Atten-

tion’’ below).

fMRI Data Acquisition and Preprocessing

MRI data were collected using a 3T MRI scanner (Siemens Skyra). Anatomical

images were acquired at the beginning of the session (T1-weighted MPRAGE,

TR = 2.3 s, echo time [TE] = 3.1 s, flip angle = 9�, voxel size 1 mm3). Functional

imageswere acquired in interleavedorder using a T2*-weightedechoplanar im-

aging (EPI)pulsesequence (34transverseslices,TR=2s,TE=30ms,flipangle=

71�, voxel size 3 mm3). Image volumes were preprocessed using FSL/FEAT

v.5.98 (FMRIB software library, FMRIB). Preprocessing includedmotion correc-

tion, slice-timing correction, and removal of low-frequency drifts using a tempo-

ral high-passfilter (100mscutoff). ForMVPAanalyses,we trainedand testedour

classifier in each participant’s native space. For all other analyses, functional

volumes were first registered to participants’ anatomical image (rigid-body

transformation with 6� of freedom) and then to a template brain in Montreal

Neurological Institute (MNI) space (affine transformation with 12� of freedom).

Measures of Attention

Eye Tracking

A horizontal rectangular area of interest (AOI) was defined around each horizon-

tal dimension in the visual display. Datawere preprocessedby low-pass filtering
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(10 Hz cutoff) to reduce high-frequency noise, discarding data from the first

200 ms after the onset of each trial to account for saccade latency and taking

the proportion of time participants’ point of gaze resided within each AOI as a

measure of attention to the corresponding dimension. The level of noise in the

eye-trackingmeasurecanvarysystematicallybetweenparticipants. Toaccount

for subject-specific noise, we computed aweighted sumbetween the rawmea-

sure and uniform attention (one-third to eachdimension). TheweightuET, which

served to smoothly interpolatebetweenuniformattentionand theempirical eye-

trackingmeasure,was a free parameter fit to each subject’s behavioral data. As

uET decreased, the empirical measure contributed less to the final attention

vector. Fitting a subject-specific uET parameter provided us with a data-driven

method toweigh theempiricalmeasurebasedonhowmuch it contributed toex-

plainingchoices. Formodel comparison, the parameterwas fit using leave-one-

game-out cross-validation to avoid over-fitting. For the fMRI analyses, the

parameter was fit to all games (see ‘‘Choice Models’’ below).

MVPA

A linear support vector machine (SVM) was trained on data from the localizer

task to classify the dimension that participants were attending to on each trial

based on patterns of BOLD activity. Analysis was restricted to voxels in a

ventral visual stream mask consisting of the bilateral occipital lobe and

ventral temporal cortex. The mask was created in MNI space using anatom-

ical masks defined by the Harvard-Oxford Cortical Structural Atlas as imple-

mented in FSL. Themask was then transformed into each participant’s native

space using FSL’s FLIRT implementation, and classification was performed

in participants’ native space. Cross-validation classification accuracy on

the localizer task was 87.4% (SE = 0.9%; chance level: 33%). The SVM

was then applied to data from the Dimensions Task to classify participants’

trial-by-trial attention to the three dimensions. Classification was performed

using the SVM routine LinearNuSVMC (Nu = 0.5) implemented in the PyMVPA

package (Hanke et al., 2009; see also Supplemental Experimental Proced-

ures). On each trial, the classifier returned the probability that the participant

was attending to each of the dimensions (three numbers summing to 1).

Similar to the eye-tracking measure of attention, we computed a weighted

sum between the probabilities and uniformly distribution attention, where

the weight uMVPA was a free parameter fit to each participant’s behav-

ioral data.

Composite Measure

To combine the two measures of attention, we computed a composite mea-

sure as the product of eye-tracking and MVPA measures of attention, renor-

malized to sum to 1. Taking a product means that each of the two measures

contributes to the composite according to how strongly the measure is biased

toward one dimension and not others. For example, a uniform (1/3, 1/3, 1/3)

measure contributes nothing to the composite measure for that trial. In

contrast, if one measure is extremely biased to one dimension (e.g., 1, 0, 0),

it overrides the other measure completely.

Behavioral Performance

Trials were scored as correct if the participant chose the stimulus containing

the target feature of that game. We computed individual learning curves by

averaging the number of correct trials in each trial position across all games.

We then computed the group learning curve by averaging the individual

learning curves over all participants. Overall performance was assessed with

a paired t test that tested whether the fraction of correct trials was significantly

higher on the last five trials than on the first five trials. We defined a learned

game as a game in which the participant chose the stimulus containing the

target feature on each of the last five trials of the game. A one-way

repeated-measures ANOVA was used to test whether learning a game de-

pended on the relevant dimension of that game.

Choice Models

We tested four RL models (Sutton and Barto, 1998). All four models assumed

that participants learned to associate each feature with a value and linearly

combined the values of features to obtain the value of a compound stimulus:
VðtÞðSiÞ=
X

d

ftðdÞ,vtðd;SiÞ Equation 1



where Vt(Si) is the value of stimulus i on trial t, ft(d) is the attention weight of

dimension d and vt(d, Si) denotes the value of the feature in dimension d of

stimulus Si. Following feedback, a prediction error, dt, was calculated as the

difference between observed reward, rt, and the expected value of the chosen

stimulus Vt(Sc):

dt = rt � VtðScÞ Equation 2

dt was then used to update the feature values of the chosen stimulus

vt+ 1ðd;ScÞ= vtðd;ScÞ+ h,ftðdÞ,dt Equation 3

where the update is weighted by attention to the respective dimensions and

scaled by a learning rate or step-size parameter h, which was fit to each par-

ticipants’ behavioral data. Because we computed one prediction error and one

update per trial, this model is an instance of Rescorla and Wagner (1972)’s

learning rule.

In the ACL model, both value computation and value update were biased by

attention weights. In the AC model, the attention measure was used for value

computation, but all ft(d) were set to one-third during value update such that

the three dimensions were updated equally during learning. In the AL model,

the attention measure was used for value update, but all ft(d) were set to

one-third for value computation, weighting all dimensions equally at choice.

In the UA model, ft(d) were set to one-third for both value computation and

value update.

For all models, choice probabilities were computed according to a softmax

action selection rule:

ptðcÞ= ebVt ðScÞ
P

ae
bVt ðSaÞ Equation 4

where pt(c) is the probability of choosing stimulus c, a enumerates over

the three available stimuli, and b is a free inverse-temperature parameter

that determines how strongly choice is biased toward the maximal-valued

stimulus.

The three attention models (ACL, AL, and AC) had four free parameters—

uMVPA, uET, b, and h—while the uniform attention model had two free param-

eters, b and h. Model comparison used a leave-one-game-out cross-valida-

tion procedure: for each participant and for each game, we fit the model to

participants’ choices from all other games byminimizing the negative log likeli-

hood of the choices. Given these parameters, we then calculated the likelihood

of each choice in the held-out game. The total likelihood of the data of each

participant, computed for each game as it was held out, was then divided

by the number of trials that the participant played to obtain the geometric

average of the likelihood per trial. Because we used cross-validation, we could

compare between models based on their likelihood per trial without fear of

over-fitting and did not need to correct for model complexity. Best-fit model

parameters (fitted to all games to maximize power) are reported in Table S1.

As a second metric, we compared the models using the BIC (Schwarz,

1978; see Supplemental Experimental Procedures).

Modulation of Attention

We analyzed the attention weights used in the ACL model and investigated

how they changed over time, as well as how they were modulated by value

and reward (Figures S1–S3). These analyses are described in detail in the Sup-

plemental Experimental Procedures.

Attention Models

We developed a series of computational models that made predictions about

the allocation of attention to face, landmark, and tool dimensions on each trial.

The ‘‘Full Choice History’’ model allocated attention based on a leaky choice

count. On each trial, counts for each of the three chosen features were incre-

mented by 1, and counts for the remaining six unchosen features were de-

cayed toward 0 at a subject-specific decay rate. Attention to each dimension

was then determined by the softmax of the maximal count on each dimension.

That is, on each trial, we took the highest count among the three features of
each dimension and passed them through a softmax function (see Equation 4)

to obtain three attention weights that sum up to 1.

The ‘‘Recent Choice History’’ model used a delta-rule update to adjust

the weights of the chosen features toward 1. For each chosen feature, the

weight wtðd;SchosenÞ was updated as wt +1ðd;SchosenÞ=wtðd;SchosenÞ+
ha½1� wtðd;SchosenÞ�, where ha is a free update rate parameter. Here, too,

the weights of unchosen features were decayed toward 0 at a subject-specific

decay rate, and the predicted attention weights were determined using soft-

max on the maximum weights in each dimension.

The ‘‘Full RewardHistory’’model allocated attentionbasedon a leaky reward

count: on rewarded trials, counts of chosen features were incremented by 1

and counts of unchosen features were decayed toward 0 at a subject-specific

decay rate.No learningor decayoccurred onunrewarded trials. Again, softmax

was applied to the maximum counts in each dimension to determine attention.

In the ‘‘Recent Reward History’’ model, analogous to the Recent Choice

History model, on each rewarded trial a delta-rule update adjusted the weights

of the chosen features toward 1, and weights of the unchosen features were

decayed toward 0.

Finally, in the ‘‘Value’’ model, attention tracked feature values. The value of

each stimulus was assumed to be the sum of the values of all its features.

Feature values were initialized at 0 and updated via reinforcement learning

with decay (see also Niv et al., 2015): on each trial, a prediction error was calcu-

lated as the difference between the obtained reward and the value of the

chosen stimulus. The value of chosen features was updated based on the pre-

diction error scaled by a subject-specific update rate, while the value of un-

chosen features was decayed toward 0 at a subject-specific decay rate. As

in the other models, the maximum feature value in each dimension was then

passed through a softmax function to obtain the predicted attention vector.

Unlike the Recent Reward History model, this model learned not only from

positive, but also from negative prediction errors and based error-driven

learning on a stimulus-level prediction error.

In sum, the Full Choice and Recent Choice models allocated attention

based on prior choices, whereas in the Full Reward, Recent Reward, and

Value models, the history of reinforcement determined fluctuations in atten-

tion. The Full Choice and Full Reward models had two free parameters—

decay rate and softmax gain. The Recent Choice, Recent History, and Value

models had an additional free parameter—the update rate. We also compared

the models to a baseline zero-parameter model in which attention is always

uniform (1/3, 1/3, 1/3). As with our models of choice behavior, we evaluated

the attention models using leave-one-game-out cross-validation: for each

participant and for each game, we fit the free parameters of the model to all

but that game by minimizing the RMSD of the predicted attention weights

from the measured attention weights. We then used the model to predict

attention weights for the left-out game to determine the mean RMSD per trial

for each model. We fit the models separately for the raw (preprocessed but

not smoothed) eye-tracking attention measure, the raw (unsmoothed)

MVPA attention measure, and the composite measure (with smoothing pa-

rameters uET and uMVPA determined according to the best fit to choice

behavior).

fMRI Analyses

We implemented five linear models (GLMs) as design matrices for analysis of

the fMRI data:

GLM1 served to investigate whether the computation and update of the ex-

pected value signal in the brain was biased by attention. For each participant,

we generated estimates for the expected value of the chosen stimulus on each

trial using the UA, AC, AL, and ACL models. We entered these value estimates

into theGLM as parametric modulators of the stimulus onset regressor. We did

not orthogonalize the regressors because, in linear regression, variance

shared by different regressors is automatically not attributed to any of the re-

gressors. GLM1 could therefore identify regions that are associated with the

value estimates of each model, while simultaneously controlling for the value

estimates of the other models. Reaction time, trial outcome, outcome onset,

and head movement parameters were also added as nuisance regressors.

With the exception of head movement parameters, all regressors were

convolved with the hemodynamic response function. Missed-response trials

were not modeled as there was no chosen stimulus in those trials. The GLM
Neuron 93, 451–463, January 18, 2017 461



was estimated throughout the whole brain using FSL/FEAT v.5.98 available as

part of the FMRIB software library (FMRIB). We imposed a family-wise error

cluster-corrected threshold of p < 0.05 (FSL FLAME 1), with a cluster-forming

threshold of p < 0.001. Unless otherwise stated, all GLM analyses included the

same nuisance regressors and were corrected for multiple comparisons using

the same procedure.

GLM2 served to investigate whether prediction error signals were also

biased by attention. This GLM was identical to GLM1 except that instead of

generating estimates of expected values, we generated estimates of trial-

by-trial prediction errors using the four models and entered them into the

GLM as parametric modulators of the outcome onset regressor.

GLM3 modeled switch and stay trials as stick functions at the onset of the

respective trials. We defined switch trials as trials in which the maximally at-

tended dimension was different from the previous trial and all the rest as

stay trials. A contrast identified clusters that were more active during switch

versus stay trials.

GLM4 included one regressor with stick functions at the onset of all switch

trials, another with stick functions at the onset of all trials immediately preced-

ing a switch trial, and so forth for the four trials preceding each switch, totaling

to five trial-onset regressors. We used this GLM to analyze a set of ROIs in the

frontoparietal attention network, dlPFC, IPS, and preSMA, pre-defined using

the online meta-analytical tool Neurosynth (http://neurosynth.org). For each

region, we generated a meta-analytic reverse inference map (dlpfc: 362

studies; ips: 173 studies; pre-sma: 125 studies). We thresholded each map

at z > 5 and retained only the cluster containing the peak voxel in each hemi-

sphere. For each ROI, we then extracted the activity time course averaged

across voxels. Since we ran the GLM on average ROI activity (one test for

each ROI), we report uncorrected p values, though we note that most of the

results would survive a Bonferroni corrected threshold of p < 0.016 (0.05/3).

GLM5 was used for a PPI analysis to find areas in the brain exhibiting differ-

ences in functional connectivity with the vmPFC on switch trials versus stay tri-

als. A separate GLM first identified clusters in the brain that were associated

with the value of the chosen stimulus on each trial, as estimated using the

ACL model. This map was thresholded at p < 0.001 to obtain a group-level

vmPFC ROI. We then defined a participant-specific vmPFC ROI by threshold-

ing the participant-level map at p < 0.01 and retaining clusters that fell within

the group-level ROI. For each participant, we extracted the mean time course

from this ROI and used it as the seed regressor for the PPI. We generated two

task regressors—one for switch trials, one for stay trials—each modeled as a

stick functionwith value of +1 at stimulus onset and 0 otherwise and convolved

with the hemodynamic function.We then generated two PPI regressors by tak-

ing the product of each task regressor and the vmPFC time course.
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Supplemental Figures 
 

 
Figure S1, Related to Modulation of Attention, Experimental Procedures. The eye-tracking measure was not 
biased towards faces, landmarks or tools. A. Number of trials on which each dimension was the maximally 
attended dimension (that is, the dimension that participants looked at for the longest duration for that trial). There 
was no significant difference between dimensions (one-way repeated measures ANOVA: F(2,48)=1.24, p = 0.3).  
B. The average proportion of time participants looked at each dimension on each trial did not differ significantly 
(one-way repeated measures ANOVA: F(2,48) = 0.24, p = 0.79). C. The average proportion of time participants 
looked at each dimension on each trial was not significantly different between dimensions over the course of a game 
(two-way repeated measures ANOVA: F(2,48) = 0.89, p = 0.42). Error bars: SEM.  
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Figure S2, Related to Modulation of Attention, Experimental Procedures. The MVPA attention measure was 
not biased towards faces, landmarks or tools. A. The number of trials on which each dimension was the 
maximally attended dimension (that is, the dimension with the highest classification probability for that trial) was 
not significantly different (one-way repeated-measures ANOVA: F(2,48) = 1.16, p  = 0.32). B. The average 
classifier probability of each dimension averaged over all trials and all participants was not significantly different 
between dimensions (one-way repeated measures ANOVA: F(2,48) = 0.88, p = 0.42). C. The average classifier 
probability of each dimension on each trial was not significantly different between dimensions over the course of a 
game (two-way repeated measures ANOVA: F(2,48) = 073, p = 0.49). Error bars: SEM. 
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Figure S3, Related to Modulation of Attention, Experimental Procedures. The eye-tracking and composite 
measures of attention become increasingly focused and consistent over the course of a game. A. Standard 
deviation of the three attention weights as a function of trial in the game, for different attention measures, and for 
learned and unlearned games. Standard deviation of eye-tracking (linear mixed-effects model: t(23.1) =  4.8, p < 
0.001) and composite attention weights (t(24) = 2.79, p = 0.01) increased over the course of a game, indicating a 
sharpening of attention. This increase was greater in learned games than unlearned games (eye-tracking weights: 
t(25.4) = 3.9, p < 0.001; composite weights: t(22.5) =  1.8, p = 0.08). The increase was not observed in the MVPA 
weights (t(28.5) = -1.0, p= 0.31).  B. Pearson correlation between attention weights for consecutive trials, separately 
for each attention measure, and for learned and unlearned games. We used Pearson correlation to quantify the 
similarity in the distribution of attention between consecutive trials. The eye-tracking and composite measures of 
attention changed less from trial to trial as games progressed (eye-tracking weights: t(23.0) = 6.4, p <0.001; 
composite weights: t(24.0) = 5.6, p < 0.001). This effect was more pronounced for learned games than for unlearned 
games (eye-tracking weights: t(46.4) = 4.7, p < 0.001; composite weights: t(36.5) =  2.96, p = 0.005), and not 
observed in the MVPA weights (t(24)  = 0.04, p = 0.97). These results suggest that the MVPA measure might be 
noisier than the eye-tracking measure. However, an alternative possibility is that while the eye-tracking measure 
reflects goal-oriented, value-driven attention that sharpens as participants become increasingly certain about the 
most-rewarding feature, the MVPA measure captures random fluctuations in attention that nevertheless affect value 
computation and value update (c.f. deBettencourt et al., 2015). Our finding that combining the eye-tracking and 
MVPA measures of attention improves the model’s ability to predict participants’ choices (Fig. S4) indicates that the 
MVPA measure did contribute independently to our measure of attention. Learned games: games in which 
participants chose the most rewarding feature on each of the last five trials. Error bars: SEM. 
 
 
 
 
 
 
 
 
 
 
 

A B 

0 5 10 15 20 25
0

0.1

0.2

0.3

Trial 

SD
 o

f A
tte

nt
io

n 
W

ei
gh

ts
  

 

 

Learned Games
Unlearned Games

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial 

C
or

re
la

tio
n 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

Trial 

S
D

 o
f A

tte
nt

io
n 

W
ei

gh
ts

  

 

 

Learned Games
Unlearned Games

ET	

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

 

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

 

MVPA	
Composite	

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

0 5 10 15 20 25
0.4

0.5

0.6

0.7

 

8000

8500

9000

9500

10000

 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial 

S
pe

ar
m

an
 R

ho
  

a b 



	 4	

 
Figure S4, Related to Figure 3. Comparison of models with composite, eye tracking and MVPA measures of 
attention. Model fits of the ACL model (top), AC model (middle) and AL model (bottom) with eye tracking (blue), 
MVPA (green) and composite (red) measures of attention, all showed a better fit (higher average likelihood per trial 
and lower BIC score) for the composite measure of attention. Participants are ordered by average choice likelihood 
of the model that best explained their data. Comparison based on average likelihood/trial is shown on the left, while 
comparison based on BIC is shown on the right. For all three models, average likelihood per trial was significantly 
higher when using the composite measure than when using the eye tracking (ACL: t24 = 5.80, p < 0.001; AC: t24 = 
5.24, p < 0.001; AL: t24 = 4.48, p < 0.001) or MVPA measure (ACL: t24 = 4.86, p < 0.001; AC: t24 = 5.20 p < 0.001; 
AL: : t24 = 4.13 p < 0.001).  
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Figure S5, Related to Figure 3. The ACL model provides the best fit for unlearned games. Our study was 
aimed at investigating the neural and behavioral dynamics of learning what to attend to. As such, unlearned games 
were in many ways more revealing of the underlying learning dynamics, as there was no period of learned 
asymptotic behavior in these games. Here, we compare the models based on unlearned games only, and show that 
despite the reduced power, the ACL model still provides the best fit to the data. A. Average choice likelihood per 
trial for each model and each participant (ordered by likelihood of the model that best explained their data), 
calculated for unlearned games only (that is, games in which the participant did not consistently select the correct 
stimulus in the last five trials of the game). The ACL model explained the data significantly better than other models 
(ACL vs AC: t(24) = 5.4, p < 0.001; ACL vs AC: t(24) = 5.9, p < 0.001; ACL vs  UA: t(24) = 8.4, p < 0.001). Solid 
lines: mean for each model across all participants. B. BIC scores for the four models aggregated over all participants 
also support the ACL model. C. In unlearned games, the average choice likelihood of the ACL model was 
significantly higher than the next best model from as early as the 8th trial. Error bars: within-subject SEM.  
 

 

 

 

 

 

 

 

 

 

UA AL AC ACL

4600

4800

5000

5200

5400

5600

5800

BI
C

0 5 10 15 20 25
Trial 

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Li
ke

lih
oo

d 
 

0 5 10 15 20 25
Participant

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Li
ke

lih
oo

d 

ACL
AC
AL
UA

A

B C



	 6	

 
Figure S6, Related to Measures of Attention, Experimental Procedures. See also Supplemental Methods below. 
Comparison of attention weights derived by averaging over different intervals. Average Pearson correlation 
coefficient (r) obtained by computing pairwise correlations between attention vectors on every trial and averaging 
within each subject and then across subjects. Attention at choice (AC) and attention at learning (AL) were 
moderately correlated (r = 0.56). The MVPA measure of attention was significantly more correlated with AC rather 
than AL, suggesting that the MVPA measure might reflect attention at choice more than attention at learning 
(average r between MVPA and AC: 0.37, average r between MVPA and AL: 0.27, t(24) = 4.63, p < .001).  
B. Average trial-by-trial Pearson’s r between AC and AL attention vectors increased throughout the game  
F(24,24) = 4.95, p < .001. Results were averaged across games within participant, and then across participants. Error 
bars: SEM. *** p < .001. 
 

 

 

 
 
Figure S7, Related to Figure 3. A reinforcement 
learning model that uses separate measures of 
attention at choice and at learning (ACLhr) 
predicts the choice data significantly better than 
the ACL model that uses the same attention 
measure for both. See also Supplemental Methods 
below. Shown are results of a paired-sample t-test for 
the cross-validated likelihood per trial obtained by 
performing leave-one-game-out cross-validation. 
Error bars: SEM. *** p < .001; ** p < .01; * p < .05. 
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Figure S8, Related to Figure 5. A model that allocates 
attention based on learned values matches the composite 
attention measure better than models where attention is 
allocated based on past choices or rewards. Comparison of 
models of attention according to the root mean squared deviation 
(RMSD) of the model’s predictions from the empirical data 
(lower values indicate a better model). For the uniform model 
(light gray), we computed the average per-trial RMSD between 
the observed attention vector on each trial and [1/3 1/3 1/3].  For 
the remaining models, we computed the RMSD by repeatedly 
fitting the models to all games except one and testing on the 
holdout game. Plotted is the subject-wise average per-trial 
RMSD from the composite measure of attention, calculated on 
the holdout games. The winning model (Value) is shown in 
orange. Error bars: SEM. *** p < .001; ** p < .01; * p < .05. 
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Supplemental Tables 
Table S1, Related to Choice models, Experimental Procedures. Best-fit parameters for each model 
with accompanying constraints. Models parameters fit to all data from each participant separately. 
Parameters were optimized to minimize the negative log posterior probability of the participant’s choice 
data given the model. β: softmax gain (inverse temperature); η: learning rate; ωET: smoothing weight 
for the eye-tracking attention measure; ωMVPA: smoothing weight for the MVPA attention measure. 
Because the β parameter takes on unbounded values, to stabilize model optimization and to prevent 
numerical overflows, a Gamma(2,3) prior distribution over this parameter was used. 
 

Model Parameters Constraints Priors Fit value ± SEM 
ACL β 0 ≤ β ≤ ∞ Gamma(2, 3) 13.5 ± 1.29 
 η 0 ≤ η ≤ 1  0.39 ± 0.03 
 ωET

 0 ≤ ωET ≤ 1  0.40 ± 0.05 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.29 ± 0.03 

AC β 0 ≤ β ≤ ∞ Gamma(2, 3) 16.0 ± 1.54 
 η 0 ≤ η ≤ 1  0.36 ± 0.04 
 ωET 0 ≤ ωET ≤ 1  0.53 ± 0.06 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.26 ± 0.03 

AL β 0 ≤ β ≤ ∞ Gamma(2, 3) 11.9 ± 1.2 
 η 0 ≤ η ≤ 1  0.50 ± 0.04 
 ωET 0 ≤ ωET ≤ 1  0.43 ± 0.06 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.40 ± 0.05 

UA β 0 ≤ β ≤ ∞ Gamma(2, 3) 18.3 ± 1.61 
 η 0 ≤ η ≤ 1  0.33 ± 0.03 
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Table S2, Related to Figure 4. Clusters significantly correlated with model-based estimates of 
expected value and prediction error. All clusters survived cluster correction at the p < 0.05 level with 
cluster-forming threshold of p < 0.001. Coordinates are in MNI space and correspond to the center of 
mass of the cluster. In general, estimates from the ACL model were most closely correlated with neural 
data.  
 

Region x (mm) y(mm) z(mm) 
Extent 
(voxels) 

Value Regressor 

ValueACL     
vmPFC -2 59 3 318 

ValueUA     
R Occipital Pole 13 -100 1 333 
L Occipital Pole -21 -100 -4 236 

Prediction Error Regressor 

PEACL
     

R Striatum 10 7 2 100 
L Striatum -6 5 3 80 
L Superior Temporal Sulcus -51 -62 14 343 
R Intraparietal Sulcus 31 -78 33 209 
L DLPFC -49 19 18 190 
R Parahippocampal Cortex 29 -37 -20 130 
L Parahippocampal Cortex -25 -43 -17 107 
L Extrastriate Cortex  -22 -68 -12 112 
L Precuneus  -5 -57 45 110 
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Table S3, Related to Figure 6. Brain areas correlated with attention switches. All clusters survived 
cluster-size correction (p < 0.05) with cluster-forming threshold of p < 0.001. Coordinates are in MNI 
space and correspond to the center of mass of the cluster. 

 

Region x (mm) y(mm) z(mm) 
Extent 
(voxels) 

Switch trials – stay trials 
R dlPFC 44 35 30 277 
L dlPFC -46 29 32 235 
Precuneus 
R IPS 
L IPS 

-6 -61 47 2063 

L preSMA -6 13 49 151 
R FEF 33 2 58 124 
L fusiform cortex -44 -52 -24 260 
Cerebellum 
Lingual gyrus 3 -79 -12 1038 

Cerebellum 42 -74 -25 290 
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Table S4, Related to Figure 8. PPI analysis with vmPFC activity as seed regressor and stay trials 
and switch trials as two task regressors. Shown are areas that showed a significant (negative) 
correlation with the stay-trials PPI regressor. All clusters survive FWE whole-brain cluster size correction 
(p < 0.05) with cluster-forming threshold of p < 0.001. No significant clusters were found for the switch-
trials PPI regressors. 
 

Region x (mm) m) z(mm) 
Extent 
(voxels) 

R dlPFC 46 30 32 234 
L dlPFC -47 24 29 238 
preSMA 1 42 36 108 
R vlPFC 29 57 2 290 
L vlPFC -35 50 9 273 
R striatum 5 9 6 130 
L striatum -14 22 3 103 
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Supplemental Experimental Procedures 
Support vector machine classifier 
Classification of fMRI data was performed using the SVM routine LinearNuSVMC (with Nu = 0.5) implemented in 
the PyMVPA package (Hanke et al., 2009). For multiclass problems, the algorithm first performs pairwise 
classification for each class (e.g., Face vs. Not Face, Landmark vs. Not Landmark and Tool vs. Not Tool). Pairwise 
classification probabilities are then calculated for each comparison using Platt scaling, which fits a logistic 
regression model to classifier evidence. Classifier evidence here refers to the signed distance between the 
multivariate measurement on a specific trial and the decision boundary for each class. The probability that a specific 
datapoint comes from each of the classes is then estimated by solving a linear system of equations with the pairwise-
classifier probabilities, under constraints that the probabilities for all classes are positive and sum to 1 (Wu et al., 
2004). The result of this procedure was therefore a vector of three probabilities (summing to 1) for each trial, which 
we used as the MVPA component of participants’ attention to the respective dimensions on that trial. 
 
Model comparison of choice models based on Bayesian information criterion 
We also compared the choice models based on the Bayesian Information Criterion (BIC, Schwarz, 1978). We first 
optimized model parameters by finding participant-specific parameters that minimized the negative log likelihood of 
the participant’s data given the model, using data from all games. These parameters were then used to compute the 
BIC approximation of model evidence, Em: 

 
where p(D|M, 𝜃M) is the likelihood of the participant’s choice data D given model M and maximum likelihood 
parameters 𝜃M, ||𝜃|| is the number of free parameters in the model and N is the number of data points (trials). BIC 
values were then summed across participants to compare between models. 
 
Modulation of attention by value and reward 
As a measure of the trial-by-trial attention bias, we computed the standard deviation of attention weights on each 
trial. Linear mixed models were used to test for the main effect of trial in game on attention bias, as well as for the 
interaction between trial in game and whether the participant successfully learned that game. Models were estimated 
using the lmerTest R package. We tested for significance using t-tests, with Satterthwaite approximations to degrees 
of freedom. To assess how much the attention bias changed with each trial, we computed the Pearson correlation 
between the attention weights on consecutive trials. Linear mixed effects models were again used to test for the main 
effect of trial in game on the correlation of consecutive attention weights, as well as for the interaction between trial 
in game and whether the participant successfully learned that game (Fig. S1, S2, S3). 

To investigate the relationship between attention bias and value, we performed a tercile split to bin trials 
according to strong, moderate and weak attention biases. We calculated, for each bin, the fraction of trials on which 
the most attended dimension was also the dimension with the highest feature value. We then tested if this fraction 
was higher on trials with stronger attention biases. Statistical significance for each pairwise comparison (i.e. strong 
vs. moderate, strong vs. weak, moderate vs. weak) was assessed using a bootstrap analysis. Specifically, attention 
weights for each game of each participant were replaced with those of a randomly selected game from the same 
participant. The ACL model was then run using these attention weights to generate estimates of feature values from 
participants’ actual choices and outcomes, creating a “fictitious” dataset that controlled for the dependence between 
attention weights and feature values inherent in the ACL model. This process was repeated 1000 times, and a null 
distribution of t-statistics was generated for each pairwise comparison by performing the corresponding paired t-test 
on each iteration of the fictitious dataset. p-values were then determined by comparing the t-statistic obtained from 
the unshuffled data to the corresponding null distribution for that comparison. 

We performed another tercile split to bin trials according to the standard deviation of the highest feature 
values (SDV) in each dimension. We then averaged the attention bias for each bin, and tested if the attention bias on 
high SDV trials was stronger than that on middle SDV trials and on low SDV trials, and if the attention bias on 
middle SDV trials was stronger than that of low SDV trials. Statistical significance was assessed using the same 
bootstrap method. For each SDV bin, we also calculated the fraction of trials on which there was a switch in 
attention. We defined a trial with an attention switch as one where the maximally attended dimension (i.e. dimension 
with the highest attention weight) was different from that in the previous trial. We then tested if the fraction of 
switches was higher in low SDV trials than in the middle and high SDV trials; and if the fraction of switches was 
higher in middle SDV trials than in high SDV trials. Statistical significance was again assessed using the bootstrap 
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method. All results were qualitatively similar if trials were binned based on the standard deviation of all feature 
values instead of SDV. 

Finally, we ran a logistic regression to predict attention switches from reward history in the preceding five 
trials. We then tested if the regression coefficient on each trial was significantly different from zero. We excluded 
the first five trials of each game in all analyses of attention switches, as behavior might have been more random 
early on in the game.  
 
Dissociating attention at choice and attention at learning 
Previous empirical and theoretical work makes a distinction between attention for choice and attention for learning 
(Dayan et al., 2000). Unlike with the MVPA measure, the temporal resolution of eye-tracking allowed us to 
separately measure attention at the time of choice (using data from 200ms after stimulus onset and up to the time of 
choice), and attention at the time of learning (using measurements in the 500ms of outcome presentation), and to 
analyze these separately.  

We first tested whether attention weights were different during these two time periods. For this, we 
computed the Pearson correlation coefficient between the two attention vectors on each trial (Fig. S6A), and found 
that on average, attention at choice and attention at learning were moderately correlated, with the correlation 
increasing over the course of a game, suggesting that as participants figured out the relevant dimension, they 
attended to the same dimension in both phases of the trial (Fig. S6B). 

We next asked whether attention at choice and attention at learning had different effects on task behavior. 
For this, we fit a modified version of the ACL model (which we call the “high resolution ACL model”, or ACLhr) 
that used separate attention weights at choice and learning. We found that the ACLhr model predicted choices 
slightly but significantly better than an ACL model, which used the same eye-tracking attention weights (combined 
across choice and learning) for both phases (Fig. S7). These results suggest that attentional processes at choice and 
at learning may reflect dissociable contributions to decision-making. 

We note, however, that our design was not optimized to disentangle attention at choice from attention at 
learning. In particular, while participants had 1.5 seconds to make their choice, the outcome was presented for only 
500ms. As such, there were fewer measurements during the time of outcome presentation than during the time of 
choice, resulting in a noisier estimate of attention at learning. Furthermore, the outcome was presented above and 
below the chosen stimulus, which meant that saccading to the outcome itself could contaminate our measure of 
attention at learning, as well as further reduce the time in which participants could look at the chosen stimulus after 
the outcome is revealed.  
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