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To efficiently learn optimal behavior in complex environments, humans rely on an interplay of learning and attention. Healthy aging has
been shown to independently affect both of these functions. Here, we investigate how reinforcement learning and selective attention
interact during learning from trial and error across age groups. We acquired behavioral and fMRI data from older and younger adults
(male and female) performing two probabilistic learning tasks with varying attention demands. Although learning in the unidimensional
task did not differ across age groups, older adults performed worse than younger adults in the multidimensional task, which required
high levels of selective attention. Computational modeling showed that choices of older adults are better predicted by reinforcement
learning than Bayesian inference, and that older adults rely more on reinforcement learning-based predictions than younger adults.
Conversely, a higher proportion of younger adults’ choices was predicted by a computationally demanding Bayesian approach. In line
with the behavioral findings, we observed no group differences in reinforcement-learning related fMRI activation. Specifically,
prediction-error activation in the nucleus accumbens was similar across age groups, and numerically higher in older adults. However,
activation in the default mode was less suppressed in older adults in for higher attentional task demands, and the level of suppression
correlated with behavioral performance. Our results indicate that healthy aging does not significantly impair simple reinforcement
learning. However, in complex environments, older adults rely more heavily on suboptimal reinforcement-learning strategies supported
by the ventral striatum, whereas younger adults use attention processes supported by cortical networks.
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Introduction
Adaptive behavior in complex multidimensional environments
depends not only on the ability learn from experience, but also on

the capacity to restrict attention to specifically those dimensions
of the environment that are relevant to the task at hand. For
instance, recall learning to operate a new smart phone: some cues,
such as the location of unobtrusive ‘menu’ or ‘back’ buttons are
crucially important, while other buttons, and ad pop-ups, are
often distractors that are better ignored. Deficits in learning
about task-relevant cues while ignoring information from dis-
tractors can severely hinder one’s ability to make full use of the
features of the phone. Healthy human aging has been shown to
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Significance Statement

Changes in the way that healthy human aging affects how we learn to optimally behave are not well understood; it has been
suggested that age-related declines in dopaminergic function may impair older adult’s ability to learn from reinforcement. In the
present fMRI experiment, we show that learning and nucleus accumbens activation in a simple unidimensional reinforcement-
learning task was not significantly affected by age. However, in a more complex multidimensional task, older adults showed worse
performance and relied more on reinforcement-learning strategies than younger adults, while failing to disengage their default-
mode network during learning. These results imply that older adults are only impaired in reinforcement learning if they addition-
ally need to learn which dimensions of the environment are currently important.
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separately affect both learning from experience (Mell et al., 2005;
Mata et al., 2011; Samanez-Larkin et al., 2014) and attention
filtering (Braver and Barch, 2002; Hampshire et al., 2008; Schmitz
et al., 2010; Campbell et al., 2012). In the present study, we aim to
provide a precise computational description of the neural corre-
lates of age-related changes in the interaction between learning
and attention.

The computational framework of reinforcement learning
(RL) has fundamentally reshaped our understanding of learning
from experience, most notably by showing that one of the central
signals in RL models, the reward prediction error, correlates with
dopaminergic signaling in the ventral tegmental area and sub-
stantia nigra pars compacta (Montague et al., 1996; Schultz et al.,
1997; Tobler et al., 2005), and with fMRI activation in the nucleus
accumbens (Knutson and Cooper, 2005; Niv et al., 2012; Daniel
and Pollmann, 2014). However, RL algorithms become notori-
ously inefficient in multidimensional environments, a phenom-
enon known as the ‘curse of dimensionality’ (Bellman, 1957;
Sutton and Barto, 1998). Recent evidence suggests that the hu-
man brain simplifies complex learning tasks by using selective
attention to narrow down the dimensionality of the task (Jones
and Cañas, 2010; Wilson and Niv, 2011; Niv et al., 2015; Leong,
Radulescu et al., 2017). For this strategy to work, the spotlight of
attention must be focused on specifically those dimensions of the
environment that are relevant for the current task.

The relevance of dimensions can be explicitly communicated,
such as in an instruction manual that might have come with your
new phone. More often though, one must learn the importance
of each dimension through experience, suggesting a bidirectional
interaction between attention and learning in multidimensional
environments. This process has also been referred to as ‘represen-
tation learning’ (Niv et al., 2015) and an interplay between striatal
areas, which support reinforcement learning, and frontoparietal
attention areas, which support executive control processes, has
been suggested as its neural substrate (Leong, Radulescu et al.,
2017). Under this hypothesis, frontoparietal areas create and
maintain task representations on which RL operates, while pre-
diction errors relayed from the dopaminergic midbrain to the
nucleus accumbens indicate how well the current task represen-
tation predicts reward, and thus whether the representation
should be maintained or adapted.

Normal aging impacts on functional connectivity in the fron-
toparietal networks implicated in executive control and atten-
tion. These age-related declines have mainly been observed in the
default mode network (DMN), but potentially also affect the
dorsal attention network (Tomasi and Volkow, 2012). A reduc-
tion of dopaminergic functioning has been discussed as a
contributing factor to this decline, and especially effects frontos-
triatal circuits (Ferreira and Busatto, 2013). In learning tasks,
nucleus accumbens activation in response to prediction errors
has been observed to decline with age (Mell et al., 2009; Eppinger
et al., 2013; Samanez-Larkin et al., 2014), while injections of the
dopamine precursor levodopa have been shown to restore these
signals, as well as improve task performance in older adults
(Chowdhury et al., 2013). However, other studies observed no
age differences (Lighthall et al., 2018) or increased ventral striatal
responses (Schott et al., 2007) during reward processing, and
showed that the ventral striatum is among the brain areas with
the weakest age-related decline in dopamine receptor availability
(Seaman et al., 2019).

In the present experiment, we aim to clarify the roles of the
DMN and nucleus accumbens across the human life span by
investigating behavioral and neural changes in the interaction

between reinforcement learning and attention in healthy human
aging. To this end, we acquired behavioral and fMRI data from
younger and older adults while they performed two variants of a
task examining ongoing learning in multidimensional environ-
ments (Wilson and Niv, 2011; Niv et al., 2015), in which we have
previously shown that performance decreases with age (Rad-
ulescu et al., 2016). In one variant of this three-dimensional
three-armed bandit task, participants had to learn from trial and
error which of the dimensions was predictive of reward, while in
the other variant the reward-predicting dimension was revealed
using explicit instructions. By comparing behavioral perfor-
mance, latent variables from computational modeling, and fMRI
activation patterns, we dissect the processes that underlie age-
related behavioral and neural changes when learning in high-
dimensional environments.

Materials and Methods
Participants
Forty-six participants were recruited from the Princeton University
community using flyers on campus, the E-mail distribution system of the
Community Auditing Program, the Paid Experiment Website of the De-
partment of Psychology, and referral sampling. This recruiting proce-
dure resulted in a sample with comparable educational background
across groups; all 23 participants in the older adult group (OA; mean
age � 70.0, range � 61– 80; 12 male, 11 female) held at least a bachelor’s
degree, with 12 participants holding a master’s and 6 a doctorate degree.
All 23 participants in the younger adult group (YA; mean age � 22.7,
range � 18 –35; 11 male, 12 female) were either enrolled in ongoing
education (n � 18) or held a bachelor’s (n � 2), master’s (n � 2), or
doctorate (n � 1) degree. To assess general cognitive functioning, Ra-
ven’s Advanced Progressive Matrices (1962 revision, even items only), a
listening span test (Salthouse and Babcock, 1991; Cools et al., 2008), and
the Attention Networks Test (Fan et al., 2002) were administered within
1 week of the fMRI session (12 d for one participant). All participants
gave written informed consent in accordance with the protocols ap-
proved by the Institutional Review Board of Princeton University and
were compensated with $12/h in the cognitive test session, and with
$20/h (with a $5 bonus for satisfactory task performance) in the fMRI
session.

Experimental design and statistical analysis
Behavioral task. We used a three-dimensional three-armed bandit task
that we have used previously to investigate the interaction between learn-
ing and selective attention (Gershman et al., 2010; Wilson and Niv, 2011;
Niv et al., 2015; Radulescu et al., 2016). In this “dimensions task” (DT; see
Fig. 1) participants chose one of three stimuli to obtain reward. Three
separate features defined each stimulus: a color (red, yellow, or green), a
shape (circle, square, or triangle), and a texture (dots, waves, or plaid). At
any given time, only one of these dimensions was relevant for obtaining
reward, and within that dimension choosing one specific feature resulted
in reward with high probability ( p � 75%), while choosing any of the
other two features resulted in reward with low probability ( p � 25%).
For example, if the reward predicting dimension was color, and yellow
was the highly rewarded feature, choosing the yellow stimulus would
result in a point on 3/4 of the trials. In contrast, choosing the red or green
stimulus would result in a point only on 1/4 of the trials. The features on
the other two dimensions, in this example shape and texture, did not
influence reward probabilities.

Before beginning the fMRI session, participants were familiarized with
these rules, and instructed that their goal is to win as many points as
possible. They practiced three example games— during which they were
encouraged to ask questions—to ensure that every participant fully un-
derstood the instructions. In addition to the DT, a control task (CT) was
introduced. In the CT, participants were informed about the identity of
the reward-predicting dimension at the start of the game, thereby reduc-
ing the DT to a regular three-armed bandit task. All participants played
10 practice games (5 CT, 5 DT) in the MRI scanner while no functional
data were acquired. At the beginning of each game participants were
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notified that the reward predicting dimension had changed; if it was a CT
game, on-screen instructions also indicated which dimension this was. At
the beginning of each trial, three stimuli were presented to the partici-
pants, and they were asked to press one of three buttons to choose one of
them. If no response was made within 2 s, the trial was aborted and the
message “TOO SLOW” was displayed. Otherwise, the two unchosen
stimuli were removed from the screen immediately after the response.
Two seconds from trial onset, participants were informed whether their
choice had resulted in a point. After a fixed intertrial interval (ITI) of 300
ms the next trial was initiated. Each practice game was 25 trials long, and
at the end of each game a selection screen with all nine features was
presented,. This screen prompted participants to pick the most reward-
ing feature or to answer “I don’t know” (see Fig. 1).

After this practice outside the scanner, participants played 28 games
(14 CT, 14 DT, randomly interleaved) while fMRI data were acquired. In
the fMRI session, trial timing was adjusted to allow capturing the slow
hemodynamic response and to account for individual differences in re-
action times. Reaction times in the tasks can differ between individuals
for many reasons, including the duration of visual search for the target
feature or the speed with which a decision is mapped to a button press
(Radulescu et al., 2016). We assumed these factors to vary between indi-
viduals and age groups, but were mainly interested in the cognitive com-
ponent of the learning process. We therefore aimed to allow each
participant a similar time to make their decision, regardless of any other
factors like slowed motor responses. To this end, we calculated an indi-
vidual response cutoff time based on data from each individual’s practice
games; this cutoff was set to 1 s plus the participant’s mean reaction time
(RT; min. 0.5 s, max. 1 s) from the practice trials. To account for the
hemodynamic response, ITIs were drawn from an exponential distribu-
tion with a mean of 4 s (range: 1.5 s-9 s); however, to ensure equal overall
trial length across participants, the mean RT from the practice trials was
subtracted from the ITI duration. For a schematic representation of the
task and an overview of trial timing, see Figure 1. Additionally, during
fMRI data acquisition, each game lasted a minimum of 10 trials and
ended after the participant chose the correct feature eight times in a row,
or after a maximum of 25 trials. This performance criterion was intro-
duced as we were interested in the learning process, which terminates
once the participant has determined with certainty the highly rewarding
feature. All other parameters of the tasks were the same as during the
practice games.
Model-based analysis of behavioral data. To describe the temporal dy-
namics of learning and compare different possible strategies across age
groups, we fit a computational model to the sequence of each partici-
pant’s choices. Building on previous work on modeling the Dimensions
Task (Gershman et al., 2010; Wilson and Niv, 2011; Niv et al., 2015), our
model combined aspects of RL (Rescorla and Wagner, 1972; Sutton and
Barto, 1998) with a more statistically optimal Bayesian approach
(Kruschke, 2006).

In this model, which we will refer to as hybrid RL/Bayes model, we
assumed that the probability of choosing a stimulus S depends on its
value V. To map the stimulus values V( S) to choice probabilities, we used
a softmax action selection policy (Sutton and Barto, 1998):

p�choose Si� �
e�V�Si�

�j � 1
3 e�V�Sj�

. (1)

This choice function assigns a higher probability to choosing a stimulus
with higher value, while smaller values of the free parameter � (inverse
temperature) allow for more randomness in the choices.

To estimate V( S), we used a function approximation approach (Sut-
ton and Barto, 1998) in which separate values W for each feature f on each
dimension d were learned (3 � 3 � 9 feature values Wf). The value of
each stimulus was then computed as a weighted linear combination of its
feature values:

V�S� � �
d�1

3

�dWf (2)

where �d was the weight of dimension d (see below). On each trial, a
prediction error (PE) was generated:

PE � R � V�Schosen� (3)

where R indicates the reward received on that trial and V(Schosen), the
predicted value of the chosen stimulus, represents the expected reward.
The value W of the each of the features f of the chosen stimulus was then
updated based on the PE and a learning rate �:

Wf
new � Wf

old � �PE � f � Schosen. (4)

In addition, the value of features f that were not chosen on a given trial
were decayed to zero with a decay rate �k:

Wf
new � �1 � �k�Wf

old � f�Schosen. (5)

By implementing this decay process, the model implicitly emulated se-
lective attention to some features and not others: features that were con-
sistently chosen and rewarded gained high value, while the values of all
other features decayed toward zero (Niv et al., 2015).

In the present model, we additionally implemented an explicit atten-
tion filter � (see Eq. 2), which indicates the proportion of attention
resources currently directed toward each dimension. � had two compo-
nents, a reinforcement-learning based weight vector � RL, and a Bayesian
inference based weight vector � Bayes.

In the DT, the dimension weight �d
RL was � if dimension d in-

cluded the currently highest feature weight, while the remainder 1–�
was distributed equally across the other two dimensions:

�d
RL � � � if argmaxf �Wf� � d

1 � �

2
otherwise. (6)

In the CT, �d
RL was always � for the instructed dimension, and

1 � �

2
otherwise. This weighing based on values/instructions allows the learner
to focus attention on the dimension that currently seems most predictive
of reward, while the free parameter � regulates how exclusive this focus of
attention is. An alternative mapping of feature weights to an attention
filter using softmax did not qualitatively change any of our results. We
therefore report results from the argmax model as this formulation al-
lows direct incorporation of explicit instructions in the CT.

The second component of �, � Bayes, was computed using Bayesian
inference. Here we assumed that participants can employ knowledge
about reward probabilities to estimate the probability that each of the
nine features f is the most rewarding feature f *. We initialized the prob-
ability of each f being f * to 1/9 at the beginning of the game; this proba-
bility was then recursively updated based on the choices C and rewards R
using Bayes rule (Gershman et al., 2010; Wilson and Niv, 2011; Niv et al.,
2015):

p� f � f *�C1:t, R1:t� � p�Rt�f � f *, Ct� p� f � f * � C1:t�1, R1:t�1�.

(7)

If the current trial t was rewarded, p�Rt � f � f *, Ct� as 0.75 for chosen f
and 0.25 for unchosen f. Conversely, on unrewarded trials p�Rt � f
� f *, Ct� was 0.25 for chosen f, and 0.75 otherwise.

At the beginning of each trial, we used p� f � f *	C1:t�1, R1:t�1� to
derive dimensional attention weights � Bayes:

�Bayes �
1

z� �f�d
p� f � f * � C1:t�1, R1:t�1�� (8)

where z normalized � Bayes to sum up to one across the three dimensions.
Finally, we introduced an additional free parameter that gave the

model flexibility to rely more on either the computationally efficient but
approximate RL-based attention weighting structure, or on the statisti-
cally optimal but computationally demanding Bayesian approach. To
this end, we computed � (Eq. 2) as a weighted sum of the RL based
attention weights � RL (Eq. 6) and the Bayesian inference based attention
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weights � Bayes (Eq. 8), with 	 as an individual-difference free parameter
determining the weight of each:

� � 	�Bayes � �1 � 	��RL (9)

Overall, the hybrid RL/Bayes model therefore had five free parameters: �
(softmax inverse temperature, Eq. 1), � (learning rate, Eq. 4), �k (decay
rate, Eq. 5), � (RL dimension weight, Eq. 6), and 	 (balance between RL
and Bayesian attention weights, Eq. 9). We fit the values of each of these
free parameters individually for each participant by estimating the joint
likelihood of all the T choices the participant completed:

L � p�C1:T��, �k, �, 	, �� � �
t�1

T

p�Ct�C1:t�1, R1:t�1, �, �k, �, 	, ��.

(10)

In a first step, we obtained maximum likelihood estimates of all param-
eters by minimizing the negative log likelihood of the participant’s choice
data. Subsequently, we regularized the fit by adding a prior on � and
determining the maximum a posteriori estimates (Daw, 2011). As a
prior, we used a Gamma distribution whose parameters were set using
the group estimates from the initial maximum likelihood fitting proce-
dure. All model parameters, their range constraints, priors, and their fit
to the data (mean 
 SE) are reported in Table 1.

For each participant, the model’s predictive accuracy was assessed
using leave-one-game-out cross-validation. In this procedure, we esti-
mated the model’s free parameters for each game G using all trials from
the other games and the maximum a posteriori procedure described
above. These parameter estimates were then used to assign a likelihood to
each of the choices in game G, to calculate the summed log likelihood of
all the choices in the game. This procedure was repeated for each of the
participant’s games, giving us the total log likelihood of all of the partic-
ipant’s choices given the model (Eq. 10). To obtain a more intuitive
measure of overall model fit, we calculated the geometric average predic-
tive likelihood per trial by dividing the total log likelihood by the number
of trials and exponentiating. An average predictive likelihood per trial of
1/3 indicates chance performance of the model (i.e., the model cannot,
on average, predict choices above chance), whereas a value of 1 indicates
perfect model performance (i.e., the model is able to predict 100% of the
participants’ choices correctly).

In addition to this hybrid RL/Bayes model, several other models were
fit to the data. Following Niv et al. (2015), these alternative models in-
cluded: (1) a naive RL model that learned the value of all 27 stimuli (three
features on three dimensions, 3 3), (2) a feature-RL model that learned
the value of the 3 � 3 features separately, and computed the value of each
stimulus as the mean of its three feature values, and (3) a feature RL
model that included a decay of unchosen feature values as described in
Eq. 5. In previous analyses of choice behavior in the DT, which did not
include the hybrid RL/Bayes model proposed here, the feature RL model
with decay (model 3) was the best of the investigated models in predict-
ing participants’ choice behavior. It is equivalent to the hybrid RL/Bayes
model but does not include the attention weight � (Niv et al., 2015;
Radulescu et al., 2016). In addition, we considered (4) a fully Bayesian
model, (5) a hybrid model based on the feature RL model with Bayesian
weights to compute stimulus values, and (6) a serial hypothesis model
based on the assumption that participants attend to one feature at a time
and test the hypothesis that this feature is the correct feature (for a de-
tailed description models 1– 6 see Niv et al. (2015)). We also fit (7) an
“informed” RL model that assumed that subjects only learn about the
features on the correct dimension, implying that they know which di-
mension to focus on; we expected this model to explain behavior well in
the CT but not in the DT. This last model is the standard approach in
unidimensional environments, where it is often referred to as a Rescorla-
Wagner model (for a detailed description see e.g., Niv (2009)).

fMRI methods
Image acquisition. FMRI data were acquired using a Siemens MAGNETOM
Skyra whole-body 3 T MRI scanner (software platform syngo MR D11)
equipped with a 20 channel head coil. Structural images were recorded
using a T1-weighted magnetization-prepared rapid acquisition gradient
echo (MP-RAGE) sequence (repetition time (TR) � 1900 ms, time to
echo (TE) � 2.13 ms, field of view (FOV) � 240 mm, 192 sagital slices,
0.9 mm isotropic voxels). Subsequently, functional data were recorded in
four separate runs using an echo planar imaging (EPI) sequence (TR �
2100 ms, TE � 30 ms, flip angle � 71°, FOV � 192 mm, 38 axial slices
parallel to AC-PC, voxel size � 2.9 � 2.9 � 3 mm, distance factor � 10%,
volumes acquired in an interleaved-ascending manner). These acquisi-
tion parameters resulted in a group level mask that excluded the cerebel-
lum and left temporal pole.

Table 1. Best-fit parameters

Parameter Range Prior

Younger Older

t(44)
aMean 
 SE Mean 
 SE

Dimensions task: hybrid Bayes/RL b

� (learning rate) 0 –1 None 0.42 
 0.02 0.37 
 0.02 1.75
�k (decay rate) 0 –1 None 0.48 
 0.05 0.42 
 0.04 1.01
� (dimension weight) 0 –1 None 0.45 
 0.02 0.43 
 0.02 1.15
	 (balance) 0 –1 None 0.20 
 0.02 0.12 
 0.02 2.36*
� (inv. temperature) 0 –� Gamma (5.7,1.8) 8.9 
 0.27 10.9 
 0.73 �2.50*

Dimensions task: feature RL with decay c

� (learning rate) 0 –1 None 0.45 
 0.02 0.39 
 0.08 2.12*
�k (decay rate) 0 –1 None 0.49 
 0.04 0.45 
 0.04 0.74
� (inv. temperature) 0 –� Gamma (11.8,0.9) 10.0 
 0.31 11.6 
 0.63 �2.37*

Control task: hybrid Bayes/RL b

� (learning rate) 0 –1 None 0.52 
 0.03 0.52 
 0.04 �0.13
�k (decay rate) 0 –1 None 0.71 
 0.07 0.72 
 0.07 �0.02
� (dimension weight) 0 –1 None 0.93 
 0.03 0.88 
 0.03 1.33
	 (balance) 0 –1 None 0.03 
 0.02 0.04 
 0.02 �1.65
� (inv. temperature) 0 –� Gamma (5.1,2.3) 9.1 
 0.50 11.3 
 0.73 �2.78*

Control Task: “informed” RL c

� (learning rate) 0 –1 None 0.49 
 0.04 0.49 
 0.04 0.01
� (inv. temperature) 0 –� Gamma (5.8,1.6) 8.0 
 0.45 9.4 
 0.65 �1.8

aIndependent-samples t test: age group comparison.
bModel with highest predictive accuracy in this task.
cModel with second highest predictive accuracy in this task.

*p � 0.05.
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Image preprocessing
All image processing was performed using the statistical parametric map-
ping software SPM12b (Functional Imaging Laboratory, Wellcome Trust
Centre for Neuroimaging, Institute of Neurology, London, UK). To min-
imize T1 saturation effects, the first five images of each functional run
were discarded. Subsequently, images were corrected for slice acquisition
time by interpolating to the middle time of each image, and motion
corrected using rigid body realignment to the mean of all images. The six
estimated movement parameters were saved and later included in all
statistical analyses as regressors of no interest. Next, all functional images
were coregistered with the segmented and skull stripped anatomical im-
ages. To optimize intersubject registration (Ashburner, 2007) and to
allow for similar normalization accuracy regardless of the age group
(Samanez-Larkin and D’Esposito, 2008), a study-specific gray matter
template was created by estimating the nonlinear transformations that
best align the gray and white matter components of all subjects using the
DARTEL toolbox (Ashburner et al., 2014). In a final step, the DARTEL
toolbox was used to warp both anatomical and functional images into
MNI space. This step also included spatial smoothing of the functional
data with a Gaussian kernel (FWHM � 6 mm). All normalized anatom-
ical images were averaged and used as a study-specific anatomical tem-
plate to visualize the location of functional activations in Figures 3 and 4.

Model-based whole-brain analysis
To locate brain areas in which fMRI activation was correlated with atten-
tion focus and reward learning, we generated regressors representing the
time course of these processes from the hybrid Bayes/RL model. Each
participant’s individual maximum a posteriori parameters were used to
obtain a trial-by-trial estimate of (1) the variance of the feature weights of
the chosen stimulus (a proxy for the amount of attention weighting), and
(2) the prediction error. These estimates were then used as parametric
modulators on (1) a variable epoch regressor representing stimulus pre-
sentation (duration � RT on the trial, Grinband et al. (2008)) and (2) an
impulse function at outcome onset. All regressors were built separately
for the DT and CT, convolved with the hemodynamic response function
(HRF) and fit to the brain data of each participant using a general linear
model (GLM) with a high-pass filter cutoff at 1/128 Hz, and correcting
for temporal autocorrelation with an AR1 model.

Subsequently, subjects’ coefficient estimates were submitted to
random-effects group analyses. The factors of the 2 � 2 � 2 ANOVA
were task (CT or DT), latent variable (attentional focus or prediction
error), and age (YA or OA). Activation maps were thresholded at p �
0.05 with whole-brain familywise error correction (FWE) at the cluster
level (voxel threshold p � 0.001).

Region of interest (ROI) analysis
To confirm and specify the results of the model-based whole-brain anal-
ysis, additional model-free analyses were run within ROIs. Regressors of
interest were variable epoch regressors for the onset of the first/last five
stimuli in each game (duration � RT on the trial) as indicators of brain
activation at the beginning/end of the game (the minimum game dura-
tion was 10 trials), and an impulse regressor at the onset of positive/
negative outcomes. An additional variable epoch regressor for the onset
of all stimuli was included to control for activity that was common across
all trials of a game. These regressors were built separately for the CT and
DT, convolved with the HRF, and fit to each participant’s data using a
GLM with a high-pass filter cutoff at 1/128 Hz and AR1 correction for
temporal autocorrelation. Six movement parameters as estimated in the
motion correction step were also included as regressors of no interest in
all analyses.

We used the MarsBar toolbox (http://marsbar.sourceforge.net) to ex-
tract data from an anatomical ROI in the bilateral nucleus accumbens
from the Harvard-Oxford subcortical structural atlas as implemented in
the Oxford University Centre for Functional MRI of the Brain Software
Library (http://www.fmrib.ox.ac.uk), and a functional ROI in the dorsal
and ventral DMN from the Functional Imaging in Neuropsychiatric Dis-
orders Laboratory (Shirer et al., 2012). Each participant’s extracted coef-
ficient estimates were averaged within each ROI and submitted to
random effects analyses on the second level. Additionally, activity for the

model-based regressors for attention focus and prediction errors was
extracted from both ROIs for visualization purposes.

Results
We compared a group of 23 younger adults (YA; age: M � 23,
SD � 4.1) to a group of 23 older adults (OA; age: M � 70; SD �
5.5) while they performed the Dimensions Task (DT) and an
associated Control Task (CT). The DT required participants to
learn from trial and error which of three dimensions is predictive
of reward, and what the highest-valued feature in that dimension
is. In the CT, participants were informed about the identity of the
reward-predictive dimension, which effectively reduced the DT
to a three-armed bandit task with distractor dimensions. Each
participant played 14 games of each task (randomly interleaved)
while behavioral and fMRI data were acquired. Here we report
results on similarities and differences between age groups in over-
all task performance and learning dynamics, as well as their neu-
ral correlates.

Overall task performance
As we were interested in evaluating the learning process rather
than the performance of an already learned skill, we terminated
games once the participant chose the correct feature eight times
in a row. As a result, to measure task performance we compared
the percentage of learned games per participant rather than the
raw percentage of correct choices. A game was defined as
“learned” if the participant (1) chose the most rewarding feature
in the last six trials of the game or (2) was able to report the most
rewarding feature at the end of the game (Fig. 1). As shown in
Figure 2, according to this criterion, participants learned an av-
erage of 94% (SE � 0.02) of the games in the CT (YA: M � 97%,
SE � 0.02; OA: M � 94%, SE � 0.02; age difference: t(44) � 1.65,
n.s. (p � 0.11)). In the DT, on average 58% (SE � 0.02) of the
games were learned (YA: M � 64%, SE � 0.03; OA: M � 52%,
SE � 0.03; age difference: t(44) � 2.6, p � 0.05). Thus participants
in both age groups learned well over half of the games, indicating
that they were engaged and able to perform the task.

Since participants did not reach criterion in 42% (SE � 0.02)
of the games, a trial-to-criterion analysis is not suitable to com-
pare overall task performance across tasks and age groups. In-
stead, we ran an ANOVA on percentage learned games with a
within-subjects factor task type (CT or DT) and repeated mea-
sures on age (OA or YA). Results showed a main effect of both
factors (task type: F(1,44) � 327.15, p � 0.05; age: F(1,44) � 6.44,
p � 0.05), suggesting worse performance on the CT compared
with the DT, and of OA compared with YA (Figure 2). In addi-
tion, we observed a trending interaction of task type�age (F(1,44)

� 2.95, p � 0.09), indicating a potentially larger performance
difference between age groups in the DT than in the CT. This
interaction would suggest that aging affects performance more in
environments with high demands on attention resources than it
does in simple reinforcement learning tasks.

Relationship between task performance and standard
cognitive measures
To evaluate which cognitive measures correlated with perfor-
mance on each of our tasks, we fit two separate stepwise linear
regression models predicting overall performance (percentage of
learned games) on the CT/DT. All acquired cognitive measures
(i.e., Raven’s Advanced Progressive Matrices, the Attention Net-
works Test (providing three separate scores for alerting, and ori-
enting, and executive control), and the Listening Span Test; for
mean scores see Table 2), as well as an indicator variable for age,
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and interactions between age and each cognitive measure were
added to the model as predictors. In both cases, the score from
Raven’s Matrices was the only significant predictor (p � 0.05;
DT: b � 0.19, t(1,44) � 3.35; CT: b � 0.10, t(1,44) � 2.7), leading to
a significant overall fit of the model (DT: R 2 � 0.20; CT: R 2 �

0.14). No age effects or interactions with age were observed, in-
dicating that for both groups general intelligence was the only
acquired cognitive measure influencing performance on both of
our tasks and across both age groups.

Modeling the dynamics of learning
Although measures of overall task performance are useful to eval-
uate whether both groups are able to successfully perform the
task, they do not provide information about the learning dynam-
ics and strategies used by the participants. To quantify and com-
pare these between age groups, eight different computational
models were fit to both tasks. The fit models included a statisti-
cally optimal Bayesian observer, several different reinforcement
learning models (see Methods: Model-based analysis of behav-
ioral data and Niv et al. (2015)), a hybrid RL/Bayes model, as well
as an “informed” RL model (which assumes, unrealistically, that
participants only learn about the relevant dimension). Each mo-

Figure 1. The behavioral task. At the beginning of each trial, participants were prompted to select one of three stimuli; each stimulus was defined by three different features: a color, a shape and
a texture. After indicating their choice, participants received feedback about winning 1 (depicted) or 0 points. Subsequently, a new trial began with a new set of stimuli. To allow repeated
measurements of learning, the task was split into several “games”. In any given game, only one of the three stimulus dimensions was predictive of reward. Choosing the most rewarding feature on
that dimension resulted in a point 75% of the time, while choosing any other feature resulted in a point 25% of the time. Participants were informed when a new game began, i.e., when the identity
of the reward-predicting dimension changed. In CT games, they were also explicitly informed about the identity of the reward-predicting dimension (top left). At the end of each game, a selection
screen prompted participants to indicate what they thought was the most rewarding feature (or to choose “I don’t know”).

Figure 2. Behavioral results. A, Overall task performance, i.e., the percentage of learned games, was higher in the CT than in the DT, and in YA than in OA, with a trending interaction indicating
that the performance difference was larger in the DT. ‡p � 0.1; *p � 0.05; ns, not significant. B, In the DT, the percentage of learned games correlated with 	, a free parameter of our best fitting
behavioral model, which indicates to which degree participants used statistically optimal attention weights when computing the value of each stimulus. On average, 	 was higher for YA than for
OA (t(44) � 2.36; p � 0.05; see Table 1).

Table 2. Cognitive test battery

Younger Older

t(44)
aMean 
 SE Mean 
 SE

Raven’s progressive matrices 13.0 
 0.6 8.6 
 0.7 4.7*
Listening span 3.9 
 0.3 3.0 
 0.2 3.1*
Attention networks

Alerting 43.0 
 5.7 31.0 
 5.8 1.5
Orienting 18.0 
 4.5 20.0 
 4.5 �0.3
Conflict 115.1 
 9.5 146.3 
 7.5 �2.6*

a Independent-samples t test: age group comparison.

*p � 0.05.
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del’s predictive accuracy was assessed using a leave-one-game-
out cross-validation procedure. Averaged per-trial predictive
accuracies indicated that for both age groups and tasks the hybrid
RL/Bayes model was best able to predict participants’ choices. In
the CT, it predicted choices with 63.0% (SE � 1.1) accuracy (YA:
62.3% (SE � 1.5), OA: 63.7% (SE � 1.6); age difference: t(44) �
�0.6; p � 0.51); the second best model for the CT was the “in-
formed” RL model, which predicted participants’ choices with
60.5% accuracy (test for difference in predictive accuracies be-
tween models: YA: t(22) � �4.0, p � 0.05; OA: t(22) � �2.2, p �
0.05). The “informed” RL model assumes that participants only
learn about the reward-predicting dimension and ignore the
other two; it is equivalent to a standard Rescorla-Wagner model,
which is frequently used to predict behavior in unidimensional
RL tasks. It is therefore meaningful that this model’s fit to behav-
ior was significantly worse than that of the hybrid RL/Bayes mod-
el: despite the hint indicating the reward-relevant dimension,
participants in both groups were not able to ignore the irrelevant
dimensions entirely.

In the DT, the hybrid RL/Bayes Model predicted choices with
53.5% accuracy (YA: 51.8% (SE � 0.7), OA: 55.2% (SE � 1.3);
age difference: t(44) � �2.3; p � 0.05); here, for both groups the
feature RL model with decay (Niv et al., 2015) was the model with
the second highest predictive accuracy of 52.9% (test for differ-
ence in predictive accuracies between models: YA: t(22) � �3.1,
p � 0.05; OA: t(22) � �2.5, p � 0.05). All parameters of the two
best fitting models in each task, along with their best fit estimates,
are listed in Table 1.

The described predictive accuracies indicate that for both
tasks and age groups, the hybrid RL/Bayes model described par-
ticipants’ learning dynamics best. This model assumes that par-
ticipants use a reinforcement-learning based strategy that
operates on single features, and combines their values using an
attention-weighted average. Note that a predictive accuracy of
63.0% (CT)/52.9% (DT) is substantially above the chance level of
33.3%, and is high given that participants had to guess in the first
few trials of a game (reflected in an initialization of all features in
the model at the same values), and that games were short (10 –25
trials, ending after the participant consistently chose one feature).

The parameters of a model with high predictive accuracy,
such as the hybrid RL/Bayes model, allow us to uncover fine-
grained differences in learning dynamics between groups of
participants. Group comparisons revealed that the estimates
for the softmax inverse temperature � were lower for the
younger participants in both the CT and DT. This parameter
governs randomness in choices, i.e., it reflects how closely the
choices of the participant align with the model’s prediction.
Low �s can indicate that participants tend to explore subop-
timal (low-value) choices; they can also indicate that the
model was unable to account for certain aspects of partici-
pants’ choices. This second interpretation is in line with the
observed slightly lower predictive accuracy for the model for
younger than older participants (see above), which indicates
that the simple reinforcement-learning based strategy sug-
gested by the model captures a higher percentage of the un-
derlying choice processes in older as compared to younger
adults.

One potential process that younger adults might employ spe-
cifically in multidimensional environments is revealed by a dif-
ference in the best-fit value of the free parameter 	 in the DT. This
parameter reflects how much attention weighting is influenced
by a more statistically optimal distribution of weights, as derived
using Bayes rule. On average, in the younger group, the best-

fitting 	 was 0.20, whereas the optimal value for 	 in older adults
was only 0.12 (see Table 1).

To explore whether the parameter estimates of the hybrid
RL/Bayes model can explain overall task performance (percent-
age of learned games), we ran a separate stepwise multiple linear
regression for each task, with all five parameter estimates as pre-
dictors, as well as an indicator variable for age and interactions
between age and all parameter estimates. In the CT, a single pre-
dictor, the learning rate �, was sufficient for a significant model
(r � 0.58; F(1,44) � 22.8, p � 0.05). In contrast, in the DT 	 was
the single predictor that lead to a significant model (r � 0.51;
F(1,44) � 16.0, p � 0.05; Figure 2B), and no significant interac-
tions with age were observed. To confirm that the model param-
eter estimates—which quantify trial-by-trial behavior specifically
in (multidimensional) reinforcement learning tasks— explain
variance in task performance beyond that predicted by global
deficits as measured in cognitive test, we regressed each partici-
pants results from the Raven’s Advanced Progressive Matrices,
the Attention Networks Test (providing three separate scores for
alerting, orienting, and executive control), and the Listening
Span Test against overall performance in each task. We then re-
gressed the model parameters against the residuals to test how
well the model parameters explain any residual variance above
and beyond that explained by general cognitive abilities. In the
CT, the learning rate � accounted for 13.4% of the remaining
variance (F(1,44) � 6.8, p � 0.05), while in the DT 	 accounted for
20.9% of the remaining variance (F(1,44) � 11.6, p � 0.05). The
model-derived parameters thus explained significant variance
that was not explained by individual differences in constructs
such as working memory and general intelligence.

These results indicate that in the CT, a higher learning rate,
i.e., faster updating of the feature values, was the strongest model-
derived predictor of better overall task performance. This param-
eter was not significantly different between age groups, which is
in line with the finding that overall task performance in the CT
was not significantly different between age groups. However, in
the multidimensional DT, more optimal attention weights were
the best model-derived predictors of task performance, corre-
sponding to a significantly lower 	 estimate as well as lower
overall performance in OA compared with YA. A possible inter-
pretation of these results is that in complex multidimensional
environments, YA rely more on statistically optimal Bayesian
learning while OA rely more on computationally efficient but
suboptimal reinforcement-learning processes, leading to an
overall decrease in task performance in the older group.

fMRI results: Response to rewards
Previous work has indicated that aging might affect the ability to
learn from trial and error due to a decline in phasic dopaminergic
signaling, and that this decline can be observed as a lower corre-
lation of fMRI data with a prediction-error signal in the ventral
striatum (Mell et al., 2005; Mata et al., 2011; Chowdhury et al.,
2013; Samanez-Larkin et al., 2014). To examine this hypothesis,
we correlated a parametrically modulated regressor representing
trial-by-trial prediction errors at the time of outcome onset with
whole brain fMRI data. Prediction errors were defined as the
difference between the reward received on a given trial, and the
reward that was expected (as indicated by the value of the chosen
stimulus in the best-fitting tested model, the hybrid RL/Bayes
model). As expected, we observed strong activations peaking bi-
laterally in the nucleus accumbens (left: MNI(x/y/z) � �15/6/
�9, t � 12.47; right: MNI(x/y/z) � 15/3/�12, t � 12.42) across
both tasks, with a whole-brain FWE cluster corrected threshold
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of p � 0.05 (voxel threshold: p � 0.001). This activation did not
differ significantly between the CT and the DT. Contrary to our
hypothesis, it also did not differ between age groups (Figure 3A).

To confirm this result with a more sensitive analysis, we ex-
tracted and averaged each participant’s parameter estimates
within an anatomically defined ROI of the bilateral nucleus ac-
cumbens, and subjected these values to a 2 � 2 ANOVA with
repeated measures on task type, and age group as a between-
subjects factor. The results of this ROI analysis (Figure 3B) re-
vealed a significant main effect of task type (F(1,44) � 7.4, p �
0.05), indicating that fMRI activation in the nucleus accumbens
was correlated more with the prediction error regressor in the DT
than in the CT. However, again no age effect (F(1,44) � 1.3, p �
0.26) or task-by-age interaction (F(1,44) � 0.1, p � 0.77) were
observed, confirming the results of the whole brain analysis that
indicated no age difference in nucleus accumbens activation re-
lated to the prediction error.

To rule out potential confounds causing the absence of an age
difference in the extent to which ventral striatal activation was
correlated with prediction errors, we examined the variance of
the prediction-error regressor and the number of trials between
tasks and age groups. No significant differences were observed
analyzing the variance of the prediction error regressor (task type:
F(1,44) � 1.0, p � 0.31; age: F(1,44) � 0.65, p � 0.43, task type � age:
F(1,44) � 0.15, p � 0.70). However, the number of trials was higher in
the DT than in the CT (F(1,44) � 294.7; p � 0.05; CT: 191.0 trials
(SE � 3.3), DT: 265.0 trials (SE � 3.35)), and trended to be higher
for OA than for YA (F(1,44) � 3.2; p � 0.08; YA: 447.2 trials (SE �
6.2), OA: 464.7 trials (SE � 7.67); task type�age: F(1,44) � 0.02, p �
0.90). A higher number of trials could potentially facilitate signal
detection and thereby mask a smaller correlation between the ventral
striatal fMRI signal and the prediction error regressor in OA. We
therefore repeated the ROI analysis including only the first 10 trials
of each game, which were played by every participant in every game.
Again, we observed a main effect of task type (F(1,44) � 9.15, p �
0.05), but no main effect of age (F(1,44) � 1.23, p � 0.27) or task
type�age interaction (F(1,44) � 0.46, p � 0.50).

To further verify that the absence of an
age effect of prediction error related brain
activation in the ventral striatum was not
caused by the specifics of the hybrid RL/
Bayes model that was used to estimate the
expected value of the chosen stimulus, we
additionally ran a model-free analysis. In
this analysis, we used the difference be-
tween the response to a 1 point win and
the response to a 0 point win as a proxy for
the prediction error. This is possible since
in a wide range of models that learn pre-
dictions from outcomes, in our task a 1
point win would cause a more positive
prediction error than a 0 point win. Again,
the results of this model-free control anal-
ysis confirmed a main effect of task type
(F(1,44) � 4.71, p � 0.05), but no main
effect of age (F(1,44) � 0.07, p � 0.80) or
task type � age interaction (F(1,44) � 0.81,
p � 0.37).

The results of our primary and control
analyses therefore indicate that, in con-
trast to previous reports (Eppinger et al.,
2012; Chowdhury et al., 2013; Samanez-
Larkin et al., 2014), activation in the ven-

tral striatum did not correlate more strongly with the prediction
error in younger than in older adults. Indeed, as can be seen in
Figure 3, the direction of the observed nonsignificant age differ-
ence is opposite to this hypothesis in both tasks, suggesting that
the absence of the effect is not simply a false negative induced by
a lack of statistical power. The fMRI results are in line with
the behavioral results, indicating no significant age effects in
reinforcement-learning related processes.

fMRI results: Modulation of activation with
attention demands
The ability to efficiently process rewards, as supported by the
frontostriatal reward network, is crucial for learning from trial
and error. However, especially in multidimensional environ-
ments like our DT, performance is expected to be further en-
hanced using attention mechanisms. In particular, attention can
help focus learning on only the reward-predicting dimensions,
which in turn reduces the complexity of the task. The interplay
between large cortical networks such as the attention network
and the DMN (Raichle et al., 2001; Buckner et al., 2008; Petersen
and Posner, 2012) has been suggested to support the ability to
focus and direct attention to external stimuli.

To confirm the effect of attention demands on the engage-
ment of the attention network/DMN in the present task, and to
explore whether this relationship changes with age, we correlated
a parametrically modulated regressor representing trial-by-trial
attention demand with whole-brain fMRI activation. As a proxy
for the attention demand AD, we took the negative variance of the
feature weights of the chosen stimulus in the hybrid RL/Bayes
model:

AD � �Var�W� f �� �f � Schosen (11)

The variance of the feature weights is high when the weight of a
some features is higher than the weight of the other features, for
example at the end of a learned game; in this situation it can be
assumed that attention is mainly focused on those few high-

Figure 3. Outcome-related activation does not differ between age-groups. A, Ventral striatal activation correlated with the PE
signal for all four conditions. In the CT, peak MNI coordinates were 24/0/�12 (t � 5.3) in the younger group and �15/9/�9 (t �
6.6) in the older group. In the DT, they were 15/3/�12 (t � 8.7) in the younger group, and �15/6/�9 (t � 9.6) in the older
group. At the whole-brain level, no significant differences between groups or tasks were observed. Activations shown were
thresholded at pFWE �.05 and are superimposed on the averaged anatomy of all study participants. B, Averaged coefficient
estimates of an anatomical ROI of the nucleus accumbens were extracted and submitted to a 2 � 2 ANOVA. In this analysis, we
observed a main effect of task but no age effect or interaction with age, indicating that age did not affect outcome-related activity
in the ventral striatum. *p � 0.05. ns, not significant.
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valued features and therefore attention
demand (and AD, the negative of the vari-
ance) is low. In contrast, the negative of
the variance of feature weights (and there-
fore AD) is high when attention is evenly
distributed across all features, such as at the
beginning of games (Niv et al., 2015). It is
important to note that AD reflects differen-
tial attentional demands as predicted from
both reinforcement-learning and Bayesian-
learning components, to best capture indi-
vidual trial-by-trial attentional engagement.
It should therefore not be interpreted as spe-
cifically reflecting Bayesian filtering.

Using AD to parametrically modulate
a whole-brain task regressor (onset �
stimulus onset; duration � RT), we ob-
served positive correlations with attention
demand in areas of the attention and ex-
ecutive control networks (intraparietal
sulcus, dorsomedial and dorsolateral pre-
frontal cortex), whereas areas of the DMN
(ventromedial prefrontal cortex, precu-
neus, angular gyrus, lateral temporopari-
etal cortex; Buckner et al. (2008)) were
negatively correlated with attention de-
mands across both age groups (Fig. 4A).
Although we did not observe a main effect
of age or an age � task interaction in areas
that were positively correlated with atten-
tion demands, we did observe a main ef-
fect of age in several areas that were
negatively correlated with the AD regres-
sor: the angular gyrus, precuneus and ven-
tromedial prefrontal cortex (Fig. 4A and
Table 3). These areas showed less negative
correlation with attention demands in OA
compared with YA, suggesting that activ-
ity in these areas of older adults’ DMN
were less responsive to task demands, or
that our AD regressor models task de-
mands less accurately for older adults, or
both.

To confirm this observation and fur-
ther characterize the effect, we conducted
an analysis on an independently defined
ROI of the DMN (both dorsal and ventral
areas; Fig. 4B; Shirer et al. (2012); all
reported results are based on � values in-
dicating brain activation during task per-
formance, averaged across the whole
ROI). First, we ran a 2 � 2 ANOVA with
repeated measures on task type, and age
group as a between-subjects factor. We
observed a significant main effect of age
group (F(1,44) � 11.3, p � 0.05), and no
effect of task type (F(1,44) � 1.9, p � 0.17).
Note that in accordance to the whole
brain fMRI analysis, but in contrast to the
model-free ROI analysis, a task-by-age in-
teraction on the whole ROI was not ob-
served (F(1,44) � 0.28, p � 0.60). The
difference from the model-free result is

Figure 4. Modulation of brain activation with attention demands is less pronounced in older adults. A, Activation correlated
with a model-derived regressor representing attention demands. Positive correlations (more activation for when attention de-
mands were higher; yellow-red heat map) were observed in the attention network (IPS) and executive control network (dmPFC,
dlPFC). Negative correlations (less activation when attention demands were high; blue heat map) were observed in the DMN
(vmPFC, angular gyrus). Differences between age groups were only observed in the DMN. All activations shown were thresholded
at pcluster-levelFWE �.05 (voxel threshold p � 0.001). For a complete list see Table 3. B, ROI analysis within the DMN. In an
independently defined ROI encompassing the whole DMN (top left), we observed that the difference in activation between the first
and last five trials of games was smaller in older adults than in younger adults, with no significant main effect of age (top right). In
addition, in older adults, deactivation within the DMN in the first five trials of games correlated with overall task performance
(bottom). *p � 0.05; ns, not significant.

1092 • J. Neurosci., January 29, 2020 • 40(5):1084 –1096 Daniel et al. • Intact Reinforcement Learning



likely due to the fact that the model-derived regressor already
accounts for differences in the task demands of the two tasks for
each of the age groups, and thus we do not see additional neural
differences above and beyond the differences embodied by the
regressor.

To verify that the observed age effect in the DMN was related
to changing attention demands rather than the specific charac-
teristics of our model-based attention regressor, we also ran a
model-free analysis on extracted � values of the first and last five
trials of each game. This approach is based on the assumption
that trials in the beginning of each game have the highest atten-
tion demands. In contrast, trials in the end of games, when par-
ticipants have already often learned which feature is most
predictive of reward, will have the lowest attention demands. The
cutoff of five trials at the beginning/end of each game was based
on the minimum length of games (10 trials), and was also consis-
tent with previous analyses of fMRI data from a similar task (Niv
et al., 2015). We ran a 2 � 2�2 ANOVA with repeated measures
on task type and time in game (first vs last five trials), and age
group as a between-subjects factor, on extracted betas values
from the DMN. Results showed a main effect of both task type
(F(1,44) � 8.5, p � 0.05) and time in game (F(1,44) � 19.5, p �
0.05), indicating a stronger deactivation of DMN structures dur-
ing the DT than during the CT, as well as more deactivation
during the first five trials of a game compared with the last five
trials (Fig. 4B). These observations are consistent with previous
reports of DMN deactivation during attention-demanding tasks
(Buckner et al., 2008). Additionally, we observed significant in-
teractions between age and both task type (F(1,44) � 4.8, p � 0.05)
and time in game (F(1,44) � 10.3, p � 0.05). This was due to
weaker correlation between DMN deactivation and attentional
task demands in OA compared with YA. In contrast, we did not
observe a significant main effect of age (F(1,44) � 1.3, p � 0.23),
indicating that this failure to modulate activation in response to
task demands was not caused by an overall difference in DMN
activation levels.

Finally, to investigate whether DMN deactivation in response
to attention demands was correlated with behavioral perfor-
mance, we regressed � values extracted from the DMN for the
first and last five trials of each game, a dichotomous indicator
variable for age, as well as interactions between age and each of
the measures, against overall behavioral performance. In a step-
wise regression, in the CT no age effect was observed, and DMN
activation in the last five trials correlated positively with task
performance across both age groups (b � 0.39, t(1,44) � 2.8, p �
0.05), indicating that DMN activation increased once the game
was learned. In contrast, in the DT we observed a main effect of
age (b � �0.55, t(1,44) � �4.1, p � 0.05), as well as an interaction
between age and activation in the DMN during the first trials of a
game (b � �0.48 t(1,44) � �3.5, p � 0.05; R 2 � 0.30). Indeed, in
this task there was a positive correlation between DMN deactiva-
tion during the first five trials of games and task performance
only for OA (Fig. 4B), suggesting that those older participants
whose DMN decreased responding early in a game performed
better than their similar-aged peers.

In summary, both a model-based whole-brain analysis and a
model-free ROI analysis confirmed that aging affects the success-
ful deactivation of the DMN during an attention-demanding re-
inforcement learning task. The observed interactions of DMN
deactivation and age with time in game (beginning or end of the
game) and task type (Control Task or Dimensions Task), both of
which can serve as indicators of attention demand, suggest
that, in general, older adults failed to modulate DMN activa-
tion in response to attention demands. Further investigation
of this effect showed that specifically in OA, a failure to deac-
tivate the DMN during the first five trials of a DT game corre-
lated negatively with overall behavioral performance,
indicating that adequate modulation of DMN deactivation at
the beginning of a task leads to successful learning in proba-
bilistic multidimensional environments.

Table 3. Brain areas correlating with model-derived attentional focus

Region Hemisphere k Max. Z

MNI

x y z

Correlation with focussed attention
Intraparietal sulcus, precuneus b 2767 7.54 33 �63 57
Dorsolateral/medial prefrontal cortex r 1706 7.18 30 6 60

l 1782 6.74 �45 30 30
Cerebellum b 1387 7.09 �33 �66 �27

Correlation coefficients more negative for CT than DT
Ventromedial prefrontal cortex 102 4.07 �9 45 18

CT: Correlation coefficients more negative for YA than OA
Dorsomedial prefrontal cortex l 375 4.41 �12 36 51
Ventromedial prefrontal cortex b 135 4.04 6 30 �12

DT: Correlation coefficients more negative for YA than OA
Angular gyrus l 441 5.32 �54 �63 24

r 176 4.16 51 �69 24
Precuneus b 239 4.41 �9 �48 36
Ventromedial prefrontal cortex b 350 2.23 0 45 �3

Anticorrelation with focused attention
Ventromedial prefrontal cortex, ACC, precuneus, medial temporal lobe b 4248 7.33 3 48 12
Lateral temporoparietal cortex, pre- and postcentral gyrus r 2028 7.11 48 �30 18

l 503 5.31 �54 �12 12
l 461 6.38 �30 �27 57

Angular gyrus l 186 5.02 �54 �66 27
Middle temporal gyrus l 102 4.96 �66 �12 �15

r 91 4.92 51 �75 6

l, Left; r, right; b, bilateral; BA, Brodmann’s area; k, cluster size in voxels (2 � 2 � 2 mm).

All activations are significant on a whole-brain cluster-level FWE-corrected level of p � 0.05 (voxel threshold: p � 0.001)
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Discussion
Learning from trial and error in multidimensional environments
depends on the dynamic interaction of attention and reinforce-
ment learning (Leong, Radulescu et al., 2017). Previous studies
indicate that healthy aging affects both reinforcement learning
(Mell et al., 2005; Mata et al., 2011; Samanez-Larkin et al., 2014)
and the executive control processes that regulate the ability to
focus and switch the focus of attention (Braver and Barch, 2002;
Hampshire et al., 2008; Schmitz et al., 2010; Campbell et al.,
2012); a reduction in dopaminergic input to brain areas that
underlie reinforcement learning, such as the nucleus accumbens
(Chowdhury et al., 2013), and areas that underlie attentional
control processes, such as the executive control network and
DMN (Volkow et al., 2000; Tomasi and Volkow, 2012; Geerligs et
al., 2015; Ferreira et al., 2016), have been suggested to underlie
these behavioral changes. Here we examined how healthy human
aging changes the interplay between reinforcement learning and
attentional control. To this end, we recorded behavioral and
fMRI data from both a simple, unidimensional, reinforcement
learning task, and a multidimensional reinforcement learning
task that requires selective attention to focus learning on relevant
dimensions. Our results indicate that behavior and neural signals
during simple reinforcement learning are not significantly af-
fected by age; however, the performance of older adults decreases
with the higher attentional demands in multidimensional envi-
ronments. We additionally observed that areas of the DMN,
which is known to be deactivated during attentionally demand-
ing tasks, are less deactivated in older adults, and that the degree
of DMN deactivation correlated with behavioral performance.

Simple reinforcement learning not significantly affected by
healthy aging
In the present experiment we compared the impact of age on
behavior in a simple three-armed bandit task in which partici-
pants were instructed about the relevant dimension, and a three-
dimensional bandit task in which the relevant dimension was
unknown. In the latter, participants did not only have to learn
which feature is associated with the highest reward, but also had
to employ selective attention to learn which of three dimensions
is currently predictive of reward. On average, in the one-
dimensional task, younger adults successfully identified the
reward-predicting feature in 97% of the games, while older adults
succeeded in doing so in 94% of the games. This difference was
not significant, indicating that healthy aging does not have a
strong impact on simple reinforcement learning tasks. In con-
trast, in the multidimensional task, performance dropped from
64% learned games in younger adults to 58% in older adults,
suggesting that aging does significantly affect learning in more
complex environments in which distractors are present and se-
lective attention is required to successfully optimize behavior
(Radulescu et al., 2016).

Older adults rely more on RL to guide attention during
multidimensional decision-making
To assess group differences in the trial-by-trial dynamics of learn-
ing, we fit eight different computational models to each partici-
pant’s behavior. For both the simple and the multidimensional
task, a hybrid model that incorporated elements from both RL
and the statistically optimal Bayesian approach best predicted
participants’ choices. The model contains a balance parameter 	,
which regulates the interplay between RL and Bayesian learning
in determining attention weights. The maximum-likelihood

value of this parameter was close to zero for both age groups in
the simple unidimensional RL task, suggesting that participants
mainly relied on RL to guide attention and learning within the
instructed dimension. This observation is in line with previous
literature showing that RL models predict both human and non-
human animal behavior in one-dimensional multiarmed bandits
with high accuracy (Niv et al., 2012; Chowdhury et al., 2013;
Eppinger et al., 2013).

Learning rate was the best predictor of average task perfor-
mance in the control task, and average best-fit values of the learn-
ing rate parameter did not differ between age groups. In contrast,
in the multidimensional learning environment, which required
selective attention for optimal task performance, the best fit val-
ues for the balance parameter 	 were most predictive of overall
task performance. Participants with higher values of 	, which
indicate more Bayes-optimal attention, achieved higher levels of
performance. The average maximum-likelihood estimate of this
parameter was also significantly lower in the group of older
adults, suggesting that they relied on suboptimal RL processes to
guide attention more than did the group of younger adults.

Interestingly, for both tasks, the average best-fit values for the
inverse-temperature parameter of this hybrid RL/Bayes model
were higher in the older than in the younger adult group. This
indicates that older adults’ lower performance is not simply due
to more random behavior. Indeed, older adults’ trial-by-trial
choices were better aligned with the predictions of the model than
were younger adults’ choices.

Together, our computational modeling results indicate that
simple RL processes, which are sufficient for learning in unidi-
mensional environments without distractors, are largely spared
in healthy human aging. However, learning in multidimensional
environments, where efficient learning relies on executive con-
trol processes to focus attention on only the task relevant dimen-
sions of the environment, is significantly affected by age.
Although we cannot exclude the possibility that age-related def-
icits in general cognitive functions such as working memory af-
fect performance in both our tasks (with the more modest
decrease in performance in the simple reinforcement learning
task not meeting significance), we note that our analyses showed
that differences in model parameters explained variance in per-
formance across participants above and beyond that explained by
our measures of cognitive performance. Indeed, our model-
based analysis suggests that older adults might use RL as a (less
efficient) fallback strategy for directing attention, as indicated by
their higher reliance on RL based predictions.

No age-related effects of prediction-error-correlated activity
in nucleus accumbens
It has previously been suggested that age-related impairments in
trial and error learning are related to a decline of dopaminergic
functioning, and that this decline can result in a reduced correla-
tion of nucleus accumbens activation with the prediction error
signal (Schott et al., 2007; Cox et al., 2008; Chowdhury et al.,
2013; Eppinger et al., 2013; Samanez-Larkin et al., 2014). In con-
trast, we observed a nonsignificant but numerically higher acti-
vation in the nucleus accumbens in older adults in both tasks. In
conjunction with the behavioral results showing that younger
adults rely more on attention-related processes during learning,
this finding can be interpreted as supporting previous results on
decreased involvement of the reinforcement learning system
when cortical resources such as working memory support task
execution (Collins et al., 2017). Alternatively, overall task perfor-
mance indicates that older adults experienced the task as more
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challenging, and the observed activation pattern is in line with
reports indicating that the ventral striatum is more sensitive to
feedback in high effort tasks (Dobryakova et al., 2017).

Regardless of the interpretation of this directional result, the
present experiment supports previous reports showing that
aging-related effects on prediction-error related brain activity are
either subtle or absent (Cox et al., 2008; Samanez-Larkin et al.,
2010; Samanez-Larkin and Knutson, 2015; Lighthall et al., 2018).

DMN deactivation is lower in older adults and correlates with
behavioral performance
To examine the neural correlates of attentional demands and
compare them between age groups, we built a model-based re-
gressor indicating how strongly attention is focused on each trial
of the learning task. To most accurately depict trial-by-trial indi-
vidual attentional demands in both groups, regardless of each
individual’s strategy, this regressor reflected both reinforcement-
learning and Bayesian-learning derived attentional demands. For
both age groups, it correlated positively with a network of brain
areas that is commonly involved in tasks with high demands on
executive control, including the IPS, dmPFC and dlPFC (Pe-
tersen and Posner, 2012). In parallel, we observed deactivations
in the DMN. Areas of the DMN are commonly observed to be
deactivated when external processing demands are high (Buck-
ner et al., 2008), and aging has been associated with changes in
functional connectivity in both attention networks and the DMN
(Volkow et al., 2000; Tomasi and Volkow, 2012; Geerligs et al.,
2015; Ferreira et al., 2016). Our results showed no significant
age-related differences in activations within the attention net-
work. However, deactivation within the DMN, including the an-
gular gyrus and vmPFC, was significantly reduced in older adults.

These results were also supported by a model-free analysis that
assumed that attentional demands are generally higher at the
beginning of games than toward their end, when the game has
been solved and learning has terminated. Younger adults showed
a larger difference between DMN deactivation at the beginning
compared with the end of games. This can be driven by a larger
difference in the task demands between start and end of task for
younger adults (e.g., due to learning more games or requiring less
cognitive resources to choose the correct stimulus once the game
is learned), or by a higher sensitivity of DMN deactivation to task
demands in younger adults, or both. We additionally observed a
negative correlation between fMRI activation in an indepen-
dently defined ROI of the whole DMN with overall behavioral
performance in older adults. Together, these results establish that
the main age-related difference in neural activity in our task was
in DMN activation, and this difference accorded with partici-
pants’ behavior in the task. The more active their DMN during
task performance, the worse their learning. It is important to note
that we observed the correlation between DMN deactivation and
behavioral performance specifically during the early trials of the
game, when behavioral performance for all participants was still
uniformly low. This suggests that the reported correlation is
driven by a causal relationship between learning and DMN deac-
tivation, rather than simply reflecting behavioral differences.

Conclusions
The results of the present experiment show that impaired behav-
ioral performance of older adults in complex multidimensional
learning tasks, such as are encountered in every day life, is not
merely driven by an age-related deficit in reinforcement learning,
but rather by the altered interplay between reinforcement learn-
ing and the attentional resources directing it. In our healthy sam-

ple of older adults, we did not observe deficits in simple
unidimensional reinforcement learning, nor did we observe dif-
ferences in neural signals underlying reinforcement learning.
However, when learning in more challenging multidimensional
environments, older adults relied more on reinforcement learn-
ing based processes than younger adults, while younger adults
adopted strategies that are more in line with a statistically optimal
Bayesian approach. Neurally, we observed less deactivation in the
DMN in older adults, specifically during trials with high demand
on attentional resources. Moreover, this deactivation within the
DMN correlated with overall behavioral performance in the mul-
tidimensional task. Together, these results indicate that the ob-
served learning impairments in older adults were not driven by a
reduced efficiency within the reinforcement learning system it-
self, but are rather related to the executive control processes that
direct reinforcement learning to operate on the currently impor-
tant dimensions of the environment.
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Dolan RJ (2013) Dopamine restores reward prediction errors in old age.
Nat Neurosci 16:648 – 653.

Collins AGE, Ciullo B, Frank MJ, Badre D (2017) Working memory load
strengthens reward prediction errors. J Neurosci 37:4332– 4342.

Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008) Working
memory capacity predicts dopamine synthesis capacity in the human
striatum. J Neurosci 28:1208 –1212.

Cox KM, Aizenstein HJ, Fiez JA (2008) Striatal outcome processing in
healthy aging. Cogn Affect Behav Neurosci 8:304 –317.

Daniel R, Pollmann S (2014) A universal role of the ventral striatum in
reward-based learning: evidence from human studies. Neurobiol Learn
Mem 114:90 –100.

Daw ND (2011) Trial-by-trial data analysis using computational models.
In: Decision making, affect, and learning: attention and performance
XXIII (Delgado MR, Phelps EA, Robbins TW eds), pp 3–38. Oxford, UK:
Oxford University Press.

Dobryakova E, Jessup RK, Tricomi E (2017) Modulation of ventral striatal
activity by cognitive effort. Neuroimage 147:330 –338.

Eppinger B, Nystrom LE, Cohen JD (2012) Reduced sensitivity to immedi-
ate reward during decision-making in older than younger adults. PLoS
One 7:e36953.

Eppinger B, Schuck NW, Nystrom LE, Cohen JD (2013) Reduced striatal
responses to reward prediction errors in older compared with younger
adults. J Neurosci 33:9905–9912.

Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the
efficiency and independence of attentional networks. J Cogn Neurosci
14:340 –347.

Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in
normal brain aging. Neurosci Biobehav Rev 37:384 – 400.

Ferreira LK, Regina AC, Kovacevic N, Martin Mda G, Santos PP, Carneiro
Cde G, Kerr DS, Amaro E Jr, McIntosh AR, Busatto GF (2016) Aging
effects on whole-brain functional connectivity in adults free of cognitive
and psychiatric disorders. Cereb Cortex 26:3851–3865.

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2015) A brain-

Daniel et al. • Intact Reinforcement Learning J. Neurosci., January 29, 2020 • 40(5):1084 –1096 • 1095



wide study of age-related changes in functional connectivity. Cereb Cor-
tex 25:1987–1999.

Gershman SJ, Cohen JD, Niv Y (2010) Learning to selectively attend. In:
Proceedings of the 32nd Annual Conference of the Cognitive Science
Society (Ohlsson S, Catrambone R, eds) pp 1270 –1275, Cognitive Science
Society, Inc.

Grinband J, Wager TD, Lindquist M, Ferrera VP, Hirsch J (2008) Detection
of time-varying signals in event-related fMRI designs. Neuroimage
43:509 –520.

Hampshire A, Gruszka A, Fallon SJ, Owen AM (2008) Inefficiency in self-
organized attentional switching in the normal aging population is associ-
ated with decreased activity in the ventrolateral prefrontal cortex. J Cogn
Neurosci 20:1670 –1686.
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