
1 Introduction

Reinforcement learning (RL) is a process by which
organisms learn from their interactions with the
environment to achieve a goal (Sutton & Barto, 1998).
In RL, learning is contingent upon a scalar reinforce-
ment signal that provides evaluative information about
how good an action is in a certain situation, without
providing an instructive supervising cue as to which
would be the preferred behavior in the situation.

Behavioral research indicates that RL is a fundamental
means by which experience changes behavior in both
vertebrates and invertebrates, as most natural learning
processes are conducted in the absence of an explicit
supervisory stimulus (Donahoe & Packard-Dorsel,
1997). Several brain regions have been implicated
in RL, including the midbrain dopaminergic neurons
of the substantia nigra pars compacta (SNc) and
the ventral tegmental area (VTA) in rats and
primates, and their target areas in the basal ganglia
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(e.g., Graybiel & Kimura, 1995; Houk & Wise, 1995;
Schultz, 1998). A computational understanding of
neuronal RL will enhance the understanding of learn-
ing processes in the brain and can contribute widely to
the design of autonomous artificial learning agents.

RL has attracted ample attention in computational
neuroscience, yet a fundamental question regarding
the underlying mechanism has not been sufficiently
addressed, namely, what are the optimal synaptic
learning rules for maximizing reward in RL? In this
article, we use evolutionary computation techniques to
derive (near-)optimal neuronal learning rules that give
rise to efficient RL in uncertain environments. We then
investigate the behavioral strategies that emerge as a
result of (near-)optimal RL.

RL has been demonstrated and studied extensively
in foraging bees, thus we have chosen bee foraging as
a model system for studying synaptic learning rules
for RL. Real (1991, l996) showed that when foraging
for nectar in a field of blue and yellow artificial flow-
ers, bumblebees exhibit efficient RL, rapidly switch-
ing their preference for flower type when reward
contingencies were switched between the flowers. The
bees also manifested risk-averse behavior: In a situa-
tion in which blue flowers contained 2 µl sucrose
solution, and yellow flowers contained 6 µl sucrose in
one-third of the flowers and zero in the rest, about 85%
of the bees’ visits were to the blue constant-rewarding
flowers, although the mean return from both flower
types was identical. Risk-sensitive and risk-averse
choice behavior has also been demonstrated exten-
sively in other animals (see Kacelnik & Bateson, 1996,
for a review).

Bees foraging for nectar are faced with highly
variable ecological conditions during the course of the
year and in different habitats: Parameters such as
the weather, the season, and competition all affect the
availability of rewards from different kinds of flowers.
In such an environment rapid learning is crucial for
successful foraging, as the foraging individual cannot
be prepared genetically for the ecological conditions
of a particular habitat (Menzel & Muller, 1996).
An uncertain environment also implies a “multi-armed
bandit” type scenario, in which the bee collects food
and information simultaneously (Greggers & Menzel,
l993). The foraging bee’s choices are guided not only
by the search for food but also by the search for infor-
mation regarding the content of different food sources.
This implies a trade-off between exploitation and

exploration (Wilson, 1996), as the bee’s choices
directly affect the “training examples” that it will
encounter through the learning process. Thus in a
multi-armed bandit situation a bee must devise a policy
for choosing between exploiting available knowledge
or exploring for more information, at every trial.

In a previous neural network (NN) model, Montague,
Dayan, Person, and Sejnowski (1995) simulated bee
foraging in a three-dimensional arena of blue and yellow
flowers, based on a neurocontroller modeled after an
identified interneuron (VUMmx1) in the honeybee
suboesophogeal ganglion (Hammer, 1993). This neuron’s
activity represents the reward value of gustatory stimuli,
and similar to midbrain dopaminergic neurons of
primates, it is activated by unpredicted rewards and by
reward-predicting stimuli, and it is not activated by
predicted rewards (Hammer, 1997). In their model, this
neuron is modeled as a linear unit P, which receives
visual information regarding changes in the percentages
of yellow, blue, and neutral colors in the visual field and
computes a prediction error. According to P’s output, the
bee decides whether to continue flight in the same direc-
tion, or to change heading direction randomly. Upon
landing, the reward value given to the network is not the
nectar content of the chosen flower, but a transformation
of this value according to the bee’s subjective utility
function for nectar (Harder & Real, 1987). At this time
step, the synaptic weights of the network are updated
according to a special anti-Hebbian-like learning rule in
which the postsynaptic factor selects the direction of
change (Montague, 1997). As a result, the values of the
weights come to represent the expected subjective
rewards from each flower type. The behavior of the deci-
sion unit P in this model is similar to the firing patterns
characteristic of dopaminergic neurons in the SNc and
VTA of primates, as have been recorded in a monkey
performing a delayed-match-to-sample task (Montague,
Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague,
1997), and is thus consistent with the hypothesis that
these dopaminergic neurons compute a prediction error
(Schultz, 2000).

Although this model replicates Real’s foraging
results and provides a basic and simple NN architec-
ture to solve RL tasks, many aspects of the model, first
and foremost the handcrafted synaptic learning rule,
are arbitrarily specified and their optimality with
respect to RL questionable. Toward this end, we use a
generalized and parameterized version of this model to
evolve optimal synaptic learning rules for RL (with
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respect to maximizing nectar intake) using a genetic
algorithm (Mitchell, 1997). Evolutionary computation
techniques are especially suitable for RL problems, as
they involve an artificial decision-making agent acting
in an environment to achieve a goal. The solution is
“evolved” in much the same way as the biological
solutions have been evolved by natural selection—
through a “parallel search” for effective solutions in a
large population of individuals.

In contrast to common evolutionary computation
applications involve NNs with evolvable synaptic
weights or architectures (e.g., Ackley & Littman,
1991, Floreano & Mondada, 1996, Nolfi, Elman &
Parisi, 1994), we set upon the task of evolving the
network’s neuronal learning rules. Previous attempts
at evolving neuronal learning rules have used heavily
constrained network dynamics and very limited sets of
learning rules, or evolved only a subset of the learning
rule parameters: Chalmers (1990), in one of the first
papers describing evolution of learning rules, evolved
supervised learning rules for a fixed feed-forward
architecture, using a parameterized version of the stan-
dard backpropagation learning rule up to second
power, with a bit-encoded genome that severely
limited the possible parameter values. Fontanari and Meir
(1991) used Chalmer’s approach to evolve a learning
algorithm for a single-layer network (perceptron) with
binary weights, going up to the third power of the local
rule. Baxter (1992) also evolved supervised learning
rules, but for a binary fully connected NN with hidden
units. Synapses could take the values of 0, 1, or (−1),
and only nonzero synapses were modifiable. Baxter
showed that only evolutions of networks with at least
three hidden units converged, and in all successful
evolutions the Hebbian learning rule was evolved.
Unemi et al. (1994) evolved RL within a Q-learning
framework but only evolved a subset of the learning
rule parameters (learning rate, discount rate, and
exploration rate), in a simple maze-exploration task.
They demonstrated that learning ability emerges only
if environmental change is faster than the alternating
generations. Floreano and Mondada (1998) evolved
learning rules using real robots in a framework that
consisted of a fixed architecture in which each synapse
could be driving or modulatory, excitatory or
inhibitory, and could take one of four learning rules
and one of four learning rates. In several recent papers,
Floreano and Urzelai (e.g., Floreano & Urzelai, 2000,
2001) compared genetically determined synapses to

adaptive synapses, in a sequential “light switching”
problem. Using a fully recurrent discrete-time NN
with no hidden neurons that controls a real robot, they
compared networks that use node-encoded learning
rules (out of four possible Hebbian-based rules) to net-
works with genetically determined synapses and
showed that on-line adaptation is advantageous for the
studied task and allows for robustness to environmental
changes.

In the present article, we define a general frame-
work for evolving Hebbian learning rules, which
essentially encompasses all heterosynaptic and mono-
synaptic Hebbian learning rules and also allows for
complex neuromodulatory interactions of gating of
synaptic plasticity. Via the genetic algorithm we select
bees based solely on their nectar-gathering ability in a
changing environment. The uncertainty of the environ-
ment ensures that efficient foraging can only be a
result of learning throughout a bee’s lifetime, thus
promoting the evolution of efficient learning rules. 

To avoid the possible confusion of terms, we make
a distinction between the notions of heterosynaptic
learning (Dittman & Regehr, 1997; Schacher, Wu &
Sun, 1997; Vogt & Nicoll, 1999) and neuromodulation
of plasticity (Bailey, Giustetto, Huang, Hawkins, &
Kandel, 2000; Fellous & Linster, 1998). The classic
monosynaptic Hebbian learning rule is an activity-
dependent learning rule in which a synapse is updated
only when there is activity both in the presynaptic and
in the postsynaptic neurons. In contrast, heterosynaptic
Hebbian learning allows for a less-restricted modi-
fication of synapses, such that a synapse can also be
updated when only the presynaptic or the postsynaptic
component has been active, and more generally, even
when neither have been active. We term this rule
“heterosynaptic” modification as it allows for the
firing of a neuron to affect all its synapses, regardless
of the activity of the other neurons connected to it.
Neuromodulation of synaptic plasticity further
enhances the learning rule by allowing a three-factor
interaction in the learning process: Through neuro-
modulation the activity of a neuron can gate the
plasticity of a synapse between two other neurons.
Providing the neuromodulatory neuron has fired,
the synapse can be updated (according to the hetero-
synaptic learning rule pertaining to the pre- and post-
synaptic neurons). Otherwise, plasticity in the synapse
is shut off. Both heterosynaptic plasticity and neuro-
modulatory gating of synaptic plasticity have been
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demonstrated in neural tissues (Bailey et al., 2000;
Dittman & Regehr, 1997; Fellous & Linster, 1998;
Schacher et al., 1997; Vogt & Nicoll, 1999) and have
been recognized to increase the computational com-
plexity of synaptic learning (Bailey et al., 2000;
Fellous & Linster, 1998; Wickens & Kötter, 1995). By
allowing for both heterosynaptic learning and neuro-
modulation of plasticity, we define a very large search
space in which the genetic algorithm can search for
optimal synaptic learning rules. 

In the following section we describe the model
and the evolutionary dynamics. Section 3 reports the
results of our simulations: In Section 3.1 we describe
the successful evolution of RL. Section 3.2  describes
the evolved synaptic update rules, and their influence
on the exploration/exploitation trade-off of the
evolved bees. In Section 3.3 we analyze the foraging
behavior resulting from the learning dynamics and
find that when tested in a new environment, our
evolved bees manifest risk-averse behavior. Although
this choice strategy was not selected for, we rigorously
prove that risk aversion emerges directly from RL, in
contrast to the conventional explanations of risk-
averse behavior that rely on the existence of subjective
utility functions. The strength of the evolved learning
mechanism is further demonstrated in Section 3.4,
which describes the emergence of probability
matching behavior. This behavior, which was previ-
ously thought to result from competition for food
resources, is shown to emerge in a noncompetitive
scenario as a result of the learning rule dynamics
alone. Section 3.5 describes a minirobot implementa-
tion of the model, aimed at assessing its robustness.
We conclude with a discussion of our results in
Section 4.

2 The Model

A simulated bee-agent flies in a three-dimensional
arena, over a flower patch composed of 60 × 60 ran-
domly scattered yellow and blue squares representing
two types of flowers. A bee’s life consists of 100 trials.
Each trial begins with the bee placed in a random loca-
tion above the flower patch and with a random head-
ing direction. The bee starts its descent from a random
height of 8–9 units above the flower patch and
advances in steps of 1 unit that can be taken in any
downward direction (360° horizontal, 90° vertical).
The bee views the world through a cyclopean eye

(10° cone view), and in each time step it decides
whether to maintain the current heading direction
or to reorient randomly, based on the visual input
(Figure 1a). Upon landing (the field has no bound-
aries, and the bee can land on a flower or outside the
flower patch, on neutral-colored ground), the bee
consumes any available nectar in one time step and
another trial begins. The evolutionary goal (the fitness
criterion) is to maximize nectar intake. 

In the neural network controlling the bee’s flight
(Figure 1b), which is an extension of Montague et al.’s
(1995) network, three modules (“regular,” “differen-
tial” and “reward”) contribute their input via synaptic
weights, to a linear neuron P. The regular input
module reports the percentage of the bee’s field of
view filled with yellow [Xy(t)], blue [Xb(t)], and neutral
[Xn(t)]. The differential input module reports temporal
differences of these percentages [Xi(t) − Xi(t − 1)].
The reward module reports the actual amount of nectar
received from a flower [R(t)] in the nectar-consuming
time step (in this time step it is also assumed that
there is no new input [Xi(t) = 0]), and zero during flight.
Note that, in contrast to Montague et al. (1995), we do
not incorporate any form of nonlinear utility function
with respect to the reward. Thus, P’s continuous-
valued output is 

The bee’s action is determined according to the output
P(t) using Montague et al.’s (1995) probabilistic action
function (Figure 1c):

where m and b are real-valued evolvable parameters. 
During the bee’s “lifetime” the synaptic weights

of the regular and differential modules are modified
via a heterosynaptic Hebb learning rule of the form

where η is a global learning rate parameter, Vi(t)
and P(t) are the presynaptic and the postsynaptic
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P(t) = R(t) + Wi Xi(t) +

Wj[Xj(t) − Xj(t − 1)] (1)
∑

j∈differential

∑
i ∈regular

p(change direction) = (2)1

1 + exp[m · P(t) + b]

�Wi(t) =
{

η[A · Vi (t)P (t) + B · Vi (t) + C · P (t) + D] dependencies met
0 otherwise (3)



values respectively, Wi is their connection weight, and
A − D are real-valued evolvable parameters. In addi-
tion, learning in one module can be dependent on
another module (dashed arrows in Figure 1b), such
that if module M depends on module N, M’s synaptic
weights will be updated according to Equation 3 only
if module N’s neurons have fired, and if it is not depen-
dent, the weights will be updated on every time step.
In this respect, a dependency on the reward module is
satisfied when the reward neuron fires, and dependen-
cies on the regular and differential modules are satis-
fied neuron-wise; that is, when a neuron fires, the
synapses connected to the respective (same color)
neurons in the dependent module can be updated.
Synapses of a module dependent on two other
modules can only be updated when satisfying both
dependency conditions. Thus the bee’s “brain” is
capable of a nontrivial neuromodulatory gating of
synaptic plasticity.

The simulated bee’s genome consists of a string of
28 genes, each representing a parameter governing the
network architecture or learning dynamics. Fifteen
genes specify the bee’s brain at time of “birth” (before
the first trial): seven Boolean genes determine whether
each synapse exists or not; six real-valued genes
(range [−1, 1]) specify the initial weights of the regular
and differential module synapses (the synaptic weight
of the reward module is clamped to 1, effectively
scaling the other network weights); and two real-
valued genes specify the action-function parameters m
and b (initialized in ranges [5, 45] and [0, 5] respec-
tively). Thirteen remaining genes specify the learning
dynamics of the network: The regular and differential
modules each have a different learning rule specified
by four real-valued genes (parameters A − D of
Equation 3, initialized in range [−0.2, 0.2]); The global
learning rate of the network η is specified by a real-
valued gene (initialized in range [0, 1]); and four
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Figure 1 (a) The simulated setting. Depicted is a portion of the arena with black and white squares representing the
yellow and blue flowers, the bee’s field of view when starting flight, and a typical trajectory. (b) The bee’s neural network
controller. The weights Wi(t ) of the regular and differential modules are modifiable. (c) The bee’s action function.
Probability of reorienting direction of flight as a function of P(t ) for different values of parameters m, b.



Boolean genes specify dependencies of the visual
input modules on each of the other two modules.
Apart from the synaptic weights, which are bound,
parameter values are unrestricted.

Gene values were optimized using a genetic
algorithm. A first generation of bees was produced by
randomly generating 100 genome strings. Each bee
performed 100 trials independently (no competition)
and received a fitness score according to the average
amount of nectar gathered per trial. To form the next
generation, 50 pairs of parents were chosen (with
returns) with a bee’s fitness specifying the probability of
it being chosen as a parent. Each two parents gave
birth to two offspring, which inherited their parents’
genome after recombination was performed and ran-
dom mutations added. Mutations were performed by
adding a uniformly distributed value in the range of
[−0.1, 0.1] to real-valued genes, and reversing of
Boolean genes. Mutation rate was high for the first
generations (16% for real-valued genes and 3.2% for
Boolean genes), gradually decaying to a lower value
(four-fold decay in real-valued genes to 4%, and
eight-fold decay in Boolean genes to 0.4%, the mutation
rate decayed lineraly in four steps, every 100 genera-
tions). The mutation rate for Boolean genes was chosen
to be considerably smaller than that of real-valued genes,
as a mutation on a real-valued gene only resulted in a
small perturbation of the gene value, whereas a
mutation on a Boolean gene completely reversed it.
Recombination was performed via a uniform crossover
of the genes (p = 0.25). It is important to note that there
was no Lamarckian inheritance—learned weights were
not passed on to offspring. One hundred offspring were
thus created and once again tested in the flower field.
This process continued for 500 generations.

3 Results

3.1 Evolution of Reinforcement Learning

To promote the evolution of learning, bees were evolved
in an “uncertain” world: In each generation one of the
two flower types was randomly assigned as a constant-
yielding high-mean flower (containing 0.7 µl nectar),
and the other a variable-yielding low-mean flower (1 µl
nectar in one-fifth of the flowers and zero otherwise).
The reward contingencies were switched between the

two flower types in a randomly chosen trial during the
second or third quarter of each bee’s life. 

Ten separate evolutionary runs were performed, of
which half were successful. The different runs show
one of two types of fitness curves: Successful runs,
defined as runs in which reward-dependent choice
behavior is successfully evolved, are characterized
by two distinct evolutionary jumps (Figure 2a).
Unsuccessful runs, which produce behavior that is not
dependent on rewards, show only the first jump
(Figure 2b). This first jump is due to the acquisition of
a negative neutral synapse responsible for a “do not
land on neutral-colored ground” rule. The second
evolutionary jump characteristic of successful runs is
due to the almost simultaneous evolution of eight
genes governing the network structure and learning
dependencies, which are essential for producing effi-
cient learning in the bees’ uncertain environment: All
successful networks have a specific architecture that
includes only four synapses (the regular neutral,
differential blue and differential yellow, and the
reward synapse), as well as a dependency of the
differential module on the reward module, condition-
ing modification of these synapses on the presence of
zreward (Figure 3a). Agents that have almost all the
crucial alleles, but are missing one or two, are never-
theless unsuccessful (Figure 3b). Thus we find that in
our framework, only a network architecture similar to
that used by Montague et al. (1995) can produce
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Figure 2 Typical fitness scores of a successful run (a)
and an unsuccessful run (b) of 500 generations. Solid
line: mean fitness; dots line: maximum fitness in each
generation.



above-random foraging behavior, supporting their
choice as an optimal one. However, our evolved
networks utilize a family of heterosynaptic learning

rules different from the monosynaptic rule used by
Montague et al., giving rise to several important
behavioral strategies.

3.2 Exploration/Exploitation Trade-off
and Heterosynaptic Modification

To understand the evolved learning rule, we examined
the foraging behavior of individual bees from the last
generation of successful runs. In general, the bees
manifest efficient reinforcement learning, showing a
marked preference for the high-mean-rewarding
flower, with a rapid transition of preferences after the
reward contingencies are switched between the flower
types. The values of the synaptic weights are also
indicative of learning based on reward contingencies,
as they follow the rewards expected from each flower
(Figure 4). 

A more detailed inspection of the behavior of bees
from different evolutionary runs reveals that the bees
differ in their degree of exploitation of the high-
rewarding flowers versus exploration of the other
flowers (Figure 5a, b). These individual differences in
the foraging strategies employed by the bees, result
from an interesting relationship between the micro-
level Hebb rule coefficients and the exploration/
exploitation trade-off characteristic of the macro-level
behavior. According to the dependencies evolved in all
the successful evolutionary runs, learning (synaptic
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Figure 3 Mean value of several genes in the last generation of (a) five successful and (b) five
unsuccessful runs. Each subfigure shows the mean value of one gene in the last generation of each
of five runs. Genes shown (from left to right): Top row—the learning rate gene and the two action func-
tion parameters m and b. Middle row—the Boolean genes governing the existence of the different
synapses: regular blue, regular yellow, and regular neutral input synapses, differential blue, differential
yellow, and differential neutral input synapses, and the reward input synapse. Bottom row—Boolean
genes determining the dependencies of the regular module on the differential module and on the
reward module, and the dependencies of the differential module on the regular module and the reward
module. Genes crucial for successful reinforcement learning are marked with an arrow.

Figure 4 Synaptic weight values of an evolved bee
performing 20 test trials. Synaptic weight values for the
differential blue (a) and yellow (b) synapses were
recorded in a bee from the last generation of a success-
ful evolutionary run, during each of the approximately
210 steps needed to complete 20 test trials. In each trial,
the bee tended to choose the color associated with the
larger weight. Upon landing and receiving reward, the
weights changed according to the evolved learning rules.
Blue was the initial constant-rewarding flower (0.7 µl) and
yellow the variably rewarding flower (1 µl in one-fifth of the
flowers). Reward contingencies were switched after trial 10.
The weight values can be seen to follow approximately
the rewards expected from each flower type.



updating) occurs only upon landing, and we can
analyze the evolved heterosynaptic learning rule of
the differential module as follows: In the common
case, upon landing the bee sees only one color, thus
all inputs are zero except the differential input corres-
ponding to the color of the chosen flower, which is, in

the absence of new visual input in the landing step,
Xi(t) − Xi(t − 1) = 0 − 1 = −1. Thus the output of P in
this step is

Therefore, the synaptic update rule for the differ-
ential synapse corresponding to the chosen flower
color is

leading to an effective monosynaptic coefficient of
(A – C), and a general weight decay coefficient
(D – B). For the other differential synapses the synaptic
update rule is 

Table 1 summarizes the values of the coefficients
of the heterosynaptic learning rule of the differential
module, as they were evolved in the five successful
evolutionary runs. The synaptic weight of the chosen
color is affected by the values of (A − C) and (D − B).
The large negative values of (A − C) found specify an
anti-Hebbian learning rule (i.e., an anti-correlation
learning rule) for the chosen flower. This is a result of
the negative presynaptic value while landing. The
values of D and B further modulate the synaptic
strength: In trials in which no prediction error is
encountered (i.e., the postsynaptic value is near zero in
the learning step), a negative value of (D − B) results in
weakening of the synapse, and a positive value results
in strengthening of the synapse. The synaptic weights
corresponding to colors that were not chosen are only
influenced heterosynaptically, by the values of C and
D. A positive value of C results in a global strengthen-
ing of these synapses when the postsynaptic value is
positive and a global weakening when the postsynap-
tic value is negative, that is, a generalization of the
“good/bad surprise” that was encountered, to the other
colors. A negative value of C will produce the opposite
effect. A positive or negative value of D results in a
global strengthening or decay of all the synapses at
every learning step.

12 Adaptive Behavior 10(1)

P(t) = R(t) + (−1) · Wchosen(t) = R(t) − Wchosen(t) (4)

Wchosen(t + 1) = η[(A − C ) · (−1) (R(t) − Wchosen(t))
+ (D − B)] (5)

Wj (t + 1) = η[C · (R(t) – Wchosen(t)) + D] (6)

Figure 5 (a, b) Preference for blue flowers for two
different bees from the last generation of two different
successful runs, averaged over 40 test bouts, each con-
sisting of 100 trials. Blue was the initial constant-reward-
ing high-mean flower. Reward contingencies were
switched between flower types after trial 50. The bees
shown represent extreme cases of evolved “exploitation-
inclined” (a) and “exploration-inclined” (b) behavior. (c, d)
Fluctuations of the differential blue synaptic weight during
a typical flight of the“exploiting” bee (c) and the “exploring”
bee (d). Synaptic weight values for the differential blue
synapse were recorded while the bees performed 50
test trials (about 600 flight steps). Blue was the initial
constant-rewarding flower; reward contingencies were
switched after trial 25. The different fluctuation patterns in
the last 25 trials result from the different heterosynaptic
Hebb rule coefficients. Hebb rule coefficients for the
“exploiting” bee (c) were A = −0.82, B = 0.15, C = 0.24,
D = −0.04 and for the “exploring” bee (d) were A = −0.92,
B = 0.39, C = 0.16, D = 0.25.

∇
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Thus the family of heterosynaptic learning rules
evolved cover a large range of synaptic dynamics that
affect all the synapses of the differential module
at every learning step and influence the bee’s explo-
ration/exploitation trade-off (Figure 5c, d). A positive
value of D results in “spontaneous” strengthening of
competing synapses, leading to an exploration-inclined
bee (Figure 5d). A positive C value further enhances
this behavior. Conversely, negative values of C and D
will result in a declining tendency to visit competing
flower types, leading to exploitation-inclined behavior
(Figure 5c). 

3.3 Emergence of Risk Aversion

A prominent strategy exhibited by the evolved bees is
risk aversion. Figure 6a shows the choice behavior of
200 previously evolved bees (40 bees from the last
generation of each of the five successful runs), tested
in a new environment in which the mean rewards of
the two kinds of flowers are identical, but their vari-
ance is different. Although the situation does not call
for any flower preference, as on average the bee would
receive the same nectar amount regardless of its choice
strategy, the bees consistently prefer the constantly
rewarding flower over the higher-content but variably
rewarding flower.

Theoretically, this preference could have been a
result of the fact that during evolution, the constantly
rewarding flower was also the high-mean-rewarding
flower, so that the bees would come to prefer con-
stantly over variably rewarding flowers. However, this
does not seem to be the case, as we have found
that risk-averse behavior can also be evolved without

introducing any risk to the environment during the
evolutionary process: Bees evolved in an environment
containing two constantly rewarding flowers yielding
different amounts of nectar also exhibit risk-averse
behavior when tested in a variably rewarding flower
scenario. Figure 6b shows the choice preferences of
five new populations of bees evolved in an environ-
ment that contained two constantly rewarding flower
types, one yielding 0.8 µl nectar, and the other 0.3 µl.
Although risk-less, this environment was also an
uncertain one, in that the flower color that yielded the
higher reward was randomly chosen in each genera-
tion, and the reward contingencies were switched
between the two flower types in a random time step
within the second or third quarter of the bees’ lifetime,
similar to the previously described evolutionary runs.
After completing 500 generations of evolution,
40 bees from the last generation of each of five
successful evolutionary runs were tested in the risk-
aversion scenario in which both flowers yielded the
same mean reward, but one was variably rewarding.
Confronted with variably rewarding flowers for the
first time, the bees showed a pronounced preference
for the constantly rewarding flower type (Figure 6b).
Thus we can observe emergent risk-averse behavior in
bees evolved in a risk-less environment. Below we
prove the emergence of risk-aversion from RL analyti-
cally, relying only on the assumption of Hebbian
learning. This verifies that the emergence of risk aver-
sion is indeed not dependent on the amount of risk or
the quality of the risky versus the nonrisky flower
during the evolutionary process.1

Risk aversion has been studied extensively in the
fields of economics and game theory. The risk-averse
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Table 1 Heterosynaptic learning rule coefficients in five successful evolutionary runs. Columns 2–5: Mean (standard
deviation) of the evolved learning rule coefficients of the differential module heterosynaptic learning rule, in the last
generation of five successful runs. Columns 6–9: Number of bees in the last generation with a positive value of B, C,
D and (D – B), respectively.

Run A B C D (B > 0) (C > 0) (D > 0) (D − B > 0)

1 –1.2 (0.1) 0.1 (0.1) –0.1 (0.1) –0.1 (0.1) 73 24 1 15
2 –1.2 (0.2) –0.2 (0.1) 0.2 (0.1) –0.1 (0.2) 0 100 47 61
3 –1.7 (0.2) 0.3 (0.1) –0.3 (0.1) 0.0 (0.1) 94 0 82 7
4 –1.3 (0.1) 0.2 (0.1) 0.3 (0.1) –0.2 (0.1) 98 100 1 0
5 –1.0 (0.1) 0.0 (0.3) 0.3 (0.1) –0.5 (0.1) 66 100 0 2
Mean –1.3 (0.3) 0.1 (0.2) 0.1 (0.3) –0.2 (0.2) 66 65 26 17



behavior that has been observed in many choice
scenarios in animals as well as in humans has tradition-
ally been accounted for by hypothesizing the existence
of a nonlinear concave “utility function” for reward. In
bees, for instance, such a subjective utility function for
nectar can result from a concave relationship between
nectar volume and net energy intake, between net

energy intake and fitness, or between the actual and
perceived nectar volume (Harder & Real, 1987;
Smallwood, 1996). Montague et al. (1995) incorporate
this explanation into their model to reproduce Real’s
(1991) risk-aversion results, by directly applying a
nonlinear utility function to the nectar content and
feeding its result to the reward module. In contra-
distinction to this conventional explanation of risk
aversion, our model does not include any form of non-
linear utility for reward. What then brings about risk-
averse behavior in our model? Corroborating previous
numerical results (March, 1996), we prove analytically
that this foraging strategy is a direct consequence of
Hebbian learning dynamics in a two-armed banditlike
RL situation. 

During a trial, a bee makes a series of choices
regarding its flight direction, to choose which flower
to land on. As the bee does not learn (i.e., there is no
synaptic plasticity) during flight, all the choices
throughout one trial are influenced by the same weight
values. Thus under a certain rewarding regime, that is,
in between changes in reward contingencies, the bee’s
stochastic foraging decisions can be modeled as
choices between a variably rewarding (v) and a
constantly rewarding (c) flower, based on synaptic
weights Wv and Wc. 

For simplicity, we examine the case of simple
monosynaptic anti-Hebbian learning: In this case, the
synaptic update rule is the well-known temporal
difference (TD) learning rule (Sutton & Barto, 1998)

The synaptic weights are in effect a “memory”
mechanism, as they are a function of the rewards
previously obtained from each of the two flower types.
Wv, representing the reward expected from the variable
flower, is thus an exponentially weighted average of
[v1,v2,…,], the previous rewards obtained from (v):

Wc, as an exponentially weighted average of
rewards obtained from the constantly rewarding
flower type, is constant. 

Bearing this notion in mind, the Appendix pro-
vides a mathematical proof of the emergence of risk
aversion. We compute fv, the frequency of visits to
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∆W(t) = η(R(t) − W(t − 1)). (7)

Wv = Wv(η) = η(vt + (1 − η)vt−1

+ (1 − η)2vt−2 + …) (8)

Figure 6 (a) Risk aversion. Preference for blue flowers in
100 test trials averaged over 200 previously evolved bees
(40 bees from the last generation of each of the five suc-
cessful runs), now tested in conditions different from those in
which they were evolved. Although both flower types yield
the same mean reward (blue: 0.5 µl nectar, yellow: 1 µl in
half the flowers, contingencies switched after trial 50), the
mean (top) and standard deviation (bottom) of the pro-
portion of bees in each evolutionary run who preferred
blue flowers in each trial, reveal a marked preference for
the constant-yielding flower. (b) Risk aversion in bees
evolved in a risk-less environment. Preference for blue
flowers in 100 test trials averaged over 200 bees (40 bees
from each of five successful evolutionary runs) evolved in
a risk-less environment that contained two constantly-
rewarding flower types. As in (a), the mean (top) and
standard deviation (bottom) of the proportion of bees in
each evolutionary run who preferred blue flowers in each
trial, show that risk aversion is prominent, although the
two flower types yield the same mean reward. (c) Risk
aversion is ordered by learning rate. An illustration of
the general principle of the dependency of risk aversion
on learning rate, proven mathematically (see Appendix).
Each point represents the percentage of visits to constant-
rewarding flowers in 50 test trials averaged over 40 previ-
ously evolved bees (all from one successful evolutionary
run), tested with a clamped learning rate.



variably rewarding flowers, and show that it is a
function of pv(Wv), defined as the probability of
choosing (v) in a trial in which the synaptic weight
corresponding to the variably rewarding flower is Wv.
We prove that Wv, as a function of the learning rate,
is risk ordered, such that for higher learning rates
Wv(η) is riskier than for lower learning rates. We then
use the mathematical definition of riskiness to show
that under relatively mild assumptions regarding the
bee’s choice function, the frequency of visits to
variably rewarding flowers is lower for higher learning
rates than for lower learning rates and is ordered
by learning rate. Finally we show that the risk order
property of Wv(η) always implies risk-averse behavior.2

That is, for every learning rate, the frequency of
visits to the variable flower ( fv) is less than 50%,
further decreasing under higher learning rates. Our
simulations corroborate these analytical results
(Figure 6c).

Intuitive insight into these results can be gained
by observing that in the learning process, the bee
makes its decisions based on finite time windows and
does not compute the long-term mean reward obtained
from each flower. This is even more pronounced with
high learning rates such as those evolved (~ 0.8). With
such a learning rate, after landing on an empty flower
of the variably rewarding type, the bee updates the
reward expectation from this flower type (i.e., updates
the corresponding synaptic weight according to the
evolved heterosynaptic Hebb update rule) to near zero,
and as a result, prefers the constantly rewarding flower,
from which it constantly expects (and receives) a
reward of 0.5 µl. As long as the bee chooses the
constantly rewarding flower, it will not update the
expectation from the variably rewarding flower, which
will remain near zero. Even after an occasional “explo-
ration” trial in which a visit to the variable flower
yields a high reward, the preference for this flower will
be short lived, lasting only until the next unrewarded
visit. Note that rapid learning such as has been evolved
here is essential for obtaining high fitness in a highly
variable environment (Menzel & Muller, 1996), and
such abnormally high learning rates have been hypo-
thesized by Real (1991), and were also used in
Montague et al.’s (1995) model. Nevertheless, the
above mathematical analysis shows that even with low
learning rates, as long as the bee is a reinforcement-
learning bee (i.e., its learning rate greater than zero), it
will manifest risk-averse behavior.

3.4 Emergence of Probability-Matching
Behavior

Another notable strategy by which bumblebees
(and other animals) optimize choice in multiarmed ban-
dit situations is probability matching. “Probability
matching” refers to the phenomenon observed in
situations in which the different alternatives offer similar
rewards, but with different probabilities (Bitterman,
1965).3 In such cases, probability matching predicts
that the different alternatives will be chosen according
to the ratio of their reward probabilities. Probability
matching has been shown to describe the behavior of
some animals (e.g., Bitterman, 1965), but not others
(e.g., Herrnstein & Loveland, 1975). Keasar, Rashkovich,
Cohen, and Shimida (in press) have shown that when
faced with variably rewarding flowers offering the
same rewards with different probabilities, bees match
the choices of the different flower types to their reward
ratio, in accordance with probability matching (see
also Greggers & Menzel, 1993). 

This seemingly “irrational” behavior with respect
to optimization of reward intake (Herrnstein &
Loveland, 1975; Herrnstein, 1997) was explained as an
evolutionarily stable strategy (ESS) for the individual
forager, when faced with competitors (Thuijsman,
Peleg, Amitai, & Shmida, 1995). In a multi-animal
competitive setting, probability matching produces an
ideal free distribution (IFD) in which the average intake
of food is the same at all food sources, and no animal
can improve its payoff by feeding at another source.
Using evolutionary computation techniques, Seth
(1999) evolved battery-driven agents that competed for
two different battery refill sources and showed that
indeed matching behavior emerges in a multi-agent
scenario, whereas when evolved in isolation, agents
choose only the high-probability refill source.

Surprisingly, our evolved bees also demonstrate
probability matching behavior. Figure 7 shows the
performance of 200 previously evolved bees (40 from
the last generation of each of five successful evolu-
tions), when tested in probability-matching experi-
ments in which all flowers yield 1 µl nectar, but with
different reward probabilities. In both conditions, the
bees show near-matching behavior, preferring the
high-probability flower to the lowprobability one, by a
ratio that closely matches the reward probability
ratios. In contrast to the “overmatching” described
by Kaesar et al. (in press), our simulated bees exhibit

Niv, Joel, Meilijson, & Ruppin Evolution of Reinforcement Learning 15



the more commonly found (Domjan, 1998)
“undermatching,” as they prefer the higher-probability
flower slightly less than predicted by perfect prob-
ability matching. In our simulations, this emergent
behavior is not a result of competitive conditions
(as the bees were evolved and tested in isolation), but
rather a direct result of the evolved reinforcement
learning dynamics: Due to the high learning rate, the
fluctuating weights representing the expected yield
from each flower will essentially move back and forth
from zero to one. When both are zero, the two flowers
are chosen randomly, but the high-yielding flower has
a greater chance of yielding reward, after which its
weight will be updated to 1, and this flower is pre-
ferred to the other. When both weights are 1, the less-
yielding flower has a greater chance of having its
weight updated to zero, again resulting in preference
for the high-yielding flower. Thus, as an alternative to
previous accounts, probability-matching behavior can
be evolved in a noncompetitive setting, again as a
direct consequence of (near-)optimal RL. 

3.5 Robot Implementation

To assess the robustness of the evolved RL algorithm,
we implemented it in a mobile minirobot by letting
the robot’s actions be governed by a NN controller

similar to that evolved in successful bees, and by
having its synaptic learning dynamics follow the
previously evolved RL rules. A Khepera minirobot
foraged in a 70 × 35 cm arena whose walls were lined
with flowers, viewing the arena via a low-resolution
CCD camera (200 × 200 pixels), moving at a constant
velocity and performing turns according to the action
function (Equation 2) to choose flowers, in a manner
completely analogous to that of the simulated bees.
The NN controller was identical to that evolved for the
simulated bees, except that it received no “neutral”
inputs. All calculations were performed in real time on
a Pentium-III 800 Mhz computer (256 MB RAM) in
tether mode. Moving with continuous speed and
performing all calculations in real time, the foraging
robot exhibited rapid reinforcement learning and risk-
averse behavior, analogous to that of the simulated
bees (Figure 8). Thus the algorithms and behaviors
evolved in the virtual bees’ simulated environment
using discrete time steps hold also in the different
and noisy environment of real foraging minirobots
operating in continuous time. 

4 Discussion

The interplay between learning and evolution has been
previously investigated in the field of evolutionary
computation. Much of this research has been directed
toward elucidating the relationship between evolving
traits (such as synaptic weights) versus learning them
(e.g. Ackley & Littman, 1991; Hinton & Nowlan,
1987). A relatively small amount of research has been
devoted to the evolution of the learning process itself,
most of which was constrained to choosing the appro-
priate learning rule from a limited set of predefined
rules (Baxter, 1992; Chalmers, 1990; Floreano &
Mondada, 1996). In this work we show for the first
time that (near-)optimal learning rules for RL in a
general class of multi-armed bandit situations can be
evolved in a general Hebbian learning framework. The
evolved learning rules are by no means trivial, as they
are heterosynaptic and employ synaptic plasticity
modulation.

As a result of the evolved learning rules, several
complex foraging behaviors emerge, demonstrating
the strength of evolutionary computation as a neuro-
science research methodology that links together
phenomena on the neuronal and behavioral levels. We
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Figure 7 Probability matching. Preference for blue flowers
in 100 test trials averaged over 200 previously evolved
bees (40 bees from the last generation of each of the five
successful runs), now tested in probability-matching
conditions. All flowers yielded 1 µl nectar but with different
reward probabilities. Reward probabilities for blue and
yellow flowers, respectively, were (a) 0.8, 0.4 and (b) 0.8,
0.2 (contingencies switched after trial 50). Mean (top) and
standard deviation (bottom) of the proportion of bees in
each evolutionary run who preferred blue flowers in each
trial. Horizontal lines: behavior predicted by perfect prob-
ability matching [i.e., a 2:1 choice ratio in (a) and a 4:1
choice ratio in (b)].



show that in our model the fundamental macro-level
strategies of risk aversion and probability matching are
a direct result of the micro-level synaptic learning
dynamics, which also control the trade-off between
exploration and exploitation. These behavioral strate-
gies have not been explicitly evolved but emerge in the
model as “side-effects” of RL, making additional
assumptions conventionally used to explain these
behaviors unnecessary. Furthermore, in this work we
not only show that risk-averse behavior can exist in the
absence of a nonlinear utility function for reward, but
also that this behavior can emerge spontaneously in
a risk-free environment. Risk aversion is shown to
be a direct consequence of adaptation to a changing,
uncertain world that induces a form of learning in
which the estimation of expected rewards is biased, as
it takes the more recent sampling into account more
strongly. When acting in an environment in which
intraflower risk is added to the interflower uncertainty,
this bias is expressed as risk-averse behavior. This
result is important not only to the fields of evolution-
ary computation and animal learning theories, but also
to the fields of economics and game theory, as it pro-
vides a new perspective on the well-studied paradigm
of risk-sensitive behavior.

The prevailing accounts of risk aversion in the
fields of economics and game theory are based on the

notion of nonlinear utility functions, which were
introduced into rational choice theory models to
explain the apparent divergence from rationality
embedded in risk-sensitive behavior. Utility functions
were later assumed to result from biological/energetic
considerations, an explanation that usually involves
postulating and quantifying a large number of para-
meters (e.g., see Harder and Real, 1987, for the ener-
getic derivation of the utility function for nectar
postulated for bumblebees). It should be stressed that,
although widely accepted as an explanation for risk
aversion, in traditional economics, utility functions are
inferred entities (Herrnstein, 1997), and there is no
direct evidence for the existence of subjective utility
functions other than the behavioral manifestation of
risk-sensitive behavior itself. The existence of the
assumed underlying subjective utility function and the
shape of the function are assessed not by an indepen-
dent measure of subjective utility, but according to the
resulting risk-averse behavior. In contrast, in our
model, the well-documented phenomenon of risk
aversion, characteristic of choice behavior in many
species, emerges directly from the learning dynamics
of a simple NN model based on an architecture identi-
fied in brains of bumblebees. We have shown empiri-
cally and theoretically that a finite memory, which is a
direct consequence of Hebbian learning, is sufficient
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Figure 8 Synaptic weights of a mobile robot incorporating a neural network controller of
one of the previously evolved bees, performing 20 foraging trials (blue flowers: 0.5 µl nectar,
yellow: 1 µl in half the flowers, contingencies switched after trial 10). (Left) The foraging robot.
(Right) Blue and yellow weights in the differential module represent the rewards expected from
the two flower colors along the trials. Top: Flower color chosen in each trial.



to account for risk aversion in any model of temporal
difference learning that involves a learning rate greater
than zero. As nonlinear utility functions are abstract
concepts that have not been proven to exist biologi-
cally, omitting them from the model has the effect
of producing a more generally applicable model
that includes less species-specific parameters and
functions and can therefore account for risk-averse
behavior in many RL situations and in different
species. 

According to our mathematical analysis and
simulation results (see Figure 6c), there is a direct
relationship between the model bee’s learning rate and
the resulting risk-averse behavior. Based on this we
can predict that individual differences between bees in
the observed risk-averse behavior will be correlated
with the learning rate of the bees. This prediction can
be empirically tested by assessing the learning rate of
individual bees based on a learning task and then
measuring the amount of risk aversion displayed by
the bees in a foraging task similar to that described in
this work.

Keeping in mind that the model we have described
is an abstract learning model and therefore should be
related to biological learning mechanisms with
caution, the evolved learning architecture can be used
to shed light on the biological implementation of RL.
Thus, the significance of using heterosynaptic learning
rules in our model should be noted: Through the learn-
ing rules evolved, a synapse can be modified even
when its corresponding flower type was not chosen.
This allows for nontrivial interactions between flower
types when forming predictions as to the reward
expected from each flower. For example, the expecta-
tion from one flower type can be updated as a function
of the disappointment or surprise encountered when
choosing the other flower type. Heterosynaptic learn-
ing rules have been used in computational modeling of
synaptic plasticity and have been recognized as con-
tributing to the complexity of the learning process, but
surprisingly few studies have directly explored this
phenomenon in the brain. Evidence from cerebellar
(Dittman & Regehr, 1997) and hippocampal (Vogt &
Nicoll, 1999) synapses shows that heterosynaptic plas-
ticity indeed occurs in the brain and can affect the
spiking patterns of neurons through interactions
between adjacent synapses. In vitro recordings in
Aplysia have directly demonstrated heterosynaptic
facilitation of synapses from two presynaptic neurons

onto a common postsynaptic target (Schacher et al.,
1997). We show here that heterosynaptic plasticity can
exert a pronounced effect on the behavior of the organ-
ism and specifically illustrate this effect on the trade-
off between exploration and exploitation characteristic
of multi-armed bandit situations.

The learning mechanism described in this work
can be closely related to the “adaptive critic” described
by Sutton and Barto in the actor–critic architecture
frequently used to implement RL in artificial agents
(Barto, 1995; Sutton, 1988). Furthermore, although
embedded in a very simple artificial neural network,
the learning rules we have studied are biologically
plausible and can be related to learning dependent on
the dopaminergic system in the basal ganglia (Houk,
Adams, & Barto, 1995). In the actor–critic model, an
actor subnetwork learns to perform actions so as to
maximize the weighted sum of future rewards, which
is computed at every time step by a critic subnetwork
(Barto, 1995). The critic is adaptive, in that it learns to
predict the weighted sum of future rewards based on
the current sensory input and the actor’s policy, by
means of an iterative process in which it compares its
own predictions to the actual rewards obtained by the
acting agent. The learning rule used by the adaptive
critic is the TD learning rule (Sutton, 1988) in which
the error between two adjacent predictions (the TD
error) is used to update the critic’s weights. In our
model the synaptic weights come to represent the
expected rewards, and as the inputs are differential, the
activity of P represents an ongoing comparison
between the expected reward in subsequent time steps.
As in the critic model (Barto, 1995), this comparison
provides the error measure by which the network
updates its weights and learns to better predict future
rewards.

Why, then, is learning in this model restricted by
the intermodule dependencies only to the landing step,
whereas learning in the classic adaptive critic model
occurs at every step? The answer to this lies in the
simplicity of the model and the learning task. The
classic adaptive critic uses the error measure to learn to
better predict the consequences of every input scenario,
based on similarity of the current sensory input to pre-
viously encountered (and learned) inputs (Barto,
1995). This learning scheme is capable of dealing with
complex situations in which outcomes depend on a
long sequence of actions, but the final outcome of
actions cannot be easily predicted by the sensory
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inputs in every time step. Our model bee deals with a
much simpler problem, as in every time step it can
directly assess the final outcome of flying in its current
direction. The inputs available to our model bee are
not the primary sensory input from the retina, but a
preprocessed input consisting of the percentages of
reward-predicting features (flower colors) in the
primary input. As a result, these inputs are not only
sufficient to drive the learning process to generate
valid predictions, but once a prediction is generated
(according to the reward obtained), this prediction can
be completely generalized to all the different input
cases encountered by the bee during flight. Given a set
of weights (which define the prediction of the net-
work), a consistent prediction can be made for any
combination of color percentages in the visual field, so
there is no prediction error to learn from during the
bee’s flight. The prediction itself can be updated only
when the bee lands and encounters (or does not
encounter) an actual reward, which can be compared
to the predicted reward.

Several studies have suggested that dopaminergic
neurons in the basal ganglia may constitute a bio-
logical implementation of a TD reinforcement signal
(Montague, Dayan, Nowlan, Pouget, & Sejnowski,
1993; Montague et al., 1996; Schultz et al., 1997), and
together with the striatum, they may implement an
actor–critic learning model (Houk et al., 1995; Schultz,
1998). The output of unit P in our model, as in that of
Montague et al.’s (1995) model, quite accurately cap-
tures the essence of the activity patterns of midbrain
dopaminergic neurons (Montague et al., 1996; Schultz
et al., 1997) in primates and rodents, and the corre-
sponding octopaminergic neurons in bees (Hammer,
1997; Menzel & Muller 1996). These neurons, origi-
nating in the SNc and VTA of primates and rodents,
presumably project a widespread prediction-error
signal to many cortical and subcortical areas, including
the striatum (Schultz, 1998; Schultz et al., 1995;
Waelti, Dickinson, & Schultz, 2001). In corticostriatal
synapses, this signal is implicated in mediating learn-
ing by reinforcement, by neuromodulating synaptic
plasticity [providing a “now learn” signal that allows
synaptic plasticity and long-term memory formation in
areas that were active at the same time or immediately
before a rewarding input was encountered (Bailey et al.,
2000; Wickens & Kötter, 1995)].

The similarity between dopamine-dependent
plasticity in corticostriatal synapses (Kimura &

Matsumoto, 1997; Suzuki, Miura, Mishimura, &
Aosaki, 2001; Wickens & Kötter, 1995) and the
dependencies evolved in our model should be noted.
However, this comparison should be done with
caution, as ours is a very simplified model. We have
found that efficient RL is dependent upon a three-
factor Hebbian learning rule, in which the synaptic
weights are updated as a function of a neuromodulat-
ing reward signal, as well as the presynaptic and post-
synaptic factors. Our demonstration of the optimality
of this learning rule to RL has bearing on the compu-
tational function of dopamine-dependent plasticity in
the basal ganglia. Since the current model reflects
mainly the critic module of the actor–critic framework
and consists only of a very simplistic actor (the
probabilistic action function), future work that will
focus on elaborating the actor component of the model
will undoubtedly increase the relevance of the model
to learning in the basal ganglia.

In summary, the significance of this work is three-
fold: On the one hand we show the strength of simple
evolutionary computation models in evolving funda-
mental processes such as reinforcement learning, and
on the other hand we show that optimal reinforcement
learning can directly explain complex behaviors such
as risk aversion and probability matching, without
need for further assumptions. This is done by means of
a very simple (and thus easily analyzed) model, which
nonetheless has important bearing on learning in
biological neuronal circuits. 

Notes

1 We have also tried to evolve bees in a third scenario in
which the environment contains two variably rewarding
flowers (each rewarding with a certain probability,
and empty otherwise). Unfortunately, the bees’ fitness
remained at random level even after thousands of genera-
tions, and no RL was evolved. Apparently, in our frame-
work, such excessive uncertainty of the environment is too
difficult for the evolutionary process to solve, and the
underlying consistencies cannot be discovered and
exploited by the evolving bees. Note, however, that had
any learning mechanism that uses Hebbian learning based
on an error function been evolved in this environment
(e.g., with a lower learning rate that allows the bee to com-
pute the mean rewards of each flower type more accu-
rately), our mathematical analysis below ensures that
risk-averse behavior would have also emerged.
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2 Note that our mathematical analysis applies only to the
classical risk-aversion scenario (March, 1996) in which
one reward source is constant rewarding (not risky at all),
and does not extend to the case in which both flowers
types are variably rewarding. The emergence of risk aver-
sion in the general case of two variably rewarding flowers
with the same mean reward but with two different proba-
bilities of rewarding, can, however, be shown in simulation
in the evolved bees. 

3 Probability matching should not be confused with the
“matching law” (Herrnstein, 1997), which describes
asymptotic behavior when choosing between alternatives
that show diminishing rewards as they are chosen more
frequently (e.g., the depletion of a patch of flowers contin-
uously foraged upon).
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Appendix

Mathematical Analysis: Risk Aversion Is
Ordered by Learning Rate

We consider the bee’s long-term choice dynamics as a
sequence of N cycles, each choice of (v) beginning a
cycle. Let ni ≥ 0 be the number of visits to constant
flowers in the ith cycle. The frequency fv of visits to (v)
is determined (via Birkhoff’s ergodic theorem
(Breiman, 1968), an extension to dependent variables
of the strong law of large numbers) by the expected
number of visits to (c) in a typical cycle [E(n)]:

As Wc is constant, the bee’s choices are only a function
of Wv, and we can define the bee’s choice function as
pv(Wv), the probability of choosing (v) in a trial in
which the synaptic weight corresponding to the vari-
ably rewarding flower is Wv. Thus given Wv, [ni + 1] is
geometrically distributed with pv(Wv), giving:

and so

According to the mathematical definition of riskiness
that comes from theories of second degree stochastic
dominance (Hardy, Littlewood, & Polya, 1934), for

X and Y with a finite equal mean, Rothschild and
Stiglitz (1970) show the following three statements to
be equivalent:

1. EU(X) ≥ EU(Y) for every concave function U for
which these expectations exist.

2. E[max(X − x, 0)] � E[max(Y − x, 0)] for all x ∈ ℜ. 
3. There exists on some probability space two ran-

dom variables X and Z such that Y = X + Z and
E(Z | X) = 0 with probability 1.

Statement (1) provides the mathematical definition of
riskiness, that is, X is less risky than Y if (1) is true, as for
every concave utility function the mean subjective
reward obtained from X is greater than that obtained
from Y so every risk averter would prefer X to Y.
Statement (2) is an easier condition to check when deter-
mining which of two random variables is riskier.
Statement (3) is a mathematically equivalent definition
of riskiness that we will use later in our analysis to prove
that the bee is always risk averse. According to this,

Lemma: If X, X1, X2, X3,… are identically distributed
(not necessarily independent) random variables with a
finite mean, Y = Σ∞

i=1 αiXi (where α→i is a probability
vector) is less risky than X. 

Proof:

Since the right-hand side is nonnegative,

Now taking expectations of both sides

As a corollary, we shall prove that exponential
smoothers such as Wv(η) are risk ordered such that a
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fv = lim
N→∞

N

N + ∑N
i=1 ni

= lim
N→∞

1

1 + 1
N

∑N
i=1 ni

= 1

1 + E(n)
(A1)

E(n) = E[E(n|Wv)] = E

[
1

pv(Wv)
− 1

]

= E

[
1

pv(Wv)

]
− 1 (A2)

fv = 1

E
[

1
pv(Wv)

] (A3)

max
[∑

αiXi − x, 0
]

≤
∑

αi [max(Xi − x), 0] (A5)

E[max
(∑

αiXi − x
)

, 0]

≤
∑

αiE[max(Xi − x), 0]

=
∑

αiE[max(X − x), 0]

= E[max(X − x), 0] ∴ (A6)

∑
αiXi − x =

∑
αi(Xi − x)

≤
∑

αi[max(Xi − x), 0]1 (A4)



lower learning rate β leads to less risk aversion than a
higher learning rate a (0 < β < α < 1). 

Lemma: Let Wv(η) be an exponentially weighted
average of identically distributed variables Vi (i = 1, 2,
3, ….) as in Equation 8, then Wv(α) is riskier than
Wv(β) for every 0 < β < α < 1.

Proof: Let us define Wv
(k) (α) identically distributed

(not independent) variables as the following:

Let us now choose a specific probability vector (α→i ) as
follows:

We then have

Thus Wv(β), as a weighted sum of Wv
(k) (α), is less

risky than Wv(α). ∴
Now tying this to Equation (A3) and to Statement

(1) of the Rothschild and Stiglitz (1970) theorem, if
φ(·) = 1/pv(·) is convex (and so –1/pv(·) is concave),
then 

And the bee will display ordered risk-averse behavior:
The higher the learning rate, the lower is the fre-
quency of visits fv to the (v) flowers. Convexity of
1/pv(·) is a mild assumption as for every concave
increasing pv, 1/pv(·) is strictly convex, so convexity
will also be preserved under minor departures from
concavity of pv.

According to Statement (3) of the Rothschild and
Stiglitz (1970) theorem, if Y is obtained from X by
further fair gambling, then X is less risky than Y. Thus
when both flower types yield the same mean reward,
Wv is riskier than Wc. From this follows that even with
low learning rates, since pv is symmetric with respect
to Wv and Wc [i.e., pv(Wc) = 1/2], when both flower
types reward with the same mean, the frequency fv is
always less than 1/pv(Wc) = 1/2 , and the bee is always
risk averse.
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W(1)
v (α) = αv1 + α(1 − α)v2

+ α(1 − α)2v3 + · · ·
W(2)

v (α) = αv2 + α(1 − α)v3

+ α(1 − α)2v4 + · · ·
...

W(k)
v (α) = αvk + α(1 − α)vk+1

+ α(1 − α)2vk+2 + · · · (A7)

α1 = β

α
; αn = α1(α − β)(1 − β)n−2 (n ≥ 2) (A8)

th h

∞∑
k=1

αkW
(k)
v (α) = β

α
· α · [v1 + (1 − α)v2

+ (1 − α)2v3 + · · ·
+ (α − β)v2 + (α − β)(1 − α)v3

+ (α − β)(1 − α)2v4 + · · ·
+ (α − β)(1 − β)v3

+ (α − β)(1 − β)(1 − α)v4

+ (α − β)(1 − β)(1 − α)2v5 + · · ·]
= β[v1 + (1 − β)v2

+ (1 − β)2v3 + · · ·] = Wv(β) (A9)

E

(
− 1

pv(Wv(β))

)
≥ E

(
− 1

pv(Wv(α))

)
(A10)

⇒ fv(α) = 1

E
(

1
pv(Wv(α))

)

≤ 1

E
(

1
pv(Wv(β))

) = fv(β) (A11)
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