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In certain well-described scenarios, human decision-making 
exhibits systematic deviations from rational behaviour. For 
instance, exactly how a problem is described can determine 

whether a particular option is more or less likely to be chosen, even 
when equivalent information is provided by the different descrip-
tions (for example, the framing effect1). The discovery and charac-
terization of such biases has had substantial impact on the fields of 
psychology and behavioural economics2. However, the mechanisms 
underlying biased decision-making remain widely debated.

The dominant theory posits that biased decisions arise from a fast 
and effortless intuitive process, which can be corrected via slower, 
effortful deliberation2,3. However, a separate line of work proposes 
essentially the opposite—that biases arise from a gradual process 
of evidence integration4–11. While these two theories are not neces-
sarily mutually exclusive, each theory provides a different account 
for why some people may be more biased than others. Specifically, 
the former theory suggests that biased decision makers employ 
an effortless process, whereas the latter theory suggests that they 
employ more extensive integration (see Supplementary Discussion 
and Supplementary Fig. 1 for an example of a computational model 
illustrating the latter mechanism).

Critically, these two explanatory factors (that is, low effort and 
extensive integration) are known to be associated with opposite 
changes in pupil diameter. It is well established that lower effort 
is accompanied by lower pupillary responses12. In contrast, recent 
studies have shown that people with higher pupillary responses inte-
grate more extensively different aspects of available information13–15. 
This latter finding is among a set of neural and behavioural results 
explained by a hypothesized relationship between high pupillary 
responses, lower levels of sustained locus coeruleus–norepinephrine 

function and low neural gain13,16–26. In previous theoretical work, we 
simulated low levels of gain (meaning that incoming neural signals 
have a weaker impact on the postsynaptic neuron) and showed that 
the result of this parameterization is a more prolonged integration 
of information for decision-making, which allows a broader set of 
sources of information to influence the decision, including sources 
that are less salient or of secondary importance14. Such inclusive 
integration may be necessary to allow weak biasing influences, 
which are typically marginal or even irrelevant to the problem at 
hand, to exert their effect.

Thus, analysing decision makers’ pupil diameter could tell us 
which mechanism—an automatic, effortless process or extensive 
integration—is likely to be responsible for generating biased deci-
sions. Furthermore, understanding the relationship between indi-
vidual differences in susceptibility to decision biases and pupil 
dynamics can provide a simple, non-invasive method for measur-
ing an individual’s tendency to be biased by the way a problem  
is described.

Here, we test human participants on six well-established 
decision-making tasks from the heuristics and biases literature 
while measuring their pupil dilation responses during performance 
of the tasks. If neither of the theories outlined above is correct (or if 
biases on different tasks are generated by different mechanisms), we 
should not see any overall relationship between pupil response and 
biases. However, if one of these theories consistently explains indi-
vidual differences in biased decision-making, pupil response mea-
surements should distinguish between participants who are more 
susceptible to biased decision-making and those who are relatively 
immune to these manipulations. A negative relationship between 
pupil response and biases would support the long-standing belief 
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that biases are generated by an effortless automatic decision process, 
whereas a positive relationship would indicate that biases are pro-
duced by gradual integration of evidence. Of equal importance, the 
latter result would suggest a potential role for low levels of neural 
gain in facilitating the manifestation of decision biases. The only 

results of this experiment that would be less than illuminating are 
a mix of relationships between pupillometry and susceptibility to 
biases across tasks. To validate our pupillometric measurements 
and to measure an additional complementary index of neural gain, 
we included 1 min of a classic oddball task between every two test 
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Fig. 1 | Bias effects in six decision-making tasks as a function of pupil response. a, Anchoring task: deviation of participants’ estimates towards 
the arbitrary anchors they were asked to consider. Estimates were normalized to the range 0 to 1 (n = 112 participants). b, Persistence-of-belief task: 
preference of the initially favoured urn during the last 60 balls (which were consistent with the other urn). Preferences were indicated on a scale  
between −1 and 1. An ideal observer would be indifferent on average (n = 110 participants). c, Attribute-framing task: difference in evaluation of items 
framed positively versus negatively. Items were rated on a scale of 0 to 1. Positive values indicate higher evaluations for items framed positively  
(n = 123 participants). d, Risky choice-framing task: increase in risk aversion when outcomes were described in terms of gains as opposed to losses. 
Preferences were indicated on a scale of −1 to 1 (n = 113 participants). e, Task-framing task: preference to both accept and reject the enriched option  
more than the impoverished option. Preferences were indicated on a scale of −1 to 1 (n = 110 participants). f, Sample size neglect task: measured as  
the overweighting of the ratio between heads and tails relative to the weight given to the optimal inferences (see Methods) (n = 120 participants). 
Each data point represents a participant. Data from 1–9 participants had to be excluded from each task based on the exclusion criteria described in 
the Methods. The dotted lines divide participants into terciles based on their mean pupillary response to task stimuli. Participants’ pupillary responses 
in different tasks were positively correlated (mean Spearman’s r = 0.48; range = 0.19 to 0.65). The yellow lines show a robust linear trend, with 95% 
confidence intervals shown in grey.
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tasks. The reliable dilation of the pupil in response to oddballs19,20 
served as a positive control. Furthermore, response times on such  
perceptual discrimination tasks can be expected to reflect neural 
gain, as indicated by computational modelling and experimental 
evidence14. Thus, a neural gain account of decision biases would be 
further supported by the association of biased decisions with slower 
responses to oddballs.

results
Pre-registered analyses. Participants demonstrated the expected 
decision biases and pupillary responses. Between 110 and 123 
participants completed each decision task (see power analy-
sis in Supplementary Fig. 2). First, we examined whether our 
decision-making tasks were successful in eliciting the expected 
biases. Participants’ behaviour was indeed characterized by sys-
tematic biases that were consistent with those observed in previous 
studies (Fig. 1). Thus, all three participant terciles (divided based 
on mean pupillary response) showed a significant average bias 
effect across the six decision tasks (low: t(41) = 9.157; P < 0.001; 
mean (M) = 0.5714; Cohen’s d = 1.413; 95% confidence inter-
val (CI) = 0.9791 to 1.8379; medium: t(41) = 11.5237; P < 0.001; 
M = 0.8581; Cohen’s d = 1.7781; 95% CI = 1.2853 to 2.2622; high: 
t(41) = 10.812; P < 0.001; M = 0.8393; Cohen’s d = 1.6683; 95% 
CI = 1.1938 to 2.1340; all one-tailed t-tests). Furthermore, a bias 
effect robustly manifested in all of the individual tasks (Table 1).

To assess the validity of our pupillometry measurements, 
we next tested for the anticipated oddball effect on pupil dila-
tion. Examination of the timecourses of pupillary response 
confirmed that our pre-specified time windows were appro-
priate for capturing responses on decision and oddball trials 
(Supplementary Fig. 3). As expected, we found that responses 
to oddball tones (M = 0.0782) were significantly higher than 
responses to non-oddball tones (M = 0.0362) (t(122) = 18.809; 
P < 0.001; M = 0.042; Cohen’s d = 1.6959; 95% CI = 1.4180 to 
1.9709; one-tailed t-test). In addition, we found the expected 
anti-correlation between pupillary responses and baseline pupil 
diameter (t(122) = −21.0411; P < 0.001; M = −0.4734; Cohen’s 
d = −1.8972; 95% CI = −2.1920 to −1.5995; one-tailed t-test), con-
sistent with our previous work13,14.

Comparison of participant pupil diameter terciles did not support 
either hypothesis. Next, we compared participants with low and high 

pupillary responses in terms of how biased they were across the six 
decision tasks. Although a monotonic increase manifested across 
terciles, the difference between the high and low terciles was not 
significant (overall permutation test: P = 0.143; ∆μhigh−low = 0.1151; 
Table 1 and Fig. 2a).

As alternative measures of participants’ physiological state, we 
also examined pupillary responses and reaction times in the odd-
ball tasks that preceded and followed each decision-making task. 
Participants’ pupillary responses to oddball stimuli correlated with 
their pupillary responses in the decision-making tasks (r = 0.43; 
P < 0.001). This correlation provides important confirmation that 
pupillary responses in the decision tasks indeed reflected individual 
differences that manifested similarly across two very different types 
of task. However, dividing participants into terciles based on pupil-
lary responses to oddballs yielded similar non-significant results 
with regards to decision biases (overall permutation test: P = 0.1247; 
∆μhigh−low = 0.1145; Table 1 and Fig. 2b).

Reaction times to oddball stimuli did not consistently cor-
relate with pupillary responses in the oddball task (r = −0.18; 
P = 0.0522), nor did they correlate with pupillary responses in the 
decision-making tasks (r = −0.01; P = 0.9457), and dividing par-
ticipants into terciles based on these reaction times also resulted 
in non-significant results (overall permutation test: P = 0.8306; 
∆μhigh−low = 0.0175; Table 1 and Fig. 2c).

Planned trial-level analysis was found to be infeasible. Following 
data collection, we discovered that the planned modelling analy-
sis could not be applied to the full dataset, since the large number 
of free parameters (for example, an intercept for each participant) 
created too many possible combinations of parameter values. 
Consequently, the results obtained using importance sampling did 
not replicate on repeated execution of the analysis, even when the 
number of samples was increased to the maximum number sup-
ported by our computing resources (107). Therefore, we imple-
mented a trial-by-trial model using two alternative complementary 
approaches: hierarchical Bayesian inference (to determine the 
posterior distribution of model parameters) and frequentist linear 
mixed-effects model fitting and comparison. Both of these alter-
native approaches mitigate the difficulties that arise due to large 
numbers of free parameters by sampling parameters from adap-
tive group-level prior distributions that restrict individual-level  
parameter flexibility.

Table 1 | Biases and their relationship with pupillary and reaction time measures

Bias Average bias task pupil  
response effect

oddball pupil 
response effect

oddball reaction  
time effect

t P M Cohen’s d 95% Ci P ∆μhigh−low P ∆μhigh−low P ∆μhigh−low

Anchoring t(111) = 10.9626 <0.001* 1.0359 1.0359 0.8045 to 
1.2641

0.6152 0.0930 0.4838 0.1255 0.9712 0.0068

Persistence of 
belief

t(109) = 1.8716 0.0320* 0.1784 0.1784 −0.0103 
to 0.3664

0.6425 0.0852 0.9151 −0.0171 0.8893 −0.0268

Attribute 
framing

t(122) = 4.9626 <0.001* 0.4475 0.4475 0.2612 to 
0.6320

0.1810 0.2594 0.1009 0.3044 0.1203 −0.3028

Risky choice 
framing

t(112) = 3.9670 <0.001* 0.3732 0.3732 0.1817 to 
0.5631

0.0992 0.3075 0.4370 0.1358 0.1507 0.2770

Task framing t(109) = 5.0315 <0.001* 0.4797 0.4797 0.2813 to 
0.6761

0.7174 0.0664 0.8686 0.0307 0.5240 0.1200

Sample size 
neglect

t(119) = 21.4047 <0.001* 1.9540 1.9540 1.6467 to 
2.2582

0.5352 −0.1208 0.5289 0.1079 0.8668 0.0307

Average biases were tested for significance using two-tailed t-tests. Relationships with pupillary or reaction time measures were quantified by dividing participants into terciles based on either pupillary 
response or reaction time and then comparing the average bias in the low and high terciles. Differences were tested using permutation tests (see Methods for further details). *P < 0.05.
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Exploratory analyses. Trial-level analysis showed that biases were 
associated with stronger pupillary responses. Examining participants’ 
biases on a trial-by-trial basis using hierarchical Bayesian modelling 
revealed a significant main effect of pupillary response on the extent 
of the bias (Table 2). This effect was significant for participants’ 
mean pupillary response (β3 in the Table 2), as well as for the differ-
ences in pupillary responses across tasks for each participant (β2).  
A preponderance of evidence (probability of direction (Pd) = 0.9285) 
also supported a trial-level effect within tasks (β1). Examining each 
task individually showed significant pupillary effects on each of the 
three framing biases (Fig. 3a). Similar pupillary effects on anchor-
ing and persistence-of-belief (Supplementary Fig. 4) biases also 
received some support (Pd > 0.89). Furthermore, when comparing 
between pairs of tasks, we found significant differences in pupillary 
effects in only two out of 15 possible comparisons (Supplementary 
Table 1). These results suggest a reasonably consistent general rela-
tionship between pupillary response and bias.

Model comparison between different linear mixed-effects models 
also revealed a significant relationship between behavioural biases 
and pupillary responses, specifically with regards to participant 

mean pupillary response (β3). Thus, the model that best explained 
trial-by-trial biases included a fixed effect for this predictor as well as 
a random slope that varied across questions (Bayesian information 
criterion (BIC) = 11,673.88). This model outperformed a similar 
model without pupillary predictors (BIC = 11,691.10) by an esti-
mated log[Bayes factor] of 8.61. The pupillary coefficient indicated 
a positive relationship between pupillary response and behavioural 
bias (β3 = 0.0649; s.e. = 0.0299; t(62.4) = 2.171; P = 0.0337). Finally, 
a similar analysis also showed a positive relationship between bias 
in the decision-making tasks and pupillary response to the inter-
leaved oddball stimuli (β3 = 0.0279; s.e. = 0.0299; t(67.2) = 2.084; 
P = 0.0410).

Given the discrepancy between the tercile and modelling analy-
ses, we inquired whether this difference reflected the former analy-
sis’ reduced sensitivity due to the binning of participants and/or the 
latter analysis’ increased sensitivity due to standardization of biases 
by question. To test this, we first averaged the bias effects that were 
quantified and standardized per question for each participant ter-
cile. We found a significant difference between participants with low 
and high pupillary response (overall permutation test: P = 0.0040; 
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Fig. 2 | overall susceptibility to biases (average normalized bias effect across all tasks). a, Biases as a function of pupil response during the tasks (n = 126 
participants). b, Biases as a function of pupil response in a standardized oddball task (n = 112 participants). c, Biases as a function of reaction time in a 
standardized oddball task (n = 132 participants). The dotted lines divide participants into terciles based on mean pupillary response (a and b) or reaction 
time (c). The yellow lines show robust linear trends, with 95% confidence intervals shown in grey.

Table 2 | Bayesian inference concerning the relationship between pupillary responses and decision biases

Bias Participant-level pupillary effect task-level pupillary effect Question-level pupillary effect total pupillary effect

β3 95% Ci Pd β2 95% Ci Pd β1 95% Ci Pd Σβ 95% Ci Pd

Anchoring 0.0246 −0.0251 to 
0.0710

0.8307 0.0639* 0.0082 to 
0.1198

0.9882 −0.0138 −0.0671 to 
0.0371

0.2896 0.0681 −0.0138 
to 0.1567

0.9519

Persistence 
of belief

0.0073 −0.0265 to 
0.0451

0.7101 0.0316* 0.0003 to 
0.0597

0.9765 −0.0023 −0.0289 to 
0.0223

0.4294 0.0386 −0.0222 
to 0.0965

0.8983

Attribute 
framing

0.0705* 0.0124 to 
0.1277

0.9924 0.0126 −0.0493 
to 0.0764

0.6514 0.0289 −0.0213 to 
0.0832

0.8731 0.1123* 0.0192 to 
0.2120

0.9886

Risky choice 
framing

0.1128* 0.0093 to 
0.2358

0.9799 0.0434 −0.0534 
to 0.1372

0.7843 0.02617 −0.1082 to 
0.1565

0.6638 0.1855* 0.0140 to 
0.3614

0.9769

Task framing 0.0370 −0.0319 to 
0.1226

0.8618 0.0271 −0.0438 
to 0.1090

0.8082 0.0726* 0.0011 to 
0.1601

0.9759 0.1561* 0.0295 to 
0.2842

0.9897

Sample size 
neglect

−0.0298 −0.0826 
to 0.0247

0.1486 0.0032 −0.0481 
to 0.0546

0.5555 0.0213 −0.0199 to 
0.0648

0.8345 −0.0012 −0.0797 
to 0.0751

0.4700

Main effect 
across tasks

0.0365* 0.0065 to 
0.0730

0.9890 0.0323* 0.0026 to 
0.0578

0.9840 0.0246 −0.0075 to 
0.0547

0.9285 0.0925* 0.0418 to 
0.1420

0.9999

The participant-level effect reflects variance among participants in mean pupillary response. The task-level effect reflects within-participant variance in mean pupillary response for different tasks.  
The question-level effect reflects within-participant, within-task variance in pupillary response for different questions. The total pupillary effect (Σβ) reflects the cumulative impact of all sources of variance on 
pupil response. See ‘Hierarchical Bayesian modelling’ in the Methods for details. In this table, CI denotes credible interval. Coeffecients were estimated by the mode of their posterior distribution. *Pd > 0.975.
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∆μhigh−low = 0.2452; Fig. 3b). At the same time, performing the 
trial-level mixed modelling with biases standardized by task (as in 
the original pre-registered analysis) also yielded a significant posi-
tive relationship between bias and pupillary response (β3 = 0.0556; 
s.e. = 0.0218; t(61.9) = 2.551; P = 0.0132).

Discussion
We replicated a set of systematic decision-making biases and exam-
ined their relationship with pupillary responses in order to differ-
entiate between two competing hypotheses for the source of the 
biases: if biases are due to fast, effortless (and therefore sloppy)  
processing of information, they should correlate with smaller pupil-
lary responses, as pupil diameter is an established index of process-
ing effort12. Alternatively, if biases result from extensive integration 
of evidence that brings information that should not affect a decision 
to bear on that decision4–11, they should correlate with larger pupil-
lary responses, indicating lower neural gain and more expansive 
information processing13–20.

Our main planned analyses could not adjudicate between the 
two hypotheses conclusively (Table 3). However, trial-level quan-
tification of bias effects showed that high pupillary responses 
were associated with stronger biases. Although this analysis was 

also planned, the details of its implementation had to be modi-
fied from the original plan, due to infeasibility of the pre-specified 
approach. We therefore consider it prudent to regard these results 
as exploratory. Thus, we conclude that the results provide prelimi-
nary support for the association of high pupillary responses with 
susceptibility to decision biases and more decisively contradict the 
opposite possibility (namely, that biases are associated with lower 
pupillary responses).

The idea that decision biases reflect the operation of an effortless 
automatic system, and can be over-ridden with effortful delibera-
tion, pervades the scientific and popular literature21. However, this 
notion is contradicted by a body of literature showing that mon-
etary incentives do not eliminate biases22. Indeed, in the present 
study, lower pupillary responses, which suggest lower effort, were 
not significantly associated with more biased decisions.

The preliminary evidence that we do find in favour of the oppo-
site relationship joins together two disparate lines of research. The 
first suggests that higher pupillary responses are associated with 
low baseline pupil diameter, and thus with low tonic norepineph-
rine function18, which slows down and broadens the integration of 
information that gives rise to decisions13–15. The second suggests 
that gradual integration of information is essential for biases to 
emerge4,5. Together, these two lines of research predict that low nor-
epinephric tone, which is indicated by high pupillary responses, will 
be associated with higher susceptibility to decision biases.

While our results fall short of providing conclusive support 
for this hypothesis, they present several pieces of evidence in its 
favour. The first, just discussed, is the positive association between 
pupillary responses and biases in the trial-level analyses. Second, 
we found few differences between decision-making tasks in the 
relationship between pupillary responses and biases, suggesting 
that this relationship is not specific to only one type of task. Third, 
the index of pupillary response generalized to some degree across 
decision-making and oddball tasks, as would be expected from an 
index of individual differences in general neuromodulatory state.

Our preliminary results might also seem to contradict a body 
of work originating in the field of perceptual decision-making that 
observed an association between decision biases and low pupil-
lary responses23–26. However, this apparent discrepancy can be 
resolved by considering that (different from our tasks) bias, as it 
is defined in perceptual decision-making, is not necessarily irratio-
nal. For instance, a participant is considered to exhibit a percep-
tual decision-making bias if they are more likely to say that a visual 
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Fig. 3 | trial-level analysis of biases. a, Posterior probability of pupillary effects (β1 + β2 + β3) on biases exhibited in each decision-making task, as inferred 
using hierarchical Bayesian modelling. Each density was constructed from 10,000 Monte Carlo Markov chain samples. The average effect is significant, 
although the effects for each of the tasks in isolation are significant only for the three framing tasks. b, Bias effects, standardized for each question and 
then averaged over questions, as a function of pupillary response in the decision-making tasks. Biases were quantified separately for each question and 
z scored across participants (n = 126 participants). The dotted lines divide participants into terciles based on pupillary response. The yellow line shows a 
robust linear trend, with the 95% confidence interval shown in grey.

Table 3 | Criteria for weak and strong support for effort 
(hypothesis 1) and integration (hypothesis 2) accounts of 
decision-making biases

Conclusion Criteria

Support for 
hypothesis 1

μhigh < μlow and not (μmedium > μlow or μmedium < μhigh)

Support for 
hypothesis 2

μhigh > μlow and not (μmedium < μlow or μmedium > μhigh)

Weak level of 
support

Holds for biases averaged across the six tasks

Strong level of 
support

Holds for biases averaged across the six tasks, holds 
separately for at least two individual tasks and does 
not support hypothesis 1 on one task and hypothesis 
2 on another

μhigh, μmedium and μlow indicate mean bias effects for the three terciles of participants, divided 
according to their mean pupillary response (high, medium and low, respectively).
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stimulus was not presented when it was than they are to say that 
a stimulus was presented when it wasn’t, even if they have valid 
reason to prefer one type of mistake over the other (for example, 
the participant might not want to seem like someone who is seeing 
things). The possible rationality of this type of bias is underscored 
by a recent study showing that the bias is sensibly adjusted to the 
overall probability of a stimulus being presented26 (that is, partici-
pants become more likely to err by saying a stimulus was presented if 
the proportion of trials where stimuli are presented is increased). In 
contrast, the present study examined biases that have been regarded 
as classic examples of irrational decision-making.

From a mechanistic perspective, we propose that irrational 
biases in particular often arise from a gradual process of integration 
that allows weak irrelevant influences to impact the decision. This 
proposal is based on combining the present results with previous 
findings that high pupillary responses are associated with broader, 
more gradual integration of evidence13,14. Moreover, computational 
modelling and consistent functional magnetic resonance imaging 
findings13 further suggest that this link between high pupil response 
and broad integration may be mediated by low tonic norepineph-
rine function. We note though that high pupil responses could also 
simply reflect a high phasic norepinephrine response16. It is likely 
that these two sources of variance (the baseline diameter and the 
phasic norepinephrine response) have different relative contribu-
tions to the pupillary response in different experimental models 
and thus inferences about underlying neuromodulators need to 
be made with caution. Thus, further work is needed to determine 
whether tonic low norepinephrine gives rise to susceptibility to 
decision-making biases.

In summary, our results provide preliminary evidence in sup-
port of an association between high pupillary responses and 
decision-making biases. This finding disagrees with the explanation 
of susceptibility to biases as reflecting decreased effort or automatic 
processes, and is instead consistent with the hypothesis that biases 
arise from a gradual process of information integration that occurs 
under low levels of neural gain.

methods
Participants. A target sample size of 120 participants was determined via a 
bootstrapping-based power analysis of pilot data (see ‘Power analysis’ below). To 
achieve this sample size, we recruited 159 participants from the greater Princeton 
area (mean age = 19.9 years; age range = 18–33 years; 105 female; 54 male). 
Inclusion criteria were an age of 18–35 years and compatibility with pupillometry, 
as evidenced by successful calibration of the eye tracker. Participants gave written 
informed consent before taking part in the study, which was approved by the 
Princeton University Institutional Review Board. Participants received either 
course credit (91/159) or compensation of $12 per hour (68/159) for participation. 
Data from 19 participants were not analysed due to unsuccessful calibration of 
the eye tracker. Examination of the eye tracking data according to our a priori 
exclusion criteria (see ‘Eye tracking’ below) revealed that eight participants had no 
valid data for any of the tasks and five additional participants had no valid data for 
the oddball task. In addition, five participants were removed due to a programming 
error that prevented the tasks from running correctly, and one participant was 
removed due to having previously performed the experiment. Therefore, in total, 
we tested 121 participants with valid task and oddball data.

Power analysis. To determine the target sample size, we used data from 44 pilot 
participants to compute the expected probability of meeting the weak and strong 
criteria in support of the study’s hypotheses (detailed under ‘Statistical analysis’) 
for different numbers of participants. Expected probabilities were computed by 
performing the analysis on 1,000 datasets, each of which was constructed by 
sampling participants with replacement from the pilot data. The power analysis 
showed that a sample size of 120 participants provided a 95% probability of finding 
strong support for the study’s hypothesis, given the effect size found in the pilot 
data (Supplementary Fig. 2). While smaller effect sizes might be of theoretical 
importance, an effect size commensurate with that found in the pilot data would 
be necessary for pupillary measurement to reliably predict susceptibility to 
decision-making biases.

Stimuli. Stimuli were generated using the Processing programming environment27. 
To minimize luminance-related changes in pupil diameter, we first identified 

colours that were isoluminant with the background by having each participant 
perform the flicker fusion procedure28. The colours of the experimental stimuli 
were then automatically adjusted accordingly, to achieve subjective isoluminance in 
the conditions of the testing room, for each participant. Stimuli were presented  
on a computer screen using MATLAB software (MathWorks) and the 
Psychophysics Toolbox29.

Experimental design. Each participant performed six experimental tasks, each 
aimed at inducing a different bias. To facilitate comparisons between participants, 
all participants performed tasks in the order in which the tasks are described 
below. Each experimental session lasted approximately 1 h (this varied due to 
different calibration durations and the self-paced nature of the tasks). Unless 
otherwise noted, questions appeared on the screen until the participant entered 
their answer using a keyboard (that is, there were no time restrictions for providing 
an answer). To allow sufficient time for pupillary responses to be resolved, 
questions were separated by random inter-trial intervals (7–9 s long; uniformly 
distributed), during which only a fixation cross appeared on the screen.

Anchoring task. For the anchoring task30, participants answered two questions 
about each of seven quantities (for example, the height of the Eiffel tower). They 
were first asked to indicate whether the quantity is greater (‘1’ keyboard key) or 
smaller (‘2’ keyboard key) than an anchor value. Once the participant responded, 
the first question disappeared from the screen and the participant was immediately 
asked to estimate the quantity by typing it using the keyboard and then pressing 
ENTER. Each quantity was coupled with a low anchor for half of the participants 
and with a high anchor for the other half. Each participant was presented with 
a low anchor for half (three or four) of the quantities and with a high anchor 
for the other half. Quantities and calibrated anchor values were taken from a 
previous study31, including: length of the Mississippi River; population of Chicago; 
number of babies born per day in the United States; height of Mount Everest; 
pounds of meat eaten by an American per day; year the telephone was invented; 
and maximum speed of a house cat. Participants’ estimates were normalized to 
a common scale (0 = lowest estimate; 1 = highest estimate) by subtracting the 
lowest estimate and then dividing by the highest resulting estimate. The group 
mean estimate, averaged over both types of anchors, provides a measure of what 
an average person who is not affected by the anchors is likely to answer. The 
anchoring effect was therefore quantified by the deviation of an estimate in the 
direction of the anchor relative to the mean estimate provided by the whole study 
sample. Three estimates whose distance from all other participants’ mean estimate 
was more than ten times the range of the other participants’ estimates were 
excluded as outliers.

Persistence-of-belief task. For the persistence-of-belief task32, participants were 
presented with two urns, each filled with ten coloured balls (Supplementary 
Fig. 4a). One urn contained three red balls, two green balls, two blue balls, two 
brown balls and one purple ball, while the other urn contained two red balls, 
three green balls, one blue ball, two brown balls and two purple balls. Participants 
were then shown a sequence of 90 balls, which they were told were sampled with 
replacement from one of the urns. Each sampled ball fell from the top of the 
screen, horizontally centred, until it settled near the bottom of the screen and then 
disappeared. Balls followed one another in sequence without a break (3.3 s per ball) 
while the two urns were presented on the left and right sides of the screen. Every 
five samples (balls), participants were asked to indicate using an appropriately 
labelled horizontal sliding bar which urn they thought the sequence was sampled 
from. Participants were instructed to indicate their degree of certainty by means 
of the precise position of the bar, where a central position corresponded to total 
uncertainty. Each question was followed by an inter-trial interval. The sequence 
of balls was set up so that the first 30 balls favoured one of the urns as their source 
with a probability of 0.95 and the next 60 balls favoured the other urn to a similar 
degree (per 30 balls). Therefore, it was optimal to favour one urn after 30 balls, be 
indifferent after 60 balls and favour the second urn after 90 balls (Supplementary 
Fig. 4b). Accordingly, an optimal observer would be indifferent on average during 
the last 60 balls. However, the biasing impact of an initially formed belief on the 
interpretation of later evidence, akin to a framing effect, is expected to slow down 
belief reversal. Thus, a persistence-of-belief effect was therefore quantified as 
the degree to which each participant’s average response during the last 60 balls 
favoured the initially favoured urn. Similarly, for trial-level analyses, the negative of 
a persistence-of-belief effect was quantified as the degree to which the participant 
updated their preference towards the second-favoured urn, minus the participant’s 
average update in the opposite direction during the first 30 trials. (Note that 
the stage 1 protocol did not specify precisely how we would quantify this bias 
on a trial-by-trial basis.) The initially favoured urn was counterbalanced across 
participants. Data from ten participants who did not favour the correct urn during 
the first 30 balls were excluded from the analysis.

Attribute-framing task. For the attribute-framing task33, participants were asked 
to rate ground beef products, gambles and students’ performance, whose attributes 
were framed either positively or negatively. In the ground beef task, participants 
were asked to imagine they were having a friend over for dinner and they were 
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about to make their favourite lasagne dish with ground beef. They were then asked 
to rate how satisfied they would be purchasing each of four ground beef products, 
described in terms of price per pound ($2.7 or $3.3) and either percentage lean 
(80 or 90%; positive frame) or percentage fat (20 or 10%; negative frame). In the 
gambles task, participants were asked to imagine that they had $10 and could 
either keep the $10 or pay the $10 to take a gamble. They were then asked to rate 
how likely they were to take each of three gambles, described in terms of amount 
to be won ($50, $100 or $200) and either probability of wining (20, 10 or 5%; 
positive frame) or probability of losing (80, 90 or 95%; negative frame). In the 
student performance task, participants were asked to evaluate each of two students 
on the basis of midterm exam and final exam performance, described in terms of 
either percentage correct (50 or 70%; positive frame) or percentage incorrect (50 
or 30%; negative frame). The attributes of an item remained on the screen until the 
participant finished rating the item by adjusting an appropriately labelled vertical 
sliding bar and then pressing ENTER. Each item was framed positively for half of 
the participants and negatively for the other half. For a given participant, all items 
of a particular type were similarly framed (that is, either positively or negatively) 
so as to minimize awareness of the framing manipulation, but the framing was 
varied within participants across item types. As in the anchoring task, the framing 
effect was quantified for each item by the deviation of a participant’s rating from 
the overall mean rating, in the direction of the frame (that is, upwards for positive 
frames and downwards for negative frames).

Risky choice-framing task. For the risky choice-framing task34, participants 
faced two different scenarios (a medical scenario and a fire scenario) and were 
asked to indicate using a sliding bar which of two available actions they would 
choose in each scenario. One action had a certain outcome and the other had an 
uncertain outcome, both of which were framed in terms of either gains or losses 
(counterbalanced across participants). The scenarios were described in full, as 
was done previously34. In the medical scenario, which concerned the treatment 
of a deadly disease on an island inhabited with 600 inhabitants, participants were 
asked to choose between the gain-framed outcomes (‘300 people will be saved’ 
and ‘a 50% chance that 600 people will be saved and a 50% chance that none of the 
people will be saved’) or between loss-framed outcomes (‘300 people will die’ and 
‘a 50% chance that 600 people will die and a 50% chance that none of the people 
will die’). In the fire scenario, which concerned the treatment of fires threatening 
9,000 acres of forest, participants were asked to choose between gain-framed 
outcomes (‘3,000 acres of forest will be saved’ and ‘a 60% chance that 5,000 acres 
will be saved and a 40% chance that no forest under threat will be saved’) or 
between loss-framed outcomes (‘6,000 acres of forest will be lost’ and ‘a 60% chance 
that 4,000 acres will be lost and a 40% chance that 9,000 acres will be lost’). For 
each question, the attributes of the first option (as described above) appeared on 
the left side of the screen and the attributes of the second option appeared on the 
right side of the screen. These details remained on the screen until the participant 
indicated their preference by adjusting an appropriately labelled horizontal sliding 
bar and then pressing ENTER. As for the anchoring and attribute-framing tasks, 
the framing effect was quantified as the deviation of a participant’s preference from 
the overall mean rating, in the direction of the frame (that is, towards the certain 
outcome in the gain frame and towards the uncertain option in the loss frame, 
in line with people’s well-documented risk aversion in the gain domain and risk 
seeking in the loss domain35).

Task-framing task. For the task-framing task36, participants faced five different 
problems concerning various subjects, such as child custody, vacation choice, 
ice-cream choice and gambling. Each problem involved one option with more 
positive and negative attributes (the enriched option) and one option with fewer 
positive and negative attributes (the impoverished option). In each problem, half 
of the participants were asked to choose one of the two options and the other 
half were asked to reject one of the two options. For example, in one problem, 
participants were asked to imagine that they served on the jury of an only-child 
sole-custody case following a relatively messy divorce and they had to make a 
decision based entirely on the following few observations: average income, average 
health, average working hours, reasonable rapport with the child and relatively 
stable social life (parent A; no particularly positive or negative attributes); or 
above-average income, very close relationship with the child, extremely active 
social life, lots of work-related travel and minor health problems (parent B; three 
positive attributes and two negative attributes). Half of the participants were 
asked to which parent they would award sole custody of the child, while the other 
half were asked which parent they would deny sole custody of the child. A full 
description of the other problems can be found elsewhere36 (problems 1, 2, 4, 5 
and 6). Participants were asked to report their preferences in the same way as in 
the risky choice-framing task above (that is, by adjusting a horizontal slider bar 
with the two options displayed on each side of the bar). The task frame (award 
versus reject) was varied within participants across questions. The task-framing 
bias manifests in people’s tendency to choose (either award or reject) the enriched 
option as opposed to the option they have less conclusive information about. 
Because the enriched option has more positive and more negative attributes, the 
bias manifests similarly regardless of whether participants are asked to express 
a preference for one option (that is, award frame) or reject one option (that is, 

reject frame). Thus, the framing effect was quantified by the degree to which each 
participant chose the enriched option (that is, parent B) more frequently than the 
impoverished option (that is, parent A). In accordance with the participant-level 
analysis, trial-level framing effects were quantified by the degree to which the 
participant preferred the enriched option compared with the group average under 
the same frame. (Note that the stage 1 protocol did not specify precisely how we 
would quantify this bias on a trial-by-trial basis).

Sample size neglect task. For the sample size neglect task37, participants were 
asked to imagine that they were tossing a biased coin and recording how often the 
coin landed heads and how often the coin landed tails. They knew that the coin 
was bent and tended to land on one side three out of five times, but they did not 
know whether this bias was in favour of heads or in favour of tails. Participants 
were then presented with ten different sets of results (number of heads and number 
of tails), in which the heads always outnumbered the tails, and they were asked 
to indicate using a vertical sliding bar how certain they were, given each set, that 
the coin was biased in favour of heads. The top end of the bar was labelled with 
“completely certain that coin favours heads” and the bottom end was labelled with 
“completely uncertain that coin favours heads”. Each set of results remained on the 
screen until the participant finished adjusting the bar and pressed ENTER. The sets 
of results were similar to those used previously37.

As shown by Griffin and Tversky37, the probability that the coin is biased in 
favour of heads, according to Bayes’ rule, is:

P HjDð Þ ¼ e h�tð Þ log32; ð1Þ

where h is the number of heads and t is the number of tails. This expression is 
equivalent to:

P HjDð Þ ¼ en
h�tð Þ
n log32 ¼ en

h�tð Þ
ðhþtÞ log

3
2; ð2Þ

which depends on the sample size (that is, the number of outcomes, n) and 
the observed ratio of heads and tails h�t

hþt

� �

I

. Previous work has shown that 
people tend to overweigh the ratio component at the expense of the sample size 
component (sample size neglect37). Thus, to measure this bias for an individual 
participant, we regressed the participant’s estimates against the true probabilities 
(equation (1)) as well as against the ratio component e

h�t
hþt log
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2
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 and compared the 
two resulting regression coefficients (βtrue and βratio). All inputs to the regression 
analyses were z scored so as to produce normalized coefficients, such that perfect 
correlation between the participant’s ratings and the true probability would yield 
βtrue = 1 and βratio = 0, while complete reliance on the ratio between heads and tails 
would yield βtrue = 0 and βratio = 1. Thus, the sample size neglect was computed 
for each participant as 1 − βtrue + βratio. In accordance with the participant-level 
analysis, trial-level sample size neglect was quantified as the residual obtained 
by regressing the participant’s ratings against the true probabilities minus the 
residual obtained by regressing ratings against the ratio component. (Note that 
the stage 1 protocol did not specify precisely how we would quantify this bias on 
a trial-by-trial basis.)

Data from three participants for whom βtrue and βratio were lower than 0, or 
who reported higher certainty given three heads and two tails than given seven 
heads and two tails were excluded from the analysis. The former criterion indicates 
that the participant did not give reasonable answers, whereas the latter criterion 
suggests specifically that the participant mistakenly looked for a ratio that best 
matched three to two.

Oddball task. To assess reaction times and pupillary responses in a uniform 
manner throughout the experiment, and as a positive control to our other 
findings, we used a shortened version of an auditory oddball task, in which 
robust anti-correlations between pupil response and baseline pupil diameter have 
previously been demonstrated19,20. Participants were presented with a sequence 
of 60-ms sinusoidal tones of two possible frequencies: 1,000 Hz (which were 
designated as the target) and 500 Hz (which were designated as non-targets). 
Participants were told to respond with a keypress only when the target tone was 
sounded. Inter-tone intervals were drawn uniformly between 2.1 and 2.9 s. To allow 
the pupil diameter to return to baseline, the stimuli were ordered such that target 
tones were always spaced between at least three non-target tones on each side. 
Target tones made up 20% of the tones. The results of pupil diameter response to 
the oddball items were analysed to verify reliable pupillometry measurements. As 
in previous studies19, we excluded from the analysis trials in which a participant 
responded to a non-target tone (false positive; M = 2.2 out of 140 non-target tones 
per participant), did not respond to a target tone (miss; M = 1.3 misses out of 35 
targets per participant) or responded within 100 ms of target presentation (quick 
response; M = 0.6 out of 35 per participant).

Participants performed a total of seven oddball task blocks, such that oddball 
blocks alternated with the six decision-making tasks. Each block consisted of 
25 tones (five of them oddballs). Oddball reaction time and pupillary response 
were computed for each decision-making task based on the oddball blocks that 
immediately preceded and followed the task (that is, based on a total of 50 tones/
ten oddballs). These measures were used for complementary analyses identical to 
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the main analyses described below, but replacing the task pupillary responses with 
the oddball reaction times and pupillary responses.

Eye tracking. A desk-mounted SMI RED 120 Hz eye tracker (SensoMotoric 
Instruments) was used to measure participants’ left and right pupil diameters 
at a rate of 120 samples per second while they were performing the behavioural 
tasks with their head fixed on a chinrest. At the beginning of the experiment, a 
baseline measurement of pupil diameter at rest was taken for a period of 45 s. Pupil 
diameter data were analysed in MATLAB, as in previous work13,14. First, the data 
were processed to detect and remove blinks and other artefacts. For this purpose, 
artefactual diameter samples were identified as those lower than 66% or higher 
than 150% of the median non-zero sample, as well as those samples that differed 
from adjacent samples by more than 10%. Samples recorded between 33 ms before 
an artefact and 100 ms after it were also designated as artefactual. Following data 
collection, we noted that a small proportion of samples were dropped (that is, 
the gap between recorded samples was larger than expected), so we treated these 
dropped samples as artefacts as well. All artefactual samples were replaced by 
linear interpolation. For each task and each question, the baseline pupil diameter 
was computed as the average diameter over a period of 1 s before presentation of 
the question. Based on an examination of the pilot data, we determined that in the 
six decision-making tasks, the pupil dilation response would be computed as the 
peak diameter recorded during the period between 1 and 6 s following presentation 
of the question, minus the preceding baseline diameter. For the oddball task, 
pupil responses were shorter; thus, the peak diameter was assessed between 0.4 
and 2 s following stimulus onset. All pupil dilation responses were normalized 
by the pre-experiment baseline pupil diameter. Questions and oddball trials for 
which more than half of the pupil measurements were affected by artefacts were 
considered invalid and excluded from the analysis. Participants with fewer than 
two valid (that is, mostly artefact-free) questions in a given task were excluded 
from the analysis of that task (M = 6.5 participants per task).

Statistical analysis. For each task, we divided participants into terciles of low, 
medium and high mean pupil dilation. This allowed us to visualize the degree 
to which each group exhibited a significant bias on each task. Then, to test for 
an overall relationship between pupil response and biases across all tasks, we 
conducted a permutation test, generating a null distribution from 105 random 
permutations of the coupling between individual pupillary and behavioural 
datasets. To allow comparison across the different tasks, bias effects in individual 
tasks were normalized by their range in the null distribution, with 0 and 1 
signifying the lowest and highest mean group effect, respectively. We then 
compared the actual results with the null distribution to test for a significant 
difference between the high and low pupil response groups in mean normalized 
bias effect across all tasks. Before data collection, we pre-specified that a significant 
(two-tailed P < 0.05) difference between participants with high and low mean 
pupillary response in the average bias across all tasks, and no significant difference 
between either of these groups and those with a medium pupillary response 
contradicting a monotonic relationship between pupillary response and bias, would 
constitute weak support in favour of either the effort or the integration account of 
biased decision-making (depending on the direction of the effect). Strong support 
for either account would require the aforementioned criteria, as well as that no 
contradictory significant effect was discovered in one of the individual tasks in 
isolation, while data from at least two of the tasks showed a significant effect that 
aligned with the overall effect (Table 3).

All of the analyses described above, including the quantification of each 
individual’s biases and pupillary responses, as well as the comparisons at the  
group level, proceeded precisely as shown in the analysis code available at  
https://osf.io/sygz3/.

Trial-level modelling. We also used a modelling approach to test for different 
types of parametric relationship between pupil response and the normalized bias 
effects across the whole study sample. The primary purpose of this complementary 
analysis was to test whether the relationship between pupillary response and biases 
that was evident across participants also manifested within participants in the 
changes that occurred from trial to trial and from task to task. Since effect size was 
likely to vary by question, and since questions were administered to all participants 
in precisely the same order, trial-level effects were each normalized to a common 
scale by translation and scaling such that 0 corresponded to the average effect 
and 1 corresponded to the standard deviation of the effects. (Note that the stage 
1 protocol did not specify precisely how we would normalize trial-level effects as 
they could be averaged across questions and tasks.)

The full model computes the likelihood of a given bias effect for participant s 
on question q of task t using the following mixed-effects linear regression model:

P bias effectjs; t; qð Þ ¼ N αs þ αt;q þ β1Ps;t;q þ β2Ps;t þ β3Ps; σ
2
s þ σ2t;q

� �
; ð3Þ

where Ps,t,q is the z-scored pupil response of participant s on question q of task t, Ps,t 
is the average z-scored pupil response of participant s on task t, Ps is the average 
z-scored pupil response of participant s across all questions of all tasks, all βs are 
regression coefficients, αs and αt,q are participant-specific and question-specific 

intercepts, and σ2s
I

 and σ2t;q
I

 are participant-specific and question-specific variance 
terms. This model was to be compared with seven simpler models, each omitting 
one of the seven terms that comprised the full model. If one of the simpler models 
had won the model comparison, further simplifications of that model would have 
been tested in the same manner (that is, by omitting any of the remaining terms). 
To examine whether the relationship between pupil response and bias differed by 
task or question, we planned to compare each model with additional versions of the 
same model that included regression coefficients for each task or question. Model 
comparison was to be conducted in terms of how well different models predicted 
and fit the data. A log[Bayes factor] of ten or more in favour of a model that 
includes the question and/or task-specific regression terms (β1 and β2) compared 
with a model that does not include these terms would constitute strong evidence 
for a within-participant relationship between pupil response and bias.

The planned modelling approach was found to be infeasible, and was replaced 
by Bayesian and mixed modelling approaches (see ‘Exploratory analyses’).

Model predictions. We planned to compare the different models by calculating 
how accurately each model predicted participants’ biases. Specifically, we planned 
to use a tenfold cross-validation scheme to fit the model to data from a subset of 
participants (the training set) and to generate predicted biases for the remaining 
participants (the testing set). Where the model included participant-specific terms 
(for example, as), these terms were to be instantiated for the testing set with the 
mean value fitted to the training set. Model accuracy was computed as the Pearson 
correlation between actual and predicted mean biases across participants.

Model comparison procedures were adapted to the exploratory modelling 
approaches (see ‘Exploratory analyses’).

Model fitting. To fit the parameters of the different models to observed participant 
biases, we planned to use an importance sampling approach38. Specifically, we 
planned to sample 105 random sets of parameter values from predefined prior 
distributions and then compute the likelihood of observing the biases given each 
parametrization and used the computed likelihoods as importance weights to 
derive the posterior distributions. The number of samples was to be increased as 
needed and would have been judged sufficient only if five independent repetitions 
of the analysis all yielded the same conclusions with regards to the parameter 
values and the model comparison. To define prior distributions, the model-fitting 
procedure outlined above was to be applied to the pilot data using broad priors  
(a normal distribution prior with the mean set to 0 and variance set to 100 for  
the α and β parameters; and an inverse gamma distribution with the shape and  
rate set to 0.01 for the σ2 parameters). The resulting posterior distributions would 
serve as prior distributions for the main experiment data.

Model-fitting procedures were adapted to the exploratory modelling 
approaches (see ‘Exploratory analyses’).

Model comparison. To compare between pairs of models in terms of how well 
each model fit participants’ biases, we planned to compute the evidence in favour 
of each model as the mean likelihood of the model given 105 random sets of 
parameter values drawn from the predefined priors. This sampling-based estimate 
of model evidence accounts for model complexity since it integrates over the entire 
parameter space.

Model comparison procedures were adapted to the exploratory modelling 
approaches (see ‘Exploratory analyses’).

Quality checks. To ensure that the collected data were able to test the study’s 
hypothesis, we required three criteria. First, to ensure the quality of the pupil 
diameter data, we required that pupillary responses to oddball stimuli be 
significantly stronger than responses to the other stimuli in the auditory oddball 
task. Responses to each stimulus were computed as described above (see the 
section ‘Eye tracking’) and then averaged separately for oddball and non-oddball 
stimuli for each participant. A one-tailed paired t-test (α = 0.05) across participants 
was used to determine whether responses to oddballs were indeed stronger. If 
this had not been the case, it would indicate that the pupillary recordings were 
not sufficiently sensitive even to capture this typically robust effect, or else that 
participants were not paying attention to the oddballs.

Second, since some of our inferences assumed a negative correlation 
between pupillary responses and baseline pupil diameter, we required that such 
anti-correlation be evident across participants in the pupil responses to oddball 
stimuli across the whole experiment. This anti-correlation was assessed by 
computing the Pearson correlation across trials between the oddball response and 
pre-stimulus baseline within each participant. We then conducted a one-tailed 
t-test across participants to determine whether the average correlation was indeed 
smaller than 0 (α = 0.05).

Third, in the decision-making tasks, we required a statistically significant 
bias to be evident in at least one of the participant terciles when averaged across 
all six experimental tasks. To average biases (and pupil responses) across tasks, 
these were scaled such that 1 corresponded to the standard deviation across 
participants. Biases were then averaged for each participant and a one-tailed t-test 
across participants (α = 0.05) was used to determine whether biases were indeed 
larger than zero in each of the participant groups. If biases had not been evident in 
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any of the groups, this would indicate a lack of replicability, or otherwise that our 
participant group might not have been sufficiently engaged in the experiment.

Exploratory analyses. To address feasibility issues that arose in the trial-level 
modelling, we complemented the planned analyses with two common trial-level 
modelling approaches that directly tested the study’s hypothesis.

Hierarchical Bayesian modelling. We used STAN39 in the R programming 
environment to infer the posterior distribution of the parameters of the trial-level 
model outlined above. To account for outliers, the model assumed that biases were 
drawn from a t distribution, although this was not formally tested. The normality 
parameter (ν) of the t distribution was drawn from an exponential prior with a 
mean of 30, as recommended in the literature40. The posterior distribution of this 
parameter (95% CI = 3.32 to 4.32) confirmed the presence of outliers. Predictors 
included the mean pupillary response of each participant (effect represented by 
β3), the mean pupillary response of each participant for each task (orthogonalized 
with respect to the former predictor; β2) and the trial-by-trial pupillary responses 
(orthogonalized with respect to both former predictors; β1). To allow for changes 
across tasks in the effects of the pupillary responses, each β coefficient was 
computed as the sum of an average coefficient (drawn from a standard normal 
prior) and a task-specific coefficient (drawn from a normal distribution with a 
mean of 0 and a standard deviation that was a free parameter; subject to 

P
β ¼ 0

I
 

to regularize the model). Statistical significance was indicated by the absence 
of overlap between a parameter’s 95% CI and a region of practical equivalence40 
interval, from −0.001 to 0.001, that was deemed practically equivalent to zero.

In addition to the pupillary response coefficients, a global intercept was 
drawn from the standard normal distribution, and question-specific (αt,q) and 
participant-specific (αs) sets of intercepts (added to the global intercept and 
subject to the constraints 

P
αt;q ¼ 0

I
 and 

P
αs ¼ 0

I
) were each drawn from a 

normal distribution with a mean of 0 and a standard deviation that was a free 
parameter. Similarly, the global standard deviation of bias effects was drawn from a 
log-normal distribution with a mean of log[0.5] and a standard deviation of log[2], 
and question-specific (σt,q) and participant-specific (σs) sets of standard deviations 
(added to the global standard deviation in log space and subject to the constraints P

logσt;q ¼ 0
I

 and 
P

logσs ¼ 0
I

) were drawn from a log-normal distribution with a 
mean of 0 and a standard deviation that was a free parameter. The square of each 
top-level free standard deviation parameter was drawn from a weakly informative 
inverse gamma distribution whose two parameters were set to 0.01.

Three Monte Carlo Markov chains were sampled. Each chain’s initial 500 
samples were designated for warmup and discarded. A total of 10,000 samples were 
drawn subsequently. No divergent transitions were observed. For all parameters, 
the effective sample size was greater than 1,000 and R̂ was lower than 1.1.  
Resulting posterior distributions are reported in terms of their mode, 95% credible 
interval and Pd.

Linear mixed modelling. Trial-by-trial data were also modelled using a linear 
mixed model, implemented with the lme4 package for R41. Here, rather than 
orthogonalizing predictors and examining the posterior distributions of the 
parameters, we used a model comparison approach whereby we eliminated terms 
that increased the BIC38 or caused convergence problems or non-singular fits. 
The full model included fixed effects for the mean pupillary response of each 
participant (β3), the mean pupillary response of each participant for each task (β2) 
and the trial-by-trial pupillary responses (β1). Random intercepts (αs and αt,q) and 
slopes were included for participants and questions. The best-fitting model was 
determined by iteratively removing predictors until a minimal BIC was reached. 
This analysis assumed that data were normally distributed, but this was not 
formally tested.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study have been deposited on the Open 
Science Framework and are publicly available at https://osf.io/sygz3/.

Code availability
The custom scripts used for this study have been deposited on the Open Science 
Framework and are publicly available at https://osf.io/sygz3/.
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