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Computational psychiatry is most often 
theory-driven, aiming to identify mecha-
nisms underlying mental health using 
computational cognitive models applied 
to behavior from laboratory-based cog-
nitive tasks. 

Cognitive tasks have unclear ecological 
validity, and the increasing availability of 
smartphone-collected, passive, and/or 
digital data represents an opportunity to 
test the generalizability of computational 
psychiatry findings to real-world behav-
iors. 
A core strength of computational psychiatry is its focus on theory-driven re-
search, in which cognitive processes are precisely quantified using computa-
tional models that formalize specific theoretical mechanisms. However, the 
data used in these studies often come from traditional laboratory-based cogni-
tive tasks, which have unclear ecological validity. In this review we propose 
that the same theoretical frameworks and computational models can be applied 
to real-world data such as experience sampling, passive data, and digital-
behavior data (e.g., online activity such as on social media). In turn, modeling 
real-world data can benefit from a theory-driven computational approach to 
move from purely predictive to explanatory power. We illustrate these points 
using emerging studies and discuss the challenges and opportunities of using 
real-world data in computational psychiatry. 
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Recent studies have begun to use 
theory-driven approaches and cognitive 
modeling on real-world data, sometimes 
uncovering previously unobserved asso-
ciations with mental health symptoms.
Computational psychiatry and its reliance on cognitive tasks 
In the past couple of decades, researchers have increasingly relied on computational, cognitive, 
and neuroscientific insights and approaches in mental health research to address the complexity 
of psychiatric phenomena [1]. This has germinated the field of computational psychiatry [2], which 
is often divided into two different but complementary families of approaches: theory-driven and 
data-driven [3]. Theory-driven approaches apply formal theoretical frameworks and mathemati-
cal/computational models to help explain the behavioral and neural bases of mental health [4]. 
By contrast, data-driven approaches leverage the power of machine learning models to predict 
mental health outcomes using many types of data, including self-reports sampled throughout 
the day or data collected passively from digital sensors or smartphone apps (sometimes referred 
to as ‘digital phenotyping’ [5,6]). 

Theory-driven approaches, borrowed largely from computational neuroscience and computa-
tional cognitive science, rely mainly on analyzing how people behave in cognitive tasks. These 
are computerized games that are carefully designed to capture cognitive processes such as 
learning, decision-making, and categorization. Data from these tasks are then analyzed using 
computational models that formalize the studied processes [2,7], based on frameworks such 
as Bayesian inference [8] and reinforcement learning [9]. In computational psychiatry, there is a 
particular focus on estimating parameters of these computational models for each subject to pre-
cisely quantify individual differences in the underlying cognitive processes. Initial efforts in this di-
rection have been fruitful, revealing associations between model parameters and mental health 
dimensions [10]. Recently, this approach has also been used to identify predictors of both phar-
macological [11] and psychological [12] treatment outcomes, as well as to disentangle the cog-
nitive mechanisms underlying different forms of psychotherapy [13]. 

Despite the promise of this approach, several limitations – such as low reliability and convergent 
validity – have recently been highlighted [14]. Task batteries and longitudinal designs that allow
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modeling within-subject variation have been proposed as solutions to these problems [15,16]. 
Smartphones are key to this project, as they facilitate the collection of large amounts of behavioral 
data using experience-sampling approaches [17]. Repeated sampling of cognitive-task behavior 
on smartphones has uncovered both longitudinal variation in some cognitive processes 
(e.g., people are less risk averse for losses later in the day [18]; sensitivity to rewards fluctuates 
with motivation from day to day [19]) and stability in others (e.g., metacognitive biases [20]).

However, while progress has been made towards measuring psychological processes more ac-
curately and reliably using cognitive tasks, a significant gap in ecological validity remains. Al-
though tasks can isolate specific processes in a controlled experimental setting, they often 
contain decontextualized, artificial environments [21,22]. Laboratory-based cognitive tasks differ 
from those in the real world in at least three important ways. First, cognitive tasks have low com-
plexity, with usually only a few stimuli and behavioral degrees of freedom. Second, the stimuli in 
these tasks are often not emotionally engaging or evocative; this is a particular concern in the 
study of mental health, which is intrinsically related to affect and emotions [23]. Third, most labo-
ratory-based cognitive tasks lack a social component, despite social interactions constituting a 
large part of the stimuli people experience outside the laboratory. Social processes are also cen-
tral to many mental health conditions [24], even those traditionally not considered social, such as 
depression [25,26] and addiction [27]. Some solutions to these issues that have been proposed 
[28]  include  gamification of tasks to increase complexity and participant engagement [29], or 
leveraging virtual reality for creating and delivering the tasks [30]. However, it is unclear how 
much a person’s  behavior  in  an  artificially created environment generalizes to the real world. 
Moreover, most of these studies are correlational, and even those that are longitudinal estimate 
cognitive processes at a few timepoints rather than continuously over time. Capturing within-
person fluctuations is crucial to understanding how these processes unfold in the highly variable 
context s of human life.

In this review article, we advocate for using real-world data in theory-driven computational psychia-
try, which infuses theory-driven approaches with the enhanced ecological validity of data-driven ap-
proaches. We explore how real-world data can be examined through the same theoretical lenses 
and modeled using the same cognitive computational models as cognitive task data. After introduc-
ing some types of real-world data and their benefits,  we  illustrate  the  use  of  such  data  with  a  few  re-
cent studies. We conclude by highlighting some opportunities for studying real-world cognition as 
well as challenges related to data analysis and ethical issues that accompany real-world data.

Real-world data and what they have to offer 
We use the label ‘real-world data’ to refer to any data collected as people go about their daily ac-
tivities. This includes data collected both actively, using experience sampling methodology, and 
passively, collected through smartphone sensors and wearable devices. We do not restrict the 
category to ‘natural’ environments, as people increasingly spend time in digital environments 
such as smartphone apps and social media platforms. Some of these environments involve social 
interactions with real people and therefore have high ecological validity. 

Experience sampling data 
The first class of real-world data we examine relies on experience sampling and related ap-
proaches, such as ecological momentary assessment and ambulatory assessment [31]. These 
approaches repeatedly measure psychological states as they occur in daily life, usually through 
self-report collected digitally a few times a day [32]. Researchers also commonly measure the 
contexts in which these states were sampled and participants’ evaluations of these contexts. 
For example, a participant could be prompted three times a day to report their overall mood,
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what they are doing at that moment, and other contextual factors such as their location. Experience 
sampling has been used for many years in the study of affect and mental health, revealing how 
symptoms dynamically unfold over time, how they can vary within the same person, and what con-
textual factors can cause or influence them [32]. Recently, similar approaches have been integrated 
into computational psychiatry, where participants are asked to perform short tasks repeatedly, with 
the goal of capturing within-subject variance [17]. However, this use abandons the ecological-
validity benefit of experience sampling [31] due to their reliance on artificial environments. Later in 
this article, we will explore how traditional experience sampling, using self-report and focusing on 
lived experience, can also be used within theory-driven computational psychiatry. 

Passive data 
The  second  type  of  data  is  data  collected  passively  as a person goes about their daily life. Collection is 
done through various devices (e.g., smartphones, smartwatches, and custom sensors embed ded in
clothing [33]); here, we focus on data collected through phones and watches. These data can quan-
tify spatial location (GPS), physical activity (accelerometer), physiology (e.g., temperature, skin con-
ductance, and heart rate), and social information (e.g., proximity to other people, recorded using 
Bluetooth). Such passive data have recently gained massive popularity within psychiatry, with uses 
ranging from monitoring symptoms [34,35] to predicting psychiatric diagnoses [36]. 

Digital-behavior data 
Finally, we include in our taxonomy passive data that track a person’s behavior as they navigate 
digital spaces. This includes smartphone/app-use behavior, conversation data (from texting 
apps), and social media data. Social media data have received particular attention in mental 
health research, with multiple studies identifying digital markers of depression or attention deficit 
hyperactivity disorder (ADHD) in social media posts [37–39,40]. The study of social media is of 
great public health interest, as it is still unclear whether and how social media use affects mental 
health. Evidence on this topic is mixed and inconclusive, leading experts to call for more research 
that uses a variety of methods to focus on psychological mechanisms [41,42]. 

Benefits of real-world data 
Real-world data address most, if not all, of the limitations of task data. They are intrinsically ecolog-
ically valid and longitudinal, allowing analyses of time-varying processes as they unfold. They capture 
high-complexity environments, both natural and digital, which contain the emotionally meaningful 
stimuli that people experience in their daily life. Finally, real-world data often involve social behavior, 
from both in-person and virtual social interactions, the study of which can help enrich our mechanis-
tic understanding of how cognition in social settings relates to mental health. These data are there-
fore promising for use within the frameworks of theory-driven computational psychiatry. 

Examples of using real-world data within theory-driven computational psychiatry 
We next present three emerging bodies of research that have examined different types of real-
world data through a computational cognitive lens. The examples focus on reinforcement learn-
ing, the primary cognitive modeling framework used in computational psychiatry (Box 1). Some of 
the studies explicitly use reinforcement-learning models, while others simply use the framework 
as theoretical grounding. Wherever relevant, we make suggestions for further exploiting the po-
tential of applying cognitive modeling to real-world data. 

Experience sampling 
Experience sampling is a promising tool for studying reinforcement learning, as it unlocks the abil-
ity to query participants regarding reinforcement-learning-related quantities, such as rewards and 
prediction errors, as they occur in real life. In one study, researchers leveraged this method in a
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Box 1. Reinforcement learning: a primer 

Reinforcement learning is a theoretical and computational framework for understanding how agents (human, animal, or AI) 
learn how to make optimal decisions through trial-and-error [9]. The basic idea is that agents aim to maximize reward 
(e.g., money) and minimize punishment (e.g., pain) and/or cost (e.g., effort). By trying out actions and observing the out-
comes, agents can learn which behaviors (actions/decisions) were rewarding. Learning is achieved by updating reward 
expectations (usually represented as V for ‘expected value’, with punishment/cost treated as negative reward) using (re-
ward) prediction errors (PE), which represent the difference between the observed and expected reward: 

where rt is the reward and V(St) is the expected value for the state S at timepoint t. Prediction errors are then used to update 
the expected value for the next time this state will be encountered: 

re η whe is a parameter representing the learning rate or step size – the extent to which expectations are changed based on 
prediction errors. 

The popularity of this framework is due in large part to the sizable literature on the neural basis of reinforcement learning in 
humans and animals [94], beginning in the 1990s with the seminal discovery that dopamine neurons in the midbrain en-
code reward prediction errors [95,96]. Since then, the framework has been expanded to study a range of reward-driven 
cognitive processes, from decision-making under risk or uncertainty to motivation [97]. Reinforcement learning was one of 
the first frameworks to be used in computational psychiatry, and the past decade has seen a burst of studies showing 
atypical reinforcement learning in people with various mental health conditions and psychiatric symptoms [98]. For exam-
ple, using this framework, anhedonia (the lack of pleasure/interest in daily activities that is frequently seen in depression) 
has been linked to blunted sensitivity to rewards [78], whereas compulsivity – the tendency to engage in repetitive behav-
iors, characteristic of obsessive–compulsive disorder (OCD) and other conditions such as eating disorders – has been as-
sociated with reduced ‘model-based’ control, reflecting a lower tendency to use cognitive models of the environment to 
flexibly plan new actions at the expense of habitual behavior [99]. Given the wealth of research on the link between rein-
forcement learning and mental health, there is a great opportunity to test the generalizability of these findings ‘in the wild’ 
using real-world data. 
unique real-world setting: students learning what exam grades to expect in successive exams in 
an introductory class (Figure 1A–C) [43] (see also [44]). Over the course of a semester, students 
were prompted to predict their grades after taking an exam. When grades were revealed, the au-
thors computed prediction errors as the difference between the actual and predicted grades and 
quantified the amount of learning from these prediction errors through differences in successive 
grade expectations. They found that neuroticism (a personality trait associated with risk for mental 
health conditions [45]) moderated expectation updating, with more neurotic individuals showing a 
pessimistic bias and updating their predictions downward, even in the absence of a prediction 
error. Future work could use computational modeling to estimate individual learning rates and 
test whether neuroticism is associated with lower learning rates for positive prediction errors 
and higher learning rates for negative prediction errors: a pattern hypothesized for depression 
and anxiety but never found in experimental settings [46]. However, sampling of prediction errors 
at more timepoints might be needed for psychometrically valid estimates. 

The more traditional use of experience sampling to track affective states is also valuable in com-
putational psychiatry. Laboratory studies have found that the dynamics of mood are affected by 
reward prediction errors [47,48], leading to the theory that mood tracks the overall perceived 
change in the availability of reward [49,50]. These findings were replicated in the same exam-
grade setting, where students’ grade prediction errors explained their positive and negative affect 
more strongly than the grades themselves [51]. Changes or dysregulation in these mood compu-
tations have been hypothesized to underlie mood disorders [50,52]. Indeed, although previous 
laboratory-based work found no association between depression and altered behavioral or neu-
ral impacts of prediction errors [53], the exam-grade paradigm revealed a blunted effect of real-
world positive prediction errors on mood in depression [54]. This result highlights the value of
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Figure 1. Examples of using real-world data in theory-driven computational psychiatry. Left panel: experience 
sampling of prediction errors in predicting examination grades, adapted from [43] under CC BY-NC license. (A) Schematic 
of the data collection set-up. (B) Equations used to compute prediction errors and expectation updates. (C) Main result: 
the higher the neuroticism score, the less participants increased their expectations when receiving positive prediction 
errors, and the more they decreased their expectations when encountering negative prediction errors. Top right panel: 
measuring exploration using geolocation (GPS) data (adapted from [57]). (D) Schematic of the data collection set-up. (E) 
Equation used to quantify exploration. (F) Main result: higher daily roaming entropy is associated with higher positive affect. 
Bottom right panel: modeling social media posting behavior using reinforcement-learning models (adapted from [70]). (G) 
Schematic highlighting the type of model used: modeling the effect of social rewards (likes) on inter-post latencies. (H) 
Model equations. (I) Main result 1: a reinforcement-learning model fit to the posting data explains behavior better (higher 
Akaike weights) than a baseline model. (J) Main result 2: the model is able to capture the key behavioral pattern seen in 

the human data: lower latencies following higher rates of average reward (R). 
studying cognition ‘in the wild’ for uncovering previously unobserved mechanisms underlying 
mental health. 

The studies presented so far took advantage of a natural reinforcement-learning setting where 
rewards were already precisely quantified in the form of grades, but they did not measure stu-
dents’ decision-making behavior. However, experience sampling can also quantify reward-
driven behaviors and how they are affected by real-world rewards through self-report. For ex-
ample, one study showed that experiencing social interactions and physical activity as reward-
ing increased later engagement with those activities, whereas experiencing these activities as 
punishment (quantified as negative affect) reduced participation in those same activities [55] 
(although only learning from punishment was found in a later replication [56]). Overall, these 
studies offer a proof-of-principle use case of experience sampling within the framework of re-
inforcement learning, paving the way for more computational psychiatry work.
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 5
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Passive data to complement experience sampling 
Although experience sampling is a powerful tool for capturing cognitive and affective processes 
as they unfold in daily life, there is a limit to how frequently data can be sampled. This is where 
passive data can help, adding context and ecological validity beyond self-report. In one study, re-
searchers collected GPS data tracking adolescent and adult participants’ location over several 
months and coupled it with sampling their affect every 48 h (Figure 1D–F) [57]. For each partici-
pant, they computed daily ‘roaming entropy’  –  a measure of how varied the locations they visited 
were – and found that this correlated with self-reported positive affect. In a related study, the link 
between roaming entropy and positive affect was stronger in individuals with stronger connectiv-
ity between the hippocampus and the ventral striatum [58]. Although these studies did not use 
computational models, balancing exploration of new actions and exploitation of known actions 
is a classic reinforcement learning problem [59], and novelty has long been thought to be intrinsi-
cally reinforcing [60]. A similar design could directly probe individual differences in the tendency to 
explore versus exploit by sampling rewards throughout the day and linking them to different loca-
tions, coupled with reinforcement learning models capturing decisions to return to previously re-
warding locations as opposed to exploring new ones. These patterns could then be related to 
psychiatric symptoms. For example, atypical explore–exploit trade-offs have been described in 
the laboratory in neurodivergent individuals (e.g., people with ADHD tend to over-explore [61]). 

Passive collection of physiological measures (e.g., heart rate, skin conductance) could also be 
used to estimate subjective or latent quantities relevant to cognition (e.g., rewards), allowing for 
denser sampling than the more burdensome experience sampling and boosting ecological valid-
ity. Using machine-learning methods to estimate affective states from physiological signals is an 
area of active research, with recent big-team efforts finding limited success [62]. While most stud-
ies to date are laboratory-based, using explicit emotional stimuli [63], recent work is pushing the 
field towards the real world [64]. One study managed to separately decode reward prediction er-
rors, outcomes, and expectations from heart rate and portable electroencephalography (EEG) 
data while participants performed a probabilistic reward task at various time points during a 
week [65]. Interestingly, the extent to which prediction errors were decodable was predictive of 
future mood, suggesting that higher versus lower physiological reactivity to reward is linked to 
higher versus lower mood. This suggests that latent, computational quantities could be inferred 
from physiological data and related to fluctuations in affect. Future research has the opportunity 
to use these approaches to answer psychiatric questions. 

Digital-behavior data 
Another way to enrich self-report data obtained through experience sampling is using what we 
call ‘digital-behavior data’,  reflecting behavior on one’s smartphone/computer. This includes 
screen time, usage of different apps, conversation data from texting and other types of messag-
ing apps (including therapy apps), and social media data. These data are not only promising for 
computational psychiatry but interesting in their own right, as there is a growing concern about 
the impact that such technology, especially social media, might have on mental health [66–68]. 
Directly analyzing these data is important, as there is a known discrepancy between self-
reports of social media use and actual use [69]. 

Social media is, in many ways, an ideal real-world environment for studying (social) reinforcement-
learning behaviors and their link to mental health. This is because the ‘likes’, followers, and com-
ments that users receive for their posts can be thought of as social rewards that, in turn, may 
shape future posting behavior. One study showed that reinforcement learning models capture 
decisions of when to post on social media [70]  (Figure 1G–J). Older theoretical work [71]  and
more recent work in humans [72] suggest that the optimal behavioral latency (i.e., time between
6 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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two actions) depends on a tradeoff between potential rewards and two cost terms: the effort cost 
and the opportunity cost of time. A higher average reward rate means that the opportunity cost of 
delaying the next action is higher, prescribing shorter latencies. Similarly, receiving more rewards 
for an action should lead to shorter latencies. This was shown empirically to apply to posting be-
havior on Instagram, with a recent study extending this model to include a habit component [73]. 
Another study using the same modeling approach found that adolescents have higher learning 
rates than adults, which the authors conceptualized as an increased sensitivity to social media re-
wards [74]. Recent work investigating the link between depression and reinforcement learning on 
social media found an association between depression and a heightened sensitivity to social 
media rewards [75]. Interestingly, this result is in line with other studies finding elevated emotional 
reactivity to daily events and stressors in depression [76,77], but it contrasts with laboratory-
based experiments that suggest reduced sensitivity to rewards in depression [78] or an associa-
tion between reward sensitivity and better mental health [79]. This finding is also in line with inter-
personal theories of depression, which posit increased valuation and seeking of social feedback 
in depression [25]. 

Other types of digital-behavior data might also be useful in computational psychiatry. The study of 
screen time has been termed ‘screenomics’ and is the focus of the Human Screenome Project 
[80]. Snapshots of participants’ phone screens are sampled throughout the day over extended 
periods. This type of data lends itself well to decision-making models, such as examining how 
people make decisions about whether to stay on an app or switch to a different one, and how 
this is influenced by the reward structures (gamification) of apps. Conversation data are also rel-
evant here [81,82]. In particular, psychotherapy is a social setting itself, and the social dynamics 
between the client and their therapist are crucial to therapeutic success. Data from conversations 
between clients and therapists on therapy apps, which have been shown to track therapy out-
comes [83], could offer unique insights into such social dynamics if examined using a computa-
tional lens. However, more work is needed in extending traditional reinforcement-learning 
frameworks to social interactions. 

Other modeling frameworks and cognitive processes 
In this section we have reviewed several studies that have used real-world data within a compu-
tational cognitive framework, primarily reinforcement learning. These studies illustrate the feasibil-
ity of applying theories and modeling approaches from computational psychiatry to understand 
daily-life behavior and shed further light on the cognitive underpinnings of mental health. Although 
we are not aware of any existing examples, other classes of models that have been used in com-
putational psychiatry, such as Bayesian models (Box 2), could also be applicable to real-world 
data. Moreover, many cognitive processes beyond reward processing are potentially amenable 
to a real-world modeling approach (we provide some examples in Table 1). In the next sections 
we discuss challenges and opportunities of using real-world data in computational psychiatry. 

Opportunities 
Testing the generalizability of in-laboratory findings 
At the beginning of this article we discussed some issues with cognitive tasks, including poor 
convergent validity and unclear generalizability [14]. Real-world data have the potential to improve 
the generalizability of findings in computational psychiatry due to their intrinsic ecological validity. 
At the very least, real-world data can be used to test the generalizability of existing findings from 
laboratory-based cognitive tasks. While some of the studies presented earlier have replicated in-
laboratory findings (e.g., pessimistic expectations in more neurotic individuals [43]), others have 
uncovered novel links to psychopathology that had not been observed, or even opposite results 
from laboratory settings (e.g., blunted impact of positive prediction errors on mood [54]  or
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 7
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Here, to update p(belief|observation) – the posterior probability of a belief (hypothesis) after observing some data – the 
model combines the prior probability of the belief p(belief) with the likelihood of the observation if the belief were true p(ob-
servation|belief). Although Bayesian models are used in many fields for statistical inference, their conceptualization as men-
tal belief updating lends itself well to modeling a variety of cognitive processes, from perception (where a percept is 
determined by integrating prior beliefs with sensory evidence) to learning (where models of Bayesian inference of the best 
course of action are alternative formulations to reinforcement learning). For example, Bayesian updating models have been 
used to model disruptions in perceptual inference in psychosis [100], impaired social learning in anxiety [101], and differ-
ences in learning about safety versus danger in anxiety and compulsivity [102]. 

A subclass of Bayesian inference models that have been prominent in computational psychiatry are latent-cause inference 
models. In these, the agent infers a latent causal structure from observations like outcomes (similar to inferring latent var-
iables from observable ones in latent variable modeling approaches) that is presumed to have generated these observa-
tions, effectively clustering experiences [103]. Such a framework has been used to formalize several cognitive processes, 
including categorization, generalization, and representation learning. Individual differences in latent-cause inference have 
been linked to mental health. For example, latent-cause models explain Pavlovian learning better than gradual learning 
models in more anxious individuals [104]. Additionally, patients with post-traumatic stress disorder (PTSD) were more likely 
to infer a single underlying cause for both dangerous and safe contexts in fear conditioning [105]. 

Finally, many studies in computational psychiatry have employed the hierarchical Gaussian filter [106]. This model captures 
hierarchical belief structure, allowing the estimation of higher-order beliefs such as beliefs about environment volatility 
(i.e., how much the environment is changing). Perceiving heightened volatility in the environment has been associated with 
symptoms of paranoia [107], whereas a reduced capacity to adapt learning depending on volatility has been linked to 
symptoms of anxiety and depression [80]. 

To our knowledge, none of these modeling approaches has been translated to real-world settings to assess processes 
related to mental health. However, we believe such a future direction would align with the areas of opportunity we have 
identified and discussed. 
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Box 2. Bayesian cognitive models in computational psychiatry 

Although the field of computational psychiatry has focused primarily on reinforcement learning as a modeling framework, 
other models exist to capture cognitive processes beyond reward learning, such as belief updating, decision-making, and 
categorization. The major alternative class of models is Bayesian inference models, which are based on a reformulation of 
Bayes’ theorem of conditional probabilities: 
heightened sensitivity to social rewards in depression [75]). Beyond testing generalization from 
the laboratory to the real world, a future goal of computational psychiatry ‘in the wild’ should be 
to measure the convergent validity between tasks and real-world environments, and between 
analogous real-world environments. This could be done through fitting similar models to task 
and real-world data, and correlating parameter estimates from the two (e.g., reward sensitivity 
on social media versus during real-world social interactions). 

Incorporating language into cognitive models 
Language is a window into subjective experience and therefore holds great promise in building 
better explanatory and predictive models of mental health [84]. However, language is rarely mea-
sured in cognitive tasks or included in cognitive models, in part because it has traditionally been 
difficult to quantify language with the same precision as behavior. The recent advent of large-
language models (LLMs) has the potential to change this. Pre-trained LLMs such as GPT have 
been shown to outperform word-count-based methods and non-transformer-based classifiers 
in a variety of text analysis tasks, including coding of sentiment and emotional language [85] 
and mental health symptom prediction [86]. Because they work through flexible prompts, 
LLMs can be interrogated about various psychological constructs that are traditionally human-
coded, although more validation research is needed to establish their accuracy. Moreover, 
LLM-based embeddings, which can project text into a low-dimensional vector space, allow re-
searchers to compute the semantic similarity between chunks of text, such as social media 
posts. These approaches can be incorporated into cognitive models. For example, semantic
8 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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Table 1. Examples of cognitive processes that could be studied using real-world dataa 

Cognitive process Traditional cognitive tasks Cognitive modeling framework Example real-world data 

Reward processing and reward 
learning: 
updating expectations and behavior in 
response to rewards and punishments 

Bandit tasks 
Conditioning tasks 
Foraging tasks 

Reinforcement learning 
Rescorla–Wagner 
Bayesian inference 

Exam grades [43,51,54] 
Social media posting [70,73,74,75] 
Video games [112] 
Gamified app behavior 
(e.g., Duolingo) 

Decision-making: 
evaluating and selecting between 
alternatives, often under uncertainty 
or risk 

Risky decision-making tasks 
Economic choice tasks 
Intertemporal choice/delay 
discounting tasks 
Information-seeking tasks 

Drift–diffusion models 
Reinforcement learning 
Hyperbolic discounting 

Purchasing decisions [113,114] 
Gambling behavior [115] 
Web-browsing behavior [116,117] 
Self-report of information-seeking 
strategies [118] 

Planning: mentally organizing or 
sequencing actions to achieve future 
goals 

Tower of Hanoi 
Navigation tasks 

Tree search 
Model-based reinforcement 
learning 

Chess gameplay [119] 
Planning apps 
Navigation (+ sequencing, e.g., 
while shopping) [57,58] 

Cognitive control: maintaining 
goal-directed behavior in the face 
of distraction or competition 

Stroop task 
Stop-signal task 
Oddball go/no-go tasks 

Neural network models 
Drift–diffusion models 

Compulsive phone/social media 
use (e.g., checking) [75,120] 
Dieting behavior 

Attention: prioritizing certain stimuli 
or tasks over distractions 

Posner cueing tasks Neural network models 
Drift–diffusion models 

Web-browsing or video gameplay 
(with eye-tracking) [116] 

Memory: encoding, storing and 
retrieving information over time 

Recall/recognition/source memory 
tests 

Connectionist/neural network 
models 
Temporal context model 

Web searches 
Spontaneous reminiscing in 
conversations 
Note-taking app behavior 

Perceptual decision-making: 
accumulating sensory evidence to 
make judgements about stimuli 

Random dot motion tasks Drift–diffusion models 
Neural network models 

Captcha task solving 
Voice assistant logs 

Social cognition: reasoning about the 
cognitive processes and behaviors of 
other people and behaving according 
to these inferences 

False belief tasks Bayesian inference Conversation data 
Multiplayer game behavior 
[121,122] 

a Where possible, we cite recent studies that have used each type of real-world data with a cognitive lens. In most cases, there has not been any application to mental health 
research. 
similarity derived from LLM embeddings could be used to compute the extent to which a person 
continues the same topic or changes to a new one in their social media posts or text messages, a 
kind of linguistic explore–exploit measure (Figure 2A). Computational models could then combine 
this behavioral metric with measures of reward, either explicit (e.g., social media likes) or 
language-derived (from comments and direct messages). Language is also amenable to Bayes-
ian modeling approaches: for example, capturing how someone updates their beliefs in response 
to evidence from another person in a conversation (Figure 2B), or identifying latent semantic clus-
ters and how they are started or traversed as a person generates language, which possibly re-
flects their underlying mental representations (Figure 2C).  Overall,  there  is  an opportunity for 
researchers to incorporate language into their cognitive models, though further research should 
address the feasibility of this approach.

Challenges 
Unexplained variance 
Real-world behavior inherently has many more degrees of freedom than behavior in constrained 
cognitive tasks. This means that there will be more unexplained variance (noise) when modeling 
real-world data. For example, social media posting may be influenced by rewards such as 
‘likes’, but also by other potentially idiosyncratic factors such as the time of day and constraints
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 9
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(A)

(B) (C)
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Figure 2. Incorporating language into cognitive models using large language models (LLMs). (A) Semantic 
similarity between successive chunks of text (e.g., successive social media posts or messages sent in a texting app) can be com-
puted using LLM embeddings. Social rewards received for each message or post can be either retrieved from data (e.g., objective 
like/share counts on social media) or inferred from linguistic measures (e.g., agreement or disagreement in subsequent conversa-
tion). This allows studying the modulation of language by social rewards within a reinforcement-learning framework, in the same 
way as studying the modulation of other behaviors by reward. (B) LLM embeddings can also be used with Bayesian belief updating, 
by computing semantic change in the direction of external evidence (e.g., before and after receiving a reply in a comment thread, 
direct conversation, or therapeutic input). The setup mimics a Bayesian updating process, with the first message representing 
the prior belief, evidence is provided in the form of a message from another author, and the posterior belief is evidenced by the 
reply from the original author. (C) Language data are also amenable to a latent-cause inference framework, which is similar to 
some natural language processing models like topic models: both approaches estimate the extent to which people ‘cluster’ expe-
riences and how they move through clusters or topics. Thus, these models can be fit to text from social media or experience sam-
pling to derive a latent semantic structure and examine individual differences in how people start new semantic clusters or switch 
between semantic clusters, which could be altered in psychopathology. Abbreviation: DM, direct message.
on posting (e.g., due to being at school or at work). This is both a curse and a potential blessing. 
On the one hand, models explaining only a small fraction of variance exacerbate challenges in sta-
tistical inference and hypothesis testing (e.g., larger sample sizes are required to detect a signal, 
and/or noise reduction techniques should be used) and diminish the practical significance of find-
ings due to small effect sizes (that said, scholars argue that it is important that we take small effect 
sizes seriously, both for replicability and for understanding their cumulative impact over time 
[87,88]). On the other hand, unexplained variance offers opportunities for (i) testing contextual 
moderators, (ii) modeling additional systematic sources of variance that are harder for laboratory 
studies to capture (e.g., circadian rhythms), and (iii) uncovering other patterns of within-subject 
variation in continuously collected passive data. Thus, additional variance might be scientifically 
meaningful, potentially leading to an expansion of our theories of human behavior. 
10 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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Outstanding questions 
What types of real-world data are ame-
nable to cognitive modeling, and con-
versely, what classes of cognitive 
models are applicable to real-world be-
havior? 

What adjustments to current models 
are needed to accommodate the 
additional variance of real-world be-
havior? 

How correlated are computational 
measures derived from cognitive 
tasks and from real-world behavior? 

To what extent can modeling real-
world data reveal new associations 
with psychiatric symptoms or provide 
new predictors of treatment response 
that are not already known from 
laboratory-based studies? 

How can cognitive tasks, real-world 
data, computational modeling, and 
text analysis using LLMs be optimally 
integrated to advance computational 
psychiatry?
Analytical challenges 
Less constrained data also pose specific challenges for analysis and modeling. For example, real-
world data can be on very different scales for different people (e.g., the distribution of likes for so-
cial media influencers is orders of magnitude greater than for casual social media users). This un-
derscores the importance of separating between-subject and within-subject variance [89]. 
Moreover, the many types of real-world data will require extensions of traditional modeling ap-
proaches [22,90], which have been developed mainly for task data constrained to choices and 
reaction times. A particular challenge is performing causal inference with purely observational 
data. In laboratory experiments, causal inference about the drivers of behavior can be achieved 
through careful manipulation of task conditions while controlling for nuisance variables. This is 
not possible for real-world data, where the relationship between behavior and stimuli/rewards 
(e.g., posting and likes on social media) is often bidirectional, autocorrelated, and confounded 
by third variables. Incorporating causal inference methods for observational data from other social 
sciences, such as difference-in-difference event studies [91], could be beneficial as the field 
moves forward. 

Data collection burden 
Finally, although passive data allow the continuous assessment of behavior and socio-cognitive 
processes, data collection is not without burden. For instance, monitoring or sharing data can 
use up battery, requiring participants to charge their  device  more  often,  use  multiple  devices,
or even replace batteries more frequently [92]. Data donation is burdensome, time-consuming, 
and ethically aversive for participants, making it difficult to collect large samples [93]. Relatedly, 
we highlight important ethical considerations when working with digital and passive data in Box 3. 

Concluding remarks 
We have explored the synergy between real-world data and cognitive theories and models in 
computational psychiatry. This synergy could improve the ecological validity and generalizability
Box 3. The ethical challenges of using digital behavior and passive data 

Working with real-world data that are acquired incidentally (e.g., from publicly available social media posts or other passive 
means) poses unique ethical challenges, especially when these data are related to mental health outcomes. Several issues 
have been described in the literature, such as informed consent (is there consent and, if so, do participants fully understand 
the implications of giving this consent?) and data protection and privacy (how are the data processed and stored and how 
is identification prevented?) [108]. The use of LLMs brings its own share of issues, from concerns around consent and pri-
vacy in training data to algorithmic biases [109]. 

One grave concern is that the products of research done with informed consent (e.g., an algorithm that predicts mental 
health conditions based on linguistic data) will later be applied to other people without their consent, potentially by ill-
intending actors (e.g., by social media companies to target ads, or worse, to prevent employment or other such discrim-
inations based on mental health). This is particularly concerning for predictive modeling; however, any explanatory model 
could potentially be used for predictive purposes as well. The risk is compounded by the fact that passive/digital data are 
often difficult to de-identify, and this concern is especially pronounced with highly sensitive, health-related data 
(e.g., physiological data such as heart rate, or activity/GPS data). Another ethically challenging case is social media, as 
at least some of the data are publicly available, which makes it both a gray area in terms of regulation by ethics committees 
and an easy point of exploitation by bad actors [110]. 

With the recent closing down of public access to data from many social media platforms through application programming 
interfaces (APIs), researchers are orienting themselves more and more towards data donation strategies [111]. These 
more closely resemble the typical process of data acquisition for other types of real-world data and can be more tightly 
regulated, providing a slight ethical benefit against misuse by bad actors. However, digital data (even beyond social media) 
continue to be used and likely misused internally by the corporations that own these data. At a large scale, regulatory pow-
ers should mandate access to digital data for researchers under strict ethical guidelines that address the concerns listed 
earlier. On a small scale, individual researchers should think critically about and consult or create ethical guidelines for their 
particular data type and use case, perhaps even going beyond what their local ethics committee recommends. 
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of computational psychiatry findings and extend the use of real-world data from purely predictive 
to explanatory. Given advances in data availability and modeling approaches, including models of 
natural language, computational psychiatry ‘in the wild’ might be the future of mental health re-
search, although analytical and ethical challenges should be carefully considered. Immediate 
next steps for the field include: (i) identifying amenable types of real-world data, (ii) integrating 
real-world data into data collection pipelines (ideally alongside laboratory-based tasks), (iii) 
assessing links to mental health, (iv) assessing laboratory-based versus real-world convergent 
validity of parameters, and (v) expanding existing models (see Outstanding questions). Whether 
this endeavor will indeed provide meaningful solutions to the puzzle of mental health mechanisms 
remains to be seen.
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