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ABSTRACT: The role of dopamine in decision making has received much
attention from both the experimental and computational communities.
However, because reinforcement learning models concentrate on discrete
action selection and on phasic dopamine signals, they are silent as to how
animals decide upon the rate of their actions, and they fail to account
for the prominent effects of dopamine on response rates. We suggest an
extension to reinforcement learning models in which response rates are
optimally determined by balancing the tradeoff between the cost of fast
responding and the benefit of rapid reward acquisition. The resulting
behavior conforms well with numerous characteristics of free-operant
responding. More importantly, this framework highlights a role for a
tonic signal corresponding to the net rate of rewards, in determining the
optimal rate of responding. We hypothesize that this critical quantity
is conveyed by tonic levels of dopamine, explaining why dopaminergic
manipulations exert a global affect on response rates. We further sug-
gest that the effects of motivation on instrumental rates of responding
are mediated through its influence on the net reward rate, implying a
tight coupling between motivational states and tonic dopamine. The re-
lationships between phasic and tonic dopamine signaling, and between
directing and energizing effects of motivation, as well as the implica-
tions for motivational control of habitual and goal-directed instrumental
action selection, are discussed.
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INTRODUCTION

Browsing through any random selection of experimental psychology papers
will reveal that the dependent variable most commonly used to study animal
behavior is response rate.! The effects of experimental manipulations as diverse
as changes in the amount of reward that an animal can earn, alterations of the
requirements or conditions under which rewards or punishments are delivered,
lesions of neural structures, or the administration of drugs, are commonly
discerned through changes in response rates. In terms of decision making and
action selection, response rates are, in fact, inseparable from responding itself:
accompanying any choice of which action to perform is a choice of how fast (or
at what instantaneous rate) to perform this action. It may come as a surprise,
then, that normative models of responding, such as reinforcement learning,
which have done much to explain why it is appropriate for animals to choose
actions the way they do, have completely ignored the choice of response rates.

Response rates have played a more prominent role in descriptive models.
These aim to quantify the relationships between experimental variables and
response rates (e.g., the Matching Law?) but not why, or in what sense these
relationships are appropriate in different scenarios. In the absence of normative
models (which deal exactly with these latter aspects), questions, such as why
does motivation influence response rates, and how should dopamine affect
rate selection, are left unanswered. In previous work,>® on which we focus
in this review, we proposed to remedy this by extending the framework of
reinforcement learning to the optimal selection of response rates.

In our model,>® animals choose with what latency (i.e., how fast, or with
what instantaneous rate) to perform actions, by optimally balancing the costs of
fast performance and the benefits of rapid reward acquisition. Focusing on this
tradeoff, the model highlights the net expected rate of rewards as the important
determinant of the cost of delaying future rewards and the optimal rate of
responding. We marshal evidence suggesting that this quantity is signaled
by tonic levels of dopamine, and argue that this explains why higher levels of
dopamine are associated with faster performance, while low levels of dopamine
induce lethargy. We further leverage the normative framework to argue that
motivation and dopamine are tightly linked in controlling response vigor, as the
effect of motivation on response rates is mediated by a change in the expected
net rate of rewards.

In the following, we first detail the basic characteristics of response rates,
which we expect our model to reproduce. We then describe the new model
emphasizing the tradeoffs that must be negotiated optimally to maximize re-
ward intake. In particular, we focus on the role of the expected rate of reward
in determining the opportunity cost of time and the optimal rate of respond-
ing. The following section relates this signal to tonic levels of dopamine, and
discusses the implications for understanding the role of dopamine in action
selection. In the next section, we use this normative model of response rates to
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analyze the effects of motivation on responding. We first discuss how both the
directing and energizing effects of motivation are manifest in the model. The
results suggest a parcellation of motivational effects into outcome-specific and
outcome-general effects, leading to a new understanding of the susceptibility
of goal-directed behavior on the one hand, and habitual behavior on the other, to
motivational manipulations. Finally, we argue that the outcome-general ener-
gizing effects of motivation on response rates are mediated through changes in
the expected net rate of rewards, implying a strong link between tonic dopamine
and motivation. In the last section, we discuss some open questions, such as the
extension of the model to Pavlovian behavior, the relationship between pha-
sic dopaminergic signals and motivation, and the neural locus of cost/benefit
tradeoff computations.

WHAT DO WE KNOW ABOUT RESPONSE RATES?

Action selection has most frequently been studied in instrumental condi-
tioning paradigms, on which we will focus here. In the commonly used fiee-
operant form of these,’” animals (typically rats, mice, or pigeons) perform an
action (e.g., pressing a lever, pecking a key) to obtain some coveted reinforce-
ment (such as food for a hungry animal). Importantly, rather than performing
actions at discrete, predefined time points (as is typically modeled in rein-
forcement learning®), free-operant responding is self-paced, and animals are
free to choose their rate of responding.

Numerous experiments have shown that the schedule of reinforcement (e.g.,
ratio or interval), the nature or amount of the rewards used, and the motiva-
tional state of the animal profoundly affect the rate of instrumental respond-
ing. In general, responding is slower the longer the interval duration or ratio
requirement,” 2 and faster for higher magnitude rewards or more desirable
rewards.!> !4 More refined characteristics of free-operant behavior include the
observation of higher response rates on ratio schedules compared to yoked
interval schedules'>~!7 and response allocation that matches payoff rates when
two interval schedules are concurrently available.> %17

The fact that response rates are affected by manipulations of the schedule
of reinforcement suggests that animals choose with which rate to perform
different actions as an adaptation to the specifics of the task they are solving.
Furthermore, in most cases behavior in such schedules is well below ceiling
rates, evidence that response latencies are not constrained by decision times,
or motor or perceptual requirements, but rather the particular response rate
was selected as appropriate for the task at hand. In the following discussion
we will assume that the choice of response rate is the result of an optimization
process that is influenced by two opposing goals: the desire to acquire rewards
rapidly on the one hand, and to minimize effort costs on the other hand.
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OPTIMAL RESPONDING: COST/BENEFIT TRADEOFFS

Consider a situation in which a rat can choose between several actions: it can
poke its nose into a (possibly empty) food well, it can press a lever that may
cause food to fall into the food well, it can pull a chain that may cause water to
pour into the food well, and so forth (F1G. 1A). The choice of which sequence
of actions to take, and at what rate (or with what latency) to take each action,
can be seen as an optimization problem, if we assume that the goal of the rat
is to harvest rewards at as high a rate as possible, while incurring minimal
effort costs. Because for free-operant tasks the problem can be defined com-
putationally as a (semi-)Markov decision process, the optimal solution can be
derived as a series of optimal decisions: the rat should first choose the currently
optimal action and execute it with the optimal latency, and then, based on the
consequences of this action (the resulting “state” of the world, e.g., whether the
action resulted in food falling into the food well or not), choose the next optimal
action and latency, and so forth. The optimal policy of which actions to choose
in the different states,” and with what latency to perform the chosen actions, can
be found using reinforcement learning methods, such as “value iteration,”® or
online “temporal difference” learning®2° (for a full computational exposition
of'the model equations and solution, see Refs. 3, 5). To gain insight into the op-
timal policy, we will now analyze the factors that affect a single decision within
the series of actions. In our model this consists of two parts: the rat must choose
which action to perform, and kow fast (or with what latency) to perform it. It
turns out that these two subdecisions depend on different characteristics of the
task.

The choice of which action to perform depends on the utility of the rewards
potentially available for each of the actions, the probability that the action will
indeed be rewarded, and the effort cost of performing the action. For instance,
if pressing the lever is rewarded with food with a probability of 20%, this would
be preferable to an action that leads to the same outcome but with only 10%
chance. What about a choice between actions that lead to different rewards?
When comparing the worth of qualitatively different outcomes, such as food
and water, the motivational state of the animal must come into consideration,
as it determines the utility of each outcome to the animal.* A hungry rat may
prefer to press the lever for food, while a thirsty one might choose to pull the
chain to obtain water. The choice of which action to perform also depends on
how costly the action itself’is, in terms of effort: for instance, if pulling the chain
necessitates much effort to jump and reach it, the benefit of a small amount
of water may not be worth this effort. To summarize, the optimal choice of

“ The states we refer to here are states of the environment, such as whether there is food in the
magazine, whether the lever is extended and available for pressing, etc. These should not be confused
with the motivational state of the animal, which we will discuss later. For modeling simplicity, we
assume that the animal’s motivational state is constant during the experimental session.
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FIGURE 1. Two behavioral consequences of a motivational shift. (A) A simulated rat,
trained in an operant chamber, can perform several actions: it can press a lever for a 20%
chance of obtaining cheese, it can pull a chain for a 20% chance of obtaining water, or it can
groom itself (with possibly an internal reward). (B) Even when relatively sated, the cheese
and water have slightly higher utilities than grooming. A shift to hunger, however, markedly
enhances the utility of cheese, compared to the other utilities that are left unchanged.
(C) One effect of the shift from satiety to hunger is to “direct” the rat to choose to press
the lever (to obtain cheese) more often, at the expense of either grooming or chain pulling
(which are still performed, albeit less often). (D) A second orthogonal consequence of the
motivational shift is that all actions are now performed faster. Measurements of the latencies
to perform individual actions in the simulation reveal that not only is the rate of lever pressing
enhanced, but, when performed, grooming and chain pulling are also executed faster. This
“energizing” effect of the motivational shift is thus not specific to the action leading to
the favored outcome, and can be regarded an outcome-independent effect. Figure modified
from Ref. 4.

which action to perform can be determined by comparing the available actions
in terms of the worth and probability of the potential reward for each action,
and the effort cost of performing the action.

The optimal choice of how fast to perform the chosen action is deter-
mined by an altogether different cost/benefit tradeoff. First, we must assume
that it is more costly for the rat to perform an action quickly rather than
slowly (otherwise rats would always perform actions at the fastest possible
rate, which is clearly not the case). Against what should this cost of fast
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performance be weighed, when deciding on the optimal speed of an action?
Completing the chosen action slowly, for instance, moving toward the lever
and pressing it without haste, will of course delay the availability of the possi-
ble reward for this action. But, more important, all future actions and rewards
will be delayed. So the effort cost of behaving quickly should be weighed
against the cost of delaying all future rewards. Note that while the choice
of which action to perform is affected by parameters local to the different
actions and their (potentially long-term) outcomes, the choice of response
rate influences the timing of all future actions, and is thus affected by global
considerations.

How can the rat estimate the cost of delaying all future rewards? Average
reward reinforcement learning techniques reveal a simple solution.?!?*> A spe-
cific policy of action choices and response latencies will lead to an average
rate of rewards obtained per unit time, at an average effort cost per unit time.??
The rate of rewards minus costs—the influx of net benefit per unit time, which
we will refer to as the net reward rate—is exactly the worth of time under this
policy,>*2% or the opportunity cost of wasted time.>> That is, in every second
in which the current policy of responding will not be performed, on average
this amount of net benefit will be lost. This means that when selecting a rate
of performance, or a speed of execution for each individual action, the lower
cost of performing the action more slowly should be weighed against the op-
portunity cost of the extra execution time, that is, the net reward rate, which
could have been obtained during this time. The formal average-reward rein-
forcement learning solution ensures that such a choice of actions and latencies
will indeed lead to the highest possible net influx of benefit, and so will be the
truly optimal solution.

Simulating a wide variety of free-operant experiments using this model
of optimal behavioral choice showed that the well-known characteristics of
free-operant behavior indeed qualitatively match the optimal solution: simu-
lated rats showed a higher response rate when the magnitude of reward was
larger or the schedule was more rewarding (lower interval or ratio require-
ment), response rates were lower on interval schedules compared to yoked
ratio schedules, and when tested on two concurrent interval schedules the
simulated rats matched their response rates on each lever to their payoff
rates.’

OPPORTUNITY COSTS AND TONIC DOPAMINE

Optimal action selection based on online learning of the values of different
actions has previously been suggested as a model of action selection in the
basal ganglia.?’=? In one version of these, called actor—critic models, it has
been suggested?® that ventral striatal areas (the so-called “critic”) learn to
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evaluate situations or states of the world, by using a reward prediction error
signal provided by dopaminergic neurons in the ventral tegmental area. The
dorsal striatum (the “actor”), in turn, learns the values of different actions in
these states, based on a similar dopaminergic prediction error signal originating
in the substantia nigra pars compacta (for a review of the underlying neural data
see Ref. 31). These models have emphasized the role of phasic dopaminergic
firing patterns, which signal temporally local errors in the prediction of future
outcomes, in providing the basis of optimal learning of long-term values of
actions and states.?8->2

In addition to requiring this phasic prediction error signal to determine the
optimal selection of actions and rates, our model highlights the importance of
anew signal, which should indicate the expected net rate of rewards, that is, the
opportunity cost of time. In a certain class of problems to which this model is
applicable, the net reward rate is a global, slowly changing term, common to all
the states and to all actions and rates evaluated.?? That is, whether deciding how
fast to perform the next lever press, or the next nose-poke, and regardless of
whether a reward is currently available in the food well or not, the opportunity
cost of time is the same—the long-term average reward rate forfeited in that
time.

What could be the neural bearer of such a global, slowly changing signal?
We hypothesize this to be the fonic level of dopamine in basal ganglia and pre-
frontal areas.® The tonic level of dopamine is suitable to indicate the net rate of
rewards on computational, neural, and psychological grounds. Computation-
ally, resulting from the very definition of temporal difference reward prediction
errors, averaging of the phasic dopaminergic prediction errors over time, will
exactly result in the correct average rate of reward. Neurally, dopamine con-
centrations in target areas, such as the striatum, are relatively homogeneous,>?
and a recent investigation using fast scan cyclic voltammetry indeed showed
that time averaging of phasic dopaminergic activity in target areas results in
a stable tonic level,** well within the range expected from microdialysis mea-
surements.>’

Finally, psychological theories of dopamine function have long focused on a
putative role for dopamine in modulating the vigor of behavior.3®** The iden-
tification of tonic dopamine levels with the opportunity cost of time explains,
for the first time, why dopaminergic manipulations affect response rates as they
do. According to our theory, artificially elevating the tonic level of dopamine
increases the opportunity cost of time, with the effect of making the optimal
response rates for all actions higher. Suppressing dopamine levels will lead
to a reduced cost of time, and slothful behavior. Indeed, the most prominent
effect of dopaminergic interventions is an enhancement or reduction of overall
response rates as a result of increased or decreased dopaminergic transmis-
sion, respectively.**#>2 Modeling dopamine manipulations as changes in the
effective net reward rate, we can simulate and replicate many of these results.’
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THE EFFECTS OF MOTIVATION ON RESPONDING

Using this model of response rates, we can now analyze the effects of motiva-
tion on response selection. Understanding how motivation influences behavior
is complicated by the fact that animals use a number of different action selec-
tion systems, which are differentially sensitive to motivation, and with which
we will separately deal below. But first, let us consider in general how moti-
vation can affect the optimal cost/benefit tradeoff we have discussed above.
One way to define motivational states is as a mapping between outcomes (or
significant events in the world) and the utility they confer to the animal.* For
instance, food holds high utility for a hungry rat, but a low utility for a sated or
thirsty rat (F16. 1B). Using this simple definition, a straightforward means by
which motivation can affect action selection, is through the determination of
the utility of the outcomes of the different available actions. This corresponds
to the traditional “directing” role ascribed to motivation, because by deter-
mining which are the most valuable outcomes, motivation can direct action
selection toward those actions that will lead to these outcomes.

But this is not the only way that the motivational mapping can affect re-
sponding: the outcome utilities will also affect the net rate of rewards (which
is measured in units of utility per time). Because the net reward rate serves
as the opportunity cost of time, motivation will affect the optimal response
rates of all chosen actions. For instance, consider a rat pressing a lever for
food pellets on a random interval 30-sec schedule. On average, the net rate
of reward is equal to the utility of two pellets per minute, minus the costs per
minute of the actions emitted to obtain and harvest these pellets. If the rat is
now made hungrier, the utility of each of the pellets increases and with it the
net reward rate, thus increasing the opportunity cost of time and favoring faster
responding. In this way, higher motivational states cause higher response rates,
while lower motivational states, such as satiety, decrease the rate of responding.
This corresponds to the “energizing” role of motivation, and the much debated
notion of “generalized drive.”%3>

In sum, motivation can exert a twofold influence on responding in our
model: a “directing” effect on the choice of which action to perform, and
an “energizing” effect on the rates with which all actions are performed.>>
FIGURE 1C, D illustrates these two effects, and their qualitative differences. The
choice of action depends on a comparison of the local utilities of the outcomes
of different actions, and so the “directing” effect of motivation is outcome-
specific (i.e., motivation differentially affects different actions, based on their
consequent outcomes; F1G. 1C). In contrast, the choice of response rate depends
on the global opportunity cost of time, thus motivation exerts a similar “en-
ergizing” effect on all prepotent actions, regardless of their specific outcome
(F1G. 1D). This explains some hitherto paradoxical observations of “general-
ized drive,” such as the fact that hungrier rats will also work harder for water
rewards.
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Multiple Action Selection Mechanisms

Although motivation can potentially influence action selection in two ways,
different action selection mechanisms may be differentially sensitive to the
“directing” or “energizing” effects of motivation.* In addition to the tradi-
tional distinction between Pavlovian and instrumental mechanisms for action
control, a recent series of sophisticated studies has teased apart two differ-
ent types of instrumental control, namely, goal-directed and habitual behavior,
based exactly on their susceptibility to motivational influences.>® The evidence
points to two neurally distinct®’ behavioral controllers, which employ different
computational strategies to estimate what is the currently optimal behavior.>®
The goal-directed system uses a forward model (or action — outcome knowl-
edge) to iterate forward to the expected consequences of a series of actions.
As such, its decision-making process is directly sensitive to the utilities of
the outcomes consequent on the different actions.’*%> Conversely, habitual
decision making eschews the online simulation of potential consequences of
actions, relying instead on estimates of the long-term values of actions, which
have been previously learned and stored. These value estimates summarize
previous experience about the consequences of actions, but do not represent
the outcomes themselves. As a result, habitual responding is not immediately
sensitive to changes in action—outcome contingencies,’*-%*~6° and similarly can
not react to a change in outcome utilities without the relatively slow relearning
of new values of actions.>®

How do the two effects of motivation interact with the constraints of these
instrumental action selection systems? We can expect goal-directed action
selection, which chooses actions based on the utility of their consequent out-
comes, to express the “directing” influence of motivation naturally, selecting
those actions that lead to desired outcomes based on the current motivational
state of the animal. This is, in fact, the characteristic hallmark of goal-directed
behavior.’® Moreover, the effects of motivational shifts on goal-directed re-
sponding have been shown to depend on a process of “incentive learning” (in
which animals experience the utilities of different outcomes in different mo-
tivational states®®"!), testifying that motivational states indeed affect action
selection through outcome utilities.

The habitual controller, however, can choose actions that are optimal for
the current motivational state, only if the animal has learned and stored the
long-term values of different actions in this motivational state. This means that
a rat that has been extensively trained (to the point of habitization), in a state
of hunger, to press one lever for food and another for water, will not be able
to adjust its behavior flexibly and will continue to predominantly press the
food lever, even when shifted to a motivational state of thirst. Only through
subsequent learning of the new values of the lever press actions in terms of the
utility of their consequent outcomes in the new motivational state, will habitual
behavior be sensitive to the “directing” effects of motivation.*®
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Does this mean that habitual behavior is initially totally insensitive to mo-
tivational manipulations? We argue to the contrary.* Because motivation also
exerts a global effect on response rates, which is independent of the specific
outcomes of the different actions, motivational states can “energize” both ha-
bitual and goal-directed behavior. Assuming that the animal can estimate at
least the direction in which the net reward rate will change in the new mo-
tivational state (which depends on whether the current motivational state is
lower or higher than previously, and whether the animal has reason to expect
the availability of outcomes that are relevant to this state), the rate of respond-
ing, whether habitual or goal-directed, can be adjusted appropriately so as to
approximate the optimal solution. Our model thus predicts that habitual be-
havior should be sensitive to the “energizing” aspects of motivation, while
goal-directed behavior should be affected by both the “energizing” and the
“directing” aspects.*

DISCUSSION

Building on and extending previous normative models of action selection,
we have suggested a model of optimal selection of response rates in free-
operant tasks. Our analysis focused on the critical tradeoffs that need to be
negotiated to reap rewards at the highest possible rate and the lowest possible
cost. This revealed that, different from the decision of which action to perform
that is determined by outcome-specific considerations, decisions regarding
response rates are determined by global considerations as the consequence of
slow performance is to delay all future outcomes. This insight provided the
basis for a novel outlook on the effects of motivation on the one hand, and of
dopamine on the other, on instrumental responding.

In our model, the global quantity used to evaluate the cost of delaying all
future rewards, that is, the opportunity cost of time, is the net rate of rewards.
We suggest that this quantity is reported by the tonic level of dopamine, which
explains why high levels of dopamine are associated with generally high re-
sponse rates, and lower levels of dopamine induce lethargy. Consequently,
dopamine has a dual effect on behavior: an effect on action choice through
learning, based on phasic aspects of dopaminergic signaling, and an effect on
rate selection, mediated by tonic levels. Different from other roles that have
been suggested for tonic dopamine,’>7* our analysis is the first to suggest a
normative role, and to imply that the tonic level of dopamine is a quantity that
represents specific aspects of the task and of the animal’s performance in it.
From this follow computationally specific predictions: our model predicts that
tonic levels of dopamine will be higher when performing a more rewarding or
a less costly task, and lower when working harder or for fewer rewards.

We have further argued that motivation also exerts a twofold effect on re-
sponding. By determining the mapping between outcomes and their utility,
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motivation “directs” action selection to those actions that are expected to yield
the most valued outcomes, and “energizes” all ongoing behavior through af-
fecting the overall reward rate. However, due to the computational limitations
of the habitual system, only the goal-directed system is susceptible to the “di-
recting” effect of motivation. The “energizing” effect, in contrast, can influence
both habitual and goal-directed behavior. It is this latter effect that we hypoth-
esize to be mediated by tonic levels of dopamine, suggesting a strong link
between motivation and dopaminergic control.”> The direct prediction, which
has yet to be tested, is that higher motivational states will be associated with
higher tonic levels of dopamine (providing the animal has reason to believe
that motivation-relevant outcomes are forthcoming).

Incentive Motivation and Dopamine

In our model, response rates are determined based on the vigor cost of
the action and the overall net reward rate, but importantly, without regard for
the outcome contingent on the specific action. However, behavioral results
from discrete trial experiments show that specific outcome expectancies do
affect response latencies, with responding to cues predictive of higher reward
being typically faster than responding to less valuable cues.”®’° Furthermore,
although in our model the speed of responding is generally associated with
the tonic level of dopamine, dopaminergic recordings have shown a linear
relationship between reaction times and phasic dopaminergic responding.3%-3!

If the tonic average reward signal is indeed computed by slow averaging of
the phasic prediction error signals, then this result is perhaps not surprising.
Cues associated with higher reward expectancies induce larger phasic reward
prediction signals,®>%* which would transiently elevate dopamine tone,3!:34:85
influencing vigor selection and resulting in faster responding. This explanation
is a slightly different outlook on ideas about “incentive motivation,” according
to which different outcomes exert a motivational effect on responding by virtue
of their incentive value 3% 86-87

Pavlovian Responding

We have accounted for the role of dopamine, and that of motivation, in
controlling habitual and goal-directed instrumental responding. But what about
the third class of behavior, namely, Pavlovian responding? The answer to this is
not straightforward. On the one hand, phasic dopamine reward prediction errors
have been implicated in optimal learning of Pavlovian predictive values, as well
as instrumental values. On the other hand, Pavlovian responding itself is not
necessarily normative—rather than a flexible, optimal, adaptation to a task, it
seems as if Pavlovian responding is adaptive only on an evolutionary timescale.
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Within an animal’s behavioral repertoire, Pavlovian responses are characterized
by their inflexibility, and tasks can be constructed in which they are strictly
suboptimal. For instance, Pavlovian behavior persists even in circumstances
(such as omission schedules) in which the occurrence of the Pavlovian response
prevents the delivery of a reward. It therefore seems that Pavlovian responses
are an inevitable consequence of the predictive value of cues.®® A normative
model is thus limited in its applicability to Pavlovian responding.

There is another sense in which our model is ill-suited for Pavlovian behavior:
a critical simplification of our model is that once a decision is made regarding
the next optimal action and the latency with which to perform it, the validity
of this decision does not change while the action is executed. That is, we
have assumed that the state of the world (e.g., whether a reward is available
in the food well or not) does not change while an animal is executing an
action. Though this is true in free-operant schedules, our framework cannot be
used without modification to model tasks in which this assumption is invalid,
such as instrumental avoidance conditioning (in which an aversive outcome
occurs if a response is not performed fast enough). More generally, the model
cannot incorporate Pavlovian state changes, for example, stimuli appearing and
disappearing, and rewards that are given regardless of the animal’s actions.

Having said this, we can still derive some insight from the model as to the
effect Pavlovian cues or rewards should have on instrumental behavior in a sim-
plified setting. Consider the case of a rat performing an appetitive free-operant
task, to which we now add a “free” reward that is delivered independent of the
animal’s actions, and does not require any harvesting actions (for instance,
brain stimulation reward delivered with some fixed probability at every sec-
ond). Extending our framework to this special case is straightforward, and we
can analyze the effect of this free reward on ongoing instrumental behavior.
According to the optimal solution, and consistent with common sense, such a
reward should have no effect on any ongoing instrumental behavior: any action
and rate of responding that were optimal in the original task, are still optimal
in the modified setting. This implies that the effective net reward rate used to
determine the optimal rate of instrumental responding should be the same in
both tasks, that is, that the net rate of rewards controlling instrumental behavior
should be comprised of only those rewards that are instrumentally earned.

However, to infer which rewards are earned instrumentally and which would
have been delivered regardless of one’s actions is not at all a trivial problem,
especially when behavior is habitual. Indeed, although animals show sensitivity
to the contingencies between actions and rewards and reduce responding on
a lever if rewards are offered at the same rate whether the lever is or is not
pressed (a “contingency degradation” treatment>”-¢1:3%:9%) responding in such
cases is not completely eliminated, evidence for some confusion on the part of
the animal. As a result of such overestimation of agency in obtaining Pavlovian
rewards, the net instrumental reward rate would be overestimated, leading to
instrumental response rates that are higher than is optimal.
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A more obvious example is the phenomenon of Pavlovian to instrumental
transfer (PIT) in which the onset of a cue that has been associated previously
with Pavlovian rewards, enhances the rate of ongoing instrumental behavior.
This is clearly not optimal: the Pavlovian cue does nothing to change the
tradeoff determining the optimal response rate. Nonetheless, PIT has been
demonstrated in a wide host of settings.” > It seems, then, that similar to
the suboptimality of Pavlovian responding in general, Pavlovian effects on
instrumental responding are suboptimal. Our model suggests that this is the
result of erroneous inclusion of Pavlovian rewards in the expected net rate
of instrumental rewards. Interestingly, there is an outcome-specific and an
outcome-nonspecific component to PIT.”> Based on our model and some sug-
gestive experimental results,*” it is tempting to propose that, like effects of
motivation on behavior, the outcome-nonspecific effect of Pavlovian cues is
indeed mediated by the tonic level of dopamine.

Where Is the Tradeoff Resolved?

Finally, where in the brain is the tradeoff controlling response rate resolved,
is currently an open question. As this computation can be shared by both habit-
ual and goal-directed controllers of instrumental behavior, it might not reside
in either of these two neural systems. One potential candidate is the anterior
cingulate cortex (ACC), and its projections to the nucleus accumbens, and to
midbrain dopaminergic neurons.”®*” The ACC has been implicated in moni-
toring conflict in cognitive tasks, specifically at the level of response selection,
possibly as an index of task difficulty as part of a cost/benefit analysis underly-
ing action selection.”® Recent investigations using tasks specifically designed
to probe cost/benefit tradeoffs,*®*° confirmed that animals do indeed weigh
the amount of effort required for obtaining a reward on each of the avail-
able options to decide which course of action to take.”® In these same tasks,
lesions to the ACC (but not to other medial frontal areas) affected animals’
cost/benefit tradeoff, and caused them to prefer a low-effort/low-reward option
to the high-effort/high-reward option preferred by nonlesioned rats.%¢:°7-100.101
Although a similar effect is seen with 6-hydroxydopamine lesions of the nu-
cleus accumbens,*®?? there are differences between the effects of ACC and
accumbal dopaminergic lesions,’® suggesting that the ACC and nucleus ac-
cumbens dopamine may fulfill different roles in the decision-making process,
with nucleus accumbens dopamine computing and signaling the opportunity
cost of time, and the ACC integrating this with expected immediate costs and
benefits to determine the tradeoff for or against each possible action. Results
to the opposite direction, showing excessive nose-poke responding in a go/no-
go task after ACC lesions,'%? indeed suggest that ACC lesions do not merely
tilt the balance toward less effortful options (as is suggested for accumbal
dopamine depletions), but rather disrupt the instrumental cost/benefit analysis

5901 SUOWILIOD BAIEBIO BIGEOI dck 3L AG PoUBAOE 32 SIPIIE YO 98N JO S3MI 104 AIeAGIT BUIIUO AB]IA UO (SUOIPUCO-PUE-SWBYULI0O" A3 |1 AR2IIBUIU0//SARY) SUOTIPUOD PUE SW L 3L 39 *[S202/0T/80] Lo A1 SUIINO 511 “AISBAIN UOBOUL AQ 8TO'06ET SIRULE/OGTTOT/I0PAUCO™AS| 1M A.qIPUIIUO'SGNGSeAL//SY WO} POpEOIUMOQ *T 2007 ‘ZE9967.T



370 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

such that a less sophisticated Pavlovian default response pattern is chosen. That
is, in a lever-pressing task in which the lever-press action is not the Pavlovian
default, ACC lesions cause the animal to cease pressing, while in an appetitive
approach task the Pavlovian default of approaching the food port dominates
as a result of the lesion.

CONCLUSIONS

To conclude, from a detailed analysis of the factors affecting response rates
we have gained not only a normative understanding of free-operant behavior,
but also a new outlook on the effects of dopamine and motivation on re-
sponding. The tight coupling we suggest between motivation and dopamine is
perhaps surprising: dopamine had been related to motivation in early theories,
only to be dissociated from signaling reward motivation per se in contem-
porary normative models. However, we are not advocating to abandon ideas
about reward prediction errors, and relapse to the “anhedonia hypothesis” of
dopamine. Rather, we suggest to take normative models of dopamine one step
forward, to account for tonic as well as phasic signaling, two distinct modes of
transmission that can carry separate computational roles.
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