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Phasic dopamine responses are thought to encode a

prediction-error signal consistent with model-free

reinforcement learning theories. However, a number of recent

findings highlight the influence of model-based computations

on dopamine responses, and suggest that dopamine

prediction errors reflect more dimensions of an expected

outcome than scalar reward value. Here, we review a selection

of these recent results and discuss the implications and

complications of model-based predictions for computational

theories of dopamine and learning.
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Introduction
The striking correspondence between the phasic

responses of midbrain dopamine neurons and the tempo-

ral-difference reward prediction error posited by rein-

forcement-learning theory is by now well established

[1–5]. According to this theory, dopamine neurons broad-

cast a prediction error — the difference between the

learned predictive value of the current state, signaled

by cues or features of the environment, and the sum of the

current reward and the value of the next state. Central to

the normative grounding of temporal-difference rein-

forcement learning (TDRL) is the definition of ‘value’

as the expected sum of future (possibly discounted)

rewards [6], from whence the learning rule can be derived

directly. The algorithm also provides a simple way to

learn such values using prediction errors, which is thought

to be implemented in the brain through dopamine-

modulated plasticity in corticostriatal synapses [7,8]

(Figure 1, left). This theory provides a parsimonious
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account of a number of features of dopamine responses

in a range of learning tasks [9–12].

Are model-free dopamine prediction errors a
red herring?
A core tenet of TDRL is that it is ‘model-free’: learned

state values are aggregate, scalar representations of total

future expected reward, in some common currency [1,13].

That is, the value of a state is a quantitative summary of

future reward amount, irrespective of either the specific

form of the expected reward (e.g., water, food, a combi-

nation of the two), or the sequence of future states

through which it will be obtained (e.g., will water be

presented before or after food). Critically, model-free

TDRL assigns these summed values to temporally-

defined states; accordingly, the algorithm binds together

predictions about the amount of reward and the expected

time of delivery (Figure 1). In many studies, dopamine

signals appear to reflect such temporally-precise, unitary

value expectations, which also correlate with conditioned

responding and choice preferences [14,15]. However,

little work has tested this strong hypothesis directly,

by, for instance, having a single cue predict several

rewards of different types within a single trial, or by

testing the effects of changes in type of reward on dopa-

mine signaling, while keeping the reward value constant.

Another important feature of model-free learning (includ-

ing TDRL) is that it posits that scalar state values are

accrued solely through experiencing the relationship

between the current state and the (possibly rewarded)

state that follows [6,16]. That is, state values are learned

through experience and ‘cached’ for future use. This is in

contrast to model-based decision making [17], where

values are computed anew each time a state is encoun-

tered by mentally simulating possibly distant futures

using a learned internal ‘world model’, which captures

the sequences of transitions between non-adjacent states

and their associated rewards (but see below for some more

nuanced distinctions).

Although phasic dopamine signals have predominantly

been interpreted as model-free temporal difference pre-

diction errors, a growing number of studies leveraging

complex behavioral tasks, alongside novel optogenetic

and imaging techniques, are revealing an increasingly

detailed picture of dopamine reward prediction errors

during learning, and the multiple dimensions of reward

prediction on which they are based. Intriguingly, several

of these studies have demonstrated a significant degree of
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Multiple dimensions of prediction in dopamine prediction errors. Consider a simple task in which a brief presentation of a light cue is repeatedly

followed by a drop of vanilla milk after some fixed delay (middle). What would happen on a trial in which the light is followed by a drop of equally-

preferred chocolate milk after a shorter delay? Model-free TDRL with a complete serial compound stimulus representation proposes that the cue

triggers a discrete sequence of activity that represents sequential time points after the presentation of the cue (left; a number of neurons are

depicted horizontally; their activity at different timepoints is portrayed vertically). At each timepoint, summation of this weighted representation

produces a scalar estimate of future value (V), which dopamine neurons (DA) compare to obtained reward to compute a prediction error signal.

The prediction error is then broadcast widely (red) and used to modify the weights for neurons that were recently active (circles on arrows). When

an unexpectedly early, chocolate-flavored reward is delivered, the prediction error signals the difference in time-discounted value, and modifies

the weights for the part of the representation that is active when the prediction error is signaled. By contrast, we propose that dopamine neurons

have access to (and maybe aid in learning) dimensions of prediction other than scalar value, and these are used for computation and signaling of

prediction errors (right). For example, after the presentation of the cue, multiple features of the predicted next event (in this case, a liquid reward)

may be represented by (perhaps overlapping) populations of neurons through time (color gradient), including the predicted amount (e.g., one

drop), the delay to reward delivery (it will arrive after several seconds) and the flavor of the reward (vanilla milk). At the time of reward delivery,

violations of the prediction along any of these dimensions may elicit a phasic response from dopamine neurons, though different neurons may be

specialized for prediction errors corresponding to different dimensions. In this case, at the early presentation of a drop of chocolate milk,

prediction errors are elicited for the timing of reward delivery as well as for flavor (red) but no prediction error arises for amount (black).
heterogeneity in dopaminergic responses during learning,

suggesting greater complexity in these signals than pre-

viously appreciated. Below we review evidence from

these recent studies, asking what is the nature of dopa-

mine signals? Do they reflect an aggregate (scalar) error,

or a vector-based signal that includes not only the mag-

nitude of deviation from predictions, but also the identity

of the deviation (did I get more food than expected, or

water instead of food)? And how might these signals be

incorporated into learning algorithms implemented

throughout the brain?

Temporal representation and dopamine
One notable property of dopamine prediction errors is

that they are temporally precise: if an expected reward is

omitted, the phasic decrease in dopamine neuron activity

appears just after the time the reward would have

occurred [2]. It is this phenomenon that inspired the
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TDRL algorithm, which models such temporally precise

predictions by postulating sequences of time-point states

that are triggered by a stimulus (known as the ‘complete

serial compound,’ CSC stimulus representation, or

‘tapped delay line’; Figure 1), each of which separately

accrues value through experience [6]. However, when a

reward is delivered unexpectedly early, dopamine neu-

rons do not display a phasic decrease in activity at the

original expected time of reward, as would be implied by

the CSC, in which a prediction error updates the value of

the current, and not subsequent, timepoint states [18,19].

Reset mechanisms, in which reward delivery terminates

the CSC representation, have been proposed to address

this [19], but other challenges suggest that the CSC is

perhaps not as viable an explanation for learned timing.

Specifically, prediction errors are only slightly enhanced

to temporally variable rewards, suggesting that under

some conditions reward predictions may have low
www.sciencedirect.com



Model-based predictions for dopamine Langdon et al. 3
temporal precision [20], and multiple studies in humans

(first inspired by [21]) have shown that a not-fully-pre-

dicted reward (or reward omission) affects choice of its

related cue on the very next trial, suggesting that the CSC

include only a single time-point, which then leaves unex-

plained how the timing of reward (relative to stimulus

onset) is learned.

An alternative is to allow task states to persist for learned

durations (formally, a ‘semi-Markov’ framework), with

reward predictions tied to a temporally-evolving belief

about the current latent state. Learning values for latent

states, rather than cues, incorporates a rich world model,

and suggests that prediction error signaling is ‘gated’ by

inference about when one state has transitioned to

another [19,22]. Recent work has directly demonstrated

that dopamine reward prediction errors are consistent

with this framework [23��]. Here, when a cue predicted

reward delivery with an unknown (but capped) delay, the

passage of time since cue onset made reward delivery

more likely, eliciting smaller dopamine prediction errors

to later rewards. In contrast, when reward delivery was

probabilistic, as time passed it became more likely that

the trial would not be rewarded, and indeed dopamine

responses increased with reward delay. Consistent with

this theory, other studies have shown that dopamine

activity reflects evolving temporal predictions, suggesting

at the very least that inference about the timing of events

(for e.g., the hazard rate) influences the computation of

dopamine reward prediction errors [20,24,25��,26]. More

broadly, optogenetic manipulation of midbrain dopamine

activity is sufficient to bidirectionally change judgments

on a temporal categorization task [25��], directly impli-

cating dopamine signaling in timing processes. It also

appears that the generation of prediction errors due to

mistimed reward delivery is neurally separable from

computing prediction errors due to an unexpected

amount of reward, as ventral striatum lesions abolish

the former (so a mistimed reward does not elicit a pre-

diction error signal) while leaving prediction errors due to

reward magnitude intact. This finding argues against the

time-bound representation of value in the CSC represen-

tation, suggesting instead a semi-Markov model in which

the duration of states and the amount of reward associated

with each state are separately learned, and the ventral

striatum plays a key role in learning or representing the

former, but not necessarily the latter [22].

In general, it is often implicitly assumed that states

correspond directly to percepts of cues in the environ-

ment [27,28]. However, apart from the challenges that

timing poses to such an account, even straightforward

neural representations of the environment are an inter-

pretation of the external reality through, at minimum, a

relevance filter [29,30]. It is therefore natural to extend

TDRL models by allowing expected value to be calcu-

lated with respect to inferred states that capture the
www.sciencedirect.com 
learned structure of a task [17,31–34]. The mapping

between observations (such as cues and rewards) and

underlying task states may be probabilistic (as in ‘partially

observable environments’) or ambiguous (for example in

the case of conflicting or mixed cues) [19,35–37], making

state inference itself a non-trivial process. However, it is

important to keep in mind that both model-free and

model-based values can be learned/computed for states

that do not correspond directly to observable cues —

prediction errors based on inferred states are not, in of

themselves, a departure from model-free TDRL, since at

the time the errors are generated, they may still be based

on cached values attached to the hidden states through

direct experience.

Not all dopaminergic predictions are learned
through direct experience
Indeed, a central aspect of TDRL that makes it model

free is that, in the algorithm, values for state are learned

(and cached) through direct experience with the state.

Recent work suggests, however, that phasic dopamine

may reflect values that have been learned indirectly. Of

particular relevance is a sensory preconditioning experi-

ment showing that reward predictions that are ascribed to

a cue solely through its relationship to another neutral cue

are reflected in dopamine neuron firing. Here, two neutral

cues (A and B) were first presented in sequence multiple

times (A ! B), and then one of the cues, B, was paired

with food in a separate training session. Behaviorally, this

later training is known to endow cue A with reward-

predictive value. Importantly, the authors showed that

after B ! food training, the presentation of cue A elicited

a phasic increase in dopamine, which was correlated with

activity elicited by presentation of cue B. This suggests

that the expectation that A would lead to reward, pre-

sumably computed through model-based forward simu-

lation of A ! B and B ! food, was available to dopamine

neurons [38].

Notably, TDRL has no mechanism by which value can

transfer between predictive cues retrospectively.

Attempts have been made to explain these results by

enhancing TDRL to operate not only on the current state,

but on states that are inferred to be related to the current

state — a departure from pure model-free reinforcement

learning — as in ‘mediated learning,’ [39,40] or the Kal-

man TD model [32,41]. These explanations suggest that

during the pairing of B with food, a neural representation

of A is activated by association to B, and therefore also

associated with the food. However, if the orbitofrontal

cortex — an area associated with model-based computing

of values — is inactivated at test, responding to A is

abolished, while responding to B is intact [42]. Given

that OFC has been repeatedly shown to be unnecessary

for conditioned responding to cues directly paired with

reward (for example, cue B in this experiment), this result

strongly suggests that the value of A is computed in OFC
Current Opinion in Neurobiology 2018, 49:1–7
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at the time of the test and not during the B ! food

training. That dopamine prediction errors may reflect

this computed-on-the-fly value is also consistent with

accumulating evidence from fMRI showing that predic-

tion error signals include model-based information and

that model-based decisions are sensitive to striatal dopa-

mine [43�,44,45].

We note that even if model-based values are used to

compute prediction errors, the error itself may still influ-

ence only model-free learning, for instance of a behavioral

policy [46]. Indeed, it is possible that at test A invokes a

model-based representation of the inferred B, the cached

value of which is available to dopamine neurons. Under

this scenario, the prediction error signaled to A arises from

the cached value of B not A [47]. It is also important to

note that adding inferred states and access to model-

based values does not (yet) require that dopamine convey

a prediction error signal that is used for learning the model

itself. However, optogenetic silencing in a related task

shows that dopamine transients are in fact required for the

initial formation of associations between cues A and B,

even though no rewards were present, and therefore

learning in that phase could not have been driven by

scalar prediction errors [48��].

Multiple dimensions of prediction in dopamine
responses
Another fundamental property of TDRL is that it learns

aggregate, scalar predictions of the sum of future rewards

predicated on occupying the current state — a ‘common

currency’ value that sums over apples, oranges, sex and

sleep. As alluded to above, and complicating the mapping

between dopamine and TDRL even further, it appears

that dopamine neurons respond to deviations from pre-

dictions in dimensions other than scalar value [49]. In

particular, prediction errors have been recorded for an

unexpected change in the flavor of reward pellets, even

though there was no change in their subjective value [50].

Such ‘state prediction errors,’ that is, prediction errors due

to an unexpected state (“I got chocolate milk rather than

vanilla”), suggest that the identity of the outcome is a

component of reward prediction in dopamine circuits, at

odds with the model-free framework that explicitly

ignores specific identities and compares values in com-

mon currency. Information about outcome identity may

reflect inputs from the orbitofrontal cortex [51] which

track multiple specific features of outcomes beyond

reward amount [52,53].

Model-based learning with dopamine
prediction errors
All told, current findings suggest that dopamine neurons

have access to model-based representations of expected

rewards that reflect learned properties beyond a scalar

representation of value (Figure 1, right). However, the

convergence of TDRL to a useful value representation
Current Opinion in Neurobiology 2018, 49:1–7 
stems from the alignment between the computational

goal of the agent (to maximize total reward through value-

guided action) and the single dimension along which

reward predictions are represented (i.e., scalar value).

Unless used judiciously, a generalized prediction error

signal [54] that responds to any mismatch along multiple

dimensions of an outcome (e.g., the color of a reward, or

the oddly shaped plate it was served in) might erroneously

perturb value representations upon which choices are

putatively based, biasing the animal away from the nor-

mative goal (for example, towards preferring low-quality

food served in ever-changing plates, rather than high-

quality food served in more mundane dinnerware). Such

biases have indeed been identified in the influence of

novelty and information on both dopamine reward pre-

diction errors and value-guided choice [55,56], but it is

unclear how widespread they are.

Indeed, to be truly useful for learning a world model,

‘model-based prediction errors’ must be computed for

every aspect of the model in parallel — a multi-dimen-

sional (i.e., vector) prediction error that signals not only

that there is a mismatch between expectation and reality,

but exactly what dimension of prediction was misaligned

[34,57,58]. Do dopamine neurons signal such model-

based prediction errors? If so, ideally, these would be

broadcast in parallel so that the correct component of the

model might be updated via its respective prediction

error [19,22] (Figure 1, right). This would allow a segre-

gation of learning across different dimensions of reward

prediction such as value, state identity, or time, supported

by separable neural populations. Such segregation might

account for the distinct pattern of prediction-error signal-

ing in dopamine terminals across striatal subregions

[59�,60�], and might be a more prominent feature of

dopamine activity than previously detected, in part due

to a sampling bias whereby experiments investigating

dopamine signaling have almost exclusively manipulated

reward value, not other state dimensions.

Moreover, because much of what we know about dopa-

mine activity is derived from the analysis of activity of

individual neurons or localized dopamine release or from

techniques that average these signals over large popula-

tions, we may be missing more complex spatiotemporal

and network interactions that can only be uncovered by

treating these neurons as ensembles with unique input

and output relationships. For example, target regions that

receive, and learn from, dopamine prediction error signals

might locally separate the incoming signal into distinct

components, allowing the relevant dimensions of predic-

tion to be flexibly decoded, depending on the current task

and internal goals. In particular, cholinergic signaling in

the striatum is known to powerfully modulate dopamine

release [61,62], implying local circuit control over the

influence of dopamine signals according to the current

state of the task [63,64]. However, exactly how a truly
www.sciencedirect.com
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multiplexed prediction error could be separated into its

orthogonal components is not trivial, to say the least.

So what is the role of dopamine in learning?
One thing that these recent studies make clear is that a

better understanding of the computational role of dopa-

mine entails a broader consideration of what it means for a

reinforcement learning algorithm to be ‘model-based’

[34]. Model-based prediction in RL has been most

strongly identified with the use of models for forward

planning, enabling values to be computed on the fly (as

opposed to cached) in order to flexibly support goal-

directed behavior [65]. But models may also be exploited

to enable learning over hidden states, for example in

algorithms that combine inference with TDRL [36,66].

Indeed, the necessity to represent states through time,

either by a CSC or other, more complex state representa-

tion [67,68], can be thought of as a model of the past —

and now unobservable — state of the environment. Over-

all, the dopaminergic signatures of model-based predic-

tion we have highlighted draw attention to the question of

what is being learned about — while a relatively straight-

forward stimulus representation may be evident to an

experimenter, such a representation may not form the

basis of learning for a behaving animal in more complex

tasks [66].

The suggestion that dopamine signals a multidimensional

model-based prediction-error signal departs considerably

from the claim (and supporting evidence) that all dopa-

mine neurons broadcast a single, scalar quantity across

vast areas of the brain. But, it is hard to see how lumping

together all model-based prediction errors into one aggre-

gate signal would be useful for downstream learning,

unless we modify what we think the prediction error

does downstream. One possibility is that the dopamine

prediction-error signal enhances learning in target areas

indiscriminately, without signaling the direction of learn-

ing — similar to a salience signal, in the service of learn-

ing rather than action — and information about what

exact prediction was violated is available from other

sources. Indeed, sensory and associative areas that have

a detailed representation of the current state (including

all cue and reward properties deemed relevant to the task)

may be in the best position to know exactly in what ways

this state is unexpected. Unfortunately, this re-envision-

ing of the role of phasic dopamine signals would not

explain why some prediction errors, namely those to

reward omission, are signaled by pauses in firing. Multi-

plexing of model-free scalar prediction errors and model-

based multidimensional prediction errors may be the

answer — but only future experiments directly testing

for the existence of several of these errors at once, will

tell. In any case, what is becoming clear is that phasic

dopamine signals, until recently a beacon of computa-

tionally-interpretable brain activity, may not be as simple

as we once hoped they were.
www.sciencedirect.com 
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