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X Stephanie C. Y. Chan, X Yael Niv,* and X Kenneth A. Norman*
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544

The orbitofrontal cortex (OFC) has been implicated in both the representation of “state,” in studies of reinforcement learning and
decision making, and also in the representation of “schemas,” in studies of episodic memory. Both of these cognitive constructs require
a similar inference about the underlying situation or “latent cause” that generates our observations at any given time. The statistically
optimal solution to this inference problem is to use Bayes’ rule to compute a posterior probability distribution over latent causes. To test
whether such a posterior probability distribution is represented in the OFC, we tasked human participants with inferring a probability
distribution over four possible latent causes, based on their observations. Using fMRI pattern similarity analyses, we found that BOLD
activity in the OFC is best explained as representing the (log-transformed) posterior distribution over latent causes. Furthermore, this
pattern explained OFC activity better than other task-relevant alternatives, such as the most probable latent cause, the most recent
observation, or the uncertainty over latent causes.
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Introduction
In recent years, cognitive neuroscientists studying reinforcement
learning and decision making have recognized the importance of
specifying representations of the environmental “state” that cap-
ture the structure of the world in a predictive way (Courville et al.,
2004; Gershman and Niv, 2010). At the same time, there has been
renewed interest among cognitive neuroscientists in how mem-
ory encoding and retrieval are shaped by situation-specific prior
knowledge (“schemas”; Tse et al., 2007). As work in this area

progresses, it is important to clarify exactly what constitutes a
schema and how schemas are formed.

Whether inferring the current state or the currently relevant
schema, agents are making inferences about the hidden variables
that underlie and generate our observations in the world. This
inference can be concretely formulated in terms of Bayesian la-
tent cause models (e.g., Gershman et al., 2010). According to this
framework, states and schemas can be viewed as hidden (latent)
causes that give rise to observable events. For example, if you
arrive late to a lecture, the situation (whether this is indeed the
department colloquium or you have accidentally walked in on an
undergraduate class) determines your observations about the av-
erage age of the audience, the proportion of audience members
that are taking notes, the type of information being presented,
and so on. To decide whether you are in the right place, you can
use Bayesian inference to infer a belief distribution over the
possible situations that might have generated the current ob-
servations, i.e., a posterior probability distribution over latent
causes, p(latent cause � observations) (Fig. 1A).

We hypothesized, based on the similarity of the underlying com-
putations, that the inference related to these two cognitive constructs
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Significance Statement

Our world is governed by hidden (latent) causes that we cannot observe, but which generate the observations we see. A range of
high-level cognitive processes require inference of a probability distribution (or “belief distribution”) over the possible latent
causes that might be generating our current observations. This is true for reinforcement learning and decision making (where the
latent cause comprises the true “state” of the task), and for episodic memory (where memories are believed to be organized by the
inferred situation or “schema”). Using fMRI, we show that this belief distribution over latent causes is encoded in patterns of brain
activity in the orbitofrontal cortex, an area that has been separately implicated in the representations of both states and schemas.
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(states and schemas) might be implemented using the same neural
hardware. Indeed, there is one area of the brain that has separately
been implicated in representing states (Wilson et al., 2014) and also
schemas (Tse et al., 2011; Ranganath and Ritchey, 2012; van Kesteren
et al., 2012; Ghosh and Gilboa, 2014; Richards et al., 2014; Schlicht-
ing and Preston, 2015)—the orbitofrontal cortex (OFC). Further-
more, previous univariate analyses in fMRI have implicated this
region in encoding various summary statistical measures that are
related to or are components of the posterior distribution, e.g., the
posterior mean, likelihood of the current stimulus, and prior uncer-
tainty (Vilares et al., 2012; d’Acremont et al., 2013; Ting et al., 2015).
However, these studies have not investigated representations of a full
probability distribution.

Here, we used fMRI to investigate representation in the OFC
of posterior probability distributions over latent causes. In our
experiment, we created a probabilistic environment in which
participants were required to make inferences about the hidden
causes that generated their observations. Participants viewed se-
quences of animal “photographs” from one of four “sectors” of a
virtual “animal reserve.” Participants were asked to judge the
probability that the photographs were taken in each of the sec-
tors, based on their previous experience observing animals in
each sector. Using multivariate pattern similarity analyses of
fMRI activity, we found that BOLD activity in the OFC was better
explained by the posterior distribution over sectors (latent

causes) than by a wide range of related signals, including the
current stimulus, the most probable sector (the maximum a pos-
teriori latent cause), or the uncertainty over latent causes (opera-
tionalized as the entropy of the posterior distribution). The
present result advances our understanding of the function of the
OFC. It also unifies results from two different fields of cognitive
neuroscience, inviting further investigation into the relationship
between probabilistic inference, states, and schemas.

Materials and Methods
Participants
Thirty-two participants (age, 18 –34 years; 22 female) from the Princeton
University community participated in exchange for monetary compen-
sation ($20 per hour plus up to $15 performance-related bonus). All
participants were right-handed. Participants provided informed written
consent. The study was approved by the Princeton University Institu-
tional Review Board.

Experimental design
The safari. Participants were told that they were going on a virtual
safari—a visit to an animal reserve divided into four different sectors.
Each sector was associated with a different color, background image,
background music, and location on a map (randomized across
participants).

There were five different kinds of animals in the animal reserve.
Every animal appeared in every sector, but with different likelihoods
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Figure 1. Task. A, Schematic showing the relationship between latent causes and observations in the world. Inference about the posterior probability over latent causes involves inverting the
generative model. B, Animal likelihood distributions P(animal � sector) (not shown directly to participants). Colors and animals were randomized across participants. C, An example of the first few
trials of a tour through sector YELLOW. Each tour began with an image of the safari map, indicating the current sector and its location, and lasted 30 – 40 trials. Each trial began with a prompt asking
the participant to guess which animal would appear next, followed by the appearance of an animal. A fixation cross was presented for 0.2– 0.8 s before each question and each animal presentation.
The animals were pseudorandomly drawn from the likelihood distributions for the current sector. The sector’s music played in the background, until the start of the next tour. D, An example of a trial
in the photographs task. Each trial began with an image of the safari map with a question mark at its center, indicating that the current sector was unknown. Next, a sequence of 1– 6 animals
appeared (pseudorandomly drawn from a single sector). Finally, participants were prompted to guess which of two sectors (randomly chosen) was more (or, on half the trials, less) probable.
Participants received feedback on their responses. A fixation cross was presented for the last 0.5 s of each animal presentation.
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P(animal � sector). The likelihoods (not shown directly to the partici-
pants) were chosen so that none of the sectors was strongly identified
with a single animal, and so that none of the animals was strongly iden-
tified with a single sector (Fig. 1B; colors and animals were randomly
assigned across participants).

Procedure overview. The experiment consisted of two parts. In the first
part, participants “toured” through the animal reserve to learn (through
experience) the likelihoods P(animal � sector) for each animal and each sec-
tor. In the second part of the experiment, participants were shown sequences
of drawings that represented “photographs” of animals, which were taken in
an unknown sector. Given the animals shown in each sequence, participants
were asked to infer the posterior probabilities of different sectors,
P(sector � animals shown). For each participant, the experiment took place
across 2 consecutive days (Table 1).

Tours task. In the tours task (Fig. 1C), participants were instructed that
they would “tour” through the animal reserve, one sector at a time, to
learn the animal frequencies in each sector (the animal likelihoods). Each
tour consisted of 10 – 40 trials through a single sector. One animal ap-
peared on each trial, pseudorandomly chosen according to the likeli-
hoods for that sector. Before each animal appeared, participants were
shown a prompt, asking them to make a prediction about which of two
animals (one correct and one randomly chosen) would appear next. The
alternative (incorrect) option was chosen with uniform probability from
the four other animals. To distinguish between the animals in the ques-
tion prompt (which were not representative of the sector’s likelihood
distribution) and the animals that were actually drawn from the sector’s
likelihood distribution, the question prompts were shown as text while
the animals drawn from the safari sector were shown as pictures.

In order for the sectors to form rich contexts, each sector was associ-
ated with a different color, background image, background music, and
location on a two-by-two map (randomized across participants). Before
the first trial of a tour through a sector, participants were shown the
sector’s location on the map. Also, for the duration of a tour through a
sector, animals were displayed on the sector’s color-matched backdrop
image, and the music associated with that sector was played in the
background.

Photographs task. On each trial of the photographs task (Fig. 1D),
participants were shown a sequence of animal “photographs,” without
being told which sector the photographs were taken from. At the end of
the sequence, participants were prompted to indicate which of two sec-
tors (randomly chosen) was more (or less) probable. The two sector
options for each question were chosen uniformly from the four sectors of
the safari (and did not necessarily include the most or least likely sector).
So, to perform well on the task, participants had to maintain a full pos-
terior distribution over all four sectors (as opposed to estimating only the
most probable sector, for instance).

Participants received 10 cents for every correctly answered question,
and they received feedback on every trial. So that more probable sectors
were not consistently associated with higher monetary value, we asked

which of the two sectors was more probable on half of the trials, and
which was less probable on the other half of the trials. To eliminate
confounds with motor plan, the positions of the two response options
were pseudorandomly assigned between left and right.

To encourage participants to update their inference of the sector prob-
abilities after every animal presentation (as opposed to waiting until the
time of the question to integrate over the animals observed), we varied
the length of the sequences between one and six animals (so that the
appearance of the question prompt was unpredictable), and participants
were only allowed 2.5 s to give a response after the appearance of the
question.

The posterior probability of each sector P(sector � animals seen) can be
straightforwardly computed from the animal likelihoods using Bayes’
rule (all sectors were equally likely a priori), as follows (Eq. 1):

P�sector i�animals seen� � P�animals seen�sector i� � P�sector i�

� P�animal 1�sector i� � P�animal 2�sector i� � …

Feedback for the responses was generated based on these posterior prob-
abilities. Due to a bug in the code that was undetected during data col-
lection, the feedback was incorrectly generated for some of the trials
containing only one animal presentation (this affected �10% of the
trials). In our fMRI analyses, to account for learning from the incorrect
feedback, we used each participant’s estimates of the likelihoods (col-
lected at the end of the experiment) instead of the real likelihoods, and we
also performed trial-by-trial behavioral model fitting, in order to model
learning from feedback (see next section).

To familiarize themselves with the photographs task, participants first
performed two sessions (20 trials each) of the task outside the MR scan-
ner. They then performed four sessions (30 trials, �11 min per session)
inside the scanner.

Behavioral model fitting
To model participants’ posterior inference on the photographs task, as well
as any learning from feedback, we performed trial-by-trial model fitting of
participants’ responses. We tested several classes of behavioral models (note
that we will explicitly refer to these as “behavioral models,” to distinguish
them from the neural models that we later test against the neural data). These
classes of models (Bayesian_nolearning, Additive, Most/least voter, and
Bayesian_feedbackRL) are described in the following.

Bayesian_nolearning. This behavioral model assumed that participants
were correctly computing the posterior distribution over sectors
P(sector � animals seen) using Bayesian inference (as in Eq. 1). To obtain the
model-derived likelihood of each behavioral response (and to capture sto-
chasticity in participants’ behavior), we used a softmax on the posterior
probabilities of the two options in each question prompt (Eq. 2):

P�response � option 1�

�
1

1 � exp�� � �P�sector � option 1�animals seen�
� P�sector � option 2�animals seen���

where � is an inverse temperature parameter (� � 0 implies equal like-
lihood for both options).

Additive. In this behavioral model, rather than correctly multiply-
ing the animal likelihoods together to obtain the posterior distribu-
tion over sectors (as in Eq. 1), we assumed that participants instead
added the likelihoods together to obtain an “additive posterior” (nor-
malized to sum to 1; Eq. 3):

“Additive posterior” � P�animal 1�sector� � P�animal 2�sector� �…

While statistically suboptimal, we might expect this from a simple asso-
ciative mechanism that brings the sectors to mind in proportion to their
association strength with the animals seen. Again, to determine response
probabilities, we applied a softmax operator to the additive “posterior”
probabilities for the two options in each question prompt.

Most/least voter. These behavioral models assumed that participants
were only paying attention to the most common (and/or least common)

Table 1. Tasks performed by participants on Day 1 and Day 2

Day 1
Tours task–1st set 40 trials each tour 2 tours through each sector,

going clockwise around
the map

Tours task–2nd set 20 trials each tour 2 tours through each sector,
sectors pseudorandomly
ordered

Day 2
Tours task–3rd set 30 trials each tour 2 tours through each sector,

sectors pseudorandomly
ordered

Tours task– 4th set 10 trials each tour 2 tours through each sector,
sectors pseudorandomly
ordered

Photographs task–1st set 2 sessions 	 20 trials each Outside the MRI scanner
Photographs task–2nd set 4 sessions 	 30 trials each Inside the MRI scanner

Chan et al. • Probability Distribution over Latent Causes in OFC J. Neurosci., July 27, 2016 • 36(30):7817–7828 • 7819



animals in each sector, a similar strategy having
been previously observed in a similar task
(Gluck et al., 2002). During the trials, each an-
imal appearance “voted” for (or against) the
sectors in which it was the most common (or
least common). To obtain the model-derived
likelihood of each behavioral response, we used
a softmax on the final tally at the end of each
sequence.

We tested several variants of this behavioral
model, e.g., tallying only the positive votes,
and/or allowing an animal to “vote” for (or
against) a sector if it was one of the two most
(or least) common animals in that sector. The
magnitude of the positive and negative votes
were either allowed to be two separate free pa-
rameters or constrained to be equal to each other.
Because the magnitude of the vote already served
as a scaling parameter for the input to the softmax
operator, the inverse temperature of the softmax
was kept constant at 1.

Bayesian_feedbackRL. These behavioral
models were designed to account for learning
from feedback during the photographs task
(including the incorrectly generated feedback).
Here we assumed a reinforcement learning
process, in which participants adjusted their
internal estimates of the animal likelihoods af-
ter feedback about the two sectors in the ques-
tion. These likelihoods were then used to compute the posterior
distribution over sectors via Bayes’ rule.

For the sector that feedback indicated to be more probable, likelihoods
were adjusted upward for all animals seen on that trial. For the sector
indicated to be less probable, likelihoods were adjusted downward for all
animals seen on the trial (Fig. 2; Eq. 4):

P�animal�more probable sector)new

� P�animal�more probable sector)old

� �pos�1 � P�animal�more probable sector)old)

P�animal�less probable sector)new

� �1 � �neg�P�animal�less probable sector)old

Estimates of the likelihoods were renormalized after each adjustment.
The learning rates �pos and �neg were either allowed to be two separate
free parameters or they were constrained to be equal.

For the initialization of the likelihoods, we tested two versions: initial-
ization at the true animal likelihoods or initialization according to the
participants’ subjective estimates of the likelihoods (collected at the end
of the experiment; see below).

Finally, the likelihoods were used to compute the posterior distribu-
tion over sectors via Bayes’ rule. Thus, posterior inference in the Feed-
backRL behavioral model also used Bayes’ rule. The only difference from
the “Bayesian_nolearning” behavioral model above is that the likeli-
hoods (which enter into the posterior inference computation from Eq. 1)
were adjusted on each trial according to feedback.

We tested several additional variants of this behavioral model. In one
variant, participants only adjusted their likelihoods in response to “You
are incorrect” feedback (instead of in response to all feedback). In an-
other variant of the behavioral model, we scaled the learning rates sepa-
rately for each animal according to how much that animal contributed to
the final posterior distribution (Eq. 5):

�eff,animal 


� � � abs�P�more probable sector�appearances of animal 
�

� P�less probable sector�appearances of animal 
��

In this variant, animals appearing multiple times in a trial would have
higher effective learning rates, having contributed more to the final
decision.

For all behavioral models. In a postexperiment questionnaire, we asked
participants to provide their estimates for the animal likelihoods in each
sector. For each of the behavioral models above, we tested versions using
(1) the actual animal likelihoods and (2) subjective estimates of the ani-
mal likelihoods. For the few participants who provided likelihood esti-
mates that did not sum to 1, we normalized the estimates. To avoid taking
logarithms of 0, we converted estimated likelihoods of 0 into 0.01 (and
renormalized).

For each of the behavioral models, we also tested versions in which the
earlier and/or later animals in each sequence were given extra weight. To
model these primacy/recency effects, we fit a power law function for each
participant to give more weight to the earlier and/or later animals in each
sequence (e.g., 1w, 2w, . . . for animal 1, animal 2, . . .). The likelihoods
were exponentiated by this weighting and renormalized. If modeling
both recency and primacy, the weightings for each were summed. We
tested versions in which the recency and primacy free parameters w were
either allowed to be two free parameters or they were constrained to be
equal.

Free parameters for each behavioral model were fit to each partici-
pant’s behavioral data separately, using Matlab’s “fmincon” function,
with �10 random initializations for each behavioral model and each
participant. The best-fitting parameters (the maximum likelihood esti-
mates) were used to evaluate, for each participant and each behavioral
model, the (geometric) mean likelihood per trial (i.e., the exponentiated
log likelihood per trial, without any penalization for number of param-
eters), the Akaike information criterion (AIC), and the Bayesian infor-
mation criterion (BIC), to compare the behavioral models and
determine which best accounted for participants’ behavior.

fMRI acquisition and preprocessing
Functional brain images were acquired using a 3 T MRI scanner (Skyra,
Siemens) and preprocessed using FSL [Functional MRI of the Brain
(FMRIB) Software Library; http://fsl.fmrib.ox.ac.uk/fsl/]. An echoplanar
imaging sequence was used to acquire 36 slices (3 mm thickness with 1
mm gap; TR � 2 s; TE � 27 ms; flip angle, 71°). To increase signal in the
OFC, slices were angled �30° from the axial plane toward a coronal
orientation (Deichmann et al., 2003). For each participant, there were
four scanning runs in total (�11 min each). The functional images were
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Figure 2. FeedbackRL behavioral model. An illustration of learning from feedback in the Bayesian_feedbackRL behavioral
model, for a single trial (not real data). In this example trial, the participant saw a lion and an elephant, and was asked about sector
BLUE and sector GREEN. The feedback indicated that sector BLUE was more probable. As a result, the likelihoods P(BLUE � elephant)
and P(BLUE � lion) are adjusted toward 1 with learning rate �pos, and the likelihoods P(GREEN � elephant) and P(GREEN � lion) are adjusted
toward 0 with learning rate �neg.

7820 • J. Neurosci., July 27, 2016 • 36(30):7817–7828 Chan et al. • Probability Distribution over Latent Causes in OFC



spatially filtered using a Gaussian kernel (full width at half maximum of
5 mm), and temporally filtered using a high-pass cutoff of 0.0077 Hz. We
performed motion correction using a six-parameter rigid body transfor-
mation to coregister functional scans, and then registered the functional
scans to an anatomical scan using a six-parameter affine transformation.

The motion regressors (and their derivatives) were residualized out
from the functional images, as were the mean time courses for CSF and
white matter [segmentation was performed using FSL’s FAST (FSL Au-
tomated Segmentation Tool) function], and also the mean time course
for blood vessels (estimated by taking voxels with the top 1% in SD across
time). Then, the functional images were z-scored over time. All analyses
were performed for each participant in participant space, and then spa-
tially normalized by warping each participant’s anatomical image to MNI
space using a 12-parameter affine transformation.

Region of interest—suborbital sulcus
Our region of interest (ROI) was determined as the intersection of two
sets of brain areas. The first set of areas, the OFC, has been postulated to
be involved in the representation of state, due to evidence from studies of
human and animal reinforcement learning and decision making (Wilson
et al., 2014). The second set of areas, sometimes referred to as the “pos-
terior medial network,” has been postulated to be involved in the com-
putation and representation of schemas or context (Ranganath and
Ritchey, 2012), as the set of areas with high connectivity with parahip-
pocampal cortex (PHC). The intersection of these sets of areas is the
suborbital sulcus, a medial subregion of the OFC (see Fig. 6A). Using
Freesurfer (Destrieux et al., 2010), the ROI was drawn as the anatomically
parcellated cortical region centered on the voxel with maximal resting-
state functional connectivity to the PHC (Libby et al., 2012; the ROI
comprised 105 voxels in MNI 3 mm space and 97.3 � 2.6 voxels in
subject space).

Representational similarity analysis
If the suborbital ROI contains a multivariate representation of the pos-
terior distribution over latent causes, then patterns of neural activity in
this area should be more similar for pairs of time points at which the
posterior distribution was similar, and they should be dissimilar for pairs
of time points at which the posterior distribution was dissimilar. There-
fore, to test whether multivariate patterns of activity in the ROI might be
representing the posterior distribution over sectors, we performed a rep-
resentational similarity analysis (Kriegeskorte et al., 2008).

We first computed the similarity of the posterior distribution over
sectors for every pair of time points during which we expected the pos-
terior distribution to be updated (i.e., at the times of the animal appear-
ances). This provided us with the similarity matrix for the posterior. We
also computed the similarity of the neural pattern in the ROI for every
pair of time points—the similarity matrix for the ROI. Then we com-
puted the Spearman rank correlation of these two matrices (taking only
the upper triangle and excluding the diagonal). We denote this Spearman
correlation as the similarity match between the posterior and the ROI
(Fig. 3). We expected the similarity match to be positive, i.e., that the
neural patterns in the ROI should be more similar for pairs of time points
at which the posterior distribution over sectors was more similar.

We also computed the similarity match for the ROI with other signals
(henceforth called “neural models”), to compare with the similarity
match between the ROI and the posterior distribution over latent causes.
This is important because the similarity structure for the ROI could
potentially be correlated with the similarity structure of the posterior
distributions for reasons other than that the posterior distribution is
represented in this area. For example, the posterior distribution is, on aver-
age, more similar for pairs of time points at which the same animal is pre-
sented; if the suborbital ROI represents the animal currently presented, we
would also find a positive similarity match between the ROI and the poste-
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Figure 3. Representational similarity analysis. An illustration of the representational similarity analysis (not real data). We first computed the similarity structure for the posterior distribution (or
any alternative neural model; Table 3) by computing the normalized correlation of the posterior at every time point with every other time point. We also computed the neural similarity structure for
our ROI (or for each searchlight in the whole-brain analysis), by computing the normalized correlation between patterns of activity at every time point with every other time point. To evaluate the
representational similarity match between the neural data and the neural model, we then computed the Spearman correlation between the two matrices (using only the upper triangle of each
matrix, excluding the diagonal).
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rior distribution. We therefore compared the similarity match between the
ROI and each alternative neural model, to determine the neural model that
best explained the similarity structure of the neural data.

The set of alternative neural models used for this comparison included
the log-transformed posterior distribution (because many signals in the
brain are known to be represented in log space; e.g., Gibbon, 1977; Yang
and Shadlen, 2010; Longo and Lourenco, 2007), the current stimulus, the
maximum a posteriori (MAP) sector (most probable sector), the entropy
of the posterior distribution (a proxy for overall uncertainty), the prob-
ability of the MAP sector (a proxy for confidence, acting approximately
as the converse of the entropy), the rank ordering of sectors in the pos-
terior (since the task tests participants’ ability to rank order the sectors),
and temporal distance between measurements (because fMRI pattern
similarity is known to vary as a function of the temporal distance between
measurements). We also included neural models of the posterior and
MAP that were instead derived using the Bayesian_feedbackRL behav-
ioral model (given that this was the best behavioral model after Bayesi-
an_nolearning, as determined from behavioral model fitting, described
above). See Table 3 for a full list of neural models tested.

To investigate the specificity of the result to our ROI, we also per-
formed a whole-brain “searchlight” analysis, using 25-voxel spherical
searchlights. As with the ROI, we computed the similarity of the neural
patterns in each searchlight to obtain the neural similarity matrix for the
searchlight. We then computed the Spearman correlation of the similar-
ity matrix for each searchlight with each of our neural models. The anal-
ysis was repeated for a searchlight centered on every voxel in the brain.

For both the ROI and searchlight analyses, the neural pattern for each
animal appearance was averaged over the two TRs during which the
animal appeared on the screen (after correcting for the hemodynamic lag
with a 4 s shift). Similarity for neural patterns was computed using
normalized correlation, to accord with the similarity measure used
for the posterior-based neural models (similar results are obtained
when using Pearson correlation instead). Searchlight results are dis-
played on an inflated brain, using the AFNI (Analysis of Functional
NeuroImages) SUMA (Surface Mapping with AFNI) surface mapper
(http://afni.nimh.nih.gov/afni/suma).

Statistics and confidence intervals
Unless stated otherwise, all statistics were computed using random-
effects bootstrap distributions on the mean by resampling participants
with replacement (Efron and Tibshirani, 1986). All confidence intervals
in the text are given as SEM.

To test the reliability of searchlight results across participants, we used
the “randomize” function in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

randomize) to perform permutation tests and generate a null distribu-
tion of cluster masses for multiple-comparisons correction (using FSL’s
“threshold-free cluster enhancement,” p � 0.05 two tailed).

Results
Participants learned the animal likelihoods in the tours task
We evaluated participants’ final learning of the likelihood of each
animal in each sector using performance from the last set of
tours on the last day. In those tours, the participants chose the
more likely animal 73 � 3% of the time. Note that even if
participants had perfect knowledge of the animal likelihoods,
we might not expect participants to choose the more likely
animal 100% of the time, due to noise in the decision process
or probability matching (the tendency to match choice prob-
abilities to the probability of each option being correct; Vul-
kan, 2000; Erev and Barron, 2005).

In a postexperiment questionnaire, we asked participants to
estimate the animal likelihoods P(animal � sector) for every ani-
mal and every sector. These estimates were close to the true like-
lihoods, on average (Fig. 4A). The mean Kullback–Leibler
divergence of the estimated likelihoods from the real likelihoods
was 0.13 � 0.015. As discussed below, we used these participant-
estimated likelihoods in our neural analyses, in lieu of the correct
likelihoods.

Performance on photographs task suggested maintenance of
posterior distributions over sectors
During the fMRI scan sessions, participants correctly chose the
more (or less) probable sector 67 � 1% of the time, which is
significantly above chance (t(31) � 13.1, p � 1e-12). Moreover,
logistic regression on participants’ responses showed that, the
larger the difference in posterior probability between the correct
and incorrect options, the more likely participants were to choose
the correct answer (Fig. 4B). Again, as in the tours task, we ex-
pected stochasticity in participants’ behavior due to noise and
probability matching.

Note that the two sector options in each question were
chosen at random, and therefore required participants to dis-
criminate between posterior probabilities for any possible pair
of sectors. Interestingly, participants performed similarly well
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whether or not questions included the MAP (most probable)
sector (accuracy 69 � 2% for questions including the MAP;
66 � 1% for questions not including the MAP; not signifi-
cantly different). This result further indicates that participants
were tracking the full posterior distribution, and not just the
MAP sector.

Trial-by-trial behavioral model fitting suggested that
participants were approximately Bayesian
The relative performance of the behavioral models is shown in
Figure 5, and the mean parameter fits are shown in Table 2. For
model comparison, we used the best-performing version from
each class of behavioral models (Table 2).

The two Bayesian behavioral models (with and without feed-
backRL) performed best, explaining the data about equally well.
Overall, the model with feedbackRL was the best behavioral
model according to AIC, but the Bayesian model without learn-

ing was the best behavioral model according to BIC, which pe-
nalizes more strongly for extra parameters.

The additive behavioral model performed worse than the
Bayesian behavioral models, indicating that participants were ac-
cumulating evidence multiplicatively, in accordance with the op-
timal strategy (Eq. 1). None of the heuristic inference models that
we tested (the “most–least voter” class of models) could success-
fully outperform the Bayesian behavioral models. Nor did we
identify any significant effect of recency or primacy (any small
improvements in the model likelihoods were not justified by the
increased number of parameters). We therefore concluded that
participants were Bayesian or near-Bayesian in their inference.

As shown in Figure 5, using the participants’ subjective esti-
mates of the animal likelihoods (from the postexperiment ques-
tionnaire) provided a better fit for all behavioral models,
compared with using the real animal likelihoods. This may be
surprising for the feedbackRL behavioral model, given that the
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participant estimates were elicited at the end of the experiment,
but were used in the model to initialize estimates of the likeli-
hoods. However, the low learning rates (Table 2, average fit learn-
ing rates; also, 19% of participants had fitted learning rates of 0)
suggest that changes in the likelihoods throughout the experi-
ment were small relative to the differences between the real and
estimated likelihoods. The low learning rates also explain why the
feedbackRL behavioral model fit the data similarly well to a
Bayesian behavioral model that did not allow for changes of the
likelihood during the task: the models are nested (identical for
learning rates of zero) and similar for low learning rates.

Representational similarity analysis suggests that the
suborbital sulcus contains a representation of the (log)
posterior distribution over latent causes
Figure 6B shows the representational similarity match of the sub-
orbital sulcus with each of the neural models, relative to the rep-
resentational similarity match with the best neural model—the
logposterior (absolute values of the representational similarity
match are shown in Table 4). For all of the alternative neural
models tested, 95% or more of our bootstrap samples showed
better representational similarity match for the logposterior than
for the alternative neural model.

Because the posterior distribution tends to be more similar for
neighboring time points compared with more distant time
points, and that might also be the case for neural patterns, we
took special care to verify that the logposterior neural model was
superior to the alternative (control) time neural model. This was
indeed the case. Moreover, we found that the temporal model
displayed a negative representational similarity match with the
neural patterns, because BOLD patterns for neighboring time
points tended to be anticorrelated. This result was not dependent
on our linear model for temporal distances; because we used
Spearman’s rank correlation to compute representational simi-
larity match, the negative similarity match result would be ob-
served for any other model of temporal distance that falls off
monotonically (e.g., an exponential model). Therefore, since the
posterior distribution showed a positive similarity match while
the temporal neural model showed a negative similarity match,
we can conclude that any positive correlations between the sim-
ilarity matrices for the posterior distribution and time cannot be
responsible for the representational similarity result for the pos-
terior distribution.

Searchlight results for the representational similarity analysis
are shown in Figure 7. The OFC and ventromedial prefrontal
cortex showed a significantly greater representational similarity
match for the logposterior model compared with every other
neural model (p � 0.05 corrected, for every comparison), except
for the entropy, posterior ranking, and posterior models. It also
showed a greater representational similarity match for the log-

posterior than entropy using a more liberal threshold of p � 0.05
uncorrected.

Discussion
Because the underlying structure of the world is often not
directly observable, we must make inferences about the under-
lying situations or “latent causes” that generate our observa-
tions. The statistically optimal way to do this is to use Bayes’
rule to infer the posterior distribution over latent causes.
Based on previous studies implicating the OFC in the repre-
sentation of the current context or situation (related to the
idea of state in studies of reinforcement learning and decision
making, and to the idea of schemas in studies of episodic
memory), we hypothesized that the OFC might represent a
posterior probability distribution over latent causes, com-
puted using approximately Bayesian inference. To test this, we
asked participants to make inferences about the probability of
possible situations in an environment where the situation
probabilistically generated their observations.

Using representational similarity analysis of fMRI activity
during the inference task, we found that patterns of activity in the
suborbital sulcus within the OFC were indeed best explained as
representing a posterior distribution over latent causes. Search-
light analyses implicated the OFC more generally in this repre-
sentation. Furthermore, participants’ behavioral performance
showed that they had access to a full posterior distribution over
the latent causes for their choices; using trial-by-trial model fit-
ting, we showed that participants’ behavior was best explained as
using Bayesian inference.

Our study provides evidence that the OFC represents a full
posterior distribution over situations, as opposed to the best
guess of the situation (the MAP) or other summary measures of
the distribution, such as the overall uncertainty. We operational-
ized uncertainty as the entropy of the distribution; the highest
entropy occurs when the distribution is completely flat (i.e., the
participant is maximally uncertain about which latent cause gen-
erated the observations), and the lowest entropy occurs when the
distribution is fully loaded on one latent cause (i.e., the partici-
pant is absolutely certain about which latent cause generated the
observations). Our similarity analyses showed the entropy to
have a widespread positive similarity match in many areas of the
cortex, which we might expect because entropy should be corre-
lated with the difficulty of the task, and so entropy might there-
fore be correlated with greater overall activity in many regions of
the brain. Nonetheless, in �95% of our bootstrap samples, activ-
ity in the OFC was better explained by the posterior distribution
than by the entropy. Furthermore, searchlight analyses showed
the specificity of this result.

Our results, using multivariate analysis, build on previous
fMRI studies that have used univariate analyses in the OFC to

Table 2. Free parameters and parameter fits, for the best-fitting behavioral model for each classa

Behavioral model Free parameters Mean � SE Range

Bayesian_nolearning �: softmax inverse temperature 4.04 � 2.22 �0, ��
Additive �: softmax inverse temperature 7.04 � 3.46 �0, ��
Mostleast_voter (voting for or against the sectors in which

an animal was the most or least common)
v_pos: size of positive vote; v_neg: size of negative vote 1.69 � 3.39; 0.754 � 1.39 �0, ��; �0, ��

Bayesian_feedbackRL (learning from all feedback, no scaling
of learning rates, and �pos � �neg )

�: learning rate; �: softmax inverse temperature 0.0515 � 0.161; 4.82 � 2.52 �0, 1�; �0, ��

aThe best-fitting behavioral models for all classes did not model recency or primacy biases, and used each participant’s subjective estimates of the animal likelihoods rather than the actual likelihoods. For model classes that had additional
variants, the best-fitting settings are described in parentheses.
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investigate a range of summary statistical quantities related to the
posterior distribution, but which do not capture the full distribu-
tion. These studies have shown that univariate activation of the
ventromedial prefrontal cortex (vmPFC; which includes or is
similar to our ROI) is correlated with a variety of summary sta-

tistics, e.g., expected reward (Ting et al., 2015), reward uncer-
tainty (Critchley et al., 2001; Tobler et al., 2007), variance of the
prior distribution in a sensory task (Vilares et al., 2012), and
marginal likelihood of the current stimulus (d’Acremont et al.,
2013). Our experiment benefited from several key features:
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(1) multivariate neural analysis, (2) four different latent causes,
and (3) dissociation of latent cause from both reward and motor
plan. These features enabled us to identify orbitofrontal repre-
sentation of a full posterior distribution over latent causes that
was separate from value, and which also explained neural activity
in the area better than any single summary statistic we tried. Our
result may therefore explain why evidence for different summary
statistics was found in different studies: these are all components
of the full posterior distribution or correlates of it.

Our study also builds on previous work in the fields of deci-
sion making and episodic memory that has implicated the OFC in
representations of the current situation or context. In decision
making, a belief distribution over states enables one to optimally
learn or compute a behavioral policy even when the state of the
world is not directly observable (as in partially observable
Markov decision processes; Kaelbling et al., 1998). The OFC has
long been implicated in reinforcement learning and decision
making in a wide range of settings; a recent review provides a

Figure 7. Whole-brain searchlight result. Brain areas that passed both of the following
criteria: (1) significantly higher representational similarity match with the logposterior
neural model compared with every other neural model from Table 3 except the posterior,
the posterior computed using the feedbackRL behavioral model, the posterior ranking,
and the entropy, at p � 0.05 with whole-brain correction for every comparison; (2) higher
representational similarity match with the logposterior compared with the entropy, at
p � 0.05 uncorrected. The map is displayed on the orbital/ventral surface of an inflated
brain.

Table 3. Neural models used in the representational similarity analysis, and the similarity measure used to derive the similarity matrix

Neural model Description Similarity measure for two timepoints

Posterior Vector �4 	 1� containing the posterior probability of each sector,
P(sector � animals seen so far)

Normalized correlation*

Posterior–ranking** Vector �4 	 1� containing the posterior probability of each sector,
P(sector animals seen so far)

Spearman correlation

Log posterior Vector �4 	 1� containing the natural logarithm of the posterior probability
for each sector, log�P(sector animals seen so far)�

Normalized correlation*

Current animal An integer �{1, 2, 3, 4, 5} indicating which animal is currently on screen 1 if the same animal; 0 otherwise
Entropy A scalar indicating the entropy of the posterior distribution over sectors 
abs�entropy(t1 ) 
 entropy(t2 )�
MAP An integer �{1, 2, 3, 4} indicating which sector has the highest

posterior probability
1 if the same sector; 0 otherwise

p(MAP) A scalar indicating the probability of the MAP sector 
abs�p(MAP(t1 )) 
 p(MAP(t2 ))�
Posterior–MAPonly The posterior �4 	 1�, zeroed for all sectors except the MAP sector

(i.e. a signal that contains both MAP and p(MAP) information)
Normalized correlation*

Time A scalar indicating the seconds passed since the start of the session 
abs�time1 
 time2�
Posterior–feedbackRL Vector �4 	 1� indicating the posterior distribution over sectors, computed

using the likelihoods updated on each trial using the
best-fitting feedbackRL
behavioral model (free parameters fitted for each participant)

Normalized correlation*

MAP–feedbackRL An integer �{1, 2, 3, 4} indicating the most probable sector according to
the best-fitting feedbackRL behavioral model (free parameters
fitted to each participant)

1 if the same sector; 0 otherwise

*The normalized correlation of vectors x and y is x � y/(�x� � �y�), and is equivalent to the cosine of the angle between the two vectors. It behaves differently than the more commonly used Pearson correlation; for example, the posterior
distributions �0.24 0.25 0.25 0.26� and �0.26 0.25 0.25 0.24� have Pearson correlation of 
1 but normalized correlation of 0.9994. We used normalized correlation because this measure accords better with intuition regarding the similarity
of posterior distributions and quantities derived from posterior distributions; however, similar results were observed when using Pearson correlations instead.

**This neural model is the same as the “posterior” model, except that, by using the Spearman correlation as its similarity metric, it only retains information about the rank ordering of the sectors in the posterior distribution. It is identical to
a rank ordering of the sectors in the logposterior model, since the logarithm is a monotonic operator.

Table 4. Representational similarity match for each neural model in the ROI,
ordered by mean representational similarity matcha

Neural model Representational similarity match

Logposterior 0.01410 � 0.00291
Posterior–ranking 0.01223 � 0.00283
Posterior 0.01219 � 0.00284
Posterior–feedbackRL 0.01185 � 0.00288
MAP 0.00961 � 0.00244
Posterior–MAPonly 0.00944 � 0.00246
Entropy 0.00892 � 0.00243
MAP–feedbackRL 0.00851 � 0.00217
p(MAP) 0.00589 � 0.00187
Current likelihoods 0.00220 � 0.00157
Current animal 0.00033 � 0.00154
Time 
0.03639 � 0.00404
aThis table shows mean and SE of the absolute values of the representational similarity match, rather than the mean
and SE of the within-participant differences relative to the best neural model (shown in Fig. 6).
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unifying explanation for these results by postulating that the OFC
represents inferred states in partially observable situations (Wil-
son et al., 2014). In theories of episodic memory, it is believed that
we organize our memories according to an inferred schema that
specifies the situation and stores previously learned relationships
that a new memory can be incorporated into (Tse et al., 2007;
Hupbach et al., 2008). These schemas seem to be represented or
processed in the vmPFC (Ranganath and Ritchey, 2012; van Kes-
teren et al., 2012; for review, see Schlichting and Preston, 2015),
an area of the brain that is similar to our ROI. For example, Tse et
al. (2011) showed evidence that activation of rat mPFC is highest
immediately after memory encoding that should involve incor-
porating new information into existing schemas. Ezzyat and Da-
vachi (2011) showed that greater activation of vmPFC in humans
during memory encoding is correlated with how strongly those
memories are associated with other memories in the same
“event,” which is consistent with the idea that the vmPFC is in-
volved in schemas that are bound to memories. Our results con-
firm the involvement of the OFC in representations of the current
situation, and additionally show that this representation in the
OFC takes the form of a distribution over possible situations.

Finally, our work also builds on previous studies investigating
neural circuits involved in the “weather prediction” task, very
similar to ours, in which one of two “weather” outcomes is pro-
babilistically predicted by sequences of cards. Knowlton et al.
(1996) implicated the striatum in the learning of these probabi-
listic associations. In our task, participants learned the animal
likelihoods outside the MR scanner, and thus we could not assess
the brain areas involved in the learning phase. However, our
results are compatible with those of Knowlton et al. insofar as the
OFC may use associations learned by the striatum (in our
experiment, the animal likelihoods) to make inferences when
presented with new observations (in our experiment, the photo-
graphs task). More recently, Yang and Shadlen (2007) used the
weather-prediction task to show representation of a decision
variable in the parietal cortex that took the form of the log likeli-
hood ratio between two options. In our experiment, we decorre-
lated the posterior probability from both decision variables and
stimulus–reward associations, and we also investigated represen-
tations of the posterior probability over latent causes before the
decision period. We conjecture that the OFC contains repre-
sentations of the current state or situation in terms of a pos-
terior distribution over the possible states, a representation
that is likely used by downstream areas, e.g., parietal cortex,
for decision making.

Previous work on the weather-prediction task also showed
that most individuals used heuristic strategies in inferring the
weather (Gluck et al., 2002). In our experiment, we explored
several heuristic behavioral models of participants’ inference, but
were not able to find any that predicted participants’ behavior
better than the optimal Bayesian models. There are several rea-
sons why our task may have discouraged the use of heuristics.
First, the animal likelihoods in our experiment were designed to
avoid one-to-one mappings between observations and latent
causes. Second, the task environment had four possible latent
causes (instead of two), and the task itself required rank ordering
all four latent causes rather than just estimating the MAP, thus
increasing complexity and leading to the inadequacy of simple
heuristics. Finally, we provided participants with extensive train-
ing on the probabilistic relationships in the safari, so that heuris-
tics may have been less necessary.

Neurally, the posterior distribution we found in the OFC was
best modeled as being represented in log space. Representation in

log space may be advantageous because addition can then replace
the multiplicative operation required to accumulate evidence in
nonlog space (e.g., across animal presentations, in our experi-
ment); the ability of neurons to add is well characterized, while it
is less clear to what extent neurons can multiply (Yuste and Tank,
1996; Peña and Konishi, 2001; Gabbiani et al., 2002). Indeed,
neural representation in log space is common in many domains,
e.g., decision variables (Yang and Shadlen, 2007), time (Gibbon,
1977), and numbers (Longo and Lourenco, 2007).

To summarize, we designed a task in which participants’
observations were probabilistically generated by unobserved
“situations” or “latent causes,” and found evidence that the OFC
represents a probability distribution over possible latent causes.
A representation of the log posterior distribution explained OFC
activity better than alternatives such as the best guess of the cur-
rent situation or overall uncertainty in the current situation. This
finding was further supported by behavioral evidence that partic-
ipants had access to the full probability distribution for decision
making, and used Bayesian inference to compute the probability
distribution. Our results may explain why previous studies of the
OFC have found evidence for representation of various summary
statistical quantities in the OFC (these are in fact components of
the full posterior probability distribution). Our results may also
unify findings from disparate literature on reinforcement learn-
ing and episodic memory, which separately implicate the OFC in
representations of the current situation.
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