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Reinforcement learning theory provides a powerful set of

computational ideas for modeling human learning and decision

making. Reinforcement learning algorithms rely on state

representations that enable efficient behavior by focusing only

on aspects relevant to the task at hand. Forming such

representations often requires selective attention to the

sensory environment, and recalling memories of relevant past

experiences. A striking range of psychiatric disorders, including

bipolar disorder and schizophrenia, involve changes in these

cognitive processes. We review and discuss evidence that

these changes can be cast as altered state representation, with

the goal of providing a useful transdiagnostic dimension along

which mental disorders can be understood and compared.
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Introduction
Mental illness is often accompanied by models of the

external world that deviate from the norm, and by changes

in the dynamics of information processing relative to these

models. In the past two decades, the machine-learning

framework of reinforcement learning has emerged as an

exceptionally good theory of human and animal learning,

shedding light on computational processes implemented by

networks of neurons in the service of decision making.

Reinforcement-learning algorithms rely on models of the

externalworld—arepresentationof theenvironmentasaset

of states that transitiontooneanothergivendifferentactions,

and that can generate rewards or punishments. Reinforce-

ment-learning theory, therefore, naturally links aberrant

models of the world to measurable changes in behavior,

and can help quantify their neurocomputational substrates.

This approach first emerged with neural network models of

contextmaintenance deficits in schizophrenia [1–4].Current
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frontiers include reinforcement learning theories of mood

disorders [5–7,8��], obsessive-compulsive disorder [9�], and

anxiety disorders [10,11].

Reinforcement learning models of mood
disorders
Mood can be broadly defined as a valenced affective state

that persists over longer periods of time [12]. Starting from

the premise that mood can be understood as a feature of the

brain’s valuation system, recent reinforcement learning

models have formalized mood as a running average of

reward prediction errors [8��]. These theories focus on

the valence of mood, treating mood as a scalar value that

ranges from positive to negative, and seek to predict its

behavioral and neural correlates. For example, expected

value and prediction errors, but not total earnings, correlate

with happiness ratings collected while participants make

choices between different gambles [6]. Moreover, the

extent to which reward prediction errors can be decoded

from neurophysiological markers predicts self-reported

mood fluctuations over the course of a week [13].

Eldar et al. further suggest that mood fluctuations can arise

due to bidirectional coupling between mood and reinforce-

ment learning: positive prediction errors increase mood,

and positive mood increases the subjective value of rewards

(and vice versa for negative mood), leading to a positive

feedback loop that leaves the agent vulnerable to mood

instability (Box 1). This provides a unified neurocomputa-

tional framework for both unipolar and bipolar mood dis-

turbances [14�]. For instance, unipolar depression could

arise byassumingthat the impactofmood onreinforcement

learning is asymmetric: negative mood may bias rewards

more strongly than positive mood. Faster mood updates in

the negative direction would also predict persistent unipo-

lar depression. In contrast, a symmetric bidirectional inter-

action, can result in persistent fluctuations of mood, as in

cyclothymia or bipolar disorder [8��].

The framework described above attributes mood distur-

bances to an altered interaction between mood and learn-

ing from prediction errors. Another key component of

reinforcement learning is the state — a subset of features

in the environment relevant to one’s current goal. It is

often implicitly assumed that states directly correspond to

percepts, but in a complex world, states may be only

‘partially observable’ [15,16]. As a result, humans must

construct an appropriate state representation by inferring

which features are currently relevant [17], and supple-

menting sensory features with relevant components

recalled from memory of past events [18]. A compact

state representation that includes all relevant information
www.sciencedirect.com
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and is free from extraneous information can render oth-

erwise intractable decisions trivial [19]. For example,

when deciding whether to hire a candidate or not, infor-

mation about how they performed at their previous job is

a better predictor of future success than features such as

the color of their shirt or their packing habits. Correctly

defining state is critical to both model-free and model-

based reinforcement learning algorithms, as both rely on

states to learn appropriate policies [20].

Important for reinforcement learning theories of mood dis-

orders is that state representation can influence prediction

errors in two ways: 1) by changing which states we form

reward expectations over — for example, we might be more

disappointed not to get a promotion if we knew the criteria

and that we fulfilled them all, than if we had more doubt

about our eligibility; and 2) by changing which states we

attribute outcomes to — over time we may realize that the

stated criteria for promotion are often waived, and manage-

ment instead promotes those who repeatedly request pro-

motions,evenifnotcompletelyeligible.Thiswouldnotonly

affect our policy in interacting with our superiors, butalso the

prediction errors we experience in our job. We next review

evidence for the idea that given the behavioral demands of

learning and decision-making in multidimensional environ-

ments, different manifestations of mental illness may be

distinguished by changes in state representation.
Box 1 State representation effects on mood dynamics

Reinforcement learning models provide a useful computational language f

fundamental problem in reinforcement learning is determining a suitable sta
actions to take, an agent must also learn which features are relevant for p

In general, when multiple features are present (e.g. features A and B), the to

expectations associated with component features:

V½AB� ¼ FAV½A� þ FBV½B�;

where F are (learned) attention weights to each of the features. The predic

the difference between the perceived reward (Rperceived) and expected valu

learning rate h, and again weighted by attention:

Vnew A½ � ¼ Vold A½ � þ h � PE � FA

Vnew B½ � ¼ Vold B½ � þ h � PE � FB:

In recent reinforcement-learning models of mood, reward perception was fu

where m 2 [�1,1] is mood and f is an individual trait parameter that quantifi

biases the perception of outcomes upwards, and negative mood biases do

to reflect a running average of recent reward prediction errors:

hnew ¼ hold þ h
0 �ðPE � holdÞ history of recent reward prediction errors

m ¼ tanhðhÞ mood is the history of prediction errors mapped to ½�1; 1�

Eldar et al. [7,8��] showed that this coupling between mood and reward c

fluctuations even in relatively stable environments, and that the degree of 

How are the relative weights F determined? One way to think of these is a

follow from the structure of the environment [19]. For example, if the agent h

outcome (Figure 1a, top), she should ignore B (FA = 1, FB= 0), since only 

(Figure 1b, top). In this case, behavior should be determined based on dis

generated A, B, and the outcome (Figure 1a, middle), then A and B should

potentially receiving equal attention (FA = 0.5, FB= 0.5) when computing an

possible presence of the latent variable (and thus predictions about the ou

(here, V0[A] = �1 and V0[B] = 1), different state representations can lead to
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Biased state representation along the bipolar
spectrum
Bipolar disorder is a psychiatric condition in which

patients experience mood disturbances in the form of

manic and depressive episodes, interleaved with periods

of neutral mood (euthymia). Bipolar disorder is distin-

guished from unipolar depression by the presence of one

or more manic (bipolar-I) or hypomanic (bipolar-II) epi-

sodes. Core characteristics of mania include euphoria,

elevated psychomotor agitation, and goal-directed activ-

ity, which may also be accompanied by more risk-taking,

increased self-esteem and irritability [21]. Bipolar disor-

der is particularly prevalent among vulnerable popula-

tions, and carries a substantial risk of suicide. Patients

with bipolar disorder are more likely to seek treatment

when in the depressed rather than manic state, and as a

consequence, bipolar disorder can be easily misdiagnosed

as unipolar depression [22]. Cognitive theories of mood

disorders have largely focused on depression [5,23,24�].
Here, we examine analogous theories of bipolar disorder,

and suggest ways in which they may be cast in the

language of state representation for reinforcement

learning.

One prominent finding is that bipolar disorder is associated

with a greater willingness to expend effort when pursuing

reward [25], a pattern that stands in direct contrast to
or formalizing the interaction between affect and behavior. One

te representation for the problem at hand: in addition to learning which

redicting reward, that is, which features ought to be learned about.

tal reward expectation (value V) can be computed as a weighted sum of

ted reward contingent on each feature can then be updated based on

e, that is, the reward prediction error PE = Rperceived – V[AB], scaled by a

rther biased by a mood-dependent term [7,8��]: Rperceived = f�m + Ractual,

es mood reactivity. In this model, for positive values of f, positive mood

wnwards, and vice versa for negative values of f. Mood itself is thought

an lead to positive-feedback dynamics that trigger cyclic mood

coupling is predictive of self-reported hypomanic tendencies.

s an index of the allocation of attention to each feature, which should

as inferred that a single latent variable y causes both A and the reward

the presence (or absence) of A is relevant for predicting the outcome

tinctions along feature A alone. In contrast, if a common cause has

 both be included in the state representation (Figure 1b, middle),

d updating expectations, as each of them informs inference about the

tcome itself). When features have different initial reward expectations

 different mood dynamics (Figure 1c, compare to [8��], Figure 2a).
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(a) Possible inferred latent structures lead to (b) different distinctions in observation space. Shaded circles correspond to observations,

whereas empty circles are the underlying unobservable states or latent causes. If the latent cause is ‘on’ it tends to emit its linked

observations. When a single perceptual feature A is related to the outcome via a common latent cause y (a, top), the agent can ignore B when

computing reward expectations and deciding what action to take based on the resulting prediction. That is, observations 1 and 3 should be

treated as equivalent and incorporated into a single state ‘A off’, and similarly for observations 2 and 4 that correspond to the state ‘A on’ (b,

top). If both A and B are related to the outcome via a common cause, attention should be allocated to both A and B, as the presence of each

provides information about the likelihood of y being active (b, middle). (c) Mood dynamics simulated over 10 timesteps, with both A and B

present and the outcome (+1) or (�1) with equal probability. Initial values: V0[A] = �1 and V0[B] = 1, update rate parameters: h = 0.25, h0 = 0.5 for

value and mood respectively, mood reactivity: f = 1.5. A bias to attend to A throughout leads to low initial expectations, and thus elevated

mood on average due to the positive prediction errors (c, top). Conversely, because of high initial expectations, attending to B leads high

initial expectations and a dip in mood (c, bottom). Attention to both leads to milder mood fluctuations (c, middle).

Figure adapted with permission from Ref. [19].
findings in depression [26]. For instance, individuals diag-

nosed with bipolar disorder were faster to complete a card

sorting task than controls when given the opportunity to

earn reward [27]. This putative increase in approach moti-

vation is associated with abnormally high striatal activity

when anticipating reward, even during the euthymic state

[28–31]. These findings are consistent with the notion that

bipolar disorder may be accompanied by a generalized

belief about reward being more abundant in the environ-

ment, and could explain why patients with bipolar disorder

experience larger prediction errors and, perhaps as a result,

more severe mood fluctuations.
Current Opinion in Neurobiology 2019, 55:160–166 
But how may this belief arise in the first place? One

possibility is that bipolar disorder involves changes in

state representation that lead to optimistic expectations

about future reward. People prone to mania may interpret

the environment as being in a state where good things

happen, and exhibit greater behavioral approach activity

as a consequence. Indeed, manic symptoms tend to be

associated with self-reported optimistic self-schemas.

Individuals diagnosed with bipolar disorder who are more

likely to perceive themselves as possessing positive self-

dispositional traits (e.g. creative, successful) show

increased rates of relapse of hypomania or mania [32].
www.sciencedirect.com
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Moreover, people diagnosed with bipolar disorder are

more likely to become overconfident after experiencing

success, even when performing tasks in which success

occurs randomly, independent of their actions

[33,34��,35]. This pattern of beliefs and actions could

result from altered state representation. For example,

when considering a simple coin toss, one may attribute

outcomes to a single latent cause — a fair coin that

randomly falls on heads or tails. Alternatively, one may

construct the state space by inferring separate latent

causes, one which favors heads (the ‘lucky’ state) and

another which favors tails (the ‘unlucky’ state). Biasing

state interpretation toward states that predict success (e.g.

assuming that one is more likely to be in the ‘lucky’ state),

possibly in a manner congruent with global optimistic

self-schemas, would manifest in overconfidence.

Optimistic self-schemas in mania tend to be not only

positively skewed, but also more extreme. In a self-report

study assessing attributional styles, individuals with a

history of bipolar disorder who made more extreme

optimistic attributions (e.g. believing a good thing

definitely happened due to one’s actions, and will influ-

ence all situations in one’s life) experienced significantly

more lifetime episodes of mood elevation. It is thus

possible that mania may be characterized by an over-

generalized positive outlook on the causes of events

[36,37]. This view accords with a separate body of liter-

ature that has documented the effect of positive mood on

the broadening of attention in healthy populations

[12,38,39]. Taken together, these findings point to altered

state representation in bipolar disorder, whereby individ-

uals prone to mania form inflated, and more generalized

prior reward expectations, perhaps based on optimistic

prior beliefs about oneself.

Mood can, in turn, influence state representation by

focusing learning toward certain stimuli in a mood-

congruent manner. Such biases are well documented in

unipolar depression, which is characterized by persistent

selective attention to negative information from both

memory and the external world [23,40–42]. Similar biases

exist in bipolar disorder. Mansell and Lam found that

people diagnosed with bipolar-I in a euthymic state are

less likely to heed advice after a positive mood induction

[43]. In this study, participants had to guess which of two

choices led to a reward, and advice was operationalized as

a computerized face providing the explicit reward proba-

bility. Participants in the bipolar group followed advice on

significantly fewer trials than controls and people diag-

nosed with unipolar depression, suggesting that they were

attending to different sources of information following

the positive mood induction.

Such subtle differences between unipolar depression and

bipolar disorder also manifest in the affective content of

ruminative patterns. Patients diagnosed with bipolar
www.sciencedirect.com 
disorder engage in rumination about negative emotion

during depressive episodes, but they also focus on posi-

tive emotions during remission [33,44]. Moreover, the

extent to which people ruminate over positive emotions is

correlated with hypomania in healthy populations [45,46].

Individuals with bipolar disorder thus display mood-

congruent state representation, focusing on negative

information when in a bad mood, and positive information

when in a good mood [47].

The link between elevated mood and optimistic overgen-

eralization is in line with a recent account that casts the

interaction between mood and reward as a way to gener-

alize learning across correlated sources of reward [8��].
Broadening attention in response to mood is an appropri-

ate response if reward in the environment is actually

correlated across multiple states. But if too many features

become candidates for predicting reward and get incor-

porated into the state in a mood-congruent manner,

expectations can become overly optimistic. When this

overgeneralization is inconsistent with the actual statistics

of reward in the environment, repeated thwarting of

approach-related goals may lead to anger and irritability,

both common symptoms of mania [21,35,48].

An important open question is whether altered state

representation in mood disorders can be quantified as a

tendency to attend to particular stimulus features when

learning in multidimensional environments [49], and

whether this tendency manifests as a trait or varies with

mood. For example, it is possible that in bipolar disorder

optimistic self-schemas may manifest as a mood-congru-

ent positive bias in computing expectations: people prone

to mania may be more likely to direct their attention to

reward-predicting features after experiencing a sudden

mood increase. Major depression patients, on the other

hand, may display a tendency to focus on low-reward

features regardless of mood. Extending current reinforce-

ment learning models of mood dynamics to account for

state representation phenomena would allow for a precise

characterization of such patterns, and could provide a

useful transdiagnostic marker for predicting illness course

in bipolar disorder and unipolar major depression [9�,50].

State construction in schizophrenia
While in mood disorders patients tend to interpret the

world in a relatively coherent (if extreme and affect-

congruent) way, in schizophrenia the internal

representation an become a severely distorted version

of the external environment. Schizophrenia symptoms

include hallucinations (perceptual aberrations), delusions

(false beliefs), and disorganized thinking and speech

(DSM-V). Anecdotally, patients diagnosed with schizo-

phrenia describe a shattered world — ‘like a photograph

that is torn in bits and put together again’ [51]. Measur-

able disturbances in perceptual organization which man-

ifest even outside of major psychotic episodes (e.g. in the
Current Opinion in Neurobiology 2019, 55:160–166
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prodromal phase) are potential neurocognitive markers of

schizophrenia, and have been hypothesized to emerge

from a reduced ability to impose top–down structure on

environmental cues [52,53]. Recent theories elaborating

on this hypothesis posit an overreliance on external

information when making inferences [54��], at the

expense of prior beliefs that can help curtail runaway

interpretations [55,56�]. Powers et al. [54��] report a par-

ticularly compelling increased tendency among people

who hear voices to overweight sensory priors in a halluci-

nation induction paradigm, and a dissociation between

non-psychotic and psychotic participants in recognizing

higher order statistics in the environment [54��]. Taken

together, these findings suggest the possibility that

psychotic disorders are characterized by altered state

representation.

In particular, one important constraint on constructing

states is the assumption of parsimony, that is, the ten-

dency to ascribe events to as few states as possible [57,58].

All else equal, we should strive to explain current obser-

vations using the latent causes we already know exist,

rather than assume new ones [59]. For instance, hearing a

loud noise outside on a rainy evening should be ascribed

to thunder due to the raging storm, rather than assuming

that a bomb went off in the neighborhood, or aliens have

landed an aircraft nearby. In models of state construction,

such a bias for simplicity is manifest through a parameter

that defines how likely it is, a priori, that a completely new

state will cause the next observation [59]. This parameter

can change with time and experience with the world.

A wealth of evidence from a simple learning paradigm

called ‘latent inhibition’ suggests that patients diagnosed

with schizophrenia (or even individuals with high schi-

zotypy) infer new states more readily when experiencing

unexpected situations (for instance, when the environ-

ment changes). In this paradigm, a neutral stimulus (e.g. a

tone) is first exposed repeatedly (‘preexposure’ phase). In

a later stage, the stimulus is paired with a motivationally

relevant outcome (e.g. a mild shock or a reward). Control

participants show slower learning of the stimulus–

outcome relationship, compared to a group that did not

undergo preexposure, suggesting that they are reluctant

to assume a new state (e.g. one which consistently gen-

erates both the tone and the shock) absent ample evi-

dence. Patients diagnosed with schizophrenia do not

show this inhibition of learning [60], suggesting they

readily ascribe the new information to a new state [59].

Animal models of drug-induced or lesion-induced schizo-

phrenia mimic this behavior, and also show that typical

and atypical antipsychotic drugs can reverse these effects

[60]. Together with state interpretation that relies too

heavily on observed events, this promiscuity in assuming

new states can lead to a cycle of aberrant learning that

would generate overly complex and somewhat baroque

interpretations of reality.
Current Opinion in Neurobiology 2019, 55:160–166 
Conclusion
Inferring useful representations of the environment is a

key prerequisite for learning how to make decisions in a

complex world. We have reviewed evidence for how state

representation in reinforcement learning may be altered

along the bipolar spectrum and in schizophrenia. One

promise of this approach lies in carving a transdiagnostic

space of neurocomputational constructs that can be

charted by collecting large amounts of human behavioral

data [9�,50]. By measuring individual differences in this

space, the hope is not only to distinguish each person in

need of treatment along dimensions useful for individu-

alized diagnosis and management, but also to think across

different levels of analysis and model systems, and better

understand the etiology of mental illness at both the

cognitive and neurobiological level [61].
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