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Abstract 

Reinforcement learning (RL) in complex environments relies on selective attention to 

uncover those aspects of the environment that are most predictive of reward. While previous 

work has focused on age-related changes in RL, it is not known whether older adults learn 

differently from younger adults when selective attention is required. In two experiments, we 

examined how aging impacts on the interaction between RL and selective attention. Younger and 

older adults performed a learning task in which only one stimulus dimension was relevant to 

predicting reward, and within it, one ‘target’ feature was the most rewarding. Participants had to 

discover this target feature through trial and error. In Experiment 1 stimuli varied on one or three 

dimensions and participants received hints that revealed the target feature, the relevant 

dimension, or gave no information. Group-related differences in accuracy and reaction times 

differed systematically as a function of the number of dimensions and the type of hint available. 

In Experiment 2 we used trial-by-trial computational modeling of the learning process to test for 

age-related differences in learning strategies. Behavior of both young and older adults was 

explained well by a reinforcement-learning model that uses selective attention to constrain 

learning. However, the model suggested that older adults restricted their learning to fewer 

features, employing more focused attention than younger adults. Furthermore, this difference in 

strategy predicted age-related deficits in accuracy. We discuss these results suggesting that a 

narrower filter of attention may reflect an adaptation to the reduced capabilities of the 

reinforcement learning system. 

Keywords: aging, reinforcement learning, selective attention  
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Introduction  

 Studies suggest that healthy aging impacts on reinforcement learning (RL) – the ability to 

associate stimuli with expected future rewards (Mell et al., 2005; Mata, Josef & Samanez-Larkin, 

2011; Samanez-Larkin & Knutson, 2014). When required to learn stimulus-reward associations 

from feedback, older adults consistently need more trials to reach the same level of performance 

as younger adults, and exhibit slower reaction times. Previous work has also emphasized that 

dopamine neurons – which have been implicated in reinforcement learning (see Niv, 2009 for a 

review) – are gradually lost over the course of the lifespan (Li, Lindenberger & Bäckman, 2010; 

Eppinger, Hämmerer & Li, 2011). Drawing on these findings, age-related behavioral differences 

in RL tasks have been linked to a reduced efficacy in reward prediction-error signaling in the 

human striatum (Eppinger, Schuck, Nystrom & Cohen, 2013). Using a pharmacological 

manipulation, Chowdhury and colleagues further showed that dopaminergic drugs can restore 

this signal, and boost the performance of older adults to levels comparable to those observed in 

younger adults (Chowdhury et al., 2013). 

But is a deficit in simple stimulus-reward learning really at the heart of the difficulties 

that older adults show when learning in the real world? One aspect that might give us pause is 

that typical RL tasks use simple stimuli that do not reflect the complex nature of our day-to-day 

environment. Outside the laboratory, a stimulus may not be an isolated tone or a colored shape 

on a screen. Instead, task-relevant stimuli—for example, the ‘dial number’ option on a new 

mobile phone—are embedded within a cluttered environment, among many other stimuli that are 

not relevant for the task at hand. Moreover, stimuli are multidimensional, with only some 

dimensions, such as the location of the ‘dial’ button (but not its font or color) being critical for 

obtaining reward. In order to learn efficiently, one needs to discover the relevant dimensions via 

trial-and-error and restrict learning to these, while ignoring other distractors. We have previously 
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suggested that this process of ‘representation learning’ depends on the interaction between RL 

and selective attention. Notably, attention filters what we learn about, and this attention filter is 

itself dynamically modulated by reinforcement (Wilson & Niv 2012; Niv et al., 2015; Geana and 

Niv 2015). Here we ask whether older adults differ from younger adults in their selective 

attention strategies and/or in the efficacy of their ability to learn from feedback in a 

multidimensional environment in which only some dimensions are relevant for the task at hand.  

Several lines of research suggest that the interplay between RL and attention may change 

with age. Behaviorally, older adults exhibit lower performance on tasks that require internally 

generating and maintaining task-relevant information (Braver & Barch, 2002; Hampshire, 

Gruszka, Fallon & Owen, 2008), as well as suppressing task-irrelevant distractors (Gazzaley, 

Cooney, Rissman & D’Esposito, 2005; Campbell, Grady, Ng & Hasher, 2012; Schmitz, Cheng 

& DeRosa, 2010). A recent review summarized evidence that older adults compensate for these 

lapses in cognitive control by relying more on the external environment to provide task-

appropriate representations (Lindenberger & Mayr, 2014). At the neural level, it has been 

suggested that changes in the interaction between DA and the prefrontal cortex (PFC) can 

account for observed differences in attentional modulation and inhibition of irrelevant stimuli (Li 

et al. 2010; Cabeza & Dennis 2013; Braver & Barch, 2002). Taken together, these findings 

suggest that age may strongly affect the interaction between reward learning and attention.   

To test this, we compared the behavior of younger and older adults on variants of a 

probabilistic learning task with multidimensional stimuli. In the first experiment, we varied (1) 

the number of dimensions that stimuli differ on, and (2) the availability of hints that help curtail 

learning demands by focusing the subjects’ attention on relevant aspects of the stimuli. In the 

second experiment, we used computational modeling to characterize and compare different 
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learning strategies in younger and older adults in the most demanding case, in which the relevant 

dimension is unknown. 

 

General methods 

Task 

On each trial of the task, participants were presented with three visual stimuli. Stimuli 

differed along either one or three dimensions (color, shape and texture, Fig. 1). Within each 

dimension, a given stimulus could have one of three features (e.g. red, green and yellow, Fig. 1). 

On each trial, participants chose between stimuli that consisted of random combinations of 

features (e.g. red square with polka dots). Importantly, at any time point, only one dimension of 

the stimuli determined reward. Specifically, one "target" feature within this “relevant” dimension 

was more rewarding than the others: choosing the stimulus that contained the target feature led to 

75% chance of receiving 1 point (and 0 points otherwise), while choosing either of the other two 

stimuli was rewarded by 1 point with only 25% chance. Participants were fully informed of these 

reward probabilities, and the existence of a relevant dimension and target stimulus within it. To 

maximize the number of points earned, participants had to learn the identity of the target feature 

and use it to select the correct stimulus on each trial. Participants were asked to make their 

choice within 2 seconds, after which the trial timed out and the next trial began. To acquire 

repeated measurements of learning within each participant, we divided the task into several 

“games”. The identity of the target feature stayed constant throughout a game. Once the game 

ended, participants were allowed a short, self-paced break and were notified that the relevant 

dimension and target feature would now be changing. This task is related to the Wisconsin Card 

Sorting Task that has previously been used to study cognitive flexibility in older adults (Fristoe 

et al., 1997; Rhodes 2004), with the key difference being that rewards were probabilistic much 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 6 

like in the weather prediction task (Ashby & Maddox, 2005). The design prolonged the learning 

process such as to allow the use of computational modeling to analyze the dynamics of learning. 

 

Exclusion criteria 

We considered a game to be “learned” if the participant chose the stimulus containing the 

target feature in each of the last six trials of the game. In both experiments, we excluded 

participants who learned fewer than 20% of all games, missed more than 10% of the trials, or 

performed at chance in any of the tasks. Chance was defined as less than 38% accuracy (two 

standard deviations above the mean of a binomial distribution with p = 1/3 and N = 1000 trials, 

matching the average number of trials performed by participants). 

 

Statistics 

To quantify effect sizes, unless otherwise noted, we report the following: (1) Hedges’ g 

for independent-sample t-tests, a measure more robust to small samples (Hedges, 1981; 

Hentschke & Stüttgen, 2011), (2) partial η2 for ANOVAs, (3) Pearson correlation coefficients, 

(4) standardized regression coefficients. All data plots show ± 1 SEM in red and 95% confidence 

intervals in blue.  

 
 
Experiment 1 

 

In the first experiment, our aim was to separately assess the contributions of 

reinforcement learning and attention to age-differences in performance of trial and error learning 

in a multidimensional environment. We tested each participant on five versions of the task, 

manipulating the number of dimensions along which stimuli varied (one or three, henceforth 
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abbreviated as 1D and 3D) and the availability of hints that could be used to reduce the 

computational demands of probabilistic learning (Fig. 1, see also Fig. S1 available online). 

Throughout, reward contingencies and motor requirements were kept constant.  

 

Participants 

33 younger adults (23 female, 10 male; mean age = 23 years; age range = 19 - 37) and 33 

older adults (16 female, 17 male; mean age = 69.4 years; age range = 62 - 80) participated in the 

experiment for either monetary compensation or course credit (younger adults). Older 

participants were recruited from among members of the Community Auditing Program at 

Princeton University.  

All participants reported normal or corrected-to-normal color vision, were enrolled in an 

undergraduate program or held at least a university degree, had no history of psychiatric 

disorders, and provided informed consent. The experiment was approved by the Princeton 

University Institutional Review Board. The older adult cohort was screened for early-onset 

dementia using a shortened version of Raven’s Progressive Matrices (Raven & Court, 1998). 

One older adult who scored less than a 5 (out of 18) on this test was excluded from further 

analysis. Additionally, 2 younger adults and 7 older adults were excluded from further analysis 

as per the task performance criteria above, yielding a final sample of 31 younger adults and 25 

older adults. 

 

Stimuli and procedure  

Games in the task were divided into five randomly intermingled conditions with 10 

repetitions each.  
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In the first condition (“feature 1D”), stimuli varied on one dimension (e.g., the 3 distinct 

shapes; Fig. 1 top). Before the game, a "hint" screen revealed which of the features within this 

dimension was the target (e.g., ‘square'; Fig. 1 and Fig. S1 available online). This condition was 

thus equivalent to performing a visual search for a predefined feature, and had no learning 

component: to maximize reward, participants simply had to select the target feature.  

In the second condition (“feature 3D”), we again cued participants regarding the target 

feature, but presented them with three-dimensional stimuli each varying along color, shape and 

texture (Fig. 1 bottom). Comparing group behavior between the 1D scenario above and the 3D 

case allowed us to ask whether older adults show a disadvantage when distractor dimensions are 

present even when no learning is required.  

In the third condition (“dimension 1D”), stimuli varied on a single dimension, but instead 

of being told the identity of the target feature, participants had to learn it from trial and error. 

This condition is equivalent to a 3-armed bandit task akin to the kinds of tasks that have 

previously been studied in older adults to characterize deficits in reinforcement learning (Mell et 

al., 2005; Chowdhury et al., 2013). 

The fourth condition (“dimension 3D”) involved three-dimensional stimuli and a hint 

disclosing which dimension is relevant for predicting reward. Participants were thus required to 

learn the identity of the target feature within that dimension, as in the dimension 1D task. 

However, because distractor dimensions were present (Fig. 1, bottom), this task required 

sustained attention to one dimension – to do well, participants had to restrict learning to the cued 

dimension and ignore the other distracting dimensions.  

Finally, in the fifth condition (“full 3D”), participants were presented with three-

dimensional cues, and received no information as to the relevant dimension or target feature. 

This condition is identical to the “dimensions task” we have previously used to investigate the 
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interaction between selective attention and reinforcement learning in younger adults (Wilson & 

Niv, 2012; Niv et al., 2015; Geana & Niv, 2015).   

Prior to the experimental session, participants were given a tutorial that described the 

reward structure and informed them about the different conditions. Following the tutorial, 

participants completed several sample games. They were then tested on 50 games of the task 

with condition randomized such that within each block of five games, each condition appeared 

once for a total of 10 games per condition. Each game consisted of a minimum of 8 and a 

maximum of 25 trials. We defined a correct trial as one in which the participant chose the 

stimulus containing the target feature. Once a criterion of 8 consecutive correct trials was 

reached, the game had a 50% chance of ending on any subsequent trial. Games lasted at most 25 

trials. The target feature was chosen randomly, avoiding relevant dimension repeats from game 

to game. Rewards were drawn pseudorandomly such that within each block of eight trials the 

frequency of presented rewards matched the reward probabilities specified in the design. Once a 

valid response was registered, stimuli that were not chosen were removed from the screen and 

after a brief delay the outcome was presented for 0.5 seconds. A new trial started after 0.5 

seconds.  

 

Apparatus 

Participants sat approximately 50 cm from an LCD monitor and responded on a standard 

Macintosh keyboard using three adjacent keys corresponding to the left, middle and right 

stimulus respectively. Stimuli were presented and responses were registered using MATLAB 

(The MathWorks, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). 
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Reaction time model 

 The ex-Gaussian distribution has been proposed as an analysis tool for reaction time that 

disentangles variance arising from two separate cognitive processes: the transduction 

component, indexed by a positive shift in the Gaussian mean, can be thought of as the time it 

takes to process the sensory information plus the time required to physically make the response 

once a decision has been made. The decision component, reflected in the exponential skew, is a 

proxy for the time it takes to represent the task and decide which response to make (Luce, 1986; 

Lacouture & Cousineau, 2008).  

We used maximum likelihood estimation to fit individual reaction time distributions 

separately within each condition (Fig. S2 available online). By analyzing reaction time data in 

this way, we sought to dissociate age effects in how the task is represented from perceptual and 

motor differences. We hypothesized that as representational demands increase with the number 

of dimensions, older adults would be selectively impaired in the decision component of reaction 

time.  

 

Results  

We first examined the effect of condition on overall accuracy. A 2 (age-group) x 5 

(condition) mixed-effects ANOVA (Fig. 2A) revealed a main effect of age (F(1, 54) = 6.80, p = 

.01,  ηp
2 = .11), a main effect of condition (F(4, 216) = 705.66, p < .001,  ηp

2 = .93) and a 

significant interaction between age group and learning condition (F(4, 216) = 5.50, p < .001,  ηp
2 

= .09).  

To better delineate the various determinants of accuracy differences between older and 

younger adults, we next performed 2 (age-group) x 2 (condition) ANOVAs examining the effect 

of each progression in task difficulty. We first compared the two “feature” conditions, in which 
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trial-and-error learning was not necessary since the target feature was disclosed via the hint. In 

the “feature 1D” condition, both groups performed at ceiling. While we did find a main effect of 

condition when adding the distractor dimensions in the “feature 3D” case (Mfeature1D = .993, 

Mfeature3D = .987, F(1, 54) = 14.122, p < .001,  ηp
2 =.21), there was no main effect of group (F(1, 

54) = 2.38, p = .13,  ηp
2 = .04) and no interaction between age and condition (F(1, 54) = .28, p = 

.60,  ηp
2 = .01). These results suggest that the presence of extra-dimensional distractors did not 

specifically impair accuracy in older adults, and also confirms that participants understood the 

instructions and used the hint correctly. 

We next focused on performance differences when participants had to learn the target 

feature from trial and error, but were cued as to the relevant dimension. In the 1D case (Fig. S1 

available online), this amounts to a simple 3-way choice task with binary rewards and fixed 

reward probabilities. As expected from previous work showing age-related impairments in 

probabilistic learning, we observed a significant group effect on overall accuracy when 

comparing the “feature 1D” to the “dimension 1D” condition (main effect of group: F(1, 54) = 

5.56, p = .02,  ηp
2 = .09; interaction: F(1, 54) = 7.74, p = .01,  ηp

2 = .13).  

In the 3D case, the dimension hint helps participants assign credit for a reward to only 

one of the 3 features of a stimulus: if the reward-relevant dimension is color, feedback for, say, 

choosing a green square with polka dots, can be correctly assigned to the color ‘green’, while 

ignoring the ‘square’ and ‘polka dot’ features that act as distractors. Thus the “dimension-3D” 

case is similar to a 3-way choice task, only with known distractors. As expected, here too we 

observed a significant group effect on accuracy when comparing the “feature 3D” to the 

“dimension 3D” condition (main group effect: F(1, 54) = 7.18, p = .01,  ηp
2 = .12; interaction: 

F(1, 54) = 8.77, p = .01,  ηp
2 = .14). These age-related deficits in learning from trial and error 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 12 

have previously been attributed to a reduced efficacy of dopamine-dependent prediction error 

signals (Eppinger et al. 2013). 

 Finally, we compared the “dimension 3D” condition with the “full 3D” condition. In the 

latter, participants were also required to identify the relevant dimension from trial and error. As a 

result of this extra demand, we expected the performance of older adults to drop more 

precipitously than that of younger adults, as compared to the “dimension 3D” case. In line with 

this prediction, our analysis revealed a main effect of group (F(1, 54) = 5.73, p = .02,  ηp
2 = .10) 

and of condition (F(1, 54) = 183.93, p < .001,  ηp
2 = .77). We also observed a significant 

interaction between group and condition (F(1, 54) = 5.89, p = .02,  ηp
2 = .10). Surprisingly 

however, this interaction was in the direction opposite from what we predicted. That is, when the 

dimension hint was removed, older adults incurred a smaller additional cost in accuracy than 

younger adults, performing as well as younger adults on the task (Molder = .48, SDolder = .09; 

Myounger = .49, SDyounger = .06, t(54) = .65; p = .52, g = .17). To rule out the possibility of either a 

floor or ceiling effect driving this interaction, we performed a within-group median split on 

accuracy (Figure S3 available online). Both older and younger adults were distributed 

symmetrically around their respective group mean, giving no indication that the observed result 

was due to boundary effects.   

We next analyzed response times using the ex-Gaussian distribution. Examining reaction 

times revealed more subtle effects of condition than were apparent in overall accuracy. We 

submitted the fitted skew parameters indexing the decision component of the reaction time to a 2 

(age-group) x 5 (condition) mixed-effects ANOVA (Fig. 2B). Paralleling the accuracy results, 

this initial test revealed a main effect of age (F(1, 54) = 17.53, p < .001,  ηp
2 = .25), a main effect 

of condition (F(4, 216) = 108.15, p < .001,  ηp
2 = .67) and a significant interaction between age 

group and learning condition (F(4, 216) = 10.68, p < .001,  ηp
2 = .17). An independent-samples t-
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test indicated no group difference between older (M = .13, SD = .05) and younger (M = .15, SD 

= .06) adults for the decision component in the “feature 1D” condition, t(54) = .81, p = .42, g = 

.22, indicating that by analyzing reaction time using the ex-Gaussian distribution, we were 

successful in removing the variance associated with the cost of visual search and response 

mapping. (Nevertheless, all interaction results reported here for the decision component also held 

when using raw reaction time as the dependent variable; Fig. S4 available online). 

 We then performed 2 (age-group) x 2 (condition) ANOVAs paralleling those we reported 

above for accuracy, to separately assess the effect of each manipulation on the decision 

component of the reaction time. While in both the “feature 1D” and “feature 3D” conditions 

older and younger adults performed at ceiling as reflected by average accuracy, we did observe a 

modest group by condition interaction in the decision component of reaction time (F(1, 54) = 

5.12, p = .03,  ηp
2 = .09), suggesting that older adults required more time to decide on their 

choice when the stimulus consisted of multiple features.  

 As expected, we also found a group by condition interaction when comparing both the 

“feature 1D” and the “dimension 1D” conditions (F(1, 54) = 53.89, p < .001,  ηp
2 = .50), and 

when comparing the “feature 3D” condition with the “dimension 3D” condition (F(1, 54) = 7.2, 

p = .01,  ηp
2 = .18). These results mirror the accuracy effects, and suggest that having to learn the 

target feature from feedback impacted older adults’ decision time significantly more than it did 

younger adults’.  

 Finally, we did not observe an interaction between group and condition when comparing 

the “dimension 3D” with the “full 3D” condition (F(1, 54) = .05, p = .82,  ηp
2 = .00). This finding 

suggests that in the full dimensions task, older adults respond slower than younger adults, but not 

more so than in a simple probabilistic learning setting in which the relevant dimension is known.  
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Together, the results of Experiment 1 suggest that while older adults are significantly 

more impaired than younger adults in simple trial-and-error learning, they do not show an 

additional impairment when required to learn which dimension is relevant to determining 

reward. In this latter case, their accuracy was not significantly different than that of younger 

adults, and while they did take significantly longer to respond than younger adults when the 

relevant dimension was unknown, this group difference was not greater than in the cued 

dimension case. These results are in line with previous reports of age-related deficits in 

reinforcement learning (Mell et al., 2005; Eppinger, Schuck, Nystrom & Cohen, 2013) and 

reveal that, contrary to expectations, attentional demands do not confer differential additional 

hardship on older adults. As previous work has suggested that attention processes do change 

during healthy aging, one possibility is that older adults adapt their strategies such as to allow 

them to perform the full 3D representation learning task better than would otherwise be 

expected.    

 

Experiment 2 

To more precisely understand what strategies may help older adults adjust to 

multidimensional settings despite a deficit in trial-and-error learning, in a second experiment we 

focused on the “full 3D” scenario and compared strategies between the groups by fitting RL 

models to choice data. Testing participants only on this task allowed us to collect more games, 

and thus identify model parameters with higher precision.  

 

Participants 

28 younger adults (17 female, 11 male; mean age = 23.9 years; age range = 20 - 31) and 

30 older adults (10 female, 20 male; mean age = 70.1 years; age range = 65 - 80) participated in 
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the second experiment. All participants reported normal or corrected-to-normal color vision, 

were enrolled in university or held at least a university degree, had no history of psychiatric 

disorders, and provided informed consent. The protocol was approved by the Princeton 

University Institutional Review Board.  

In addition to completing the main task, participants in both groups also completed 

several psychometric tests and questionnaires: (1) A computerized version of the Digit-Symbol 

substitution test (Salthouse, 1992), (2) a 2-back task (Nystrom, Braver, Sabb, Delgado & Cohen, 

2000), (3) the Spot-the-Word test (Baddeley, Emslie & Nimmo-Smith, 1992), (4) the BIS-BAS 

questionnaire (Carver & White, 1994), (5) a shortened version Raven’s Progressive Matrices. As 

in the first experiment, the older adult cohort was screened for early onset dementia using the 

Raven’s Progressive Matrices. Exclusion criteria were identical to those of Experiment 1. One 

younger adult and 3 older adults were excluded from the analysis, yielding a final sample of 27 

younger adults and 27 older adults.  

 

Stimuli and procedure  

 Stimuli were identical to the “full 3D” condition in Experiment 1. On each trial, 

participants were presented with multidimensional stimuli varying on color, shape and texture. 

One of the three dimensions was used to determine rewards. Within this reward-relevant 

dimension one target feature had a 75% probability of reward, while all other features had a 25% 

probability of reward. Participants received no information about the identity of the relevant 

dimension. Each participant played, on average, 35-50 games for a total of approximately 1,500 

trials per participant. The length of a game was fixed at 30, excluding missed trials. The total 

duration of the experiment was capped at 40 minutes. Once a valid response was registered, the 
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stimuli that were not chosen were removed from the screen and the outcome was immediately 

presented for 0.5 seconds. A new trial started after 0.3 seconds. 

 

Apparatus 

The apparatus was the same as in Experiment 1.  

 

Model-based analysis 

We have previously shown that in this task, RL models that allow for effects of selective 

attention explain subjects’ behavior better than either a naïve RL model that learns values for 

each of the 27 possible stimuli or a Bayesian ideal-observer model that makes statistically 

optimal use of information (Wilson & Niv, 2012; Niv et al., 2015; Geana & Niv, 2015). Here we 

were interested in testing for an effect of age on the width of the ‘attentional filter’.  

Towards this end, we first compared between two RL models, a “feature RL” (fRL) 

model that attends uniformly to all three dimensions, and a “feature RL with decay” 

(fRL+decay) model that emulates selective attention to dimensions that include consistently 

chosen features (see below). Both models track a weight W for each feature f and calculate the 

value V(S) of stimulus S as the sum of the weights of its three features W(f), where each 

stimulus has one feature per dimension. In the fRL model, on every trial, once the outcome for 

the chosen stimulus is displayed, the weights corresponding to the three features of the chosen 

stimulus are updated according to 

 

Wnew(f) = Wold(f) + η(R – V(S)) ∀ f ∈ Schosen  (1) 
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where η is the step size or learning rate parameter and R is the reward (1 or 0 points) on the 

current trial.  

The fRL+decay model is identical to the fRL model, except that it also decays to zero the 

weights of features that do not appear in the chosen stimulus: 

 

Wnew(f) = (1 – d)Wold(f) ∀ f ∉ Schosen  (2)          

 

where d is the decay rate. For both models, at the beginning of each game, the weights are 

initialized at zero. On each trial, the probability of selecting each of the three available stimuli 

is calculated using a softmax distribution  

  

where the inverse temperature parameter β captures the noise in the subjects’ choices. Thus the 

fRL model has two free parameters, θfRL= {η, β} and the fRL+decay model has three free 

parameters, θfRL+decay = {η, β, d}.  

Importantly, the decay rate d dictates the width of an implicit attentional filter (Fig. S5 

available online). To understand this mechanism, it is instructive to consider two hypothetical 

consecutive trials, t and (t+1), in which a participant might choose stimuli such that only one 

feature – for example red – appears in the chosen stimulus on both trials. A decay rate of zero 

reduces the fRL+decay model to simple fRL and means that although the two features that co-

 
(3)  
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occurred with red on trial t did not appear on trial (t+1), their weights remain unchanged on that 

second trial. At the other extreme, a decay rate of 1 means that on trial (t+1) all weights except 

those of features of the most recently chosen stimulus are set to 0, in effect erasing the values 

learned on trial t for features other than ‘red’. This is tantamount to a narrow attention filter that, 

across trials in which ‘red’ is consistently chosen, only accumulates value for that feature, 

effectively attending only to color information. Intermediate values of d smoothly interpolate 

between these two extremes, with higher decay rates corresponding to more ‘focused attention’ 

as reflected in high weights for fewer (recently chosen) features. Another way to view our model 

is that decay emulates attention with a one trial delay; i.e. we use the features the subject chooses 

on trial t+1 to infer what they attended to on trial t, and decay the learning that was done at t to 

non-attended dimensions. Such model-based inferences are necessary because we do not have 

direct access to participants' attention (see Niv et al., 2015 for additional discussion). 

 To compare between models based on their predictive accuracy, we used participants’ 

trial-by-trial choice behavior to fit the parameters that maximize the likelihood of each subject's 

choices (Daw, 2011). As the models had different numbers of parameters, we compared models 

using a leave-one-game-out cross-validation approach: for every participant and every game, we 

fit the model to all data excluding that game. The model and its maximum-likelihood parameters 

were then used to assign likelihood to the trials of the left-out game. We repeated this procedure 

for each game, divided the resulting total likelihood by the number of trials N to yield the 

geometric average of the likelihood per trial. This is a quantity that varies between 0 and 1, and 

roughly corresponds to the average probability with which the model predicted the choices of the 

participant (1/3 is chance). This quantity was then used for model comparison, with the model 

that best predicts participants’ behavior deemed the winning model. With this model in hand, we 
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once again applied maximum likelihood parameter estimation, this time using all available data 

for each participant, to obtain individual parameters for every participant in each group. All 

optimizations were carried out using MATLAB’s fmincon function.  

Finally, to restrict the fitting as much as possible to trials in which the participants were 

still learning (rather than simply selecting the target feature), and to be able to compare our 

results here with those from Experiment 1, model fitting and model comparison analyses were 

done after imposing a post hoc learning criterion of 8 correct trials in a row and capping the 

length of each game at 25 (as was the case in Experiment 1). All model-based results reported 

here also hold without this modification. 

 

Results  

Independent-sample t-tests showed that the average accuracy of older adults was 

significantly lower than that of younger adults (Molder = .42, SDolder = .04; Myounger = .46, SDyounger 

= .04, t(52) = 3.49; p = .001, g = .94). Older adults also learned fewer games than younger adults 

(Molder = .39, SDolder = .09; Myounger = .49, SDyounger = .09; t(52) = 4.2, p < .001, g = 1.13). These 

results were contrary to our findings in the first experiment, and suggested that failing to detect a 

difference in accuracy in Experiment 1 might have been due to the smaller number of games (10 

per participant compared to 35-40 in the second experiment). Nevertheless, since Experiment 1 

established that reward learning is significantly more impaired in older adults, we were interested 

in analyzing the differential contributions of learning and selective attention to task performance 

in older adults versus younger adults.   

 To determine which learning strategy best describes trial-by-trial behavior for each 

group, we performed a within-group model comparison by taking the average cross-validated 

likelihood per trial for each model and submitting it to a repeated measures ANOVA (Fig. 3). In 
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both groups the fRL+decay model predicted participants’ choices better than the fRL model 

(younger adults: F(1, 1248) = 42.31, p < .001,  ηp
2 = .46, Fig. 3A; older adults: F(1, 1248) = 

23.32, p < .001,  ηp
2 = .47, Fig. 3B). This finding is in line with previous work in which we have 

shown that strategies that incorporate attentional mechanisms better explain behavior in the task 

(Wilson & Niv 2012; Niv et al. 2015). Importantly, we observed no significant difference 

between the groups in the average per-trial likelihood of the fRL+decay model (F(1, 1248) = .66, 

p = .42,  ηp
2 = .018). In other words the fRL+decay captured both groups’ strategy equally well 

and could thus be used to assess group differences in fit parameters.  

To test for group differences in the breadth of attention for learning, we compared the 

decay rate parameters for the two groups. A Mann-Whitney test indicated that older adults had 

significantly higher decay rates than younger adults (older adults median = .52, younger adults 

median = .42, U = 192.0, p = .002, r = .40, Fig. 4A). This suggests that older adults utilize 

narrower stimulus representations in trial-and-error learning in multidimensional environments. 

The results of all group tests on fit parameters are summarized in Table 1.  

If the model indeed captures aspects of subjects’ strategy that are relevant to behavior, it 

should be able to reproduce the qualitative patterns observed in the data. To test this, we used 

individual fit parameters drawn from each group to simulate 54 agents (27 per group), and 

computed their average learning curves. We found that the model could perform the task at a 

level comparable to that of participants, slightly undershooting the performance of younger 

adults, but capturing that of older adults. Importantly, the model reproduced the general 

performance differences between older and younger adults (Fig. 4B).  

To assess the specific effect of the decay rate parameter on task performance in our data, 

we took a multiple linear regression approach. In particular, each participant’s accuracy was 

regressed on learning rate, decay rate and inverse temperature estimated from the fRL+decay 
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model. The results of the regression indicated that the three parameters explained 49% of the 

variance (R2 = .49, F(3, 50) = 16.0, p < .001). We found that lower decay rates predicted higher 

accuracies (β = -.52, p < .001), suggesting that even after taking into account possible effects of 

learning rate and inverse temperature, the width of the attentional filter modulates performance 

in the task. We also found that learning rate did not significantly predict accuracy (β = .077, p = 

.61), while inverse temperature did (β = -.53, p < .001). Including both the learning rate and the 

inverse temperature parameters in the regression was necessary to isolate the effect of decay on 

performance. However, because these parameters are not completely separable in the model (that 

is, they cannot be precisely estimated independently of each other; Daw, 2011), we cannot make 

strong claims about any observed effect of learning rate or inverse temperature alone. 

Importantly, we repeated the above analysis within each group, and found that decay remained a 

significant predictor of performance within both younger (β = -.59, p < .01) and older adults (β = 

-.35, p < .01). Taken together, our results suggest that more focused attention during learning in 

older adults can, in part, explain the observed decrease in task performance.     

Finally, we investigated whether the decay rate reflects a deficit in working memory 

rather than more focused attention. To test this, we regressed decay rate as estimated from the 

dimensions task on the working memory score measured using the 2-back task, and included age 

as a covariate in the regression. We found that age (β = .09, p < .05), but not working memory (β 

= -.02, p = .19) significantly predicted decay rate, suggesting that age differences in the decay 

rate parameter are not due to working memory impairments in older adults.  

 
 
 
 
 
 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 22 

Discussion 

We studied how age affects reinforcement learning in multidimensional environments 

that characterize real-world learning and decision-making scenarios. In Experiment 1, we tested 

young and older adults on a set of probabilistic learning tasks in which we manipulated the 

number of stimulus dimensions and the availability of hints about the identity of the target 

feature or relevant dimension. Our aim was to dissociate the relative contribution of 

reinforcement learning and representation learning processes to age-related differences in task 

performance. We found that age differences in both accuracy and reaction time depended on the 

extent to which reward learning was required to solve the task. Surprisingly, adding 

representation learning to the demands of the task did not affect the performance of older adults 

more than it did the performance of younger adults. The results of the first experiment therefore 

suggested that older adults might adapt to deficits in reinforcement learning such as to reduce the 

burden on this mechanism in multidimensional environments.  

To test this hypothesis, in Experiment 2 we modeled choice data of a new group of 

participants who performed the full three-dimensional representation learning and reinforcement 

learning task without any hints regarding the identity of the target feature or relevant dimension. 

We found that the behavior of both groups was well described by a reinforcement learning model 

that emulates an attentional filter by decaying the value of unchosen options to zero. Group 

differences in the decay rate suggested that older adults employ more focused attention—they 

are more likely to maintain high values for single features rather than combinations of features. 

Moreover, this difference in strategy came at a cost: more focused attention at least partially 

explained the lower performance of older adults in our task.  

Two mechanistic explanations are consistent with higher decay rates in older adults: 

participants could employ narrower selective attention at the time of learning, attributing the 
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reward to fewer stimulus features; or they could be more likely to forget recently learned feature-

reward associations. While further work is necessary to precisely distinguish between the two, 

both lead to a strategy closer to serial hypothesis testing (Wilson & Niv, 2012) in which older 

adults attend to single features when learning from reinforcement, while younger adults may be 

learning about multiple chosen features at once. Ignoring the relationship between reward 

feedback and incidental features of the chosen stimulus (i.e., unattended features that were not 

the responsible for it being chosen) may be detrimental if participants have learned the wrong 

task representation. For instance, a participant could be focusing on the red color when trying to 

maximize reward, and not notice that, in fact, rewards are obtained more often when the red 

stimulus happens to be a square. Learning about incidental features would enable more efficient 

switching to other potentially rewarding features. In this sense, narrowly focused attention could 

pose difficulties for older adults. However, this is not always the case, and in some situations a 

narrower focus of attention may be normative. While in our specific task such focused attention 

is not statistically optimal (Niv et al., 2015), our findings are consistent with a recent proposal 

that in older adults, general models of the world that have been learned over the lifespan reduce 

the need to rely on sensory updating (Moran, Symmonds & Dolan, 2014). Focusing on fewer 

aspects of the environment during learning can, in fact, be seen as an adaptation to the structure 

of real-world tasks, where correct performance might often depend on only few attributes. Mata 

and colleagues have termed this idea ‘ecological rationality.’ They make a compelling case for 

the argument that age-related deficits in strategy use may not necessarily be due to impaired 

decision making, and that decision strategies can only be evaluated relative to the environment in 

which they are used (Mata et al., 2012). A striking such example is work by Worthy and 

Maddox, who show that older adults perform better than younger adults in a task with complex 

structure that favors a Win-Stay-Lose-Shift strategy, which older adults are more likely to 
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employ, over a reinforcement learning strategy (Worthy et al., 2011; Worthy & Maddox, 2012). 

An interesting avenue of future research would thus be to characterize the statistics of natural 

tasks that older adults have learned to engage in. An ecological rationality view suggests that 

older adults should be just as good as younger adults at learning new tasks in which previously 

learned structure could be ‘recycled’.  

The idea that older adults may display more focused attention in certain situations has 

been suggested before, in work examining age differences in category learning. For instance, 

Glass and colleagues argue that when older adults are trained to categorize exemplars from two 

prototypes, they take into account fewer stimulus dimensions (Glass et al., 2012). Our findings 

suggest that this strategy also manifests during sequential learning and decision-making, 

therefore laying the groundwork for a number of future questions: is more focused attention in 

older adults accompanied by less or more frequent attention switching, as compared to younger 

adults? And if so, is there an age difference in how much feedback is needed to redirect 

attention, as suggested by studies that report a tendency to perseverate in older adults 

(Ridderinkhof, Span & Van Der Molen, 2002; Rhodes, 2004)? In light of our results, 

perseveration may be attributed to a more rigid focus of attention that prevents the formation of 

alternative representations, because it filters out incidental learning. While less efficient, this 

could reflect an adaptation to the reduced efficacy of dopaminergic signaling (Li et al., 2010) in 

which selective attention is deployed during learning so as to tax mechanisms subserved by 

dopamine as little as possible.  

Finally, the finding that older adults are more likely to filter out information may seem at 

odds with a broad literature documenting age-related deficits in suppressing task-irrelevant 

distractors (Gazzaley, Cooney, Rissman & D’Esposito, 2005; Campbell, Grady, Ng & Hasher, 

2012; Schmitz, Cheng & DeRosa, 2010). Lindenberger and Mayr have suggested that the 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 25 

inability of older adults to ignore visual distractors is linked to a broader developmental trend in 

which older adults shift from internal cognitive control to relying more on the environment to 

provide appropriate task representations (Lindenberger & Mayr, 2014). However, increased 

focus and increased distractibility could both result from an attentional system that cannot 

allocate attention to multiple items, but rather can only maintain narrow, rigid hypotheses. In 

such conditions, a distractor that captures attention would do so more strongly, and to the 

exclusion of the task otherwise being performed, leading to apparent distractibility. When 

attention can be maintained more broadly, to the task-relevant stimuli and also to incidental 

features, the effect of attention-grabbing distractors is mitigated.  

Another way to reconcile the idea of increased environmental reliance with narrower 

attention when learning task sets concerns the broader question of how tasks are represented in 

the brain (Wilson et al. 2014). In a recent paper, Mayr and colleagues have suggested an 

intriguing explanation for age-related increases in task-switching reaction time costs: older adults 

may not fully represent the relevant task states, opting for a simpler structure at the expense of 

flexibility (Mayr et al. 2015). Our experiment was explicitly designed to study how participants 

learn to represent a new task. Narrow attention in our case has the effect of preventing complex 

stimulus-reward associations from forming (e.g. the participant is more likely to learn that red 

predicts reward, instead of red and polka dots predict reward). This narrowness limits internal 

representations, and simplifies the task as much as possible. The trade-off is that such simple 

representations may not allow for flexibility in learning new tasks that require de-aliasing similar 

percepts. That is, older adults might have difficulty when choosing the correct action requires 

learning about a second, disambiguating feature. Finally the process of learning to attend, which 

we study here, is different from maintaining (instructed) attention in the face of distraction – we 

suggest that older adults may filter out important relationships between reward feedback and 
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incidental cues, while at the same time they may erroneously focus attention on incidental 

distractors. 

 A growing interest in applying RL methods to the study of cognitive aging has bridged 

knowledge about dopaminergic loss in older adults and deficits in trial and error learning 

(Shohamy and Wimmer 2013). Our study focused on how age-related impairments in RL might 

play out in multidimensional environments where, in addition to trial-and-error learning, one 

must learn the relevant task representations. In such cases, attentional mechanisms have been 

hypothesized to interact with RL so as to allow more efficient learning (Wilson & Niv, 2011; 

Niv et al., 2015; Geana & Niv, 2015). The present work provides evidence that aging is 

accompanied by a narrowing of attention during reinforcement learning, perhaps in order to 

adapt to impairments in neural trial-and-error learning mechanisms.  

 
 
Acknowledgements 
 
This research was supported by a New Scholar in Aging award to Y.N. from the Ellison Medical 

Foundation. We are grateful to Stephanie Chan, Nicolas Schuck, Amitai Shenhav, Rachel Wu 

and two anonymous reviewers for very helpful comments on previous versions of the 

manuscript.  

 
 
  



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 27 

References 

Baddeley, A., Emslie, H., & Nimmo‐Smith, I. (1993). The Spot‐the‐Word test: A robust estimate   

of verbal intelligence based on lexical decision. British Journal of Clinical Psychology, 32(1), 

55-65. 

Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10, 433-436. 

Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and  

neuromodulation. Neuroscience & Biobehavioral Reviews, 26(7), 809-817. 

Cabeza, R., & Dennis, N. A. (1994). Frontal lobes and aging : Deterioration and Compensation.  

In D. T. Stuss & R. T. Knight (Eds.), Principles of Frontal Lobe Function (2nd ed.). 

Oxford University Press. 

Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the fronto- 

parietal cognitive control network: implications for distractibility. 

Neuropsychologia, 50(9), 2212-2223. 

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective  

responses to impending reward and punishment: the BIS/BAS scales. Journal of 

Personality and Social Psychology, 67(2), 319. 

Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Düzel, E., & Dolan, R. J.  

(2013). Dopamine restores reward prediction errors in old age. Nature 

Neuroscience, 16(5), 648-653. 

Daw, N. D. (2011). Trial-by-trial data analysis using computational models. Decision making,  

affect, and learning: Attention and performance XXIII, 23, 3-38. 

Eppinger, B., Hämmerer, D., & Li, S. C. (2011). Neuromodulation of reward‐based learning and  

decision making in human aging. Annals of the New York Academy of Sciences, 1235(1), 

1-17. 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 28 

Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses  

to reward prediction errors in older compared with younger adults. The Journal of 

Neuroscience, 33(24), 9905-9912. 

Fristoe, N. M., Salthouse, T. A., & Woodard, J. L. (1997). Examination of age-related deficits on  

the Wisconsin Card Sorting Test. Neuropsychology, 11(3), 428. 

Gazzaley, A., Cooney, J. W., Rissman, J., & D'Esposito, M. (2005). Top-down suppression  

deficit underlies working memory impairment in normal aging. Nature 

Neuroscience, 8(10), 1298-1300. 

Geana, A., & Niv, Y. (2015). Causal Model Comparison Shows That Human  

Representation Learning Is Not Bayesian. In Cold Spring Harbor symposia on 

quantitative biology (p. 024851). Cold Spring Harbor Laboratory Press. 

Glass, B. D., Chotibut, T., Pacheco, J., Schnyer, D. M., & Maddox, W. T. (2012). Normal aging  

and the dissociable prototype learning systems. Psychology and Aging, 27(1), 120. 

Hampshire, A., Gruszka, A., Fallon, S. J., & Owen, A. M. (2008). Inefficiency in self-organized  

attentional switching in the normal aging population is associated with decreased activity 

in the ventrolateral prefrontal cortex. Journal of Cognitive Neuroscience, 20(9), 1670-

1686. 

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related  

estimators. Journal of Educational and Behavioral Statistics, 6(2), 107-128. 

Hentschke, H., & Stüttgen, M. C. (2011). Computation of measures of effect size for  

neuroscience data sets. European Journal of Neuroscience, 34(12), 1887-1894. 

Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other  

probability functions to a distribution of response times.Tutorials in Quantitative 

Methods for Psychology, 4(1), 35-45. 



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 29 

Li, S. C., Lindenberger, U., & Bäckman, L. (2010). Dopaminergic modulation of cognition  

across the life span. Neuroscience & Biobehavioral Reviews, 34(5), 625-630. 

Lindenberger, U., & Mayr, U. (2014). Cognitive aging: is there a dark side to environmental  

support?. Trends in Cognitive Sciences, 18(1), 7-15. 

Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental  

Organization (No. 8). Oxford University Press. 

Mata, R., Josef, A. K., Samanez‐Larkin, G. R., & Hertwig, R. (2011). Age differences in risky  

choice: a meta‐analysis. Annals of the New York Academy of Sciences, 1235(1), 18-29. 

Mata, R., Pachur, T., Von Helversen, B., Hertwig, R., Rieskamp, J., & Schooler, L.  

(2012). Ecological rationality: a framework for understanding and aiding the aging 

decision maker. Frontiers in Neuroscience, 6, 19. 

Mata, R., Schooler, L. J., & Rieskamp, J. (2007). The aging decision maker: cognitive aging and  

the adaptive selection of decision strategies. Psychology and Aging, 22(4), 796. 

Mayr, U., Spieler, D. H., & Hutcheon, T. G. (2015). When and why do old adults outsource  

control to the environment?. Psychology and Aging, 30(3), 624. 

Mell, T., Heekeren, H. R., Marschner, A., Wartenburger, I., Villringer, A., & Reischies, F. M.  

(2005). Effect of aging on stimulus-reward association 

learning. Neuropsychologia, 43(4), 554-563. 

Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The Brain Ages Optimally to  

Model Its Environment: Evidence from Sensory Learning over the Adult Lifespan. PLoS 

computational biology, 10(1), e1003422. 

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3),  

139-154. 

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., & Wilson, R. C.  



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 30 

(2015). Reinforcement Learning in Multidimensional Environments Relies on Attention  

Mechanisms. The Journal of Neuroscience, 35(21), 8145-8157. 

Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000).  

Working memory for letters, shapes, and locations: fMRI evidence against stimulus-

based regional organization in human prefrontal cortex. NeuroImage, 11(5), 424-446. 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming  

numbers into movies. Spatial vision, 10(4), 437-442. 

Raven, J. C., & John Hugh Court. (1998). Raven's progressive matrices and vocabulary scales.  

Oxford Psychologists Press. 

Rhodes, M. G. (2004). Age-related differences in performance on the Wisconsin card sorting  

test: a meta-analytic review. Psychology and Aging, 19(3), 482. 

Ridderinkhof, K. R., Span, M. M., & Van Der Molen, M. W. (2002). Perseverative behavior and  

adaptive control in older adults: Performance monitoring, rule induction, and set 

shifting. Brain and Cognition, 49(3), 382-401. 

Rieckmann, A., & Bäckman, L. (2009). Implicit learning in aging: extant patterns and new  

directions. Neuropsychology review, 19(4), 490-503. 

Salthouse, T. A. (1992). What do adult age differences in the Digit Symbol Substitution Test  

reflect?. Journal of Gerontology, 47(3), P121-P128. 

Samanez-Larkin, G. R., & Knutson, B. (2014). Reward processing and risky decision making in  

the aging brain. The Neuroscience of Risky Decision Making. 

Schmitz, T. W., Cheng, F. H., & De Rosa, E. (2010). Failing to ignore: paradoxical neural effects  

of perceptual load on early attentional selection in normal aging. The Journal of 

Neuroscience, 30(44), 14750-14758. 

Schuck, N. W., Frensch, P. A., Schjeide, B. M. M., Schröder, J., Bertram, L., & Li, S. C. (2013).  



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 31 

Effects of aging and dopamine genotypes on the emergence of explicit memory during s 

equence learning. Neuropsychologia, 51(13), 2757-2769. 

Shohamy, D., & Wimmer, G. E. (2013). Dopamine and the cost of aging. Nature, 201, 3. 

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a changing world. Frontiers in Human  

Neuroscience, 5. 

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a  
 
cognitive map of task space. Neuron, 81(2), 267-279. 
 

Worthy, D. A., Gorlick, M. A., Pacheco, J. L., Schnyer, D. M., & Maddox, W. T. (2011). With  

age comes wisdom decision making in younger and older adults. Psychological 

science, 22(11), 1375-1380. 

Worthy, D. A., & Maddox, W. T. (2012). Age-based differences in strategy use in choice  
 

tasks. Frontiers in neuroscience, 5(145), 1-10. 
 

  



Running head: AGING, REINFORCEMENT LEARNING AND ATTENTION 32 

 

 
 

Group Learning rate (η) Decay rate (d) Inverse temperature (β) 

    

YA .11 ± .01 .45 ±  .017 12.52 ± .68 

OA .12 ± .01 .56 ±  .03 14.06 ± 1.65 

    

 p = .49, r = .005 p = .002, r = .40 p = .41, r = .03 

 

Table 1. Best-fit values of the free parameters of the fRL+decay model (mean ± SEM) across groups. 
Bottom:  results of the corresponding Mann-Whitney test for group differences for each parameter.  

Hint: 
SQUARE

Hint: 
SHAPE

No hint.
}
1D

3D

choice within 2 s 0.5s

0.5s

0.5s

YOU WIN
1

POINT

YOU WIN
0

POINTS

Figure 1. Outline of the task. In experiment 1, at the start of each game participants were given a ‘hint’ 
regarding the target feature, the dimension of the target feature, or else no hint was given. On each trial, 
participants chose between three stimuli that varied along a single dimension (e.g., shape) in the 1D case, or 
along three dimensions (shape, color and texture) in the 3D case. Participants received binary reward 
feedback, winning either one or zero points on every trial, with reward probability depending on whether they 
chose the stimulus that contained the target feature. The game ended when the participant reached a 
performance criterion, or after 25 trials. A new game began with a signaled rule change followed by a new 
hint screen. Experiment 2 had the same structure, except that all games involved three-dimensional stimuli, no 
hints, and lasted 30 trials regardless of performance. 
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Figure 2. Performance of younger adults (dashed) and older adults (solid) in Experiment 1.  
(A) Average accuracy in each of the five task conditions. Dotted line indicates chance performance.  
(B) Decision component of reaction time by task condition. Error bars indicate one SEM (gray) and 95% 
confidence intervals (black). Asterisks indicate significant interactions (lines) and differences between 
groups within each condition (*p < .05, **p < .01, ***p < .001). 
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Figure 3. Model comparison. Likelihood per trial as a function of trial within a game for (A) Younger 
adults and (B) Older adults. In either group, the data heavily favor the fRL+decay model. Dashed line: 
chance (33%); shading: SEM; p-value corresponds to a repeated measures ANOVA (model x trial).  
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Figure 4. Age-related differences in decay rate and simulated learning curves.  
(A) Group difference in decay rate. Error bars: SEM (gray) and 95% confidence interval (black). 
Black dots show the decay rate estimates for each participant. (B) Average learning curves for 
participants performing the task (N=27 for each group) and for simulated agents (27 per group) 
performing 40 games of the task with individual fit parameters within each group. Single data points 
indicate the empirical performance, and continuous lines indicate simulated performance. Dotted line: 
chance (33%), error bars and shading: SEM.  


