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Highlights
Recent advances have refined our
understanding of reinforcement learn-
ing by emphasizing roles for attention
and for structured knowledge in shap-
ing ongoing learning.

Bayesian cognitive models have made
great strides towards describing how
structured knowledge can be learned,
but their computational complexity
challenges neuroscientific
implementation.
Compact representations of the environment allow humans to behave efficiently
in a complex world. Reinforcement learning models capture many behavioral and
neural effects but do not explain recent findings showing that structure in the
environment influences learning. In parallel, Bayesian cognitive models predict
how humans learn structured knowledge but do not have a clear neurobiological
implementation. We propose an integration of these two model classes in which
structured knowledge learned via approximate Bayesian inference acts as a
source of selective attention. In turn, selective attention biases reinforcement
learning towards relevant dimensions of the environment. An understanding of
structure learning will help to resolve the fundamental challenge in decision
science: explaining why people make the decisions they do.
Behavioral and neural evidence sug-
gests that each class of algorithms
describes unique aspects of human
learning.

We propose an integration of these
computational approaches in which
structured knowledge learned through
approximate Bayesian inference acts
as a source of top-down attention,
which shapes the environmental repre-
sentation over which reinforcement
learning occurs.
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How Do We Learn What to Learn About?
The complex, multidimensional nature of the external world presents humans with a basic
challenge: learning to represent the environment in a way that is useful for making decisions. For
example, a wine neophyte on her first trip to Napa could learn that white wines are more
refreshing in hot weather. This experience would give rise to a useful distinction between white
wines and all other wines, regardless of other dimensions such as the grape varietal or winery.
Such representation learning (see Glossary) often involves dimensionality reduction – the
pruning out of distinctions that are unlikely to be important [1]. For example, after multiple wine
tastings, our wine enthusiast might start paying attention to the type of grape but still ignore the
color of the label on the bottle. For any given task, a learner should ideally form a compact
representation of the environment that includes all relevant input from either the immediate
sensory snapshot or memory. Making too few distinctions may lead to ignoring of differences
between situations that require different behavior. Making too many distinctions may lead to
poor generalization to new, related situations. Understanding how learners arrive at a repre-
sentation of their environment is a fundamental challenge in cognitive science.

Reinforcement learning algorithms are powerful descriptors of how humans learn from trial
and error and substantial progress has been made in mapping these algorithms onto neural
circuits [2–4], yet reinforcement learning approaches still lack an account of how humans learn
task representations in multidimensional environments. In particular, recent work has
highlighted two phenomena that current models do not fully capture: selective attention to
a subset of features in the environment and the use of structured knowledge. These findings
come from two literatures that have seen relatively little crosstalk: reinforcement learning
models of decision-making and Bayesian models of category learning. We summarize recent
advances at the intersection of the two literatures, with the goal of emphasizing parallels
between them and motivating new research directions that can establish how neural circuits
give rise to useful structured representations of the external world. We propose that
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Glossary
Action: a response the participant
makes (e.g., choosing an option,
labeling a stimulus, predicting an
outcome).
Bayesian nonparametric models:
a class of Bayesian cognitive models
that group observations into sets of
unobservable latent causes, or
clusters.
Environmental state: a subset of
environmental features relevant to
the agent’s goal (e.g., the feature red
being more predictive of reward).
Particle filters: a class of sampling
methods for approximating arbitrary
probability distributions in a
sequential manner, by maintaining
and updating a finite number of
particles (hypotheses).
Perceptual observation: a
stimulus, potentially with multiple
features.
Probabilistic programming
models: a class of Bayesian
cognitive models that reason over
structured concepts such as rules.
representations of task structure learned through approximate Bayesian inference are the
source of selective attention during learning. At the neural level, such structured representa-
tions in the prefrontal cortex determine which aspects of the environment are learned about via
dopaminergic modulation of corticostriatal synapses.

Probing How Humans Learn Task Representations
A burgeoning literature has begun to address the question of how humans learn task repre-
sentations in two different but related domains: reinforcement learning and category learning. In
a typical multidimensional reinforcement learning task, participants are given a choice between
stimuli that vary along several visual dimensions and observe a reward outcome after every
choice (Table 1, yellow). For example, the participant might be presented with a red square and
a blue triangle, choose the red square, and receive a binary reward [5]. Often, reward probability
does not depend uniformly on all features. For instance, one feature may be more predictive of
reward than others [6,7]. Given only partial information about which features matter, partic-
ipants are instructed to maximize reward in a series of sequential decisions. By contrast, in
category learning tasks participants are required to sort multidimensional stimuli one at a time
into one of several categories (Table 1, green). Category membership usually depends on the
presence or absence of one or more features as well as on the relationship between features.
For example, a red square would be classified as a ‘dax’ if ‘all red objects are daxes’ or as a
‘bim’ if ‘all red circles are daxes’ [8]. Finally, a related class of ‘weather prediction’ tasks (Table 1,
blue) asks participants to predict one of two outcomes (e.g., rain or shine) given multiple cues
and a nonuniform mapping between cues and outcome probabilities [9,10].
Reinforcement learning: a class of
algorithms that learn an optimal
behavioral policy, often through
learning the values of different
actions in different states.
Representation learning: the
process by which learners arrive at a
representation of environmental
states.
Reward outcome: consequence of
an action (e.g., a reward or category
label).
Reward prediction error: the
difference between the reward
outcome and what was expected;
used as a learning signal to update
values of states and actions.
State representation: the agent’s
internal representation of the
environmental state.

Table 1. Studies Addressing Representation Learninga

Refs Observation space Action space Reward function

[9] Four cues Two-alternative
weather
prediction task

Probabilistic binary outcome contingent on different cue
combinations; two cues more predictive than the others

[8] Three
dimensions � two
features

Two-alternative
categorization
task

Deterministic binary reward contingent on correctly
categorizing stimulus based on six possible rules

[58] Three
dimensions � two
features

Two-alternative
go–no-go task

Different cue combinations lead to deterministic positive (+10)
or negative (�10) rewards or to probabilistic rewards (+10 or �
10)

[10] Four cues Two-alternative
weather
prediction task

Probabilistic binary outcome; two different environments:
separable (both individual cues and combinations are
predictive) vs inseparable (only cue combinations are
predictive)

[5] Two
dimensions � two
features

Two-alternative
forced-choice
task

Probabilistic binary reward; two different environments:
generalizable (one dimension is on average more predictive) vs
nongeneralizable (the two dimensions are equally predictive)

[21] Three
dimensions � two
features

Two-alternative
categorization
task

Deterministic binary reward for correctly categorizing stimulus
based on a diagnostic feature rule or a disjunctive rule

[7] Three
dimensions � three
features

Three-alternative
forced-choice
task

Probabilistic binary reward with high probability if subject
selects ‘target feature’ and low probability otherwise

aA representative set of studies that have addressed how humans learn mappings from percepts to states from trial and
error. Shown here are distinctions between studies in the size of the observation space, the number of actions available to
the subject, and the relationship between stimuli and rewards.
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Such tasks differ in framing (e.g., decision-making vs categorization), the size of the observation
space (i.e., how many dimensions stimuli can vary on), the nature of the feedback (scalar
reward vs a category label, stochastic vs deterministic), and the instructions the participant
receives about the structure (Table 1). However, they also are alike in that each trial comprises a
perceptual observation, an action, and a reward outcome. In addition, they share the key
property that the participant needs to disambiguate observations by learning and representing
an appropriate mapping between perceptual observations and environmental states [4,11–
13]. In other words, performance depends on learning to carve the perceptual observation
space into a compact state representation appropriate for the task. In this Opinion article, we
refer to representation learning as the process of learning a mapping from perceptual obser-
vations to states . [Note that there also exist other kinds of representation learning problems,
such as that of learning the transition structure between states (i.e., model-based learning)] [14].

Several studies have tackled the question of what kinds of state representations humans use.
These studies built reinforcement learning agents (‘models’) that simulated actions trial by trial
and compared these predictions with human data [5,7–10,15–17]. Importantly, these models
vary in the state representation they learn over (see Figure I in Box 1). For example, in object-
based reinforcement learning [5,18] the agent maintains a value for each combination of
features (see Figure I in Box 1, left). In other words, there is a one-to-one correspondence
between unique percepts and states. In feature-based reinforcement learning (a form of
function approximation [19]), the agent maintains values for all possible features in the envi-
ronment and generalizes across observations by combining the predictions of constituent
features (e.g., by summing them; see Figure I in Box 1, right). Recent work on multidimensional
reinforcement learning has suggested that humans do not use one strategy exclusively.
Instead, participants tended to adopt feature-based learning when information about features
is predictive and object-based learning when it is not [5,10] and did not rely on object-based
Box 1. State Representation Effects on Learning

In addition to learning how to select appropriate actions, humans and animals learn from trial and error which features of
the environment are relevant for predicting reward. Formally, this converts the space of perceptual observations into a
state representation suitable for the problem at hand.

Imagine, that on the first trial of a categorization task, you correctly name a red square with a vertical stripe a ‘dax’
(Figure I; adapted from [8]). The expected value associated with the action ‘dax’ for the current stimulus, V(‘dax’|
stimulus), can be updated based on the difference between the reward and the initial expected value of that action – that
is, the reward prediction error RPE = R � V0(‘dax’|stimulus) – scaled by a learning rate h.

However, the update depends on the state representation. For instance, you could either update the entire object
(Figure I, left),

Vnew ‘dax’jred circle with vertical stripeð Þ ¼ Vold ‘dax’jred circle with vertical stripeð Þ þ h�RPE; [I]

or update individual features (Figure I, right),

Vnewð‘dax’jredÞ ¼Voldð‘dax’jredÞ þ h �RPE [II]

(and equivalently for ‘square’ and ‘vertical’).

These different assumptions about the state representation will lead to diverging reward expectations. If you next
encounter a red circle with a horizontal stripe and you have an object-based state representation, you will not expect a
reward for saying ‘dax’ because you have never encountered this stimulus before. If you have a feature-based
representation, you will expect a reward for saying ‘dax’ because the same action in response to a different red
stimulus previously led to reward.
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Figure I. Possible State Representations for a Prototypical Representation Learning Task. Perceptual
observations varying along three dimensions (color: red or blue; shape: circle or square; and orientation:
horizontal or vertical) can be categorized as ‘daxes’ or ‘bims’. On trial 1, the participant learns from correctly
categorizing the red square with a vertical stripe as a ‘dax’. She can represent the stimulus as either an object (left)
or a composition of features (right). An object-based representation leads to strengthening of the association
between the object and ‘dax’, while a feature-based representation leads to strengthening of the association
between the component features and ‘dax’. On trial 2, the participant must categorize the red circle with a
horizontal stripe. If she has an object-based representation, she is indifferent between ‘dax’ and ‘bim’ (and hence
might randomly choose ‘bim’), while if she has a feature-based representation she would be more likely to say
‘dax’ due to the previously learned association between red and ‘dax’. Thicker lines show a stronger association
between an input-level representation and the output label; active input units, and their connection to output units,
are shown in teal.
representations in a task in which a single feature is more predictive of reward [7] (cf. [20]).
These findings suggest that state representations can flexibly adapt to task structure.

Attention Shapes State Representations
How can it be that people use different representations in different learning tasks? One
possible explanation is that selective attention dynamically shapes state representations.
Selective attention is defined as the preferential processing of a subset of environmental
features at any stage between perception and action. Several recent studies have reported
that attended features influence actions more strongly than unattended features and are
learned about more readily [7,17,21,22]. Moreover, this interaction between attention and
learning is bidirectional: attentional biases are dynamically adjusted as a function of reward
history [22].
Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4 281



Selective attention could sculpt state representations for reinforcement learning via known
neurobiological mechanisms. Reinforcement learning is thought to occur via dopamine-depen-
dent plasticity of synapses from cortical neurons onto striatal neurons [23]. In response to an
unexpected reward, dopamine neurons fire in proportion to the reward prediction error [2]
and release dopamine onto their striatal targets [24], facilitating long-term potentiation of
corticostriatal synapses [25]. If cortical neurons are firing in response to a sensory cue, such
as a tone, at the same time as a surprising reward, their synapses onto striatal neurons will
strengthen (and vice versa for a negative prediction error, which causes long-term depression
of synapses). If attention is directed to a subset of sensory features, the cortical response to
those features will be stronger and more precise [26]. Because these neurons are firing more,
their synapses onto striatal neurons will be strengthened more in response to unexpected
reward than those of unattended features. Attention could therefore bias reward-driven value
learning towards a subset of features in the sensory environment.

If selective attention shapes the representations used for learning, an important empirical
question is which aspects of the observation space are subject to attentional selection? Two
prominent theories suggest different targets for attention in reinforcement learning. The
Mackintosh model proposes that attention tracks stimulus features that are most predictive
of reward [27]. The Pearce and Hall model suggests instead that attention is directed to features
that learners are most uncertain about [28]. Hybrid approaches suggest that both processes
occur independently [29,30], while integration models posit that attention is directed by both
predictiveness and uncertainty [31,32], and the balance of these two factors may differ
between choice and learning [33,34]. Additionally, features of the stimulus, such as its visual
salience, can capture attention in a bottom-up manner [35], and such features ought to be
learned about more readily. While a topic of active research, how the brain dynamically directs
attention during either choice or learning remains an open question [36].

Insights from Structure Learning
Humans use knowledge about the world to scaffold learning. This knowledge can take the form
of abstract concepts [37], domain knowledge [38], relational maps of the environment [39,40],
or hierarchically structured knowledge of task rules [41]. Knowledge about structure endows
humans with a remarkable ability to generalize behavior to new environments. It also enables
rapid ‘one-shot’ learning of new concepts and ‘learning to learn’ [42,43], the ability to learn
more quickly after experience with a class of learning problems. Cognitive psychology research
has successfully modeled such structure learning phenomena using Bayesian cognitive
models.

Probabilistic programming models (Figure 1, top row) construct rules (or concepts) from
compositions of features with simple primitives (e.g., ‘for all’, ‘if’, ‘and’, ‘or’) [37,42,44]. In
category learning tasks, rules are constructed from the stimulus features and simple logical
operations [e.g. ‘(blue and square) or red’] [8,37,45]. Given a hypothesis space of all possible
rules, the posterior probability is calculated via Bayesian inference, considering both a rule’s
complexity and the proportion of examples it correctly categorizes. Rules are, a priori, expo-
nentially less likely as the expressive length of the rule increases. Probabilistic programming
models are an instance of a class of models that describe concept-learning data by assuming a
compositional rule-based structure (e.g., RULEX [46]). The unique contribution of probabilistic
programming models is that they use statistical inference to build concepts that are appropriate
for the learning problem. This flexibility allows them to explain phenomena outside categoriza-
tion, such as how people infer causal relationships between events [47,48] or how people infer
others’ intentions from their actions [49] or choice of words [50].
282 Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4
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Figure 1. Structure Learning Guides Selective Attention. Rules inferred by probabilistic programming models (top row) or clusters inferred by Bayesian
nonparametric models (middle row) lead to different perceptual distinctions in observation space (bottom row). Left column: If the agent infers that red objects are
‘daxes’ or that red and ‘dax’ cluster together, she can ignore shape and attend only to color when categorizing a stimulus as a ‘dax’ or a ‘bim’. Middle column: Similarly,
if the agent infers that squares are ‘daxes’ (middle left) or that square and ‘dax’ cluster together, she can ignore color and attend only to shape. Right column: Finally, if
the agent infers that red squares are ‘daxes’ or that red, square, and ‘dax’ cluster together, she should attend to both color and shape.
However, category learning tasks differ only subtly from decision-making experiments that are
modeled with reinforcement learning (Table 1). A recent study of human category learning
highlighted this relationship by directly comparing a Bayesian probabilistic programming model
with several reinforcement learning models that learn over different state representations [8,37].
While reinforcement learning models can learn categorization rules if given the correct state
representation, the Bayesian model better predicted human choices. In contrast to reinforce-
ment learning, which learns over a predefined state representation and updates uninformative
states indefinitely, probabilistic programming models settle on the rules that parsimoniously
describe observations.

Bayesian nonparametric models (Figure 1, middle row) also highlight how Bayesian infer-
ence can explain learning phenomena that have eluded reinforcement learning (cf. [51]).
Bayesian nonparametric models group perceptual observations into unobserved ‘latent
causes’ (or clusters) [52–55]. For example, consider a serial reversal learning task in which
Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4 283



the identity of the high-reward option sporadically alternates. In such tasks, animals initially learn
slowly but eventually learn to respond rapidly to contingency changes [56]. Bayesian nonpara-
metric models learn this task by grouping reward outcomes into two latent causes: one in which
the first option is better and one in which the second option is better. Once this structure is
learned, the model displays one-shot reversals after contingency changes because it infers that
the latent cause has changed. This inference about latent causes in the environment has also
shed light on several puzzling conditioning effects. When presented with a neutral stimulus such
as a tone followed by a shock, animals eventually display a fear response to the tone. The
learned fear response gradually diminishes when the tone is later presented by itself (i.e., in
extinction) but often returns after some time has passed. This phenomenon is known as
spontaneous recovery. Bayesian nonparametric models attribute spontaneous recovery to the
inference that extinction signals a new environmental state. This prevents old associations from
being updated [57]. Bayesian nonparametric models also predict that gradual extinction will
prevent spontaneous recovery, a finding borne out by empirical data [57]. In gradual extinction,
the model infers a single latent state and gradually weakens the association between that state
and aversive outcome, thereby abolishing the fear memory.

In both probabilistic programming and Bayesian nonparametric models, learning is biased by a
prior that favors simpler representations over complex ones. For example, a probabilistic
programming model is biased towards rules in which a single feature is relevant for classifica-
tion. This simplicity prior is appropriate across tasks and domains. This stands in contrast to
reinforcement learning models that require the definition of an appropriate state space for each
task. A simplicity bias is also consistent with findings that suggest that trial-and-error learning
follows a pattern whereby simpler feature-based state spaces precede more complex object-
based spaces [5,58] and explains why classification becomes harder as the number of relevant
dimensions grows [59]. The findings outlined in this section illustrate both the importance of
structured knowledge in learning and the utility of Bayesian cognitive models for explaining how
this knowledge is acquired. However, they raise an important question: how does this
knowledge about task structure interface with the neural systems that support reinforcement
learning?

Bridging Structure Representations and Neural Models of Reinforcement
Learning
We propose a conceptual model that links reinforcement learning with a structure learning
system in a neurobiologically plausible architecture (Figure 2). We base our framework on
connectionist models of the basal ganglia–prefrontal cortex circuit [41,60,61]. These models
describe how rules [41,62,63] or working memory content [61,64] are selected via known
corticostriatal circuitry (see [61] for neuroanatomical detail). Anterolateral prefrontal cortical
pools can represent different rules, working memory content, or hypotheses about task
structure. These different pools compete via mutual lateral inhibition. The outcome of this
competition is biased by the relative strength of each pools’ connectivity with the striatum.
Pools with stronger cortical–striatal connectivity will generate a stronger striatal response,
which in turn increases the strength of thalamic feedback onto these pools. This recurrent
circuit allows a pool representing a task rule to inhibit competing pools and control behavior
[65]. If an unexpected reward occurs, dopamine release in the striatum strengthens the
synapses from the most active cortical pool. In this way, rule representations that lead to
reward are more likely to win over alternative representations in the future [41,66]. This model
describes how a reinforcement learning system could gate the representation of a hypothesis
about task structure into the cortex. Our central proposal is that this hypothesis is the source of
top-down selective attention during learning (Box 2).
284 Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4



(A)

(B)

A�en�on

RL
Values StatesHypotheses

Update

Gate
hypothesis

A�en�on

V(red)

Red

Square

Ver�cal

RPE

Red
and

square

Figure 2. Conceptual Model of Structure Learning. (A) We propose that: (i) hypotheses about task structure are the
source of top-down attention; and (ii) attention sculpts the state representation by prioritizing some features of the
environment for reinforcement learning. Existing models suggest that state values [or (state,action) pair values] are learned
via reinforcement learning. In turn, learned values about states participate in the gating of which hypotheses are
considered. Specifically, hypotheses that are consistent with the high-value (state,action) pairings are more likely to
be considered. Finally, prediction errors in response to violations of these hypotheses help to update state values. (B) A
simple model showing how the interacting systems architecture in (A) could be realized in different neural circuits. Yellow
area corresponds to the lateral prefrontal cortex, blue to the basal ganglia, green to the sensory cortex, and red to the
dopaminergic midbrain. A prefrontal hypothesis that ‘red and square’ is the correct categorization rule biases top-down
attention to the ‘red’ and ‘square’ features in the sensory cortex, which in turn increases learning about these features in
response to reward prediction errors (RPEs). In turn, values stored in the striatum influence prefrontal rule selection.
Hypotheses about task structure can constrain feature-based reinforcement learning by
directing attention to specific component features and not others. For example, a hypothesis
that ‘red stimuli are daxes’ would increase the strength and fidelity of the representation of color
in the sensory cortex. If an unexpected outcome follows a red square, the heightened
representation of ‘red’ will cause a larger update to the corticostriatal projections from ‘red’
neurons than from ‘square’ neurons. As a result, reinforcement learning will operate over a
feature-based representation with biased attention to the color ‘red’. If later in the task the
hypothesis is updated to ‘red squares are daxes’, both red and square features will be attended
to more strongly than other features. In this way, rules can sculpt the state representation
underlying reinforcement learning.
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Box 2. How Selective Attention May Emerge from Structure Learning

When stimuli are multidimensional, the state representation underlying reinforcement learning is shaped by selective
attention [22]. Total reward expectation can be computed as a weighted sum of expectations from each component
feature:

Vð‘dax’jred circleÞ¼FcolorVð‘dax’jredÞþFshapeVð‘dax’jcircleÞ [I]

where V is reward expectation and F is attention weight. But how are the weights determined? These weights can be
thought of as indexing the allocation of attention to each feature. We illustrate how these attention weights can emerge
from the inference of latent structure.

Probabilistic programming models (Figure 1, top row) construct rules from compositions of perceptual features and
logical primitives (e.g., ‘and’, ‘or’, ‘not’). Returning to the categorization problem from Figure I in Box 1 reduced to two
dimensions (color: red or blue; and shape: circle or square), say you observe evidence in favor of the rule that ‘red
objects are daxes’. Given this rule, you can collapse across the shape dimension and attend only to the color of each
object (Fcolor = 1, Fshape = 0; Figure 1, left column, bottom panel). If, however, you believe that ‘squares are daxes’, you
can ignore color and attend only to shape (Fcolor = 0, Fshape = 1; Figure 1, middle column, bottom panel). Finally, if your
rule is that ‘red squares are daxes’, you must be able to distinguish across both dimensions (Fcolor = 0.5, Fshape = 0.5;
Figure 1, right column, bottom panel).

Bayesian nonparametric models (Figure 1, middle row) propose an alternative mechanism for structure learning, which
is to group observations into clusters, or ‘latent causes’ that generate linked observations. When a latent cause is ‘on’, it
tends to emit linked observations. For example, if you infer that latent variable y causes both red and ‘dax’, you can
ignore shape (Fcolor = 1, Fshape = 0; Figure 1, left column, bottom panel), since only the presence of red is relevant in
determining whether y is active and will also cause ‘dax’. If, however, you infer that latent variable y causes both square
and ‘dax’, you can ignore color (Fcolor = 0, Fshape = 1; Figure 1, middle column, bottom panel). Finally, if both red and
square are related to ‘dax’ via y, attention should be allocated to both color and shape, as both dimensions provide
information about the likelihood of y being active and also causing ‘dax’ (Fcolor = 0.5, Fshape = 0.5; Figure 1, right
column, bottom panel).

Both probabilistic programming models and Bayesian nonparametric models offer normative solutions to the problem
of learning to represent structure in the environment. Understanding whether and how the different representations they
require (rules vs clusters) map onto neural circuits may help in adjudicating between the two model classes.
Reinforcement learning could, in turn, contribute to the selection of hypotheses via two
mechanisms. First, learning can adjust the corticostriatal weights of projections from cortical
pools representing alternative rules, as has been proposed by a recent neural network model
[41]. Second, reinforcement learning over features represented in the sensory cortex can
contribute to rule selection. For instance, the rule ‘red squares are bims’ will be influenced by
simple reinforcement learning linking ‘red’ with ‘bim’ and ‘square’ with ‘bim’. Even if the learner
is using the rule ‘red objects are bims’, the incidental reinforcement of ‘square’ every time a red
square is correctly classified as ‘bim’ will cause higher activation of ‘red squares’ relative to ‘red
circles’ neural pools in the cortex. This differential activation will increase the likelihood that the
subject switches to the correct rule. This mechanism is consistent with the finding that even
when subjects are given the correct categorization rule, features of the stimulus that are not part
of the rule exert an influence on decisions [20]. When a rule is discarded, reinforcement learning
would also support the selection of an alternative rule that has explained past observations. This
mechanism eliminates the need to remember all previous trials and evaluate alternative rules
against these memories, thereby endowing the hypothesis testing system with implicit
memory.

By designating hypotheses as the source of top-down attention, this model provides a
mechanistic account of how reinforcement learning is influenced by both structured knowledge
and attention. This idea is closely related to recent work suggesting that working memory
contents in lateral prefrontal circuits act as the source of top-down attention to the constituent
sensory circuits [67]. Working memory plays an important role in constraining reinforcement
286 Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4



learning [68], and our model predicts that learning is influenced by the number of hypotheses
that can be simultaneously considered [69].

Computational Feasibility of Bayesian Inference
Our model claims that hypotheses about task structure are considered in a manner consistent
with Bayesian rational models. However, the computations underlying these models are
generally intractable [70]. For instance, in probabilistic programming models the agent must
repeatedly compute the likelihood of all previous observations over all possible rules. Recent
work has attempted to address this problem using sampling algorithms that approximate
solutions to Bayesian inference [71,72]. One such algorithm is the particle filter.

A particle filter can approximate any given Bayesian model by using a finite number of particles,
each of which expresses a particular hypothesis about the state of the world [73,74]. For
example, in a category learning task, each particle represents a single categorization rule. After
an observation, the particle either samples a new hypothesis or stays with the current one. This
decision depends on how likely the observation is under the current hypothesis. A particle
encoding the belief that ‘red stimuli are daxes’ would be more likely to stay with its current
hypothesis after observing a red square that is a ‘dax’ and more likely to switch to a new
hypothesis after observing a red square that is a ‘bim’. This update algorithm is computationally
simple because it incorporates only each particle’s belief about the world (e.g., one classifica-
tion rule).

In addition to their computational simplicity, particle filters are an appealing model for repre-
sentation learning because they can preferentially sample simpler rules. Moreover, they capture
the phenomenological report that people consider alternative hypotheses [75]. Particle filters
also closely resemble a serial hypothesis testing model that has previously been shown to
describe human behavior in a multidimensional decision-making task [76]. In addition, they
provide a single framework for implementing representation learning over different types of
models, including both probabilistic programming models and Bayesian nonparametric models
[69,71].

Given an infinite number of particles, particle filters converge to the true posterior probability.
Remarkably, recent work has demonstrated that the use of a single or very few particles can
describe human behavior well. This is because humans face a practical problem: rather than
learning the true probability distribution over all possible rules, people need only find a rule that
explains enough observations to make good decisions [77]. This could explain why behavior
across an entire group may be Bayes optimal but individual choices are often not [78]. If each
individual tracks just one or a few hypotheses, only the group behavior will aggregate over
enough ‘particles’ to appear Bayes optimal [78].

Our neural model proposes that hypotheses are gated by corticostriatal circuitry that is, in turn,
influenced by reinforcement learning. This architecture could form the basis of a particle filter
algorithm. Specifically, particle filters sample hypotheses based on how well each hypothesis
accounts for previous observations. Feature weights learned via reinforcement learning could
enable the sampling of hypotheses that have already explained some observations. Unlike
particle filter accounts of sensory integration, which propose that individual spikes of feature-
selective neurons represent particles [79–82], in our model particles correspond to distributed
prefrontal representations of rules. The particle filter algorithm is a flexible mechanism for
inference that could apply to different timescales (from milliseconds to trials) and different types
of problems (e.g., perception, categorization).
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Although corticostriatal connectionist models can exhibit properties similar to a Bayesian
structure-learning model [41], the corticostriatal gating mechanism need not perfectly imple-
ment a particle filter, and the differences may be informative [77]. For example, in a task where
the motor response mapping varies (e.g., ‘bim’ is sometimes the left-hand and sometimes the
right-hand response), a corticostriatal gating model would correctly predict that if recent right-
hand selections were rewarded, the subject is more likely to respond ‘right’ regardless of the
category of the current stimulus [83]. A particle filter implementing a probabilistic programming
model of representation learning would not predict this effect. A fruitful area for future research
will be to examine other ways in which constraints imposed by the corticostriatal architecture
can predict deviations from Bayesian inference.

Related Models
Our proposal that the prefrontal cortex and striatum interact to support structure learning is
related to the longstanding idea that the brain contains multiple, competing learning systems
[84,85] (see COVIS for computational implementation [86]). Previous work has shown that in
tasks where categorization rules are difficult to verbalize, (e.g., respond left to squares that are
more red than they are circular), performance is supported by incremental learning in cortico-
striatal circuits [87,88]. By contrast, the performance of explicit rule-learning tasks depends on
the prefrontal cortex [89]. Our proposal also relies on the distinction between the kinds of
representations and learning supported by the prefrontal cortex and striatum. However, we
propose that prefrontal rule representations act as a source of top-down attention that sculpts
the state representation over which reinforcement learning operates.

Rule-based categorization models stand in contrast to clustering approaches to learning. In
clustering models, stimuli are clustered according to the similarity of their features. This
clustering can be biased by attention, such that stimuli that differ in unattended features
nonetheless cluster together [e.g., in the attention learning covering map model (ALCOVE)] [90].
An association between a cluster (e.g., all previous red stimuli) and a category label (e.g., ‘dax’)
implicitly encodes a categorization rule (‘red stimuli are daxes’). This mechanism for building
representations has been proposed as a solution to the representation learning problem in
reinforcement learning [91]. A related model, the supervised and unsupervised stratified
adaptive incremental network (SUSTAIN), suggests that a single cluster is activated by each
stimulus (akin to a single rule representation in our model) [92]. SUSTAIN shares many
similarities with the Bayesian nonparametric models described above and more empirical
work is necessary to adjudicate between their mechanisms for forming clustered representa-
tions. Importantly, both SUSTAIN and ALCOVE describe a bidirectional relationship between
attention and representation learning that is influenced by prediction errors, in line with the
framework we suggest here.

The critical difference between clustering models and the model that we describe is the nature
of the representation (clusters versus concepts). Because probabilistic programming models
perform inference over compositions of concepts, they can handle a broader range of tasks.
Consider the task of learning to tie one’s shoelaces. Probabilistic programming models would
treat each of the operations that can be applied to a shoelace as a concept and could learn how
to tie knots from compositions of these concepts. These compositions can be rapidly applied to
solve new problems, such as tying a bow on a gift or triple-knotting one’s shoelaces before a
hike. Categorization tasks may be a special case in which the predictions of cluster-based and
rule-based models converge. Moreover, these models may map onto partially distinct neural
systems, with the hippocampus and medial temporal lobe cortex supporting learning based on
similarity to past exemplars [92,93] and the prefrontal cortex supporting learning based on
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Outstanding Questions
How do reinforcement learning and
cortical representations of structure
interact to control behavior? Can sys-
tematic deviations from Bayesian ratio-
nality be explained by reinforcement
learning? Can we model why different
tasks bias the arbitration between
learning systems?

Are the predictions of corticostriatal
connectionist models of rule learning
borne out by neural and neuroanatom-
ical data? For example, do anterior
cortical projections influence the
stimulus–response coding profiles of
striatal neurons targeted by the motor
cortex? Do thalamocortical projections
mediate the activation of cortical neu-
rons representing task rules?

What are the regional differences in
task structure learning and represen-
concepts. Recent work showed that multivariate hippocampal representations of stimuli are
similar to predictions of the SUSTAIN model [21]. In category learning, the top-down attention
mechanism we propose may also influence hippocampal clustering. There is elevated
prefrontal–hippocampal functional connectivity during category learning [21].

The role of the hippocampus and surrounding cortex in representation learning is likely to extend
beyond the clustering of past experiences. Conjunctive representations of multiple features in the
hippocampus can support reinforcement learning over configurations of features [10,94]. Further,
episodic retrieval of individual past choices and outcomes, as well as previous task rules, has a
strong influence on decisions [95,96]. Retrieval is both influenced by and influences top-down
attention. As a result, retrieval is likely to interact with the model we propose. For example, retrieval
drives reinstatement of cortical representations of features [97], which could lead to reinforcement
learning over features that are not present in the environment. Finally, the hippocampus and
entorhinalcortex form spatialmaps of theenvironment in the service ofspatial learning [98]. Recent
modeling and empirical work has emphasized a role for the hippocampus and entorhinal cortex in
forming cognitive maps of tasks and a specific function for the hippocampus in signaling that the
environment has changed enough to necessitate the formation of a new state representation
[39,93,99]. Thus, a pressing question for the field is what distinguishes the representations of task
structure between the hippocampus and prefrontal cortex.
tation across the prefrontal cortex? In
particular, what are the different roles
for the orbitofrontal cortex and lateral
prefrontal cortex?

How does working memory affect
representation learning? Specifically,
does interference from working mem-
ory contents influence hypothesis
selection and top-down attention?
Do multiple hypotheses or rules inter-
fere with one another due to working
memory constraints? Do individual dif-
ferences in working memory capacity
relate to representation learning?

How do relational, spatial, and epi-
sodic knowledge in the hippocampus
support or compete with reinforce-
ment learning? Under what conditions
does retrieval interfere with or support
representation learning?

Can a union of Bayesian cognitive
models with reinforcement learning
provide new ideas about education
and classroom learning? How can
attention be directed to facilitate the
discovery of a novel concept?

Can structure learning account for
maladaptive behaviors in psychiatric
and substance abuse disorders?
Concluding Remarks
We have outlined recent findings showing the extent to which reinforcement learning is con-
strained by attention and by the underlying representation of the structure of the environment.
We propose that attention is a key mechanism that sculpts the sensory representations
supporting learning. Bayesian cognitive models explain unique aspects of behavior in catego-
rization tasks that are very similar to the tasks used to study reinforcement learning. An exciting
possible unification of these research threads is that abstract conceptual knowledge that forms
the basis of these cognitive models drives top-down attention during learning. Our conceptual
model makes several testable predictions. First, particle filter or related approximations to
Bayesian cognitive models should describe the diversity of individual subject behaviors in
representation learning tasks [69]. Second, application of a rule should be associated with
increased sensory cortical responses to the constituent features of that rule, and increased
reinforcement learning about them. Third, values learned via reinforcement learning should
influence which rules are selected in rule learning tasks.

Manipulations that are known to influence attention and working memory should also
influence representation learning. For example, interference from a dual task may reduce
the number of hypotheses about task structure (e.g., rules in a categorization task) that can
be considered simultaneously. A quantitative prediction of our model is that this would reduce
the accuracy of rule learning. From a neuroscience perspective, dual tasks degrade the
quality of representations held in working memory [100], which could cause learners to forget
rules or implement them more noisily. Another possible consequence of a dual task is that
attention is biased against complex rules. This could actually improve learning for tasks with a
simple structure (e.g., tasks where a single feature is relevant for categorization or reward),
because the dual task prevents the learner from considering complex hypotheses that may
have otherwise interfered with learning. In addition, features that drive bottom-up attentional
capture, such as exogenously salient or mnemonically important features, should be more
likely be incorporated into hypotheses and, as a result, drive top-down attention. The impact
of these features should depend on their rule relevance: if salient features are relevant to the
task rules, they should accelerate representation learning.
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Answering these and related questions (see Outstanding Questions) will help to illuminate how
rule representations in the prefrontal cortex influence ongoing neural processing in the service
of adaptive behavior. More broadly, it will help us to understand how humans build rich
representations that are suited to both their environment and their goals, a question central
to our understanding of cognition in both health and disease [101].
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