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INTRODUCTION: The hippocampus plays an
important role in memory and spatial naviga-
tion. When rodents navigate a spatial maze,
hippocampal neurons called place cells show
spatially selective response fields, activating
only during visitation of particular places. In
this way, during navigation, place cells activate
sequentially, reflecting traveled paths. During
sleep and wakeful rest, the same sequences of
place cells are reactivated from memory, or
replayed, although the animal is stationary.
Replayed sequences are temporally compressed,
occurring on the order of 100 ms, and have
been linked to an offline sampling process

that is important for memory consolidation.
Advances in reinforcement learning, an area
of machine learning, suggest that offline ex-
perience replay may also serve computational
functions underlying nonspatial learning and
decision-making.

RATIONALE: The study of hippocampal re-
play in the human brain is challenging be-
cause noninvasive neuroimaging techniques
have either relatively low spatial or temporal
resolution. Nevertheless, we reasoned that fast
neuronal replay events may be detectable in
blood oxygen level–dependent (BOLD) signals

recorded with functional magnetic resonance
imaging (fMRI) because the prolonged BOLD
response translates short neural events into
long-lasting signals. By applying multivariate
decoding techniques that can disentangle sub-
tle and spatially overlapping activity patterns,
it may therefore be possible to detect fast

replay events as ordered
activation of sequential
fMRI patterns. Studying
hippocampal replay in
humans allows investiga-
tion of abstract, nonspa-
tial tasks to determine the

extent to which the hippocampus is important
for sequential memory and decision-making
more broadly.

RESULTS: Wemeasured fMRI BOLD signals
while human participants performed a non-
spatial decision-making task and while par-
ticipants rested before and after completing
the task. A support vector machine classifier
was then trained on labeled task data from
the hippocampus and applied to multivariate
time courses acquired during the rest sessions.
We found that sequences of patterns decoded
from the hippocampus as participants rested
after task performance reflected the order of
previous experiences, with consecutively de-
coded task states being “nearby” in the ab-
stract task-state diagram. This ordering of
successive fMRI patterns reflected sequences
of task states rather than simpler sequences
of attentional or sensory experiences. More-
over, the extent of this hippocampal offline
replay was related to the integrity of on-task
representation of task states in the orbito-
frontal cortex, an area previously shown to be
important for representing the current task
state during decision-making. On-task encod-
ing of task states in the orbitofrontal cortex
was further related to behavioral perform-
ance, suggesting a role for hippocampal replay
in training task-relevant representations in
the orbitofrontal cortex. Experimental control
conditions and permutation analyses supported
these results, and simulations showed that our
proposed statistical analyses are, in principle,
sensitive to sequential neural events occurring
on the order of 100 ms—the time resolution
relevant for replay events.

CONCLUSION: Our results support the im-
portance of sequential reactivation in the human
hippocampus for nonspatial decision-making
and establish the feasibility of investigating
such rapid signals with fMRI, despite sub-
stantial limitations in temporal resolution.▪
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Decoding sequential replay with
fMRI. (Top) Participants made age
judgments of either faces or houses
for a sequence of overlaid face-house
images while brain activity was
recorded with fMRI.Task rules required
keeping in mind the age and judged
category of the current and previous
trial, called task states. (Bottom) The
task states followed a predefined
sequential structure. A pattern classi-
fier was trained to classify the
16 task states from on-task hippocam-
pal fMRI data (illustrated with orange
patterns). (Middle) The classifier was
then applied to fMRI data recorded
during wakeful rest in the same partic-
ipants to decode potentially replayed
sequences of task states (lines con-
necting patterns in top and middle).
Sequences of decoded task states
were related to the sequential structure
of the task (bottom) by counting how
many steps separated every two con-
secutive decoded states in the true
task structure (green circles; red circles
indicate states that were “skipped” in
the decoding). Skips omitting fewer
task states between successive
decoded states were more frequent in
the resting data than in control data,
indicating sequential replay of non-
spatial task states in the hippocampus
during wakeful rest.
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Sequential replay of nonspatial task
states in the human hippocampus
Nicolas W. Schuck1,2,3* and Yael Niv3*

Sequential neural activity patterns related to spatial experiences are “replayed” in the
hippocampus of rodents during rest. We investigated whether replay of nonspatial
sequences can be detected noninvasively in the human hippocampus. Participants
underwent functional magnetic resonance imaging (fMRI) while resting after performing a
decision-making task with sequential structure. Hippocampal fMRI patterns recorded at
rest reflected sequentiality of previously experienced task states, with consecutive
patterns corresponding to nearby states. Hippocampal sequentiality correlated with the
fidelity of task representations recorded in the orbitofrontal cortex during decision-
making, which were themselves related to better task performance. Our findings suggest
that hippocampal replay may be important for building representations of complex,
abstract tasks elsewhere in the brain and establish feasibility of investigating fast replay
signals with fMRI.

S
tudies in rodents have shown that hippo-
campal representations of spatial locations
are reactivated sequentially during short
on-task pauses, longer rest periods, and
sleep (1–3). This sequential reactivation,

or replay, is accelerated relative to the original
experience (4), related to better planning (2) and
memory consolidation (5), and suppression of
replay-related sharp-wave ripples impairs spatial
memory (6).
The role of replay in nonspatial decision-

making tasks in humans has remained unclear.
We instructed participants to perform a non-
spatial decision-making task in which correct
performance depended on the sequential na-
ture of “task states” that included information
from past trials in addition to current sensory
information (partially observable states) (7). This
ensured that participants would encode sequen-
tial information while completing the task. We
recorded functional magnetic resonance imag-
ing (fMRI) activity during resting periods before
and after the task as well as during two sessions
of task performance, and investigated whether
sequences of fMRI activation patterns during
rest reflected hippocampal replay of task states.

Decision-making in a nonspatial,
sequential task

Thirty-three participants performed a sequen-
tial decision-making task that required inte-

gration of information from past trials into a
mental representation of the current task state
(supplementary materials, materials and methods)
(7). Each stimulus consisted of overlapping images
of a face and a house, and participants made age
judgments (old or young) about one of the images
(Fig. 1A). An on-screen cue before the first trial
determined whether the age of faces or houses
should be judged. From the second trial onward,
if the ages in the current and previous trial were
identical, the category to be judged on the next
trial remained the same; otherwise, the judged
category was switched to the alternative (Fig. 1B).
These task rules created an unsignaled “mini-
block” structure in which each miniblock involved
judgment of one category. No age comparison
was required on the first trial after a switch.
Miniblocks were therefore at least two trials long
and on average lasted for three trials.
The task rules resulted in a total of 16 task

states reflecting the current “location” within
the task—which stimulus had just been processed
and which stimuli could potentially come next
according to the rules. Task states followed each
other in a specific, structured order (Fig. 1C). For
example, the task state (Ho)Fy indicated a young
face trial that followed an old house trial and was
only experienced after a miniblock of judging
young houses ended (with an old house), which
led to the nextminiblock in which (young) faces
had to be judged. Although the task was not
spatial, it therefore involved implicitly navigat-
ing through a sequence of states that had pre-
dictable relationships to each other.
Participants performed the task with high ac-

curacy (average error rate, 3.1%; time outs, 0.6%;
reaction time, 969 ms) and improved their per-
formance throughout the course of the experiment
[negative linear trends; errors: false discovery rate
(FDR)–adjusted P value (PFDR) = 1.889 × 10–6;

reaction times: PFDR = 3.906 × 10–19] (Fig. 1D
and fig. S5).

Hippocampal fMRI patterns at rest
reflected task states

Participants engaged in the above decision-
making task while undergoing fMRI. A first
session included about 5 min of task instructions
and four runs of task performance (388 trials,
about 40 min duration). A second session took
place 1 to 4 days later and was identical to ses-
sion 1, but without instructions (Fig. 1E). Resting-
state scans consisting of 5-min periods of wakeful
rest without any explicit task or visual stimula-
tion were administered for all 33 participants
after session 1, before session 2, and after ses-
sion 2, resulting in a total of 300 whole-brain
volumes acquired during rest (three resting-state
scans with 100 volumes each). A subgroup of
participants (n = 10; group 2) underwent one
additional resting-state scan at the beginning
of session 1 before having had any instructions
about or experience with the task. Thus, 10 par-
ticipants (group 2) had a total of 400 whole-
brain volumes acquired during rest, whereas
23 participants (group 1) had a total of 300 vol-
umes. Resting-state data acquired after partic-
ipants had task experience will from here on be
referred to as the POST rest condition. Resting-
state data acquired before any task experience
(group 2 only) served as a control and will be
referred to as the PRE rest condition. Data re-
corded while receiving instructions served as
another control and will be referred to as the
INSTR condition. Data from the POST condition
were matched in length with the corresponding
control condition as appropriate. Heart rates
were generally higher during task as compared
with rest (t29 = 6.2, PFDR = 1.213 × 10–6) but did
not differ between control and POST conditions
or relate to the sequentiality effects reported
below (supplementary materials, materials and
methods).
To investigate sequential reactivation of task-

related experiences in the human hippocampus
during rest, we trained a multivariate pattern
recognition algorithm (supplementary materials,
materials and methods) to distinguish between
the activation patterns associated with each of
the 16 task states using data recorded during
task performance (Fig. 2, A and B). Leave-one-
run-out cross-validated classification accuracy
on the task data from the hippocampus was
significantly higher than chance and than clas-
sification obtained in a permutation test (11.6
versus 7.1% in the permutation test; t32 = 6.7,
PFDR = 3.186 × 10–7, chance level is 6.25%) (Fig.
2C). We then applied the trained classifier to
each volume of fMRI data acquired during the
resting state scans. Because classification accu-
racy could not be assessed for the resting scan
data owing to lack of ground truth, we assessed
the quality of the classification using the mean
unsigned distance to the decision hyperplane, a
proxy for classification certainty (8). This dis-
tance was larger in the POST condition compared
with simulated spatiotemporally matched noise
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(“NOISE”; t32 = 12.9, PFDR = 1.554 × 10–13) (sim-
ulation details are provided in the supplementary
materials, materials and methods) and compared
with the PRE condition (t9 = 2.1, PFDR = 0.0366,
group 2 only) (Fig. 2D), which is in line with
previous findings that suggest pattern reac-
tivation during rest (9–11).

Sequentially replayed states were
decodable in simulated fMRI data

During replay, previously experienced states are
reactivated sequentially.We therefore first tested
whether it is theoretically possible to measure
rapid sequential replay events [on the order of
few hundreds of milliseconds in humans (12)]
by using fMRI, given its low temporal resolu-
tion. We simulated fMRI activity that would
result from fast replay events and asked what
order and state information could be extracted
from these spatially and temporally overlapping
patterns, assuming slow hemodynamics and
images taken seconds apart. Our simulations
showed that two successive fMRI measurements
could reflect two states from the same multistep
replay event because the slow hemodynamic re-
sponse measured in fMRI causes brief neural
events to affect the BOLD signal over several
seconds (supplementary materials). Because
replay events are thought tomainly reflect short
sequences of states (3), if the activity we mea-
sured in the hippocampus at rest indeed reflects
sequential replay, we can therefore expect that

consecutively decoded states would be nearby
in the task’s state space (that is, separated by few
intervening states in Fig. 1C).
We next questioned whether it is reasonable,

given the low accuracy of correctly decoding
task states during task performance, to expect
to successfully decode a pair of states from the
same replay event. Our simulations answered
this in the affirmative: Because brain activity
after a rapid replay event will include several
superimposed states (fig. S6B), the likelihood of
classifying one out of several replayed states in
each resting-state brain volume is considerably
higher than the decoding accuracy when classi-
fying a single prolonged event during task per-
formance. Assuming the empirical classification
accuracy that we measured for task data, our
calculations showed that the chance of decod-
ing, from two consecutive brain volumes, a pair
of states that reflects the original relative order
of activation within one replay event is similar
to the overall decoding accuracy (~10%) rather
than the (much smaller) product of the chance
of decoding the two states individually (supple-
mentary materials).

Hippocampal activity during rest
reflected task-related sequentiality

Having established that, in principle, we can
detect sequential replay in fMRI data, we tested
whether the sequences of states we decoded in
the POST resting-state data (recorded after expe-

rience with the task) (Fig. 3A) reflected the se-
quential structure of the experienced task.
Because the classifier used to detect these states
was trained on task data that were themselves
sequential, some sequentiality of classifier output
arises even in random noise data. We therefore
conducted a series of controlled assessments of
the levels of sequentiality in our POST resting
data that ensured that we were detecting true
sequential replay and not merely unveiling the
biases of the classifier. Sequentiality should there-
fore be found in the POST data above and beyond
what we found in controls, if replay events had
indeed occurred.

Consecutively decoded states were
nearby in task space

First, we predicted that replay would be reflected
in a small number of steps that separate two
consecutively decoded states, as indicated by
the above-mentioned simulations. The number
of steps between state transitions decoded in
the POST resting condition was smaller, on av-
erage, than the distance between states in the
INSTR condition (t32 = 2.4, PFDR = 0.0165), in the
PRE condition (t9 = 2.3, PFDR = 0.0272, group 2
only), and in permuted data in which classified
states were randomly reordered to control for
overall state frequency (PERM condition; t32 =
4.6, PFDR = 7.897 × 10–5) (Fig. 3, B and C). While
indicating sequentiality, the observed step sizes
allow only limited insights about the total length
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Fig. 1. Experimental task and performance. (A) On each trial, partic-
ipants had to judge the age of either a face or a house, shown overlaid as a
compound stimulus. Trials began with the display of a fixation cross and
the response mapping (which of left or right was assigned to old or young;
1200 ms), followed by the stimulus. Responses could be made at any
time, and the stimulus stayed on screen for an average of 3300 ms. (B) The
task required participants to switch between judging faces and houses
after each time the age changed between two trials. (C) The state space of
the task, reflecting the abstract space that participants traversed, analogous
to a spatial maze, although nonspatial from the point of view of the
participant. Each node represents one possible task state, and each arrow
represents a possible transition. All transitions out of a state were equally

probable, occurring with P = 0.5. Each state of the task is determined by
the age and category of the previous and current trial, indicated by the
acronyms. States are colored based on their “location” within a miniblock:
trials within a miniblock in which the age and category were repeated
(orange), trials at the end of a miniblock in which the age changed (brown),
and trials entering a new miniblock where the category changed (purple).
(D) Average error rates and reaction times across the two experimental
sessions. Bars indicate ±1 SEM; gray dots indicate individual participants.
(E) The experiment extended over two sessions, each of which included
about 40 min task experience flanked by resting state scans. Asterisk
indicates that the pre-task resting state scan in session 1 was performed
only for a subgroup of our sample (n = 10 participants; group 2).
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of replayed sequences: A pair of patterns with
step-size N suggests the presence of a sequence
with a length of at leastN + 1 but could also reflect
partial measurement of a longer sequence, in par-
ticular whenmore than two consecutive states sep-
arated by short step sizes were decoded (Fig. 3D).
Second, because more than one short-distance

transitionmight result fromone longer sequence
replay, and replay events are temporally sparse
and separated by long pauses (12), we expected
the occurrence of short-distance state pairs to
be clustered in time. Short-distance state pairs
(less than three steps apart) were not only more
frequent than expected but also more likely to oc-
cur in clusters in the POST rest condition compared
with the INSTR (t32 = 1.7, PFDR = 0.0482), PRE (t9 =
1.9, PFDR = 0.0482, group 2 only), and PERM con-
trols (t32 = 4.5, PFDR = 9.152 × 10–5) (Fig. 3D).

Third, a salient aspect of our taskwas that age
switches were followed by category switches
(Fig. 1C, transitions from brown to purple states).
We predicted that this would be reflected in the
fMRI pattern transitions. We therefore inves-
tigated how often a decoded within-category
age-change state was followed by a decoded
category-switch state, as in our task [for exam-
ple, the number of (Fo)Ho states classified after
(Fy)Fo].We compared this proportion with how
often within-category age-repeat states were fol-
lowed by category-switch states [for example, the
number of (Fo)Ho states classified after (Fo)Fo]
and predicted that category-switch states should
occur more often in the former case (after age
changes) than in the latter case. Because consec-
utively decoded patterns do not necessarily reflect
one-step task structure, we analyzed the average

proportion of category-switch states decoded
in the six volumes (roughly the duration of the
hemodynamic response function) after the de-
tection of age-switch versus age-repeat states.
In the POST resting data, the proportion of de-
coded category-switch states was significantly
higher after decoding of a within-category age-
switch state than after an age repetition (t32 =
2.2, PFDR = 0.0251). This effect was not observed
in the PRE [Puncorrected (Punc.) = 0.2814),NOISE
(Punc. = 0.1369), or PERM (Punc. = 0.2233) con-
trol conditions.
We conducted additional analyses to verify

that the above results could not be explained
by sustained state activation, order effects based
on classifier training, or the occurrence of only
one particular decoded state distance. We re-
moved state repetitions (“self transitions”) from
the decoded sequence of states and testedwhether
the normalized frequency of consecutively decod-
ing each pair of task states (the transition prob-
ability summarized in matrix T) (Fig. 3A) was
negatively correlatedwith the distancematrixD
between the states in the task (where Dij cor-
responds to the minimum number of steps nec-
essary to get from state i to state j) (Fig. 3E). The
correlation between T and D was indeed neg-
ative [average correlation coefficient (r) = –0.16]
(Fig. 3F) and was significantly more negative
than the correlation seen in the PERM control
(r = –0.08; difference between POST and PERM,
Dr = –0.07, t32 = –5.8, PFDR = 2.605 × 10–6; the
nonzero correlation in the PERM control reflects
an effect of overall state frequency). Applying the
trained classifier to individually matched fMRI
noise (NOISE control) (supplementarymaterials,
materials and methods, and fig. S1) also revealed
a significant difference [correlation difference
POST versus NOISE, Dr = –0.08, t32 = –5.6, PFDR =
4.324 × 10–6; here, too, nonzero correlation was
seen in the control condition (r = –0.08), re-
flecting the effect of temporal contingencies be-
tween states in the classifier training data, which
can lead to spurious correlations] (Fig. 3G).
Our hypothesis that sequential reactivation

of task-state representations during rest was
caused by task experience was also supported
by a significantly stronger anticorrelation be-
tween T and D in the POST resting condition as
compared with the INSTR condition (t32 = –12.1,
PFDR = 5.320 × 10–13, PFDR = 2.513 × 10–6 when
comparing a subset of the POST data matched
in number of volumes to the INSTR data) (sup-
plementary materials, materials and methods),
as well as to the PRE condition (t9 = –7.9, PFDR =
3.093 × 10–5, group 2; but PFDR = 0.0593 when
compared with only the first resting scan in the
POST resting condition) (Fig. 3H).
Last, we excluded sets of state pairs from

classifier training (fig. S3) to test whether these
pairs would then show a lower transition fre-
quency in the resting data. The excluded tran-
sitions were observed as often as the included
transitions (t32 = 0.3, Punc. = 0.73). The tran-
sition frequencies observed during rest thus re-
flected sequential reactivation above and beyond
any sequential structure in the classifier.
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Fig. 2. Sequential replay decoding analysis. (A) Illustration of analysis procedure. For simplicity,
only two dimensions and three state classes are shown. We first trained a classifier to distinguish
between the different task states in the hippocampal fMRI data acquired during task performance.
The trained classifier was then applied to each volume of fMRI data recorded during resting sessions
(gray dots). This resulted in a sequence of classifier labels that was transformed into a transition
matrix T that summarized the frequency of decoding each pair of task states consecutively. The
structure of the decoded sequences, as summarized by this matrix, was then compared with the
sequential structure of the task. The actual analysis involved 16-way classification of data with
several thousand dimensions (each voxel is one dimension), which was compared with the task-state
space shown in Fig. 1C. (B) Example data from one randomly selected participant. Each dark
rectangle illustrates the sequence of classified states for the 100 volumes of fMRI data recorded in
one resting-state scan [depicted are three resting-state scans acquired throughout the experiment
(Fig. 1E)]. Columns represent time, and rows represent states. Each solid-color cell represents the
state classified at the respective time point; color indicates the distance [in steps in the state space
(Fig. 1C)] from the state decoded in the previous time point (the previous volume). (C) Classification
accuracy during task performance was significantly higher in hippocampal data (HPC) than in a
permutation test (PERM).The solid line indicates the theoretical chance baseline of 100/16 = 6.25%.
(D) Average distance to the hyperplane for classified states during rest in the NOISE (dark gray,
left bar), PRE (light gray, middle bar, n = 10 participants), and POSTconditions (green, rightmost bar,
n = 33 participants). Larger distance indicates higher certainty in the classification of the state.
Each dot indicates one participant, and bars indicate within-subject SEM; *PFDR < 0.05.
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Pattern sequentiality could not be
explained by classifier bias or
state repetitions
We further investigated the effects of task ex-
perience on pair-decoding frequency data Twhile
simultaneously (i) controlling for the above-
mentioned effect of temporal contingencies in
the classifier training, (ii) excluding state rep-
etitions, and (iii) incorporating thedifferent sources

of between- and within-participant variability.
We performed a logistic mixed-effects analysis
in which we modeled both the effect of interest
(the distance D) and nuisance covariates that
couldpotentially affectT (suchasbiases in classifier)
(supplementarymaterials, materials andmethods).
We call the effect estimate (b weight) of the
distancesD on the transition data T in this model
“sequenceness” and the nuisance effects “random-

ness.” For ease of interpretation, we flipped the
sign of the sequenceness estimates so that larger
numbers indicate more sequentiality in the data.
To assess whether state distance and tran-

sition frequency were significantly related above
and beyond the nuisance regressors, we used a
likelihood ratio test to compare a logistic regres-
sion model that contained only randomness
regressors to a model that also included the
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Fig. 3. Hippocampal state transitions during
rest are related to state distances in the task.
(A) The matrix T, expressing the log odds of
transitions between all states in the sequence of
classification labels in the hippocampal POST
resting-state data, averaged across all partic-
ipants. y axis, first state; x-axis, second state in
each consecutively decoded pair. Darker colors
reflect a higher probability of observing a pair
in the data. (B) Relative distributions of number
of steps separating two consecutively decoded
states. A distance of 1 corresponds to a decoded
state transition as experienced in the task;
a distance of 2 corresponds to a transition with
one state missing between the two decoded
states, as compared with the task; and so
on. Barplots show the difference in relative
frequency (D Density) with which each transition
type was observed in the POST resting data
compared with INSTR and PRE control
conditions and compared with (order) permuted
data (PERM). Smaller distances are more
frequently observed in the POST data, whereas
larger distances are more common in the control
data, suggesting that the POST resting data
reflect reactivation of short sequences. (C) The
average distance in state space of two
consecutively decoded states was significantly
lower in the POST data as compared with
the INSTR, PRE, and PERM controls (all P < 0.05,
Student’s t test comparing difference with 0).
(D) Low-distance transitions (fewer than three
steps) occurred in succession significantly more
frequently in the POST resting data compared
with all controls (all P < 0.05). (E) The matrix D,
indicating the minimum number of steps
between each pair of states in the task (the state
distances). Lighter colors reflect larger distance
between states. (F) Average correlations
between the state distance matrix D and the
corresponding decoded transition matrix T in the
POST resting data (green bar, left), as compared
with permuted data (PERM; light gray, middle)
or when the same classifier was applied to
participant-specific spatiotemporally matched
noise (NOISE; dark gray bar, right) (fig. S1).
(G) Within-participant differences between
correlations in POST resting data versus the
PERM and NOISE controls (all P < 0.05). (H) The
anticorrelation between D and T in the PRE
and INSTR conditions was lower than in the
POST resting data (matched in amount
of data compared). Dots reflect differences
in correlations for individual participants.
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sequenceness (task distances) regressor D. The
sequenceness and randomness effects in the POST
compared with the PRE condition are shown in
Fig. 4, A and B. We found no difference between
the fits of the twomodels whenmodeling the PRE
resting data (AIC 3651.2 versus 3651.8, c21 ¼ 2:7 ,
Punc. = 0.1091, for the model without and with the
sequenceness regressor, respectively; AIC, Aikaike
information criterion, for which lower values are
better). When modeling the POST resting data,
adding the sequenceness regressor improved
model fit significantly (AIC 3645.4 versus 3642.9,
c21 ¼ 5:5, Punc. = 0.0187; results are for group 2
only and considering only the first POST resting
scan from the first session to equate power with
the PRE analysis). Including both PRE and POST
conditions within one model showed improved
fit when the interaction of condition factor with
sequenceness and randomness was included
(AIC 7219.6 versus 7228.3, PFDR = 3.119 × 10–3).
Similarly, when comparing the INSTR with

the POST condition, a combined model indi-
cated an interaction between condition and
sequenceness versus randomness (19,994 ver-
sus 20,004, PFDR = 1.703 × 10–3). As before, this
reflected that no effect of the sequenceness
regressor was found in the INSTR condition
(AIC 10,046 versus 10,047), whereas there was
a distance significant effect in the POST rest
condition (AIC 10,130 versus 10,146, POST data
matched in size to equate power) (Fig. 4, C and
D). Analyzing data from all participants (groups
1 and 2) and all POST resting scans with this
model also showed that the inclusion of a state-
distance factor led to a significantly bettermodel
fit even after controlling for the randomness
(bias) effects (AIC 11,033 versus 11,020,c21 ¼ 14:43,
PFDR = 2.641 × 10–4), supporting the conclusion
that previously experienced sequences of task
states are replayed in the human hippocampus
during rest periods. These results were unaffected
by the choice of distance metric (supplementary
materials).

Sequentiality of fMRI patterns
emerges in simulations of subsecond
replay events

To test whether these results could, in principle,
have been caused by fast sequences of neural
events, we simulated fMRI signals generated by
sequences of hypothetical neural events occur-
ring at different speeds and asked at which speed
the above analyses can uncover the underlying
sequential structure. In these simulations, each
neural event triggered a hemodynamic response
in a distributed pattern of voxels (fig. S4). When
the signal-to-noise ratio was adjusted to yield
state-decoding levels that were matched to our
data (12.1% accuracy in simulations, comparable
with 11.6% in the data), we found significant
correlations between consecutively decoded state
pair frequencies T and the corresponding dis-
tances D even at replay speeds of about 14 items
per second (inter-event intervals of 60 to 80 ms,
r = –0.018; permutation test, r = –0.003, Student’s
t test of sequence versus permutation results
t199 = –4.42, familywise error rate (FWE)–adjusted

P value (PFWE) < 1 × 10–3 (200 simulations) cor-
rected for multiple comparisons; corresponding
test for faster events at 40 to 60 ms: P = 0.18; P >
0.05 for all slower sequences) (figs. S6 and S7).

Replay reflected task states, was
directed, and did not occur in the
orbitofrontal cortex

The above analyses relied on the forward dis-
tance between states, as experienced during the
task. We next tested whether the sequenceness
found in the POST resting data could be ex-
plained better by replay of the experienced
stimuli, replay of attentional states, or back-
ward replay. We defined alternative distance
matrices corresponding to the above hypothe-
ses and tested the power of these alternative
models to explain the sequences of states de-
coded during rest. We used one-step task tran-
sition matrices instead of distances or step sizes
in order to avoid statistical disadvantages of
alternative models that have very evenly dis-
tributed distances. All one-step matrices were
based on the task state diagram. The alternative
one-step matrices were created by either trans-
posing the original one-step matrix (backward
replay) or by assuming that only partial aspects
of each trial’s state are represented—for exam-
ple, by computing the experienced transitions be-
tween attended stimuli without representing the
events in the previous trial (supplementary mate-
rials, materials and methods). Because the classi-
fier was trained to distinguish all 16 possible states,
we assumed that all states corresponding, for ex-
ample, to a single stimuluswould be fully aliased—
that is, frequently confused by the classifier.
We calculated the likelihood that the observed

sequences of states were generated by (i) replay
of states reflecting only the stimulus on the cur-
rent trial (Fig. 5A, “stimulus model”); (ii) replay
of states containing only information about the

currently attended category (Fig. 5B, “category
model”); (iii) replay of states containing informa-
tion about the attended category on the current
and previous trial (Fig. 5C, “category memory
model”); and (iv) backward replay, that is, re-
activation of full state information but in the re-
verse order it was experienced (Fig. 5D, “backward
model”). The likelihood of these alternativemodels
was compared with the likelihood of the data
being generated by forward transitions between
full states, that is, by the one-step version of our
original hypothesis (Fig. 5E, “full state model”).
Model comparison using the same mixed-effects
models as above showed that one-step transitions
assuming full state representations (Fig. 5E) led
to a better model fit as compared with all four
alternative models (AIC 20,808, 20,808, 20,806,
and 20,796, for the four alternative models, re-
spectively; AIC of full state model 20,781, PFDR <
2.2 × 10–16) (Fig. 5F).
We also testedwhether sequential reactivation

was specific to the hippocampus by performing
the above regression analyses on data from the
orbitofrontal cortex. We chose to compare with
this area because it was previously shown to
contain task-state information during decision-
making, including in the same task (7, 13–15).
No comparable pattern of results emerged in
these analyses (supplementarymaterials). Thus,
sequences of fMRI activity patterns during rest
were specific to the hippocampus and corre-
sponded to forward reactivation of partially
observable states required for task performance
rather than sequences of attentional states or
observed stimuli.

Hippocampal offline replay is indirectly
related to decision-making through
on-task orbitofrontal state representations

We investigated the functional importance of
hippocampal replay of abstract task states by
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Fig. 4. Effect of state distance (sequenceness) on transition frequency in hippocampal data
is specific to POST resting conditions. Bars indicate strength of fixed effects in mixed effects
model. Each dot represents the b estimate of the random effect for one participant in the
mixed-effects model. Error bars illustrate the standard error of the fixed-effect estimate for the
whole group. Variability of dots in this case cannot be used to infer significant condition differences.
(A) Effect of sequenceness regressor D on resting data from the PRE and POST conditions
(group 2 only). Model comparisons on the basis of AIC showed that including the sequenceness
regressor resulted in better model fit in the POST but not the PRE condition. (B) Effect of randomness
across the PRE and POSTconditions. The randomness regressor T[e] captures the sequentiality in the
data due to classifier bias (supplementary materials, materials and methods). (C) Sequenceness in
the INSTR and POSTconditions for all participants. Adding the sequenceness regressor resulted in better
model fit only in the POSTcondition. (D) Randomness in the INSTR and POSTconditions, as in (B).
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testing for a relationship across participants
between the degree of hippocampal replay at
rest and behavioral measures of task perform-
ance. We found no evidence for a relationship
between sequenceness and reaction times (r =
0.28, PFDR = 0.143), error rates (r = –0.21, PFDR =
0.331), or the change in these measures across
runs (all PFDR = 0.506 and PFDR = 0.506 for re-
action times and errors, respectively), suggest-
ing that hippocampal replay was not directly
related to online task performance. Offline re-
play may help form, or further solidify, the online
representation of the current task state during
decision-making, so that sequential knowledge
is reflected in these representations (16–18). We
therefore tested whether sequential state reac-
tivation during rest was associated with better

hippocampal representation of states during the
task (as measured through cross-validated state
decoding accuracy in fMRI data recorded during
task performance). We did not find evidence of a
relationship between hippocampal sequenceness
at rest and decoding of states during task per-
formance (r = 0.05, PFDR = 0.769) (Fig. 6A).
However, the functionally relevant state repre-
sentation during online task performance resides
in the orbitofrontal cortex (7, 13, 19). Testing for
a correlation between hippocampal replay and
cross-validated state decoding accuracy in the
orbitofrontal cortex uncovered a significant cor-
relation between hippocampal sequenceness at
rest and state representations in the orbitofron-
tal cortex during the task (r = 0.47, PFDR =
0.0327) (Fig. 6B).

Improved state decoding in the orbitofrontal
cortex has been associated with better decision-
making in this task (7). In the current dataset,
we also found a relationship between the change
in orbitofrontal decoding accuracy during the
task and improvements in task performance.
Fluctuations in decoding accuracy in the orbito-
frontal cortex across all eight runs of the task
were correlated with run-wise error rates (one
correlation per participant, average correlation,
r = –0.14, SD = 0.39; mixed effects model,
c21 ¼ 3:9, Punc. = 0.045) (Fig. 6C). This was not
the case for on-task decoding in the hippocam-
pus (average r = –0.01, SD = 0.35, mixed effects
model Punc. = 0.93).

Discussion

We showed that fMRI patterns recorded from
the human hippocampus during rest reflect
sequential replay of task states previously ex-
perienced in an abstract, nonspatial decision-
making task. Previous studies have relied on
sustained fMRI activity patterns in the hippo-
campus or sensory cortex as evidence for replay
(9–11, 20, 21), investigated wholebrain magneto-
encephalography signals (22), or studied electro-
encephalography sleep spindles and memory
improvements that are thought to index replay
activity (23–27). Our study provides evidence
of sequential offline reactivation of nonspatial
decision-making states in the human hippocam-
pus. Our results further suggest a role for hippo-
campal replay in supporting the integrity of
on-task state representations in the orbitofron-
tal cortex. Hippocampal replay may support the
offline formation ormaintenance of a “cognitive
map” of the task (16), deployed through the
orbitofrontal cortex during decision-making
(7, 28).
The interpretation of our findings as reflect-

ing hippocampal replay was reinforced by sys-
tematic comparisons to several control conditions
and simulations. Larger sample sizes for the im-
portant pre-task resting-state control condition
could provide further support. Heart rates were
equated between the different off-task conditions
(wakeful rest with eyes open, and the instruction
phase). More direct measures of vigilance could
provide additional insight into the relationship
between vigilance and replay.
In animal studies, replay has been shown to

be sequential and specific to hippocampal place
cells (29). Unlike themajority of previous investi-
gations in animals, the sequences of activation
patterns reported here signify the replay of non-
spatial, abstract task states. Our results therefore
add to a growing literature proposing a substan-
tial role for cognitive maps in the hippocampus
in nonspatial decision-making (28, 30–33).
Our findings are in line with the idea that the

human hippocampus samples previous task expe-
riences to improve the current decision-making
policy, a mechanism that has been shown to have
distinct computational benefits for achieving
fast and yet flexible decision-making (16–18).
Dating back to Tolman (34), this idea requires a
neuralmechanism that elaborates on andupdates
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Fig. 5. Alternative state transition matrices do not explain hippocampal state sequences
during rest. (A to D) Alternative state transition matrices. Rows indicate origin states, and columns
indicate receiving states for a given transition. Color shading indicates log likelihood of the
corresponding one-step transition under each alternative hypothesis (supplementary materials,
materials and methods). Empty (white) cells indicate that a transition is not possible. “Reduced
model” in (A) to (C) show the transition matrix when aliased states are collapsed. (E) One-step
transitions for our original hypothesis (compare with Fig. 3E). (F) AIC score for modeling data from
the POST rest condition by using the transition matrices shown in (A) to (E). The full-state model
explained the data best (lower AIC scores indicate a better model fit).
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abstract state representations of the current task,
regardless of the task modality. The hippocampus
and adjacent structures support a broad range of
relational cognitive maps (33), as indicated by
hippocampal encoding of not only spatial rela-
tions but also temporal (35, 36), social (37), con-
ceptual (38), or general contingency relations
(39). We found that the human hippocampus
not only represents these abstract task states
but also performs sequential offline replay of
these states during rest.
One important open question concerns the

temporal compression of the observed sequential
reactivation. Previous results (22) have indicated
reactivation events in humans with a speed of
around 40 ms per item. Although we provide
evidence that our results could reflect fast se-
quential replay eventswith speeds similar towhat
was found in these reports, we cannot infer the
speed of the replay directly fromour observations.
Our results hint at forward rather than reverse
replay, whichmay suggest that in our experiment,
replay was related more to memory function
rather than planning because experienced task
sequences did not contain natural endpoints or
explicit rewards. Alternatively, decodingmayhave
been dominated by the falling slope of hemo-
dynamic responses, which could lead to order
inversions. In this case, forward transitions would
indicate backward replay. Although our findings
clearly suggest asymmetrically directed reac-
tivation, inferences about the direction of replay
remain indirect.
Last, our results imply a relationship between

hippocampal replay and the representation of
decision-relevant task states that are thought to
reside in the orbitofrontal cortex (7, 13, 40–42).
The relationship between “offline” hippocampal
sequenceness and the fidelity of “online” orbito-
frontal task-state representations raises the pos-

sibility that the hippocampus supports the
maintenance and consolidation of state tran-
sitions that characterize the task and are used
during decision-making (36). Given our findings—
and recent evidence implicating hippocampal
place cells and entorhinal grid cells in signal-
ing nonspatial task-relevant stimulus properties
(30, 38)—a crucial challenge is to further specify
how flexible, task-specific representations in the
hippocampus interact with task representations
in other brain regions (28). Of particular interest
are investigations asking whether neural popu-
lations in the hippocampus and entorhinal cor-
tex share a common neural code for abstract task
states with orbitofrontal (7) and medial pre-
frontal regions (43), as suggestedby recent studies
(38, 44, 45).

Materials and methods summary

Full materials and methods information can be
found in the supplementary materials.

Participants

The sample included 33 participants (22 female,
mean 23.4 years). All participants provided in-
formed consent. The study was approved by
Princeton University’s Institutional Review Board.
Six additional participants performed the expe-
riment but were excluded from any neural
analysis because of incomplete data (three par-
ticipants for which scanning was terminated
prematurely owing to technical errors, and one
participant who chose to terminate the experi-
ment midway through) or poor task performance
(two participantswhose error rates in the last two
blocks of the experiment were more than 4 times
that of the rest of the group). Two participants
from group 1 underwent only one POST rest scan,
and one participant underwent only two POST
rest scans, instead of three. To use all available

data, scans in the POST conditions were only
differently averaged in these cases.

Stimuli, task, and design

Stimuli consisted of images used in (7). Faces
and houses could be classified as either young
or old, so that four classes of stimuli were pos-
sible: (i) two old or (ii) two young face and house
pictures, (iii) a young face with an old house, or
(iv) vice versa. The task was identical to (7). Trial
timing was as follows: display of response map-
ping (changing randomly trialwise), 1.2 s (range
0.5 to 3.5 s); stimulus display, 3.3 s (range 2.75 to
5 s). The response deadline was 2.75 s. Average
trial duration was thus 4.5 s (range 3.25 to 8.5 s),
all timings drawn randomly from a truncated
exponential distribution. After incorrect button
presses, feedback was displayed (0.7 s), and erro-
neous trials were repeated. If required by task
rules, the trial preceding the error was repeated
too. Experiment session 1 had the following struc-
ture: (i) resting-state (PRE, 5 min, group 2 only);
(ii) instructions (INSTR, ~5 min); (iii) two task
runs (each 7 to 10min, 97 trials); (iv) 5-min break
(acquisition of fieldmap); (v) two task runs (each
~7 to 10 min, 97 trials); (vi) resting scan (POST,
5 min); (vii) acquisition of T1 images (5 min).
Participants were instructed to keep eyes open
during the resting scans. Session 2 followed the
same procedure, except for leaving out the
instructions. All participants confirmed remem-
bering the task at the beginning of session 2.

fMRI scanning protocol

A3-Tesla Siemens PrismaMRI scanner (Siemens,
Erlangen, Germany) was used. The T2*-weighted
echo-planar imaging pulse sequence had the fol-
lowing parameters: 2- by 2- by 2-mm resolution,
repetition time (TR) = 3000 ms (2900 ms for n =
2 subjects), echo time (TE) = 27 ms, 53 slices, 96
by 96 matrix, iPAT factor 3, flip angle = 80°,
A→P phase encoding direction, slice orientation
tilted 30° backward relative to the anterior-
posterior commissure axis for better orbitofrontal
cortex signal acquisition (46). Fieldmaps used
the same parameters as above (TE1 = 3.99 ms).
T1-weighted images were obtained by using a
magnetization-prepared rapid gradient-echo (MP-
RAGE) sequence (voxel size = 0.9 mm3).

fMRI data preprocessing

Preprocessing consisted of fieldmap correction,
realignment, and coregistration to the segmented
structural images and was done with SPM8
(www.fil.ion.ucl.ac.uk/spm). The task data used
to train the classifier were submitted to a mass-
univariate general linear model that involved
run-wise regressors for each state, motion re-
gressors, and runwise intercepts. Voxelwise
parameter estimates were z-scored and spatially
smoothed [4 mm full width at half maximum
(FWHM)]. Resting-state data were z-scored,
detrended, prewhitened, and smoothed (4 mm
FWHM). Anatomical regions of interest were
created by using SPM’s wfupick toolbox. Hippo-
campus and OFC masks were derived by using
AAL labels.
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Fig. 6. Relationships between sequenceness during rest, on-task state decoding, and
performance in hippocampus and orbitofrontal cortex. (A) Correlation between evidence for
hippocampal task state replay during rest (sequenceness, y axis) and state decoding accuracy
during the task (x axis). Each dot indicates one participant. No correlation was found between
resting-state replay and hippocampal (HPC) state representations during the task. (B) Task-state
representations in the orbitofrontal cortex were significantly related to hippocampal sequenceness; a
higher degree of sequenceness in resting data corresponded to better decoding of task states in
the orbitofrontal cortex during the task. (C) Likewise, there was no relationship between task-state
decoding in the hippocampus and error rates during task performance (left), but there was a
significant relationship between orbitofrontal task-state decoding and error rates (right). Each dot
indicates the b estimate of the random effect for one participant in the mixed-effects model.
Error bars illustrate the standard error of the fixed-effect estimate for the whole group.
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Significance levels and multiple
testing correction
The significance level was set to a = 0.05. To
account for multiple tests performed with the
same dataset (even when reflecting tests of dif-
ferent hypotheses), P values were corrected by
using FDR correction (47). Specifically, P values
of all analyses of fMRI data (pertaining to decod-
ing as well as sequenceness) were corrected by
using FDR (adjusted for 20 tests). P values of the
behavioral analyses—the test of error reduction,
reaction time reduction, and differences in heart
rate at rest versus during the task (three tests
total)—were corrected among each other. Last,
six tests pertaining to the link between fMRI
analyses and behavior were corrected among
each other. Tests for which nonsignificant re-
sults were expected (for example, difference
between different control analyses) or which
reflected sanity checks that are subsumed by
other analyses (for example, results of the POST
conditions alone, when PRE minus POST results
are reported), were not entered into the correc-
tion. Corrected and uncorrected P values are
denoted as such with subscripts throughout the
manuscript.

Behavioral analyses and heart rates

Behavioral analyses were done by using mixed-
effects models implemented in the lme4 version
1.1-21 (48) R package, version 3.6 (49). The model
included fixed effects for Block and intercept. Par-
ticipants were considered a random effect on the
intercept and the slopes of the fixed effect. Data
recordedwith a SiemensMRI optical pulse sensor
andpneumatic respiratorybelt from30participants
with at least one successful recording were ana-
lyzed. The average heart rate during scanning
[determined by use of (50)] was 69.7 beats per
minute (SD, 10.4). As mentioned above, heart
rates differed between task and rest, but no
differences were found between control (PRE +
INSTR) and POST conditions, and no relationship
between heart rate in the POST condition and the
sequentiality effects was detected (all P > 0.10).

fMRI classification analysis

A support-vector machine with a radial basis
function (RBF) kernel was trained to predict the
task state of fMRI activation patterns during the
task by using libSVM (51). Classification accu-
racywas determined by using leave-one-run-out
cross validation on data from eight runs of ana-
tomically masked maps of parameter estimates
for each of the 16 states (80 training patterns,
16 testing). For resting-state analysis, a classi-
fier trained on all task data (96 patterns) was
applied to each volume of fMRI data, resulting
in a sequence of predictions. The distance to
the hyperplane was obtained by dividing the
decision value by the norm of the weight vector
w, as specified on the libSVM webpage (www.
csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f4151).

Sequenceness analysis

We tested whether state transitions decoded
from consecutive volumes in resting-state scans,

T, were related to the experienced distance
between task states,D. Twas predicted by using
logistic mixed-effects models, withD as the main
predictor and T[e], a matrix of noise transitions,
and its polynomial expansion as covariates to
account for spurious base rate of transitions
(classifier bias). Models of change in sequence-
ness across conditions (Fig. 4) involved inter-
action terms of condition with the distance D
and the noise transitions T[e]. Participants were
treated as a random factor on intercepts and
slopes (for consistency, the random effects struc-
ture was kept even if variability of some factors
was small). Because state-frequency effects affect
the distribution of state transitions, state iden-
tity si of a transition from state i to state j was
used as an additional random effect nested with-
in subject. Correlations between random effects
were estimated. Model comparisons were con-
ducted by using likelihood-ratio tests. The random-
effects structure was kept constant across these
comparisons.

Synthetic fMRI data and
noise simulations

fMRI noise was matched to the spatiotemporal
characteristics of each participant’s real data.
Voxel-wise means were calculated session-wise
and served as a baseline activation in simulations
to reflect aspects of anatomy and tissue partial
volume. Temporal noise on the basis of average
(i) standard deviation and (ii) autocorrelation
found in the data was generated by using the
neuRosim toolbox (52) and added onto the base-
line. Spatial smoothness was estimated from real
data and applied to noise data by using AFNI’s
3dFWHMx and 3dBlurToFWHM functions. Spa-
tial and temporal properties of the simulated
data did not differ from the real data, all P > 0.05.
Noise data had the same number of TRs and
voxels as those of real data. Classifiers used in the
main analysis were applied unchanged to the
noise data. The sequence of states from this
analysis was used to construct the nuisance
covariate for the mixed effects models, the noise
“transition matrix,” T[e] (fig. S2).

Alternative task transition matrices

Alternative transition matrices were created as-
suming that the hippocampus has access to only
partial state information, which leads to state
aliasing (for example, all states sharing a partic-
ular stimulus are indistinguishable). Transitions
between the affected states changed accordingly.
For example, to compute the transition matrix
of the “stimulus model,” we defined Sstim

Fy as the
subset of states in which the judged stimulus
was a young face (Fy), and assumed that they
were aliased. The one-step distance matrix was
computed so that transitions between two states
si and sj in the complete task-state diagram were
converted into transitions from all four states
that were aliased with si to all four states that
were aliased with sj (part of same subset). Re-
sulting transitions were normalized so that exiting
transitions from each state summed to 1. Alter-
native models were defined accordingly. The re-

verse replay transition matrix was the transpose
of the full-task one-step transition matrix.
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