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In impression formation, negative information tends to have 
a stronger impact than positive information. Thus, the over-
all impression formed after positive and negative information 

is more negative than the algebraic sum of valences of individual 
experiences1. This phenomenon, called negativity bias, has been 
extensively demonstrated.

One potential source of the asymmetry in impression formation 
is the low frequency of negative events. As they are rare, negative 
events are more surprising and grab more attention. Supporting this 
idea, participants spend more time looking at negative descriptions 
of a target person than they do positive descriptions, and weight-
ing valences of descriptions by looking time predicts the resulting 
evaluation bias2. Indeed, reinforcement-learning models suggest 
that, when tracking a cue’s value, surprising outcomes update the 
value more strongly, resulting in greater contributions of surprising 
(in this case, negative) events to the overall evaluation3.

Diagnosticity of information is another important aspect in 
biases. For instance, an intelligent person can occasionally behave 
unintelligently, but the opposite is less likely. As intelligent behav-
iours are more diagnostic of intelligence than unintelligent behav-
iours are, these diagnostic behaviours carry more weight and 
dominate evaluation even when participants observe evidence of 
unintelligence more frequently1,4. In social settings, in contrast, 
positive behaviours are often the default5, making negative events 
more diagnostic than positive ones. Therefore, negative informa-
tion could weigh heavily in such situations. Work on conceptual 
similarities is also in line with this idea: pairwise similarity between 
negative words is judged to be lower than between positive words, 
meaning that the distribution of negative concepts is sparser than 
positive concepts’ distribution6,7.

If post hoc impression judgements could rely on perfect encod-
ing and retrieval of memory, evaluations would accurately reflect 
experiences without distortions. However, we cannot remember 
every single encounter with every person we ever meet. Therefore, 
we might lump together different similar experiences, clustering 
them in memory for future use. The high variance in negative con-
cepts could lead to less clustering of those concepts in memory, 

leaving each individual observation more diagnostic of the valence 
of its cluster. Positive concepts, on the other hand, may form a large 
cluster of positivity where each individual piece of information is 
less diagnostic of the overall ‘gist’ of the cluster. Supporting the idea 
that positive-valence concepts are clustered together more than are 
negative-valence concepts, processing of a positive word is faster 
if it follows another positive word, whereas this is not the case for 
negative words6. This could explain how the sparsity of negative 
events, given by rarity and variance, seems to contribute to the 
negativity bias8.

‘Latent causes’—hidden causal structures that are assumed to 
generate a set of observable events—can be a meaningful basis for 
summarizing experiences9–11. For instance, when we believe that a 
single underlying reason (for example, a person wanting a future 
favour from us) is causing ten separate events that we observe (for 
example, friendly encounters with the person), we can keep one 
summary of those ten events instead of trying to remember each 
one of them. However, if we believe that two separate underlying 
causes (for example, wanting a future favour from us and being 
socially anxious) generated five events each (for example, friendly 
encounters with the person and socially inadequate behaviours of 
the person), we might keep two summaries. We may also care about 
generalizing across people as a group, for example, for forming 
expectations about the norms of people in different countries we 
may travel to. Relying on latent causes is normative when general-
izing past experiences to a new situation, as we can utilize what we 
learned from the past events that are caused by the latent cause we 
expect is active now, but not the ones caused by other causes.

This approach, although rational, can also be a source of biases 
because we do not know the true latent cause of each event. For 
example, we may infer distinctive latent causes from seemingly 
different events even if, in truth, the events share one cause. For 
instance, the sparsity of negative events may lead to inference of 
many distinctive latent causes, while positive events may be attrib-
uted to a small number of causes (Fig. 1a). If we then make our 
overall impression at the level of these latent causes, for instance 
by averaging over the valence of all the causes associated with the 
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person or group of people we are forming an impression about, the 
estimation will be biased toward the sparse area where there are a 
larger number of inferred latent causes. Here, we hypothesize that 
the negativity bias emerges from the combination of normative seg-
mentation of information into causes based on similarity and incor-
rectly weighted averaging over latent causes.

Results
To test this hypothesis, we presented human participants with a 
sequence of events, described as ‘donations’ (experiments 1A, 1B 
and 2A), ‘sales’ (experiment 2B) or ‘rewards’ (experiment 2C), drawn 
from event distributions in which we manipulated sparsity such that 
either the below-average values or the above-average values were 
sparser (Fig. 1b). Then, in a surprise test, we asked them to estimate 
the average value of the observed events. We compared estimations 
between sparsity conditions, which all had the same true average. 
If biases arise from inferring underlying causes such as intentions 
behind behaviours, we would expect that the estimated average of a 
sequence consisting of sparse below-average events would be lower 
than the estimated average of a sparse above-average event sequence.

Experiment 1. Experiment 1A (N = 76) examined the effect of rar-
ity and variability of distributions in estimation biases. Participants 
observed two sequences of 40 ‘donors’ making coin ‘donations’, 
where each donor made a single donation (Fig. 1c). Each sequence 
was presented as a group of people who attended the same college. 
The first sequence served as a training sequence to adjust partici-
pants’ prior beliefs about donations. After reporting their general 
expectation for donation (guess 1) on a scale of 1 to 300 coins, par-
ticipants observed a training sequence in which donation amounts 
were equally distributed above and below a mean donation of 150 
coins. To ensure that the training sequence indeed adjusted partici-
pants’ prior beliefs close to the true mean, following this sequence, 
we again asked participants to report their general expectation for 
donations (guess 2).

We then showed a test sequence for which the true mean was 
the same as the mean of the training sequence. Critically, the spar-
sity of below-average or above-average donors was manipulated 
between participants. Participants in the sparse ‘stingy’ condition 
(N = 34) observed a sequence where the below-average (‘stingy’) 
donor distribution was sparser than the above-average (‘gener-
ous’) donor distribution. The amounts donated by the fewer ‘stingy’ 
donors were more variable than the amounts donated by the many 
‘generous’ donors, to maintain the overall mean of 150 (Fig. 1b). 
Participants in the sparse ‘generous’ condition (N = 42) observed a 
sequence whose donation values were flipped such that there were 
fewer and more variable ‘generous’ donors. After observing the test 
sequence, participants first estimated the average donation for the 
test sequence. We then asked them to estimate the average donation 
for the training sequence.

We predicted that the average estimate after observing the test 
sequence would be biased such that values from the sparse area 
defined by higher variance and fewer samples would weigh more 
heavily, leading estimates in the sparse ‘stingy’ condition to be lower 
than those in the sparse ‘generous’ condition. To account for indi-
vidual differences in prior beliefs, we normalized estimates by sub-
tracting individual guesses prior to the test sequence observation 
(guess 2) from the post-observation estimate. These normalized 
estimates were the main dependent variable of interest.

A two-tailed t test on the difference between the normalized esti-
mates in the two sparsity conditions showed a significant difference 
(t(74) = −2.744, P = 0.008, Cohen’s D = −0.633, 95% CI [−0.077, 
−0.012]), with the normalized estimate (the post-observation esti-
mate minus ‘guess 2’) in the sparse ‘stingy’ condition (M = −0.020) 
significantly below the estimate in the sparse ‘generous’ condition 
(M = 0.024). A permutation test in which condition labels were 
shuffled 2,000 times further showed that the observed estimate dif-
ference between sparsity conditions lay outside the null distribution 
confidence interval (Fig. 2a; estimated normalized difference 0.044; 
95% null distribution CI [−0.030, 0.033], P = 0.006).
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Fig. 1 | Hypothetical latent structure and experimental designs. a, Hypothetical latent structure of positive and negative events. Events (dots) are 
generated from two true latent causes (dashed circles). The observer infers these latent causes (solid circles) from the observed events based on the 
similarity of events to each other. If events generated from the ‘bad’ latent cause are sparse, the observer may infer many distinctive latent causes, each 
accounting only for a few observations. However, a small number of causes may be inferred to account for the many, similar, good events. b, Experimental 
design for the sparse ‘stingy’ donor and sparse ‘generous’ donor conditions. The donation amount was drawn from ‘stingy’ (below the mean, light grey) 
and ‘generous’ (above the mean, dark grey) distributions. In the sparse ‘stingy’ condition, most donations were drawn from a homogeneous ‘generous’ 
distribution, while few, variable, donations were drawn from a ‘stingy’ distribution. The distribution was flipped in the sparse ‘generous’ condition. In both 
conditions, the true mean of donation amounts was 150. The participant observed the number of coins donated on each trial, marking the amount on a 
slider bar to register it. c, Experimental procedure: after participants first guessed the general donation amount (guess 1), we showed them a symmetric 
training sequence (with no sparsity) to adjust their expectations. They then guessed the general donation amount again (guess 2) and observed a test 
sequence according to their experimental condition. After performing a filler task where they clicked a series of stimuli that appeared on random locations, 
participants estimated the overall donation amount for the test and training sequences (post-observation estimations).
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We then asked whether the normalized post-observation esti-
mates show a sparsity bias (that is, a positivity bias in the sparse 
‘generous’ condition and vice versa) from the true mean in each 
sparsity condition (Fig. 2b, inset). One-sample t tests showed that 
there was a significant sparsity bias in the sparse ‘generous’ condi-
tion (M = 0.025; t(41) = 2.772, P = 0.008, Cohen’s D = 0.428, 95% CI 
[0.007, 0.044]), whereas we found no statistically significant effect 
of negativity bias in the sparse ‘stingy’ condition (M = −0.026; t(33) 
= −1.884, P = 0.068, Cohen’s D = −0.323, 95% CI [−0.055, 0.002]).

The raw post-observation estimates were also significantly 
different across conditions (t(74) = −3.196, P = 0.002, Cohen’s 
D = −0.737, 95% CI [−0.084, −0.019]), with the sparse ‘stingy’ 
condition more negatively biased than the sparse ‘generous’ con-
dition. To further ensure that the condition difference at the 
post-observation estimate was attributable to the sequence manipu-
lation, we tested for differences between conditions in the initial, 
pre-observation guesses (guess 2). As expected, there was no evi-
dence for a statistically significant difference in guess 2 between 
conditions (sparse ‘stingy’ condition M = −0.006; sparse ‘generous’ 
condition M = 0.001; t(74) = −0.912, P = 0.365, Cohen’s D = −0.210, 
95% CI [−0.023, 0.009]).

To test whether the biases can be predicted by a latent-cause infer-
ence process, we compared human participants’ biases with biases 
of an approximate Bayesian inference algorithm that infers latent 
causes using an infinite capacity prior (called a Chinese Restaurant 
Process prior). This prior allows the assignment of each donor to a 
single latent cause, without predetermining the overall number of 
latent causes. According to the prior, if a latent cause already gen-
erated many donors, the prior probability that this popular cause 
would generate the next donor is higher (the ‘rich-get-richer’ prop-
erty). However, there is always a chance that a completely new latent 

cause will produce the next donor, allowing flexibility in creating 
any number of causes. In combination with this prior probability, 
a likelihood was assigned to each observation (donation amount) 
according to its similarity to other observations inferred to be gen-
erated by the same latent cause (see Methods for details). After 
observing the sequence of donations and inferring the donors’ latent 
causes, the model estimated the average donation by taking the 
mean of the average donation of each latent cause weighted by the 
log-transformed number of donors who were assigned to the cause. 
We used the logarithm of the number of events rather than the true 
number to account for participants’ loss of precision over counts as 
more events are experienced (as in Weber’s law for many perceptual 
estimations). As a result, causes with a smaller number of donors 
influenced the overall mean disproportionately, as compared with 
causes with a larger number of events. We therefore predicted that 
events from the sparse area will have higher impact on the estimated 
average than events from the dense area, regardless of normalized 
valence (that is, above or below average), because a larger number 
of distinctive latent causes would be inferred to account for events 
in the sparse area, while a small number of causes would be inferred 
for the dense area.

The model showed the sparsity bias (mean condition differ-
ence 0.12, t(74) = 43.622, P < 0.001), as in the behavioural results. 
Because in our model presentation order influences groupings of 
the observed values (Methods12), we provided the values of the 
donations to the model in the same order in which each partici-
pant observed them. The model could thus make specific predic-
tions about the estimation bias per each individual participant. We 
used linear regression to test whether the simulated biases predict 
individual behavioural biases. Results showed that the estimate 
biases simulated by the latent-cause inference model predicted the  
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Fig. 2 | Results of experiment 1A. a, The average estimate shows a sparsity bias. A permutation test in which condition labels were shuffled 2,000 times 
(grey shaded) showed that the observed difference between the normalized post-observation estimate in the sparse ‘generous’ and the ‘stingy’ conditions 
(black dot) lay outside the null distribution confidence interval (horizontal lines in violin plot). b, Comparison between simulation results and behavioural 
results. Each dot represents the estimation bias predicted by a latent-cause model that experienced the participant-specific sequence (x axis) and the 
behavioural unnormalized post-observation estimation bias (post-estimation minus the true mean) of that participant (y axis). Linear regression showed 
that estimate biases simulated by the latent-cause inference model predicted the estimate biases observed in the experiment (illustrated by the dashed 
line; see text). Inset shows the post-observation estimation bias difference between the sparse ‘stingy’ (orange) and sparse ‘generous’ (blue) conditions. 
Error bars indicate 95% confidence intervals. **P < 0.01.

Nature Human Behaviour | VOL 5 | September 2021 | 1180–1189 | www.nature.com/nathumbehav1182

http://www.nature.com/nathumbehav


ArticlesNAtuRe HumAn BehAviOuR

estimate biases behaviourally observed in the experiment (β = 0.028, 
P < 0.001, partial η2 = 0.145; Fig. 2b, dashed line). This relationship 
was marginally significant even when controlling for the sparsity 
condition (β = 0.080, P = 0.061, partial η2 = 0.047).

The core assumption of our latent-cause model is that estimation 
of the average donation is made by averaging over summary values 
of latent causes rather than the observations themselves. However, 
if participants knew in advance that they would only need to keep 
track of one summary value (that is, the mean of all observations) 
they might update a running average rather than (or in addition to) 
grouping donors into latent causes13. To test this, in experiment 1B 
(N = 22), we asked participants to report their average estimate on 
every trial (with all other procedures being identical to experiment 
1A). We predicted that this requirement would eliminate biases 
toward the sparse area, and may generate biases towards the most 
recently experienced donations (‘recency bias’).

Results showed that, when participants were required to estimate 
the mean donation after every observation, the normalized estimates 
were no longer significantly different across conditions (sparse 
‘stingy’ N = 10, M = 0.032; sparse ‘generous’ N = 12, M = 0.012; t(20) 
= 0.984, P = 0.337, Cohen’s D = 0.421, 95% CI [−0.023, 0.063]), with 
the numerical difference in the direction opposite to the latent-cause 
model prediction. A two-way ANOVA on data pooled from both 
experiments 1A and 1B showed a significant interaction between 
the sparsity and tracking conditions (F(1,94) = 4.056, P = 0.047, 
partial η² = 0.04), suggesting that the sparsity in the distribution 
induces biases only when the average values are not tracked on a 
trial-by-trial basis.

Further, we explored the relationship between observation, 
trial-by-trial estimates and final post-observation estimates in 
experiment 1B. Linear regression showed that estimates were influ-
enced more strongly by more recent observations (Fig. 3a). The 
trial-by-trial estimate on the last trial, however, was only margin-
ally predictive of the post-observation (and post filler-task) estimate 
of the total donation mean (Fig. 3b; β = 5.362, P = 0.082, partial 
η2 = 0.158). Together, these results suggest that the overall estimate 
of the average may be derived via a different strategy when there 
is a clear goal of tracking the average value throughout the task, 
and support our hypothesis that latent-cause inference could be the 

mechanism by which sparse events become overweighted in the 
overall estimate.

Experiment 2. In experiment 1, the sparsity manipulations 
induced biases in average estimation when there was no explicit 
goal of tracking the average value, which we interpreted as result-
ing from a process of latent-cause inference. However, there are at 
least two alternative explanations for the bias we observed. First, 
even if participants did not infer multiple causes for the sparse 
events but rather perfectly inferred that there are two latent causes 
(‘stingy’ and ‘generous’), a log-weighted average of the mean val-
ues of these two causes would have resulted in an estimate that is 
biased toward the cause that has fewer events, due to the uneven 
number of events in the two causes. To address this, in experiment 
2, we equated the frequency of events that are generated by the 
‘stingy’ and ‘generous’ causes and only manipulated the variance of 
the event distributions (Fig. 4a).

Second, Pearce and Hall (1980) suggest that more surprising 
events will update values of an entity to a greater degree. Because 
events in the sparse area elicit higher prediction errors (surprises), 
they may have a greater impact on the learned averages (formally, 
these surprising events will have a higher learning rate). To adju-
dicate between the latent-cause inference model and the Pearce–
Hall dynamic learning rate model, in experiment 2, we chose a 
specific presentation order where the distributions from which 
observed values were drawn quasi-alternated between the dense 
and sparse distributions, and the end of the sequence was predomi-
nantly populated with values from the dense distribution (Fig. 4a). 
Alternating between the dense and sparse distributions made the 
trials from both distributions similarly surprising on average, elicit-
ing similar levels of prediction error and therefore equating atten-
tion to both distributions in the Pearce–Hall model. In addition, 
as values from the dense distribution were observed just prior to 
average estimation, error-driven learning would show a density bias 
due to the enhanced effect of recent experiences in such models 
(Supplementary Fig. 2). Given these properties of the chosen pre-
sentation order, the Pearce–Hall model with dynamic learning rates 
predicted a density bias, while latent-cause inference still predicted 
a sparsity bias (Fig. 4b).
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Fig. 3 | Results of experiment 1B. a, Recency biases in trial-by-trial estimates. Linear regression showed a recency bias, where more recent observations 
contributed more strongly to the current estimate (orange lines: sparse ‘stingy’ condition; blue lines: sparse ‘generous’ condition). b, Recency bias and 
final post-observation average estimate. The trial-by-trial estimate on the last trial (x axis) was marginally predictive of the post-observation (and post 
filler-task) estimate (y axis). Each dot represents one participant; grey shading shows 95% confidence intervals.
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Experiment 2A’s cover story was that each observation was the 
amount that a community member was willing to pay for a char-
ity event. All other procedures were identical to experiment 1A. 
In the first study (experiment 2A-1, N = 70), a two-sample t test 
showed that the normalized estimate in the sparse ‘stingy’ condition 
(M = −0.023, N = 26) was significantly lower than that in the sparse 
‘generous’ condition (M = 0.018, N = 44; t(68) = −2.511, P = 0.014, 
Cohen’s D = −0.621, 95% CI [−0.075, −0.009]). A permutation test 
in which condition labels were shuffled 2,000 times further sup-
ported that the observed sparsity bias effect lay above the null distri-
bution confidence interval (normalized condition difference 0.044; 
95% null distribution CI [−0.035, 0.033], P < 0.05). Critically, these 
results were in the direction predicted by the latent-cause inference 
model and opposite to those of the Pearce–Hall model (Fig. 4c).

To strengthen this finding, we ran three independent sets of 
replications (experiment 2A-2, N = 67; experiment 2A-3, N = 260; 
experiment 2A-4, N = 229; pre-registered https://aspredicted.
org/99em9.pdf). All three experiments replicated the main finding 
that the sparse ‘stingy’ condition’s normalized estimates (experiment 

2A-2, N = 28, M = −0.014; experiment 2A-3, N = 133, M = −0.009; 
experiment 2A-4, N = 118, M = −0.005) were below the sparse ‘gen-
erous’ condition’s normalize estimates (experiment 2A-2, N = 39, 
M = 0.017; experiment 2A-3, N = 127, M = 0.013; experiment 2A-4, 
N = 111, M = 0.021), showing sparsity bias (Fig. 4c). The difference 
between conditions was significant in all three replications (experi-
ment 2A-2, t(65) = −2.137, P = 0.036, Cohen’s D = −0.529, 95% CI 
[−0.060, −0.002]; experiment 2A-3, t(258) = −2.556, P = 0.011, 
Cohen’s D = −0.317, 95% CI [−0.039, −0.005]; experiment 2A-4, 
t(198.54) = −3.098, P = 0.002, Cohen’s D = −0.407, 95% CI [−0.043, 
−0.010]). An additional meta-analytic Bayes factor analysis across 
all four instances of experiments 2A using the ‘BayesFactor’ R pack-
age14,15 showed a Bayes factor of BF+0 = 17,732, indicating that the 
data are 17,732 times more likely under the hypothesis that the nor-
malized estimates are different across sparsity manipulations than 
under the null hypothesis.

We then tested whether post-observation estimates in each con-
dition show a sparsity bias from the true mean across these four rep-
lication data sets, using meta-analytic Bayes factor analyses on the 
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two-tailed t tests (Supplementary Fig. 3). Negativity biases observed 
in the sparse ‘stingy’ condition (experiment 2A-1, M = −0.027; 
2A-2, M = −0.023; 2A-3, M = −0.012; 2A-4, M = −0.017) were 636.6 
times more likely under the bias hypothesis as compared with the 
null hypothesis (BF+0 = 636.584), providing extremely strong evi-
dence for a bias. In the sparse ‘generous’ condition, positivity biases 
(experiment 2A-1, M = 0.006; 2A-2, M = 0.008; 2A-3, M = 0.006; 
2A-4, M = 0.014) were 4.6 times more likely under the hypothesis 
that there is a bias (BF+0 = 4.556), providing moderate evidence for 
a bias.

We further sought to investigate whether the sparsity bias in the 
social domain emerges from a domain-general inference process, 
or is specific to the type of social evaluation cover story. We thus 
ran two more experiments with different cover stories. In experi-
ment 2B, participants were asked to observe the weight of coffee 
beans that customers buy from different towns, and then estimate 
the average coffee bean purchase. In experiment 2C, participants 
observed slot machine earnings from different casinos, and then 
estimated the average win. All other procedures were identical to 
experiment 2A, and the sparse ‘below-average’ and ‘above-average’ 
conditions here respectively corresponded to the sparse ‘stingy’ and 
‘generous’ conditions in experiment 2A. If summary statistics of a 
number of observations are estimated differently in more social ver-
sus less social domains, we would expect to observe an interaction 
in the bias between the sparsity conditions and the domains (social 
and non-social). Specifically, in the non-social domain, we would 
expect no difference between the sparsity conditions or a difference 
in the opposite direction (that is, the density bias), following the 
Pearce–Hall model’s prediction and a traditional error-correcting 
learning process. However, if the bias arises from a latent-cause 
inference process that is shared across domains, the sparsity in the 
observed values should lead to biases regardless of domain.

Experiment 2B (N = 81) and 2C (N = 101) showed that the sparse 
‘below-average’ condition’s normalized estimates (experiment 2B, 
N = 38, M = 0.015; experiment 2C, N = 51, M = 0.001) were numeri-
cally below those of the sparse ‘above-average’ condition (experi-
ment 2B, N = 43, M = 0.048; experiment 2C, N = 50, M = 0.030), 
although neither experiment showed a statistically significant bias 
(two-tailed two-sample t tests: experiment 2B, t(79) = −1.654, 
P = 0.102, Cohen’s D = −0.368, 95% CI [−0.071, 0.007]; experiment 
2C, t(99) = −1.822, P = 0.071, Cohen’s D = −0.363, 95% CI [−0.060, 
0.003]). Nevertheless, differences in significance are not an indica-
tion of significant differences between the domains. To test whether 
the difference in post-observation estimates across conditions 
interacted with the domain, we ran a mixed-effects linear regres-
sion model predicting normalized estimates with the sparsity and 
social (‘social’ or ‘non-social’) conditions as fixed effects and experi-
ments (experiments 2A-1, 2A-2, 2A-3, 2A-4, 2B and 2C) as random 
effects, pooling data across all six experiments that used the same 
event sequences (N = 808). Tests of significance using Satterthwaite’s 
approximation showed no significant interaction between the spar-
sity and social conditions (β = 0.005, s.e. 0.012, t(804) = 0.393, 
P = 0.695). A Bayes factor analysis provided moderate evidence 
that there is no interaction between event domain (social versus 
non-social) and the sparsity conditions (BF0+ = 7.637).

Examining each condition’s sparsity bias in the non-social 
domain (Supplementary Fig. 3) showed strong evidence for a posi-
tivity bias in the sparse ‘above-average’ condition (BF+0 = 16.153; 
null hypothesis, Cohen’s D = 0), and moderate evidence for lack 
of bias in the sparse ‘below-average’ condition (BF0+ = 4.902). This 
absence of a negativity bias in the sparse ‘below-average’ condition 
in the non-social domain may be due to prior expectations for the 
observations, given the cover stories used. That is, if prior beliefs 
caused participants to expect smaller values in the non-social 
domain, above-average events that deviate strongly from expecta-
tions would be more diagnostic and weigh more heavily in overall 

estimation of observed events. To this end, we ran a mixed-effects 
linear regression model predicting a participant’s a priori esti-
mates (guess 2) with social conditions as fixed effects and experi-
ments as random effects. A test of significance using Satterthwaite’s 
approximation showed that prior beliefs in the non-social domain 
(M = −0.015) were significantly below priors in the social domain 
(M = −0.007; β = 0.007, s.e. 0.003, t(7.308) = 2.539, P = 0.037).

Discussion
Together, these experiments demonstrated that overall estimation 
of a quantity is biased toward the value of events that are rare and/or 
more variable. Comparing human participants’ biases to simulated 
estimation biases from a semi-rational latent-cause inference model 
suggested that the behavioural results can be attributed to a process 
of inferring latent causes for observations and estimating the overall 
average by averaging over these causes.

Our results are in line with empirical findings in social cog-
nition research showing that, given rarity2 and variability6,16 of 
negative events, negative information can have a higher impact in 
impression formation and updating1. To test our hypothesis that 
the distributional sparsity is driving such bias, we used donation 
events in a positive monetary domain and manipulated sparsity of 
below-average (relatively negative) or above-average (relatively pos-
itive) events. This was a strong test of our hypothesis, as we avoided 
events in the negative domain altogether so as to not confound our 
findings with subjective value differences for monetary wins and 
losses (that is, the fact that losses loom larger than gains of the same 
amount17). We expect that the effects we observed would occur even 
more strongly when the valence of the stimuli varies across the full 
spectrum of negativity and positivity, since there are features of neg-
ative events that make biased processing of negative stimuli adap-
tive. For instance, an untrustworthy person can impose a risk on our 
wellbeing, and thus it would be wise to avoid such risk. Indeed, if we 
choose to avoid a presumably untrustworthy (or otherwise nega-
tively assessed) person, we deprive ourselves of opportunities to 
observe their behaviour and update our impression. Effectively, the 
interaction between first impressions and our behavioural choices 
makes our samples of that person’s behaviours sparse, leading to a 
negativity bias18. On the other hand, we may update our impressions 
differently when we observe bad behaviours, leaving more chance to 
forgive potentially bad targets19. Moreover, valence may not change 
monotonically with magnitude for some behaviours. For example, 
talking too much could be evaluated as negatively as talking too 
little16, while donating more money is generally positive, and thus 
avoids this potential confound. Future studies could explore the 
potential interaction between sparsity and the valence of events in 
social and non-social domains.

We explored whether the inference processes that give rise to 
the sparsity bias are domain general or uniquely social, by using 
various social and non-social scenarios. There was moderate evi-
dence that the sparsity bias was not different across domains, sug-
gesting domain-general inference processes. However, our social 
and non-social cover stories may diverge in other important ways, 
especially with regard to prior beliefs. Although we presented par-
ticipants with a training sequence to neutralize their prior beliefs, 
the training may not be enough to adjust people’s expectations for 
various situations, as these were built through a lifetime of experi-
ences. This may be the reason that there was a difference in ‘guess 2’ 
between the social and non-social domains. In a donation scenario, 
the donation amounts observed during the first training sequence 
may be a more informative ground for processing the next set of 
observations, as they form a social norm for generosity that the 
members of the community should follow. This would make the 
prior beliefs sharper, and any donations outside the normal range 
could be perceived as good or bad. On the other hand, our non-social 
scenarios (how many grams of coffee beans are purchased, or how 
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much slot machines return) may have evoked priors whose values 
are lower than the donation scenario, and thus every win in a casino 
or sale of coffee beans, even if below average, may have continued 
to be seen as a positive event. This would be a potential explana-
tion for the absence of a negativity bias when below-average events 
were sparse in the non-social scenarios. Future research should 
investigate how prior beliefs differ across situations, and whether 
priors under social situations have unique characteristics that alter 
the inference process or allow it more flexibility. Quantifying indi-
viduals’ prior beliefs can also allow the model to predict individ-
ual differences in negativity biases, which indeed tend to be stable 
within an individual across time20. For instance, an individual who 
has experienced largely negative life experiences may have a prior 
expectation that positive events are sparse, and therefore will weigh 
positive events more heavily in their overall estimation.

Our study also differs from previous impression-formation 
studies in that we assessed the impression of a group rather than 
an individual. When forming impressions about an individual, 
we tend to assume more unity and coherence in their behaviours 
than we do about groups, drawing inferences about dispositional 
properties21–23. Group impression formation may rely on a different 
process from person impression formation24, which involves repre-
senting multiple individual experiences, or exemplars25, depending 
on perceived entitativity (that is, the degree of having the properties 
of an entity)26,27 of a group. The level of judgement, thus, can vary 
between lumping all individuals into one category and represent-
ing each individual as its own entity. This is reminiscent of the ten-
sion between representing only prototypes of a category (prototype 
models of categorization28) and preserving all exemplars (exem-
plar models29)30. The latent-cause inference model can be seen as 
an intermediate between the two alternatives, achieving either end 
of the spectrum, and the range between them, by varying a single 
parameter that governs the probability of creating a new cluster31. 
This model could therefore be suitable for group impression for-
mation. That is, the model can provide a framework to further 
explore how entitativity influences group impression formation. For 
example, in experiments 2B and 2C, where the causal link between 
observed behaviour and the groups was weak, the sparsity bias pre-
dicted by the latent-cause inference model was less pronounced. A 
town might not be a coherent entity to predict coffee sales as much 
as a school is for predicting social norms such as generosity. That 
is, when evaluating a heterogeneous social group that we assume 
has a common latent causal property (such as intention) that gen-
erates individual observations, sparse experiences with the group 
can drive our overall impression of the group. In any case, if these 
biases are the results of fundamental inferential processes that par-
tition our experiences into meaningful causal chunks, the model 
should hold true in individual impression formation as well. Given 
that there is a closer and more immediate causal link between an 
individual and their actions than between a group and the group 
members’ actions, the sparsity bias effect would potentially even be 
stronger for individual impressions.

Experiment 1 suggested a way to reduce the sparsity bias. We 
showed that the requirement to evaluate the overall mean after 
every observation promoted unbiased estimation, as evidenced by 
the interaction between the task requirements and the sparsity con-
ditions. This suggests that we may be less affected by rare and vari-
able interactions if we try to track a particular quality of another 
person every time we interact with them, rather than leaving the 
judgement until later. This could be desirable in a situation where 
we want an unbiased evaluation, for instance during a hiring pro-
cess. Nevertheless, placing people on a positive–negative scale is 
usually not the only goal in our rich day-to-day interactions, and we 
often need more flexible representation of our social counterparts.

Our model estimates the overall average by taking the 
log-weighted mean of latent causes’ mean values. That is, the model 

assumes that low-frequency events are relatively overweighted and 
high-frequency ones are underweighted when the overall mean is 
estimated based on the latent causes’ mean donation, as each cause 
is weighted by the log-transformed number of donors that were 
assigned to the cause. This loss of precision is based on numer-
ous studies showing this exact pattern of distortions in frequency 
or probability space32. Although this type of precision loss assumed 
by our model is repeatedly found in literature33,34, it is worth not-
ing that the degree of sparsity bias depends on the degree to which 
the latent causes’ frequency information is distorted. If latent-cause 
frequency were perfectly kept, there would be neither a sparsity nor 
a density bias. At the other extreme, if frequency information were 
completely lost such that the overall mean would be taken as the 
mean of the latent causes, with equal weights for all causes, the spar-
sity bias would be much stronger. This could also explain the stron-
ger sparsity bias in social scenarios as compared with non-social 
situations, as we represent the groupings of people by relying on 
existing schema that we already have from previous experiences 
with other people, thereby further losing precision on frequency of 
encounters in this particular setting.

Another possibility is that the frequency is distorted in the infer-
ence process as well as in the averaging of inferred causes. The 
Chinese Restaurant Process prior is a rich-gets-richer process where 
a new event will more likely be assigned to a cause with a larger 
number of events already assigned to it, than to unpopular causes. 
Inference in this model therefore requires counting how many 
events already belong to the cause. Including the aforementioned 
frequency distortion in this counting step does not change the direc-
tion of the bias, although the degree of the bias decreases. Similar 
distortions can occur even when there is no inference involved. 
That is, if the frequency of values observed multiple times is lost 
(that is, only unique observations are maintained in memory), the 
dense distribution may contribute less to the overall mean, due to 
the higher chance of repeated observations. However, this type of 
frequency distortion cannot account for the biases seen in experi-
ment 2A, as the values of donations were unique per trial, with no 
repetition. Furthermore, in experiment 1A, where outcomes were 
repeated, if we took into account only the first presentation of each 
value, the mean of unique donations in the sparse ‘stingy’ condition 
would be above the true mean and vice versa, which is the opposite 
direction to the sparsity bias observed in the data.

Finally, logarithmic transformation can occur in representing 
the donation amount as well. If the donation amount is perceived on 
a logarithmic scale, the final average estimation would show a nega-
tivity bias in our experiments. To test whether this logarithmic rep-
resentation of values is the source of negativity bias, we conducted 
a control experiment matching the log-transformed means, not the 
linear-scale means of the ‘sparse stingy’ and ‘sparse generous’ condi-
tions. There, the estimation biases were positive in both conditions, 
contrary to the log-scale representation prediction (Supplementary 
Fig. 1), suggesting that logarithmic representation cannot account 
for the empirical biases.

Given the possible hypotheses about precision loss when 
accounting for the number of observations in each latent cause, 
an ideal approach would be to fit these models to empirical data 
and compare which type of precision loss predicts our results the 
best. This is not possible in the current study, as we collected only 
one estimate per participant. We chose the current design to pre-
vent continuous reporting from altering the cognitive processes by 
which latent causes are inferred and the final evaluation is made. 
Of course, this choice came at the expense of model fitting; future 
work could characterize the online inference process, for instance, 
by probing groupings on a trial-by-trial basis.

In conclusion, we have shown evidence that supports an account 
of evaluation as consisting of a stage in which sparse experiences 
are segmented into a large number of latent causes, which in turn 
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bias the overall impression such that rarer and/or more variable 
experiences are overweighted. Here, we showed the sparsity bias 
in a mildly social domain. We would expect that, in more realistic 
social scenarios that involve evaluations of others with real stakes 
at hand, the biases may manifest even more strongly. This cognitive 
bias could indeed be the core mechanism underlying the negativity 
bias in social evaluations.

Methods
Experiment 1A. Participants. Seventy-six participants (34 in the sparse ‘stingy’ 
condition, 42 in the sparse ‘generous’ condition) were recruited using Amazon 
Mechanical Turk (MTurk). The Princeton University Institutional Review Board 
approved the experiment, and we obtained informed consent online before 
participants began the task.

Participants were excluded when they did not pass the following criteria: (1) 
not completing the task to the end, (2) failing to answer correctly on attentional 
checks, (3) responding too slowly (> 60 s) on any of the observation and (4) not 
adjusting general expectation properly after the training sequence and making 
a guess with a value that they never observed during the training trials. This 
filtering was done to ensure that participants attended to every observation, as our 
prediction is based on the particular set of values and order of the events.

Materials and procedures. Participants were told that they were visiting different 
schools for fundraiser events and their job was to log the donation amounts. They 
observed 40 donors making donations in each school. Each donor made a single 
donation with coins, ranging from 1 to 300 coins.

Participants first guessed how much people would donate in general (guess 1). 
Then they observed the training sequence (‘Brookview University’) and logged the 
donation amounts. On each trial, coins were dropped on the screen with a prompt 
indicating the donor and the amount (for example, ‘Bradley donated 148 coins.’). 
Participants made a response either on a slider bar or in a text box next to the 
slider. The two response methods were yoked such that moving the slider would 
show the number in the text box and putting a number in the text box would move 
the slider to the number. The trial could proceed only when the response exactly 
matched the prompted amount.

The purpose of the training sequence was to adjust participants’ overall 
expectations, and reduce individual differences in prior estimation. At the end of 
the training sequence, we therefore asked participants again to guess the general 
donation amount (guess 2), to ensure that participants adequately adjusted their 
prior beliefs.

The mean donation amount of the test sequence was matched to the mean 
donation amount of the training sequence. They repeated the logging task with 
the test sequence (‘Cedar Springs University’). Here, we manipulated the sparsity 
of distributions of ‘stingy’ and ‘generous’ donors between participants. A ‘stingy’ 
donor was operationalized as a donor who made a below-average donation, and 
a ‘generous’ donor was one who made an above-average donation. Note that 
participants already learned the average donation amount in the training sequence, 
and thus they have an anchor to judge below- and above-average donations. The 
sparsity was defined by rarity and variance.

After observing all sequences and finishing a filler task, a surprise test asked 
them to estimate the average donation of the test sequence. This was followed by a 
test on the average donation of the training sequence.

In the sparse ‘stingy’ condition, there were fewer stingy donors with higher 
variance in donation amount (10 ‘stingy’ donors; M = 79.7, s.d. 35.86) than 
generous donors (30 ‘generous’ donors; M = 173.73, s.d. 10.28). In the sparse 
‘generous’ condition, we flipped the donor distributions such that the overall mean 
stays the same with fewer generous payers and more variable generous donations 
(10 ‘generous’ donors, M = 220.3, s.d. 35.86; 30 ‘stingy’ donors, M = 126.26, s.d. 
10.28).

Experiment 1B. Participants. Twenty-two participants (10 in the sparse ‘stingy’ 
condition, 12 in the sparse ‘generous’ condition) were recruited using Amazon 
Mechanical Turk (MTurk). Exclusion criteria were identical to experiment 1A.

Materials and procedures. We added an average estimation task upon each 
observation. After observing and logging each donation, participants were asked to 
estimate the average thus far. All other procedures and materials were identical to 
those used in experiment 1A.

Experiment 2A. Participants. A total of 626 participants were included in 
experiment 2A (experiment 2A-1: N = 70, sparse ‘stingy’ N = 26, sparse ‘generous’ 
N = 44; experiment 2A-2: N = 67, sparse ‘stingy’ N = 28, sparse ‘generous’ N = 39; 
experiment 2A-3: N = 260, sparse ‘stingy’ N = 133, sparse ‘generous’ N = 127; 
experiment 2A-4: N = 229, sparse ‘stingy’ N = 118, sparse ‘generous’ N = 127). 
For experiment 2A-3, the sample size was chosen from a power analysis based 
on experiment 2A-1 and 2A-2. For experiment 2A-4, we took a Bayesian 
approach35 and collected a minimum of 50 usable participants in each condition 

and continued data collection until we reached one of three criteria: (1) a Bayes 
Factor of 10 in favour of H+ (normalized estimate in sparse ‘stingy’ condition < 
normalized estimate in sparse ‘generous’ condition) and against H0 (no difference 
in normalized estimates between sparsity conditions), (2) a Bayes factor of 10 
in favour of H0 and against H+ or (3) we reached the maximum number of 
participants (500 usable participants in each condition). This procedure was 
pre-registered (https://aspredicted.org/99em9.pdf).

Exclusion criteria were identical to experiments 1A and 1B, except that 
participants who missed the 5-s response window for logging the amount  
were excluded.

Materials and procedures. We used a different cover story to generalize our results. 
In experiment 2A, participants were told that they were selling coffee for charity 
events at community fairs in different towns (‘Lambtonville’ and ‘Brookfield’) 
and taking coffee orders. The customers could pay in tokens as they wish, and 
participants’ task was to log the payment amount for each customer. Customer 
names were shown in the prompts (for example, ‘Brennan: 218 tokens for 
Cappuccino’). We instructed participants to pay attention to both the names and 
the payment amount, as some pairs of name and payment amount would be tested 
at the end. This was to orient them to pay attention to the task (for experiments 
2A-1 and 2A-2, we asked participants to report the payment amount for given 
customers at the end of the experiment; for experiment 2A-3 and 2A-4, we did not 
test participants’ memory. In all cases, we did not analyse these data, as they were 
outside the scope of our interest).

Tokens did not appear on the screen as visual cues (as they did in experiment 
1), and the response was made either by moving a slider ranging from 1 to 500 
tokens (experiment 2A-1 and 2A-2; to help participants make a response within 
the response window, the slider snapped to the correct number when the distance 
between the marker and the target was less than five tokens) or by typing in the 
number (experiment 2A-3 and 2A-4), with a 5-s time limit. Participants earned a 
50-cent bonus if they did not miss any orders.

Critically, the sparsity of ‘stingy’ and ‘generous’ observations was manipulated 
by variance alone. In both conditions, the number of customers generated from 
stingy and generous causes were matched to 20. In the sparse ‘stingy’ customer 
condition, the ‘stingy’ customers’ payment amounts were more variable than the 
‘generous’ donors (20 ‘stingy’ donors M = 188, s.d. 47.29; 20 ‘generous’ donors 
M = 308, s.d. 13.73), and vice versa in the sparse generous customer condition (20 
‘generous’ donors M = 312, s.d. 47.29; 20 ‘stingy’ donors M = 192, s.d. 13.73).

The order of payment values was chosen such that the latent-cause inference 
model and the Pearce–Hall model predict the opposite biases.

Experiment 2B and 2C. Participants. The total of 182 participants participated 
in experiment 2B (N = 81, sparse ‘stingy’ N = 38, sparse ‘generous’ N = 43) and 2C 
(N = 101, sparse ‘stingy’ N = 51, sparse ‘generous’ N = 50). Exclusion criteria were 
identical to experiment 2A.

Materials and procedures. To investigate the sparsity bias in non-social domains, we 
changed the cover story such that participants were logging weights of coffee beans 
for customers in supermarkets in different towns (experiment 2B) or logging slot 
machine earnings in different casinos (experiment 2C; participants’ compensation 
did not depend on observed earnings to avoid those amounts from playing the role 
of personally relevant rewards). Critically, the stimuli sequences were identical to 
experiment 2A, where the sparsity was manipulated by variance. All procedures were 
identical to experiment 2A-3 and 2A-4, where responses were made in a text box.

Latent-cause inference model. Each event sample was sequentially introduced 
into a Bayesian inference model with an infinite-capacity Chinese Restaurant 
Process (CRP) prior36. In this model, before observing any behaviour, an observer 
has prior beliefs about the target group’s stable latent causes:

p Z ¼ kð Þ ¼
nkP
nkþα

if k is an old cause
αP
nkþα

if k is a new cause

(
;

where Z is a variable denoting the latent cause of the next observation, k indexes 
latent causes, nk is the number of observations already assigned to latent cause k 
and the concentration parameter α determines the prior tendency to assume new 
latent causes. This prior formalizes the idea that a prolific latent cause is more 
likely to generate future events (top case), and the total number of latent causes is 
unbounded and can grow with the number of observations (bottom case).

After observing an event, the likelihood that the current event xt was generated 
from latent cause k is estimated by marginalizing over all ‘consequential regions’37 
h′ that encompass the past events {xi}k generated by cause k (nk in total):

pðxt 2 kjfxigkÞ ¼
X

h02H
pðxt 2 kjfxigk; h0Þpðh0 jfxigkÞ

The posterior probability p(h′|{xi}k) in the right-hand side is calculated as

p h0 j xif gk
� 

¼ p xif gkjh0
� 

p h0ð ÞP
h2H p xif gkjh

� 
p hð Þ ;
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where the prior p(h′) follows an Erlang distribution34 with a size prior set to the 
range of training sequence events, and the likelihood p({xi}k|h′) is the product of 
the likelihood of events that are sampled from consequential region h. Under the 
‘strong sampling’38 assumption that each event is independently sampled from the 
cause,

p xif gkjh0
� 

¼
Y

i:xi2cause k
p xijh0ð Þ:

Assuming uniform sampling from the consequential region, the likelihood that 
event xi is sampled from consequential region h′ is inversely proportional to the 
width of the region |h′| if the event is within the consequential region, and zero 
otherwise:

p xijh0ð Þ ¼
1
jh0 j if xi 2 h0

0 otherwise

�
:

This gives, for the likelihood of the current observation under latent cause k,

p xt 2 kj xif gk
� 

¼
P

h0 : xif gk ;xt2h0
1

h0j jnk p h0ð Þ
P

h:fxigk2h
1
hj jnk p hð Þ :

The posterior probability of latent cause k is then updated using Bayes rule:

p Z ¼ kjxtð Þ ¼ p xt jZ ¼ kð Þp Z ¼ kð ÞPt
k0¼1 p xt jZ ¼ k0ð Þ

:

Because the Bayesian inference process becomes intractable as the number of 
observations grows, we approximated the process using a particle filter10,39 in which 
each particle maintains a single maximum a posteriori estimate of the assignment 
of observations to latent causes, rather than maintaining the full posterior 
distribution. We ran eight simulations (four with α = 0.25 and four with α = 0.5) 
using 50 particles each. As the number of true clusters was one for the training 
sequence and two for the test sequence, the concentration parameters were chosen 
such that the prior would produce one (α = 0.25) or two (α = 0.5) clusters after 40 
trials.

Finally, the evaluation of a group was made by taking the mean of the 
latent-cause values weighted by the log number of events assigned to each latent 
cause. The latent-cause value was taken to be the mean value of events assigned to 
that latent cause. The estimation bias was calculated by subtracting the true mean 
value of the events from the mean value estimated from the latent causes.

Pearce–Hall model. Donation amounts were normalized to the maximum 
potential amount (that is, the maximum amount on the response slider bar) and 
then introduced into the Pearce–Hall model3. The value estimate v was updated 
according to

vtþ1 ¼ vt þ atþ1 ´ S ´ xt ;

where a is the associability parameter, S denotes salience of the cue and x represents 
the observed amount. The key component of the Pearce–Hall model is that the 
associability a is updated according to the absolute prediction error (the difference 
between the observed and expected values), with a learning rate η:

atþ1 ¼ 1� ηð Þ ´ at þ η ´ jxt � vt j:

This means that more surprising events have greater impact on the overall 
value estimates. We ran simulations with salience parameter S ranging from 0.1 to 
1, and learning rate η ranging from 0.1 to 1. The evaluation of a group v was made 
using each combination of the two parameters.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Custom code that supports the findings of this study is available from the 
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Study description All experiments were quantitative studies with between-subject designs.

Research sample The research participants included male and female adults over 18 years old who resided in the United States.

Sampling strategy For Experiments 1A, 1B, 2A-1, 2A-2, 2B, 2C, the sample size was based on pilot data. For Experiment 2A-2 (Experiment 2A-3 
replication) , we ran power analysis based on Experiment 2A-1. For Experiment 2A-4, we took a Bayesian approach and collected a 
minimum of 50 usable participants in each condition and continued data collection until we reached one of three criteria : (1) a Bayes 
Factor of 10 in favor of H+ (normalized estimate in sparse “stingy” condition < normalized estimate in sparse “generous” condition) 
and against H0 (no difference in normalized estimates between sparsity conditions), (2) a Bayes Factor of 10 in favor of H0 and 
against H+, or (3) we reached the maximum number of participants (500 usable participants in each condition). This procedure was 
pre-registered (https://aspredicted.org/99em9.pdf).

Data collection Data was collected via Amazon Mechanical Turk, and there was no experimenter present during the data collection.

Timing Experiment 1A was conducted in January 2017; Experiment 1B was conducted in Fabruary 2017; Experiment 2A-1 was conducted in 
October 2017; Experiemtn 2A-2 was conducted in December 2017; Experiments 2A-3, 2B, 2C were conducted between May and 
June 2019;.Experiment 2A-4 was conducted between February and April 2020.

Data exclusions Participants who did not pass the criteria described in Methods were excluded from analyses. 

Non-participation None

Randomization Participants were assigned to one of the conditions via the randomization code within Unity (Experiments 1A, 1B, 2A-1, 2A-2) and 
Inquisit (Experiments 2A-3, 2A-4, 2B, 2C), and this randomization was not based on any particular features of the participants.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Palaeontology and archaeology
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Human research participants
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants for all studies were recruited on Amazon Mechanical Turk (https://www.mturk.com) using psiTurk ad server 
(https://psiturk.org; Experiments 1A, 1B, 2A-1, 2A-2) and TurkPrime (https://www.turkprime.com; Experiments 2A-3, 2A-4, 
2B, 2C). Participants were compensated for their participation.

Ethics oversight The Princeton University Institutional Review Board approved the experiment protocol.



3

nature research  |  reporting sum
m

ary
April 2020

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Biased evaluations emerge from inferring hidden causes

	Results

	Experiment 1. 
	Experiment 2. 

	Discussion

	Methods

	Experiment 1A
	Participants
	Materials and procedures

	Experiment 1B
	Participants
	Materials and procedures

	Experiment 2A
	Participants
	Materials and procedures

	Experiment 2B and 2C
	Participants
	Materials and procedures

	Latent-cause inference model
	Pearce–Hall model
	Reporting summary

	Acknowledgements

	Fig. 1 Hypothetical latent structure and experimental designs.
	Fig. 2 Results of experiment 1A.
	Fig. 3 Results of experiment 1B.
	Fig. 4 Experimental design and results of experiment 2.




