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Abstract

Cognitive tasks are capable of providing researchers with crucial insights into the relationship 

between cognitive processing and psychiatric phenomena. However, many recent studies have 

found that task measures exhibit poor reliability, which hampers their usefulness for individual-

differences research. Here we provide a narrative review of approaches to improve the reliability 

of cognitive task measures. Specifically, we introduce a taxonomy of experiment design and 

analysis strategies for improving task reliability. Where appropriate, we highlight studies that are 

exemplary for improving the reliability of specific task measures. We hope that this article can 

serve as a helpful guide for experimenters who wish to design a new task, or improve an existing 

one, to achieve sufficient reliability for use in individual-differences research.
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1 Introduction

Cognitive tasks hold great promise for biological psychiatry. When properly designed, 

such tasks are capable of isolating and measuring specific cognitive processes. Individual 

differences in performance on cognitive tasks can therefore provide researchers with 

crucial insights into the cognitive processes underlying psychiatric phenomena. Elsewhere 

in psychology, cognitive tasks have been useful in predicting important outcomes such 

as academic achievement [1] and cognitive decline [2]. Cognitive tasks, then, have the 

potential to be invaluable tools for refining our understanding of psychiatric symptoms 
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and syndromes. For a cognitive task to be useful in this regard, however, it must possess 

sufficient measurement properties.

We define a cognitive task as any experimental paradigm that measures behavior in order to 

make inferences about one or more cognitive processes (e.g., Stroop task, delay discounting 

task, reversal-learning task). Cognitive-task measures of behavioral performance can be 

descriptive (e.g., proportion correct responses, average response time) or model-based (e.g., 

drift rate in evidence accumulation models). The psychometric quality of a measure can 

be summarized by three key properties: discriminatory power, validity and reliability [3]. 

The discriminatory power of a task measure describes its ability to measure variability in 

participants’ performance. This is a necessary property of tasks used to study individual 

differences; where there is no variation in performance, there are no individual differences to 

study. The validity of a task measure concerns whether it actually measures what it intends 

to measure. Finally, the reliability of a task measure characterizes the degree to which it 

consistently measures some feature of participants. That is, a task measure is reliable if, 

assuming participants have not changed, it produces the same scores, or the same ordering 

of scores, for participants within a single testing session or across multiple testing sessions. 

This review focuses on task-measure reliability.

The formal definition of reliability

In classical test theory [4], the variance in observed scores on a task measure x is the sum 

of the true score variance σT
2, reflecting real individual differences in the latent construct of 

interest, and measurement error σE
2, i.e., σx

2 = σT
2 + σE

2 . The reliability of a measure is defined 

as the proportion of variance attributable to the true score variance relative to total variance: 

ρxx′ = σT
2

σT
2 + σE

2 . Thus, reliability quantifies the magnitude of individual differences relative to 

the noisiness of a task measure; the larger the reliability of a task measure, the more it 

reflects true individual differences rather than noise. Reliability is therefore a prerequisite 

for validity: an unreliable task measure reflects measurement error and not the construct of 

interest. If this were not reason enough to care about reliability, the observed correlation 

between two measures (e.g., task performance and self-reported symptom score) is bounded 

by their individual reliabilities [5]:

ρxy = ρtt ρxx′ ⋅ ρyy′ (1)

where ρxx′ and ρyy′ are the reliabilities of two measures, x and y; ρtt is their true latent 

correlation; and ρxy is their observed correlation. As all reliabilities are < 1, the reliability 

of a measure places an upper bound on the maximum observable correlation between itself 

and a second measure (Figure 1). As an important corollary, as measure reliability decreases, 

the number of participants required to reliably detect a correlation between two measures 

increases [6]. Thus, poor reliability hampers our ability to investigate associations between 

cognitive processes, as measured by task performance, and other variables of interest.

To further complicate matters, the reliability of a task measure is not absolute – it reflects 

interactions between the task design, the participants, and the context in which the task 

is administered. Indeed, task reliability can vary as a function of experiment parameters 
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(specific stimulus set, number of trials, time limits [8, 9]); sample populations (healthy 

adults, children, psychiatric patients [9, 10]); testing locations (in clinic, online); response 

modality (desktop, smartphone, virtual reality [11, 12]); scoring method (component scores, 

difference scores); and estimation method [13–15]. For example, a cognitive task originally 

designed for use with an adult population may prove too difficult for children. Their task 

performance may drop to chance level, thereby minimizing between-participant variance 

and, as a consequence, task reliability. As a second example, participants completing 

an experiment online from their homes may experience more distraction than if they 

participated in the lab. This may increase measurement error, leading to a concomitant 

decrease in reliability. Experimenters therefore cannot assume the reliability of a task 

measure is constant. At the very least, researchers should evaluate reliability after having 

made changes to a task or scoring procedure, or when administering the task to new sample 

populations or in new testing contexts. Ideally, researchers would investigate and report the 

reliability of task measures as part of any individual differences research.

Although verifying the reliability of cognitive task measures is paramount to individual 

differences research, the reliability of task measures is seldom reported [6, 16]. When they 

are reported, task measures frequently exhibit lower reliability than what is conventionally 

considered the minimum acceptable level for individual-differences research (ρxx′ on the 

order of 0.7 – 0.8) and the reliability regularly achieved by self-report measures. Indeed, 

many studies have now found that task measures exhibit moderate-to-low reliability [17–22].

One possible explanation for this finding is the so-called “reliability paradox” of cognitive 

tasks [17], which states that the often lackluster reliability of tasks is a result of a 

mismatch in goals between experimental and individual-differences psychological research. 

In experimental psychology, the goal is often to demonstrate the existence of a behavioral 

effect. One means of increasing the power to detect an effect is to minimize between-

participants variance. This is the exact opposite of what is desirable for individual 

differences research, where between-participants variance is essential to achieving reliable 

task measures. For example, the Stroop effect is one of the most robust effects in 

experimental psychology; virtually everyone shows a Stroop effect [23]. However, in 

part due to this fact, between-participants variance on the Stroop effect is often limited 

[24]. Thus, the tendency in biological psychiatry to adopt the most prominent tasks in 

experimental psychology—the ones that most reliably demonstrate a behavioral effect—may 

actually hamstring efforts to study individual differences.

Regardless, we do not believe that task measures are inherently less reliable than self-report 

measures, or that pessimism about task-based individual-differences research is warranted. It 

is possible to (re)design tasks to achieve good reliability, even to the high levels dictated by 

conventional standards [25–28]. The purpose of the current article is to provide a narrative 

review of approaches to improve task-measure reliability. Specifically, we introduce a 

taxonomy of strategies for improving the reliability of cognitive-task measures through 

experiment design and analysis. Where appropriate, we highlight studies that are exemplary 

for improving the reliability of specific task measures. For the interested reader, we review 

methods for calculating the reliability of task measures in the supplementary materials, 

as these topics have been discussed at length elsewhere [6, 14, 16]. We hope that this 
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article can serve as a helpful guide for experimenters designing a new task, improving an 

existing task, or refining their scoring methods to achieve sufficient reliability for use in 

individual-differences research.

2 Improving task reliability

As defined above, the reliability of a task measure is the proportion of variance attributable 

to between-participant differences relative to measurement error. Thus, the two major 

strategies for improving the reliability of a measure are to increase between-participant 

variability or decrease measurement error. In what follows, we discuss approaches for 

accomplishing each objective in turn. Where appropriate, we highlight studies that are 

exemplary for improving the reliability of a task measure by implementing a particular 

strategy.

2.1 Increasing between-participant variance

2.1.1 Ceiling & floor effects—By definition, the reliability of a task measure is zero 

when there is no variability across participants. Thus, range restriction of task measures via 

ceiling or floor effects is a serious obstacle to reliability. Siegelman and colleagues [29] 

noted the consequences of floor effects on reliability in the context of statistical learning 

tasks. In such tasks, participants must learn to identify subtle patterns in the transition 

probabilities underlying a continuous sequence of stimuli. In reanalyzing archival datasets, 

Siegelman and colleagues found a majority of participants were at chance-level performance 

in discriminating between legitimate and foil sequence patterns; consequently, the reliability 

of conventional proportion correct measures suffered. In response, the authors designed a 

new statistical learning task involving stimulus sequences that ranged more widely in their 

difficulty to learn. Only a minority of participants showed chance-level performance on this 

new task and, as such, the reliability of proportion correct scores improved (from ρ = 0.75 to 

0.88). Similarly, in developing an abbreviated working-memory task, Oswald and colleagues 

[30] found that they could remove the easiest trials—those with ceiling level performance

—with virtually no change to task reliability. This is because those trials are incapable of 

differentiating ability across participants and therefore cannot contribute significantly to the 

reliability of the task.

Researchers administering a task to a new population should be especially wary of range-

restriction effects. Cognitive tasks calibrated for one group of participants may not be 

adequately sensitive for others due to being too easy or difficult for a different group. 

For example, Arnon and colleagues [10] found that statistical learning tasks developed for 

adults were too difficult for young children and therefore yielded unreliable discrimination 

scores in that population. Similarly, Kyllonen and colleagues [31] developed a battery 

of fluid-reasoning measures for highly educated adults after observing ceiling effects in 

performance when using preexisting fluid-reasoning tasks in this population.

2.1.2 Repeatability & practice effects—A related issue for task reliability is practice 

effects, where participants’ performance on a task improves with repeated administrations. 

Practice effects are relatively common for cognitive tasks [32, 33]. They might occur due 

to the attenuation of task-irrelevant nuisance factors (e.g., performance anxiety) and/or the 
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learning of task-specific knowledge or strategies. Practice effects are not inherently an issue 

for reliability — especially if an experimenter is only interested in the consistency, but not 

the absolute agreement, of participants’ performance over time — but they can become a 

pernicious issue if they are exhibited differentially across participants or if they are severe 

enough to induce ceiling effects. For example, Paredes and colleagues [34] observed large 

practice effects on the Pavlovian go/no-go task for short retest intervals (3 days, 14 days), 

which resulted in poor estimates of test-retest reliability. In developmental and lifespan 

studies, practice effects are potentially complicated by their interaction with age [35, 36]; 

that is, practice-induced ceiling effects may present in some age groups but not others.

One strategy for minimizing practice effects is simply to increase the time interval 

between task administrations. The more time that elapses between sessions, the greater 

the probability that participants will have forgotten task-specific knowledge or strategies 

[32, 33]. Of course, this solution may not always be possible or desirable, especially if a 

researcher is only able to or specifically interested in studying a behavior over a short time 

period. Moreover, some forms of learning do not easily dissipate with time [37].

A second strategy is to use a combination of clear instructions and practice trials to help 

participants reach stable performance from the start of an experiment (see the “Improving 

experiment designs” section below). Another strategy is to design tasks so as to prevent or 

discourage the formation of task-specific strategies. For example, McLean and colleagues 

[25] investigated the repeatability of the beads task. In the beads task, participants are 

presented with two jars containing beads of two colors in equal but opposite ratios. In each 

trial of the task, a predetermined sequence of beads is drawn from one jar. Participants must 

decide which jar beads were being drawn from or request to see more beads. In a typical 

version of the task, the same sequence of bead draws is used across all trials. McLean and 

colleagues found that participants were aware that the sequence repeated across trials and, 

as a consequence, became more erratic in their decision to witness more bead draws with 

additional trials. In response, the authors developed a new version of the task that included 

distractor sequences of bead draws. This new design was effective in preventing participants 

from becoming aware of the target sequence, which in turn resulted in more consistent 

responding, which improved the reliability of participants’ information seeking scores (from 

ρ = 0.62 to 0.84).

2.1.3 Enhancing experimental manipulations—The preceding sections described 

potential threats to between-participants variability, but not approaches to improve it. 

A primary strategy for increasing between-participants variability is to enhance the 

experimental manipulation. Amplifying the strength of an experimental manipulation (e.g., 

making a task more challenging, increasing the potency of affect induction) typically 

increases the range of participants’ responses to it. For example, Kucina and colleagues 

[26] investigated the reliability of cognitive conflict effects (as measured by response time) 

in new versions of several standard cognitive-control tasks (e.g., Stroop, Flanker, Simon) 

that amplified cognitive interference via two task design features. First, they combined 

multiple sources of cognitive interference in the same task, for example by combining 

the Stroop and Simon effects to create a “Stroopon” task. Second, for a subset of trials, 

they required participants to make multiple responses based on both relevant and irrelevant 
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stimuli attributes. Compared to previous versions of these tasks, these manipulations had the 

effect of increasing task demands, which resulted in greater between-participants variance 

and, consequently, required hundreds fewer trials to achieve a reliability of ρ = 0.8. (See 

also Snijder and colleagues [27] for a similar redesign of classic cognitive-control tasks that 

improved reliability in part by increasing proactive control demands.)

A related strategy is to calibrate the difficulty of the task to the average ability of the 

population of interest. For example, consider a task trial with two response options. Given 

the Bernoulli distribution, the variance in responses on this trial will be maximal when 

the probability of choosing either response is equal. Thus, aggregating across many trials, 

between-participants variance is maximized — and task reliability is improved — when the 

difficulty of all items is matched to the average ability of the sample [38] (or slightly higher 

if participants can guess the correct response [39, 40]). Of course, this design principle 

is only helpful to the degree that a researcher knows the average ability level of their 

participants. If this is unknown or poorly characterized, then it is instead desirable to design 

a task with trials spanning a range of difficulty levels.

2.1.4 Sample population—A final strategy for increasing between-participant variance 

is to simply recruit more diverse samples. While convenient, undergraduate students from a 

single university are likely to be relatively homogeneous in their cognitive profiles. It may 

be worthwhile instead to recruit participants from the community or from an online labor 

market (e.g., Amazon Mechanical Turk, Prolific Academic, CloudResearch Panels). With 

regard to the latter, because online participants typically complete experiments from their 

homes or other poorly-controlled environments, they are more likely to be distracted or to 

multitask during an experiment [41]. Thus, when recruiting online samples, experimenters 

should take special care to ensure that an increase in between-participants variance is not 

offset by a concomitant increase in measurement noise. Separately, online participants may 

be more familiar with particular experimental paradigms due to previous exposure [42], 

which may attenuate between-participants performance variability for the reasons previously 

mentioned (e.g., practice effects). Thus, researchers running experiments online may want to 

alter task paradigms so that they appear less similar to preexisting versions and/or limit the 

recruitment of highly-experienced participants [43].

2.2 Decreasing measurement noise

2.2.1 Increasing trial numbers—Perhaps the most straightforward approach to 

decreasing measurement error, and thereby increasing reliability, is to increase the number 

of task trials. The relationship between reliability and the number of trials defined as:

ρ = σT
2

σT
2 + σE

2

n
(2)

where σT
2 is the true between-participants variance, σE

2 is measurement error (i.e. trial-

level variance), and n is the number of trials. In practice, this relationship often holds [8, 

9] though with some exceptions [44, 45]. Notably, increasing the number of task trials 

only benefits reliability if measurement error is random. If increasing task length results 
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in participant fatigue or boredom, measurement noise may systematically increase and 

reliability will suffer. Increasing the number of trials may be impractical for other reasons, 

and because of diminishing marginal improvements for reliability, achieving a desired level 

of reliability through this means alone may require prohibitively long experiments.

2.2.2 Improving experiment designs—Measurement error can be reduced through 

improving the design of experiments, which can be accomplished in many ways. The 

reliability of a task measure can be improved by including in an experiment only the most 

discriminating stimuli. For example, in the context of an emotion recognition task, stimuli 

of good discriminability would be those where participants with good emotion-recognition 

ability consistently correctly identify the displayed emotion while participants with poor 

ability consistently incorrectly identify the displayed emotion [46]. In contrast, stimuli 

with poor discriminability — those for which performance between high- and low-ability 

participants is indistinguishable — will lead to more measurement noise and decreased 

reliability [47]. In experiments where stimuli are intended to be unique and distinguishable, 

improving both the linguistic and visual distinctness of stimuli may prevent participant 

confusion and therefore aid reliability [48].

Other design features of an experiment that are specific to the task mechanics may affect 

reliability. Consider, for example, the dot-probe task, in which participants must disengage 

attention from a distracting image on one part of the screen in order to identify and respond 

to the orientation of a pair of dots elsewhere on the screen. Dot-bottom trials, where a 

participant must disengage from a distracting stimulus located at the top of the screen and 

saccade to the bottom of the screen, are more reliable than dot-top trials (e.g., dot-bottom: 

ρ = 0.33; dot-top: ρ = 0.07) [44, 49]. This has been explained by suggesting that because 

participants’ gazes are biased towards the top of the screen, saccading away from the 

top requires a stronger level of disengagement. Dot-bottom trials may therefore be better 

measures of attentional bias.

It is worth stressing that clear instructions are essential for task reliability. When participants 

are unsure of what they are intended to do in an experiment, their behavior is likely 

to be more variable across time (as their understanding of the task evolves) and across 

participants (due to different interpretation of instructions), thereby diminishing reliability. 

Clear instructions thus help to ensure that participants show stable behavior from the start of 

the experiment. (Clear instructions may also work to ensure the validity of an experiment by 

discouraging participants from using strategies not of interest to the experimenter.) In their 

“10 simple rules” paper for designing cognitive experiments [50], Barbosa and colleagues 

provide practical suggestions for writing task instructions. When adapting a task for a new 

population, experimenters should ensure that the instructions are still appropriate. Task 

instructions that are comprehensible to healthy adult participants may not be suitable for 

other populations like children [51].

Another strategy to reduce measurement error is to make use of a practice phase. Practice 

trials can help to minimize the effects of nuisance factors such as performance anxiety 

or unfamiliarity with the response modality, and give participants an opportunity to make 

sure they understand the task instructions. Thus, practice trials can help participants reach 
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a “steady state” of responding, thereby reducing the noisiness of their responses across task 

trials and increasing reliability [52]. Practice can take the form of a standalone practice 

block or by designating as such and discarding (or modeling separately) the first few trials 

of an experiment (e.g, [25]), though the latter may not fully allow participants to explore 

response options during the practice.

Yet another strategy to diminish measurement error is to “gamify” an experiment. 

Incorporating (video) game design elements into cognitive tasks can increase participant 

engagement and motivation [53], countering the would-be effects of boredom and fatigue 

on task reliability. For example, Kucina and colleagues [26] cite task gamification as an 

important factor that contributed to the reliability of their cognitive-control tasks. Similarly, 

Verdejo and colleagues [22] partially attribute the adequate reliability of their impulsivity 

task battery to gamified task design (range: ρ = 0.52 – 0.71).

2.2.3 Reducing parameter estimation noise—When parameters from cognitive 

models are used as indices of participants’ task performance, another means to improve 

measure reliability is to decrease estimation noise. The estimation noise of a parameter 

given an experiment and model can be quantified through simulation studies [54, 55]. 

Here, an experimenter generates artificial data for the experiment using representative model 

parameters and then attempts to recover the model parameters by fitting the model to 

the simulated data. Estimation noise is the inverse of the (relative or absolute) agreement 

between the true and recovered parameters. Alterations to experimental design can improve 

parameter recovery and estimation noise, and multiple frameworks have been proposed for 

testing and improving experimental designs to aid parameter recovery [56, 57]. Parameter 

recovery can also be affected by the model estimation method [58, 59]. In particular, the 

partial pooling properties of hierarchical Bayesian models can be especially beneficial for 

improving parameter recovery and decreasing estimation noise [60].

A related approach is to use adaptive experimental designs [61], where the trials of an 

experiment are designed in real time so as to present each participant with stimuli or 

trial types that are matched to their particular response patterns or ability levels. Though 

undoubtedly a more complex experimental design, adaptive experiments have the advantage 

of selecting the most informative trials for resolving the ability or preference level of 

a participant (e.g., as measured by a cognitive model). Adaptive designs have been 

successfully used in cognitive research, for example to study working memory [62] and 

delay discounting [63]. For a detailed discussion of adaptive-design experiments, see Ahn 

(this issue).

Parameter estimation may be further improved by leveraging additional information. For 

example, latent variables may be more accurately measured through the inclusion of 

demographic variables or other covariates that, if associated to model parameters, can aid in 

resolving parameter estimates [64]. An extension of this idea is to utilize joint modeling of 

dependent variables; that is, to design models where multiple observed trial-level variables 

are predicted simultaneously. For example, the joint modeling of choice and response time 

has been found to improve the precision and reliability of estimated parameters in cognitive 

ability testing [65] and reinforcement learning [66, 67]. It is also possible to incorporate 
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physiological and/or neural correlates of behavior, such as skin conductance response, fMRI 

BOLD signal, and EEG [68].

2.3 Difference scores

Difference scores deserve special treatment in the context of reliability. Difference scores 

subtract a measure of a participant’s performance in one condition from their performance 

in another. An example is the Stroop interference effect, calculated as the average 

reaction-time difference between congruent and incongruent trials. Difference scores are 

commonly used because they allow experimenters to isolate particular cognitive processes 

(e.g., processing cognitive conflict) while controlling for other sources of variance (e.g., 

perceptual processing, motor ability) through the subtraction of conditions that share that 

variance. The challenge is that the reliability of a difference score is a function of the 

reliability of each of its components and the correlation between the components:

ρdd′ = σx
2ρxx′ + σy

2ρyy′ − 2ρxyσxσy

σx
2 + σy

2 − 2ρxyσxσy
(3)

where σx
2 and σy

2 are the variances of task measures x and y, ρxx′ and ρyy′ are the reliabilities 

of task measures x and y, and ρxy is the correlation between task measures x and y [69]. 

When the variances of the two measures are equal, this reduces to:

ρdd′ = ρxx′ + ρyy′ − 2ρxy

2 − 2ρxy
(4)

From the above equation, one can see that the reliability of a difference score measure is 

diminished to the extent that its components are correlated. Two measures derived from the 

same task will often be correlated due to shared domain-general cognitive processes. Thus, it 

will often (if not always) be the case that difference scores derived from task measures will 

be less reliable than the average reliability of their components.

2.3.1 Enhance & purify task measures—The equations above suggest three steps 

experimenters can take to improve the reliability of difference scores: (1) improve the 

reliability of the component measures, (2) increase the relative difference between the 

variances of two task measures, and (3) minimize the correlation between the task measures. 

The first strategy has been our focus so far. The second approach deserves further comment. 

As discussed elsewhere [69], the reliability of a difference score measure increases as 

the difference (or the ratio) between the variances of the component measures increases. 

Intuitively, this is because as the variance of one (but not the other) component grows, so 

too does the proportion of unshared reliable variance. Figure 2A shows that even when 

the correlation of two measures is large, it is possible to achieve acceptable reliability 

insofar as the ratio of the variances (i.e. σx/σy) is sufficiently different from 1. (It is also 

worth noting that component variances essentially function as weights in determining the 

overall reliability, such that the difference-score reliability reflects more the reliability of the 

component measure with the larger variance; Figure 2B.) This speaks to the advantage 

of increasing the between-participants variability of a measure of performance in one 
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experiment condition without increasing performance variability in a second condition. This 

may explain how Kuchina and colleagues improved the reliability of their difference score 

measures after making only the incongruent trials more difficult [26].

The third approach is to purify task measures; that is, to decorrelate the components 

of a difference score by reducing or eliminating their shared variance. Rey-Mermet and 

colleagues [28] provide an interesting example in the context of executive control. In typical 

executive control tasks, response times on congruent and incongruent trials are highly 

correlated, reflecting shared variance from conflict-irrelevant processes including baseline 

processing speed (e.g., perceptual processing, motor speed) and performance strategies (e.g., 

individual differences in speed-accuracy preferences; [70]). Rey-Mermet and colleagues 

designed a number of “response-deadline” executive control tasks where participants had a 

limited amount of time to respond during a trial. The duration of the response deadline was 

calibrated for each participant individually such that they achieve a fixed accuracy level in 

blocks of neutral trials, and then used as the deadline for both congruent and incongruent 

trials. The calibration procedure controls for individual differences in processing speed that 

contribute to performance in both congruent and incongruent trials. It also controls for 

individual differences in strategy, as regardless of whether a participant was biased towards 

speed or accuracy, inefficient executive control would result in lower accuracy. With this 

calibration procedure, the researchers found that the reliability of an accuracy difference 

score (incongruent minus congruent, which ranged from ρ = 0.58 to ρ = 0.91) was as 

good or better than what had previously been reported for executive control tasks. Thus, 

controlling for shared variance across measures—that is, purifying measures—can help to 

improve task reliability.

2.3.2 Identify alternative measures—Rather than improving the reliability of 

difference scores, one can simply avoid using them in the first place. This recommendation 

has a long history in experimental psychology. Indeed, because difference scores will 

virtually always be less reliable, many authors have advocated to abandon them [71–73].

What then are the alternatives to difference scores? Draheim and colleagues [70] provide an 

in-depth review of alternatives to difference scores in the context of responsetime measures, 

though much of their discussion is applicable to difference scores in general. One possibility 

is to simply use the component measures (e.g., performance on incongruent trials in a 

Stroop task alone). Of course, because component scores will be contaminated other sources 

of variance, such as baseline performance, interpreting component scores should be done 

with caution. Another approach is to identify alternative measures of task performance. 

For example, intra-individual response time variability and cognitive efficiency have been 

identified as correlates of executive control that can be measured reliably [74, 75] and are 

altered in psychopathology [76, 77].

3 Conclusion

We have briefly reviewed issues and research regarding the reliability of cognitive-task 

measures. Specifically, we introduced a taxonomy of experiment design and analysis 

strategies for improving the reliability of cognitive-task measures, highlighting exemplary 
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studies that have successfully implemented such approaches. We hope we have made clear 

the importance of calculating (and reporting) the reliability of task measures intended for 

use in psychiatric research. We also hope we have provided a useful guide for experimenters 

who wish to design a new task, or to improve an existing task, in order to study individual 

differences in cognitive processing.

We conclude with two important points. First, although we have discussed the importance 

of task reliability, we have largely avoided the question of when a task measure is “reliable 

enough”. Though it is tempting to fall back on conventional cutoffs (e.g., ρ ≥ 0.7), what 

constitutes sufficient reliability in actuality will depend on a researcher’s goal(s). If the goal 

is to detect a significant individual-differences correlation, such as between a task measure 

and self-reported symptom measure, then a task measure with “unacceptable” reliability by 

conventional standards may suffice (e.g., if a researcher can collect a sample large enough 

to be adequately powered to detect a correlation at the attenuated magnitude). On the other 

hand, if a researcher intends to estimate an individual-differences correlation with high 

precision, or use a task measure in a high stakes setting (e.g., treatment selection for an 

individual patient), then high reliability may be required. We cannot overstate the value of 

simulation studies (e.g., [24]) for researchers trying to determine what level of reliability is 

required to meet their goals and risk preferences.

Second, we would like to emphasize that reliability is but one of many important 

considerations in the design and evaluation of cognitive task measures. Task measures 

may be reliable but show poor convergent validity [27, 78], raising questions about 

whether they actually measure the constructs they are intended to measure. Similarly, task 

measures may be reliable but exhibit poor ecological validity [79], thus being poor proxies 

for cognition in real-world settings. Task measures may also be reliable but show poor 

predictive validity [22], explaining little (unique) variance in other variables of interest (e.g., 

symptoms, treatment response). Finally, there are many other practical considerations (e.g., 

task duration, engagement, accessibility) to ensure cognitive tasks are able to be deployed 

successfully in the clinic or in naturalistic environments at scale [80].

Despite the challenges of making task measures reliable and valid, we are optimistic about 

their current and future use in biological psychiatry. We believe that, with further efforts 

towards developing, documenting, and sharing reliable task paradigms, our field can make 

increased strides towards understanding, predicting, and ultimately relieving psychiatric 

illness.
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Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such 

that papers from women and other minority scholars are under-cited relative to the number 

of such papers in the field [81, 82]. Here we sought to proactively consider choosing 

references that reflect the diversity of the field in thought, form of contribution, gender, 

race, ethnicity, and other factors. First, we obtained the predicted gender of the first and 

last author of each reference by using databases that store the probability of a first name 

being carried by a woman [81]. By this measure and excluding self-citations to the first and 

last authors of our current paper), our references contain 8.3% woman(first)/woman(last), 

14.7% man/woman, 18.6% woman/man, and 58.4% man/man. This method is limited in that 

a) names, pronouns, and social media profiles used to construct the databases may not, in 

every case, be indicative of gender identity and b) it cannot account for intersex, non-binary, 

or transgender people. Second, we obtained predicted racial/ethnic category of the first and 

last author of each reference by databases that store the probability of a first and last name 

being carried by an author of color [83, 84]. By this measure (and excluding self-citations), 

our references contain 4.7% author of color (first)/author of color(last), 15.5% white author/

author of color, 18.0% author of color/white author, and 61.8% white author/white author. 

This method is limited in that a) names and Florida Voter Data to make the predictions 

may not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous 

and mixed-race authors, or those who may face differential biases due to the ambiguous 

racialization or ethnicization of their names. We look forward to future work that could help 

us to better understand how to support equitable practices in science.
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Figure 1: 
The relationship between measure reliability, observed correlations, and statistical power. 

(A) The maximum expected observed correlation between two measures as a function of 

their true (latent) correlation and reliability. As the reliability of two measures decreases, 

so too does their observed correlation. (B) Required sample size for 80% power to detect 

true correlations between two measures given their reliability. As the reliability of two 

measures decreases, the number of participants required to detect an association increases. 

Even with a large sample size of N = 500, two measures with moderate reliability (ρxx′ = 

ρyy′ = 0.5) will only reliably detect true correlations above 0.3, which are likely high for 

individual-differences cognitive research [7].
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Figure 2: 
Difference score reliability as a function of the variances and reliabilities of its component 

measures. (A) Difference-score reliability as the ratio of the component measure variances 

(σx/σy) increases, with component reliabilities held fixed (ρxx′ = ρyy′ = 0.8). When 

component measures have equal variances (σx/σy = 1), large correlations between the 

measures substantially diminish the reliability of a difference score measure. When the 

variances are unequal (σx/σy > 1), even large correlations between the measures are less 

deleterious for reliability. (B) Difference score reliability as the component reliabilities 

change, with the ratio of the component-measure variances fixed (σx/σy = 2). When the 

variances are unequal, the reliability of a difference score reflects more the component 

measure with the larger variance (here, component x).
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