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Abstract

Cognitive tasks are capable of providing researchers with crucial insights into the relationship
between cognitive processing and psychiatric phenomena. However, many recent studies have
found that task measures exhibit poor reliability, which hampers their usefulness for individual-
differences research. Here we provide a narrative review of approaches to improve the reliability
of cognitive task measures. Specifically, we introduce a taxonomy of experiment design and
analysis strategies for improving task reliability. Where appropriate, we highlight studies that are
exemplary for improving the reliability of specific task measures. We hope that this article can
serve as a helpful guide for experimenters who wish to design a new task, or improve an existing
one, to achieve sufficient reliability for use in individual-differences research.
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1 Introduction

Cognitive tasks hold great promise for biological psychiatry. When properly designed,
such tasks are capable of isolating and measuring specific cognitive processes. Individual
differences in performance on cognitive tasks can therefore provide researchers with
crucial insights into the cognitive processes underlying psychiatric phenomena. Elsewhere
in psychology, cognitive tasks have been useful in predicting important outcomes such

as academic achievement [1] and cognitive decline [2]. Cognitive tasks, then, have the
potential to be invaluable tools for refining our understanding of psychiatric symptoms
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and syndromes. For a cognitive task to be useful in this regard, however, it must possess
sufficient measurement properties.

We define a cognitive task as any experimental paradigm that measures behavior in order to
make inferences about one or more cognitive processes (e.g., Stroop task, delay discounting
task, reversal-learning task). Cognitive-task measures of behavioral performance can be
descriptive (e.g., proportion correct responses, average response time) or model-based (e.qg.,
drift rate in evidence accumulation models). The psychometric quality of a measure can

be summarized by three key properties: discriminatory power, validity and reliability [3].
The discriminatory power of a task measure describes its ability to measure variability in
participants’ performance. This is a necessary property of tasks used to study individual
differences; where there is no variation in performance, there are no individual differences to
study. The validity of a task measure concerns whether it actually measures what it intends
to measure. Finally, the reliability of a task measure characterizes the degree to which it
consistently measures some feature of participants. That is, a task measure is reliable if,
assuming participants have not changed, it produces the same scores, or the same ordering
of scores, for participants within a single testing session or across multiple testing sessions.
This review focuses on task-measure reliability.

The formal definition of reliability

In classical test theory [4], the variance in observed scores on a task measure x is the sum

of the true score variance o72, reflecting real individual differences in the latent construct of
interest, and measurement error o2, i.e., o> = o7 + o2. The reliability of a measure is defined
as the proportion of variance attributable to the true score variance relative to total variance:

2
P = ———. Thus, reliability quantifies the magnitude of individual differences relative to

or + 0
the noisiness of a task measure; the larger the reliability of a task measure, the more it
reflects true individual differences rather than noise. Reliability is therefore a prerequisite
for validity: an unreliable task measure reflects measurement error and not the construct of
interest. If this were not reason enough to care about reliability, the observed correlation
between two measures (e.g., task performance and self-reported symptom score) is bounded
by their individual reliabilities [5]:

Py = P/ P * PYY' (@)

where pyy and p,,/ are the reliabilities of two measures, xand y; pyis their true latent
correlation; and py, is their observed correlation. As all reliabilities are < 1, the reliability

of a measure places an upper bound on the maximum observable correlation between itself
and a second measure (Figure 1). As an important corollary, as measure reliability decreases,
the number of participants required to reliably detect a correlation between two measures
increases [6]. Thus, poor reliability hampers our ability to investigate associations between
cognitive processes, as measured by task performance, and other variables of interest.

To further complicate matters, the reliability of a task measure is not absolute — it reflects
interactions between the task design, the participants, and the context in which the task
is administered. Indeed, task reliability can vary as a function of experiment parameters
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(specific stimulus set, number of trials, time limits [8, 9]); sample populations (healthy
adults, children, psychiatric patients [9, 10]); testing locations (in clinic, online); response
modality (desktop, smartphone, virtual reality [11, 12]); scoring method (component scores,
difference scores); and estimation method [13-15]. For example, a cognitive task originally
designed for use with an adult population may prove too difficult for children. Their task
performance may drop to chance level, thereby minimizing between-participant variance
and, as a consequence, task reliability. As a second example, participants completing

an experiment online from their homes may experience more distraction than if they
participated in the lab. This may increase measurement error, leading to a concomitant
decrease in reliability. Experimenters therefore cannot assume the reliability of a task
measure is constant. At the very least, researchers should evaluate reliability after having
made changes to a task or scoring procedure, or when administering the task to new sample
populations or in new testing contexts. ldeally, researchers would investigate and report the
reliability of task measures as part of any individual differences research.

Although verifying the reliability of cognitive task measures is paramount to individual
differences research, the reliability of task measures is seldom reported [6, 16]. When they
are reported, task measures frequently exhibit lower reliability than what is conventionally
considered the minimum acceptable level for individual-differences research (oxy on the
order of 0.7 — 0.8) and the reliability regularly achieved by self-report measures. Indeed,
many studies have now found that task measures exhibit moderate-to-low reliability [17-22].

One possible explanation for this finding is the so-called “reliability paradox” of cognitive
tasks [17], which states that the often lackluster reliability of tasks is a result of a

mismatch in goals between experimental and individual-differences psychological research.
In experimental psychology, the goal is often to demonstrate the existence of a behavioral
effect. One means of increasing the power to detect an effect is to minimize between-
participants variance. This is the exact opposite of what is desirable for individual
differences research, where between-participants variance is essential to achieving reliable
task measures. For example, the Stroop effect is one of the most robust effects in
experimental psychology; virtually everyone shows a Stroop effect [23]. However, in

part due to this fact, between-participants variance on the Stroop effect is often limited
[24]. Thus, the tendency in biological psychiatry to adopt the most prominent tasks in
experimental psychology—the ones that most reliably demonstrate a behavioral effect—may
actually hamstring efforts to study individual differences.

Regardless, we do not believe that task measures are inherently less reliable than self-report
measures, or that pessimism about task-based individual-differences research is warranted. It
is possible to (re)design tasks to achieve good reliability, even to the high levels dictated by
conventional standards [25-28]. The purpose of the current article is to provide a narrative
review of approaches to improve task-measure reliability. Specifically, we introduce a
taxonomy of strategies for improving the reliability of cognitive-task measures through
experiment design and analysis. Where appropriate, we highlight studies that are exemplary
for improving the reliability of specific task measures. For the interested reader, we review
methods for calculating the reliability of task measures in the supplementary materials,

as these topics have been discussed at length elsewhere [6, 14, 16]. We hope that this
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article can serve as a helpful guide for experimenters designing a new task, improving an
existing task, or refining their scoring methods to achieve sufficient reliability for use in
individual-differences research.

2 Improving task reliability

As defined above, the reliability of a task measure is the proportion of variance attributable
to between-participant differences relative to measurement error. Thus, the two major
strategies for improving the reliability of a measure are to increase between-participant
variability or decrease measurement error. In what follows, we discuss approaches for
accomplishing each objective in turn. Where appropriate, we highlight studies that are
exemplary for improving the reliability of a task measure by implementing a particular
strategy.

2.1 Increasing between-participant variance

2.1.1 Ceiling & floor effects—ByY definition, the reliability of a task measure is zero
when there is no variability across participants. Thus, range restriction of task measures via
ceiling or floor effects is a serious obstacle to reliability. Siegelman and colleagues [29]
noted the consequences of floor effects on reliability in the context of statistical learning
tasks. In such tasks, participants must learn to identify subtle patterns in the transition
probabilities underlying a continuous sequence of stimuli. In reanalyzing archival datasets,
Siegelman and colleagues found a majority of participants were at chance-level performance
in discriminating between legitimate and foil sequence patterns; consequently, the reliability
of conventional proportion correct measures suffered. In response, the authors designed a
new statistical learning task involving stimulus sequences that ranged more widely in their
difficulty to learn. Only a minority of participants showed chance-level performance on this
new task and, as such, the reliability of proportion correct scores improved (from p=0.75 to
0.88). Similarly, in developing an abbreviated working-memory task, Oswald and colleagues
[30] found that they could remove the easiest trials—those with ceiling level performance
—with virtually no change to task reliability. This is because those trials are incapable of
differentiating ability across participants and therefore cannot contribute significantly to the
reliability of the task.

Researchers administering a task to a new population should be especially wary of range-
restriction effects. Cognitive tasks calibrated for one group of participants may not be
adequately sensitive for others due to being too easy or difficult for a different group.

For example, Arnon and colleagues [10] found that statistical learning tasks developed for
adults were too difficult for young children and therefore yielded unreliable discrimination
scores in that population. Similarly, Kyllonen and colleagues [31] developed a battery

of fluid-reasoning measures for highly educated adults after observing ceiling effects in
performance when using preexisting fluid-reasoning tasks in this population.

2.1.2 Repeatability & practice effects—A related issue for task reliability is practice
effects, where participants’ performance on a task improves with repeated administrations.
Practice effects are relatively common for cognitive tasks [32, 33]. They might occur due

to the attenuation of task-irrelevant nuisance factors (e.g., performance anxiety) and/or the
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learning of task-specific knowledge or strategies. Practice effects are not inherently an issue
for reliability — especially if an experimenter is only interested in the consistency, but not
the absolute agreement, of participants’ performance over time — but they can become a
pernicious issue if they are exhibited differentially across participants or if they are severe
enough to induce ceiling effects. For example, Paredes and colleagues [34] observed large
practice effects on the Pavlovian go/no-go task for short retest intervals (3 days, 14 days),
which resulted in poor estimates of test-retest reliability. In developmental and lifespan
studies, practice effects are potentially complicated by their interaction with age [35, 36];
that is, practice-induced ceiling effects may present in some age groups but not others.

One strategy for minimizing practice effects is simply to increase the time interval
between task administrations. The more time that elapses between sessions, the greater
the probability that participants will have forgotten task-specific knowledge or strategies
[32, 33]. Of course, this solution may not always be possible or desirable, especially if a
researcher is only able to or specifically interested in studying a behavior over a short time
period. Moreover, some forms of learning do not easily dissipate with time [37].

A second strategy is to use a combination of clear instructions and practice trials to help
participants reach stable performance from the start of an experiment (see the “Improving
experiment designs” section below). Another strategy is to design tasks so as to prevent or
discourage the formation of task-specific strategies. For example, McLean and colleagues
[25] investigated the repeatability of the beads task. In the beads task, participants are
presented with two jars containing beads of two colors in equal but opposite ratios. In each
trial of the task, a predetermined sequence of beads is drawn from one jar. Participants must
decide which jar beads were being drawn from or request to see more beads. In a typical
version of the task, the same sequence of bead draws is used across all trials. McLean and
colleagues found that participants were aware that the sequence repeated across trials and,
as a consequence, became more erratic in their decision to witness more bead draws with
additional trials. In response, the authors developed a new version of the task that included
distractor sequences of bead draws. This new design was effective in preventing participants
from becoming aware of the target sequence, which in turn resulted in more consistent
responding, which improved the reliability of participants’ information seeking scores (from
p=0.62 t0 0.84).

2.1.3 Enhancing experimental manipulations—The preceding sections described
potential threats to between-participants variability, but not approaches to improve it.

A primary strategy for increasing between-participants variability is to enhance the
experimental manipulation. Amplifying the strength of an experimental manipulation (e.g.,
making a task more challenging, increasing the potency of affect induction) typically
increases the range of participants’ responses to it. For example, Kucina and colleagues
[26] investigated the reliability of cognitive conflict effects (as measured by response time)
in new versions of several standard cognitive-control tasks (e.g., Stroop, Flanker, Simon)
that amplified cognitive interference via two task design features. First, they combined
multiple sources of cognitive interference in the same task, for example by combining

the Stroop and Simon effects to create a “Stroopon” task. Second, for a subset of trials,
they required participants to make multiple responses based on both relevant and irrelevant
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stimuli attributes. Compared to previous versions of these tasks, these manipulations had the
effect of increasing task demands, which resulted in greater between-participants variance
and, consequently, required hundreds fewer trials to achieve a reliability of p = 0.8. (See
also Snijder and colleagues [27] for a similar redesign of classic cognitive-control tasks that
improved reliability in part by increasing proactive control demands.)

A related strategy is to calibrate the difficulty of the task to the average ability of the
population of interest. For example, consider a task trial with two response options. Given
the Bernoulli distribution, the variance in responses on this trial will be maximal when

the probability of choosing either response is equal. Thus, aggregating across many trials,
between-participants variance is maximized — and task reliability is improved — when the
difficulty of all items is matched to the average ability of the sample [38] (or slightly higher
if participants can guess the correct response [39, 40]). Of course, this design principle

is only helpful to the degree that a researcher knows the average ability level of their
participants. If this is unknown or poorly characterized, then it is instead desirable to design
a task with trials spanning a range of difficulty levels.

2.1.4 Sample population—A final strategy for increasing between-participant variance
is to simply recruit more diverse samples. While convenient, undergraduate students from a
single university are likely to be relatively homogeneous in their cognitive profiles. It may
be worthwhile instead to recruit participants from the community or from an online labor
market (e.g., Amazon Mechanical Turk, Prolific Academic, CloudResearch Panels). With
regard to the latter, because online participants typically complete experiments from their
homes or other poorly-controlled environments, they are more likely to be distracted or to
multitask during an experiment [41]. Thus, when recruiting online samples, experimenters
should take special care to ensure that an increase in between-participants variance is not
offset by a concomitant increase in measurement noise. Separately, online participants may
be more familiar with particular experimental paradigms due to previous exposure [42],
which may attenuate between-participants performance variability for the reasons previously
mentioned (e.g., practice effects). Thus, researchers running experiments online may want to
alter task paradigms so that they appear less similar to preexisting versions and/or limit the
recruitment of highly-experienced participants [43].

2.2 Decreasing measurement noise

2.2.1 Increasing trial numbers—Perhaps the most straightforward approach to
decreasing measurement error, and thereby increasing reliability, is to increase the number
of task trials. The relationship between reliability and the number of trials defined as:

2
Or

A @

2 ()
or+ ,

where o2 is the true between-participants variance, o2 is measurement error (i.e. trial-
level variance), and n7is the number of trials. In practice, this relationship often holds [8,
9] though with some exceptions [44, 45]. Notably, increasing the number of task trials

only benefits reliability if measurement error is random. If increasing task length results
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in participant fatigue or boredom, measurement noise may systematically increase and
reliability will suffer. Increasing the number of trials may be impractical for other reasons,
and because of diminishing marginal improvements for reliability, achieving a desired level
of reliability through this means alone may require prohibitively long experiments.

2.2.2 Improving experiment designs—Measurement error can be reduced through
improving the design of experiments, which can be accomplished in many ways. The
reliability of a task measure can be improved by including in an experiment only the most
discriminating stimuli. For example, in the context of an emotion recognition task, stimuli
of good discriminability would be those where participants with good emotion-recognition
ability consistently correctly identify the displayed emotion while participants with poor
ability consistently incorrectly identify the displayed emotion [46]. In contrast, stimuli
with poor discriminability — those for which performance between high- and low-ability
participants is indistinguishable — will lead to more measurement noise and decreased
reliability [47]. In experiments where stimuli are intended to be unique and distinguishable,
improving both the linguistic and visual distinctness of stimuli may prevent participant
confusion and therefore aid reliability [48].

Other design features of an experiment that are specific to the task mechanics may affect
reliability. Consider, for example, the dot-probe task, in which participants must disengage
attention from a distracting image on one part of the screen in order to identify and respond
to the orientation of a pair of dots elsewhere on the screen. Dot-bottom trials, where a
participant must disengage from a distracting stimulus located at the top of the screen and
saccade to the bottom of the screen, are more reliable than dot-top trials (e.g., dot-bottom:
p =0.33; dot-top: p=0.07) [44, 49]. This has been explained by suggesting that because
participants’ gazes are biased towards the top of the screen, saccading away from the

top requires a stronger level of disengagement. Dot-bottom trials may therefore be better
measures of attentional bias.

It is worth stressing that clear instructions are essential for task reliability. When participants
are unsure of what they are intended to do in an experiment, their behavior is likely

to be more variable across time (as their understanding of the task evolves) and across
participants (due to different interpretation of instructions), thereby diminishing reliability.
Clear instructions thus help to ensure that participants show stable behavior from the start of
the experiment. (Clear instructions may also work to ensure the validity of an experiment by
discouraging participants from using strategies not of interest to the experimenter.) In their
10 simple rules” paper for designing cognitive experiments [50], Barbosa and colleagues
provide practical suggestions for writing task instructions. When adapting a task for a new
population, experimenters should ensure that the instructions are still appropriate. Task
instructions that are comprehensible to healthy adult participants may not be suitable for
other populations like children [51].

Another strategy to reduce measurement error is to make use of a practice phase. Practice
trials can help to minimize the effects of nuisance factors such as performance anxiety

or unfamiliarity with the response modality, and give participants an opportunity to make
sure they understand the task instructions. Thus, practice trials can help participants reach
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a “steady state” of responding, thereby reducing the noisiness of their responses across task
trials and increasing reliability [52]. Practice can take the form of a standalone practice
block or by designating as such and discarding (or modeling separately) the first few trials
of an experiment (e.g, [25]), though the latter may not fully allow participants to explore
response options during the practice.

Yet another strategy to diminish measurement error is to “gamify” an experiment.
Incorporating (video) game design elements into cognitive tasks can increase participant
engagement and motivation [53], countering the would-be effects of boredom and fatigue
on task reliability. For example, Kucina and colleagues [26] cite task gamification as an
important factor that contributed to the reliability of their cognitive-control tasks. Similarly,
Verdejo and colleagues [22] partially attribute the adequate reliability of their impulsivity
task battery to gamified task design (range: p=0.52 - 0.71).

2.2.3 Reducing parameter estimation noise—When parameters from cognitive
models are used as indices of participants’ task performance, another means to improve
measure reliability is to decrease estimation noise. The estimation noise of a parameter
given an experiment and model can be quantified through simulation studies [54, 55].

Here, an experimenter generates artificial data for the experiment using representative model
parameters and then attempts to recover the model parameters by fitting the model to

the simulated data. Estimation noise is the inverse of the (relative or absolute) agreement
between the true and recovered parameters. Alterations to experimental design can improve
parameter recovery and estimation noise, and multiple frameworks have been proposed for
testing and improving experimental designs to aid parameter recovery [56, 57]. Parameter
recovery can also be affected by the model estimation method [58, 59]. In particular, the
partial pooling properties of hierarchical Bayesian models can be especially beneficial for
improving parameter recovery and decreasing estimation noise [60].

A related approach is to use adaptive experimental designs [61], where the trials of an
experiment are designed in real time so as to present each participant with stimuli or

trial types that are matched to their particular response patterns or ability levels. Though
undoubtedly a more complex experimental design, adaptive experiments have the advantage
of selecting the most informative trials for resolving the ability or preference level of

a participant (e.g., as measured by a cognitive model). Adaptive designs have been
successfully used in cognitive research, for example to study working memory [62] and
delay discounting [63]. For a detailed discussion of adaptive-design experiments, see Ahn
(this issue).

Parameter estimation may be further improved by leveraging additional information. For
example, latent variables may be more accurately measured through the inclusion of
demographic variables or other covariates that, if associated to model parameters, can aid in
resolving parameter estimates [64]. An extension of this idea is to utilize joint modeling of
dependent variables; that is, to design models where multiple observed trial-level variables
are predicted simultaneously. For example, the joint modeling of choice and response time
has been found to improve the precision and reliability of estimated parameters in cognitive
ability testing [65] and reinforcement learning [66, 67]. It is also possible to incorporate
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physiological and/or neural correlates of behavior, such as skin conductance response, fMRI
BOLD signal, and EEG [68].

2.3 Difference scores

Difference scores deserve special treatment in the context of reliability. Difference scores
subtract a measure of a participant’s performance in one condition from their performance
in another. An example is the Stroop interference effect, calculated as the average
reaction-time difference between congruent and incongruent trials. Difference scores are
commonly used because they allow experimenters to isolate particular cognitive processes
(e.g., processing cognitive conflict) while controlling for other sources of variance (e.qg.,
perceptual processing, motor ability) through the subtraction of conditions that share that
variance. The challenge is that the reliability of a difference score is a function of the
reliability of each of its components and'the correlation between the components:

2 2
_ OxPxv + 0,0y — 2pxy6xo-y
2 2
o, + 0, —2p,0.0,

®

where o; and o, are the variances of task measures xand y, pxy and py,/ are the reliabilities
of task measures xand y; and py,, is the correlation between task measures xand /[69].
When the variances of the two measures are equal, this reduces to:

_ P + Py — 2pxy

P = 5T (@)

From the above equation, one can see that the reliability of a difference score measure is
diminished to the extent that its components are correlated. Two measures derived from the
same task will often be correlated due to shared domain-general cognitive processes. Thus, it
will often (if not always) be the case that difference scores derived from task measures will
be less reliable than the average reliability of their components.

2.3.1 Enhance & purify task measures—The equations above suggest three steps
experimenters can take to improve the reliability of difference scores: (1) improve the
reliability of the component measures, (2) increase the relative difference between the
variances of two task measures, and (3) minimize the correlation between the task measures.
The first strategy has been our focus so far. The second approach deserves further comment.
As discussed elsewhere [69], the reliability of a difference score measure increases as

the difference (or the ratio) between the variances of the component measures increases.
Intuitively, this is because as the variance of one (but not the other) component grows, so
too does the proportion of unshared reliable variance. Figure 2A shows that even when

the correlation of two measures is large, it is possible to achieve acceptable reliability
insofar as the ratio of the variances (i.e. o,/0y) is sufficiently different from 1. (It is also
worth noting that component variances essentially function as weights in determining the
overall reliability, such that the difference-score reliability reflects more the reliability of the
component measure with the larger variance; Figure 2B.) This speaks to the advantage

of increasing the between-participants variability of a measure of performance in one
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experiment condition without increasing performance variability in a second condition. This
may explain how Kuchina and colleagues improved the reliability of their difference score
measures after making only the incongruent trials more difficult [26].

The third approach is to purify task measures; that is, to decorrelate the components

of a difference score by reducing or eliminating their shared variance. Rey-Mermet and
colleagues [28] provide an interesting example in the context of executive control. In typical
executive control tasks, response times on congruent and incongruent trials are highly
correlated, reflecting shared variance from conflict-irrelevant processes including baseline
processing speed (e.g., perceptual processing, motor speed) and performance strategies (e.g.,
individual differences in speed-accuracy preferences; [70]). Rey-Mermet and colleagues
designed a number of “response-deadline” executive control tasks where participants had a
limited amount of time to respond during a trial. The duration of the response deadline was
calibrated for each participant individually such that they achieve a fixed accuracy level in
blocks of neutral trials, and then used as the deadline for both congruent and incongruent
trials. The calibration procedure controls for individual differences in processing speed that
contribute to performance in both congruent and incongruent trials. It also controls for
individual differences in strategy, as regardless of whether a participant was biased towards
speed or accuracy, inefficient executive control would result in lower accuracy. With this
calibration procedure, the researchers found that the reliability of an accuracy difference
score (incongruent minus congruent, which ranged from p = 0.58 to o = 0.91) was as

good or better than what had previously been reported for executive control tasks. Thus,
controlling for shared variance across measures—that is, purifying measures—can help to
improve task reliability.

2.3.2 lIdentify alternative measures—Rather than improving the reliability of
difference scores, one can simply avoid using them in the first place. This recommendation
has a long history in experimental psychology. Indeed, because difference scores will
virtually always be less reliable, many authors have advocated to abandon them [71-73].

What then are the alternatives to difference scores? Draheim and colleagues [70] provide an
in-depth review of alternatives to difference scores in the context of responsetime measures,
though much of their discussion is applicable to difference scores in general. One possibility
is to simply use the component measures (e.g., performance on incongruent trials in a
Stroop task alone). Of course, because component scores will be contaminated other sources
of variance, such as baseline performance, interpreting component scores should be done
with caution. Another approach is to identify alternative measures of task performance.

For example, intra-individual response time variability and cognitive efficiency have been
identified as correlates of executive control that can be measured reliably [74, 75] and are
altered in psychopathology [76, 77].

3 Conclusion

We have briefly reviewed issues and research regarding the reliability of cognitive-task
measures. Specifically, we introduced a taxonomy of experiment design and analysis
strategies for improving the reliability of cognitive-task measures, highlighting exemplary
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studies that have successfully implemented such approaches. We hope we have made clear
the importance of calculating (and reporting) the reliability of task measures intended for
use in psychiatric research. We also hope we have provided a useful guide for experimenters
who wish to design a new task, or to improve an existing task, in order to study individual
differences in cognitive processing.

We conclude with two important points. First, although we have discussed the importance
of task reliability, we have largely avoided the question of when a task measure is “reliable
enough”. Though it is tempting to fall back on conventional cutoffs (e.g., o= 0.7), what
constitutes sufficient reliability in actuality will depend on a researcher’s goal(s). If the goal
is to detect a significant individual-differences correlation, such as between a task measure
and self-reported symptom measure, then a task measure with “unacceptable” reliability by
conventional standards may suffice (e.g., if a researcher can collect a sample large enough
to be adequately powered to detect a correlation at the attenuated magnitude). On the other
hand, if a researcher intends to estimate an individual-differences correlation with high
precision, or use a task measure in a high stakes setting (e.g., treatment selection for an
individual patient), then high reliability may be required. We cannot overstate the value of
simulation studies (e.g., [24]) for researchers trying to determine what level of reliability is
required to meet their goals and risk preferences.

Second, we would like to emphasize that reliability is but one of many important
considerations in the design and evaluation of cognitive task measures. Task measures

may be reliable but show poor convergent validity [27, 78], raising questions about

whether they actually measure the constructs they are intended to measure. Similarly, task
measures may be reliable but exhibit poor ecological validity [79], thus being poor proxies
for cognition in real-world settings. Task measures may also be reliable but show poor
predictive validity [22], explaining little (unique) variance in other variables of interest (e.g.,
symptoms, treatment response). Finally, there are many other practical considerations (e.g.,
task duration, engagement, accessibility) to ensure cognitive tasks are able to be deployed
successfully in the clinic or in naturalistic environments at scale [80].

Despite the challenges of making task measures reliable and valid, we are optimistic about
their current and future use in biological psychiatry. We believe that, with further efforts
towards developing, documenting, and sharing reliable task paradigms, our field can make
increased strides towards understanding, predicting, and ultimately relieving psychiatric
illness.
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Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such

that papers from women and other minority scholars are under-cited relative to the number
of such papers in the field [81, 82]. Here we sought to proactively consider choosing
references that reflect the diversity of the field in thought, form of contribution, gender,
race, ethnicity, and other factors. First, we obtained the predicted gender of the first and

last author of each reference by using databases that store the probability of a first name
being carried by a woman [81]. By this measure and excluding self-citations to the first and
last authors of our current paper), our references contain 8.3% woman(first)/woman(last),
14.7% man/woman, 18.6% woman/man, and 58.4% man/man. This method is limited in that
a) names, pronouns, and social media profiles used to construct the databases may not, in
every case, be indicative of gender identity and b) it cannot account for intersex, non-binary,
or transgender people. Second, we obtained predicted racial/ethnic category of the first and
last author of each reference by databases that store the probability of a first and last name
being carried by an author of color [83, 84]. By this measure (and excluding self-citations),
our references contain 4.7% author of color (first)/author of color(last), 15.5% white author/
author of color, 18.0% author of color/white author, and 61.8% white author/white author.
This method is limited in that a) names and Florida Voter Data to make the predictions

may not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous

and mixed-race authors, or those who may face differential biases due to the ambiguous
racialization or ethnicization of their names. We look forward to future work that could help
us to better understand how to support equitable practices in science.
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Figure 1:
The relationship between measure reliability, observed correlations, and statistical power.

(A) The maximum expected observed correlation between two measures as a function of
their true (latent) correlation and reliability. As the reliability of two measures decreases,
so too does their observed correlation. (B) Required sample size for 80% power to detect
true correlations between two measures given their reliability. As the reliability of two
measures decreases, the number of participants required to detect an association increases.
Even with a large sample size of /=500, two measures with moderate reliability (ox =
pyy = 0.5) will only reliably detect true correlations above 0.3, which are likely high for
individual-differences cognitive research [7].
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Figure 2:
Difference score reliability as a function of the variances and reliabilities of its component

measures. (A) Difference-score reliability as the ratio of the component measure variances
(ox/0y) increases, with component reliabilities held fixed (oxx = py,/ = 0.8). When
component measures have equal variances (o,/oy, = 1), large correlations between the
measures substantially diminish the reliability of a difference score measure. When the
variances are unequal (ox/cy,> 1), even large correlations between the measures are less
deleterious for reliability. (B) Difference score reliability as the component reliabilities
change, with the ratio of the component-measure variances fixed (oy/oy, = 2). When the
variances are unequal, the reliability of a difference score reflects more the component
measure with the larger variance (here, component Xx).
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