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ABSTRACT 

Background: The Pavlovian go/no-go task is commonly used to measure individual 
differences in Pavlovian biases and their interaction with instrumental learning. The task 

has also been widely used in computational psychiatry research, to correlate Pavlovian 

biases with mental health symptoms. However, prior research has reported unacceptable 

reliability for computational model-based performance measures for this task, limiting its 
usefulness in individual-differences research. Here, we apply several strategies previously 

shown to enhance task-measure reliability (e.g., task gamification, hierarchical Bayesian 

modeling for model estimation) to the Pavlovian go/no-go task, to improve the reliability 

of the task as a tool for future research. 

Methods: In two experiments, two independent samples of adult participants (N = 103, 
N = 110) completed a novel, gamified version of the Pavlovian go/no-go task multiple 

times over several weeks. We used hierarchical Bayesian modeling to derive reinforcement 
learning model-based indices of participants’ task performance, and to estimate the 

reliability of these measures. 

Results: In Experiment 1, we observed considerable practice effects, with most 
participants reaching near-ceiling levels of performance with repeat testing. Consequently, 
the test-retest reliability of some model parameters was unacceptable (as low as 0.379). 
In Experiment 2, participants completed a modified version of the task designed to 

lessen these practice effects. We observed greatly reduced practice effects and improved 

estimates of the test-retest reliability (range: 0.696–0.989). 

Conclusion: The results demonstrate that model-based measures of performance on 

our modified Pavlovian go/no-go task can reach levels of reliability sufficient for use in 

individual-differences research. We therefore provide the task code for use by the compu-
tational psychiatry community (as well as other researchers). Additional investigation is 
necessary to validate the modified version of the task in other populations and settings. 
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232 INTRODUCTION 

Humans (and other animals) have an innate tendency to approach rewarding stimuli and shrink 

from punishing stimuli (Carver & White, 1994). Depending on the context, these hardwired 

Pavlovian biases can either benefit or interfere with instrumental (i.e., action-outcome) learning. 
This is epitomized in the Pavlovian go/no-go task in which the required action (Go, No-Go) and 

outcome valence (reward, punishment) are orthogonalized (Guitart-Masip et al., 2012, 2014). 
In the task, participants are typically faster to learn actions that are congruent with Pavlovian 

response biases (i.e., a “Go” response to receive reward and a “No-Go” response to avoid 

punishment) as compared to Pavlovian-instrumental incongruent responses (i.e., inhibit action to 

receive reward, initiate action to avoid punishment). 

The Pavlovian go/no-go task has been used in a large number of studies to probe individual 
differences in reward and punishment learning, of which many have reported changes in Pavlovian 

biases as a function of psychiatric conditions. For example, an increased tendency towards passive 

avoidance has been observed in individuals with generalized and social anxiety (Mkrtchian et al., 
2017; Peterburs, Albrecht & Bellebaum, 2021), whereas active avoidance is amplified in individuals 
with a history of suicidal thoughts or behaviors (Millner et al., 2019). Pavlovian biases are larger in 

individuals with trauma exposure (Ousdal et al., 2018) and first-episode psychosis (Montagnese 

et al., 2020), but attenuated in individuals with depression (Huys et al., 2016) and schizophrenia 

(Albrecht et al., 2016). Pavlovian biases have also been associated with individual differences in 

personality (e.g., impulsivity; Eisinger et al., 2020) and genetics (Richter et al., 2014, 2021). In 

developmental and lifespan research, Pavlovian biases have been shown to exhibit a U-shape, 
decreasing from childhood to young adulthood and increasing again in older age (Betts et al., 2020; 
Raab & Hartley, 2020). At a finer temporal scale, Pavlovian biases are also reportedly modulated 

by state effects including mood (Weber et al., 2022), anger (Wonderlich, 2020), stress (de Berker 
et al., 2016), and fear (Mkrtchian, Roiser & Robinson, 2017). 

However, three independent studies found that descriptive and computational-model based 

measures of performance on the Pavlovian go/no-go task exhibited low test-retest reliability 

over short (two-week) and long (6-, 18-month) retest intervals (Moutoussis et al., 2018; Pike 

et al., 2022; Saeedpour et al., 2023). Specifically, Moutoussis et al. (2018) reported Spearman 

correlations ranging from 0.10 to 0.43 over 6–18 month intervals, with the Pavlovian bias 
parameter showing particularly weak stability (𝜌 = 0.10, p = 0.017); Pike et al. (2022) reported 

correlations ranging from 0.18 to 0.495 for task accuracy, with computational model parameters 
showing even lower reliability; and Saeedpour et al. (2023) reported test-retest reliability of 
0.40 for descriptive estimates of Pavlovian bias and 0.25 for model-based estimates over a 

two-week interval. 

There are multiple strategies for improving the reliability of cognitive task measures (Zorowitz & 

Niv, 2023). For example, prior research has found that gamification, or the incorporation of (video) 
game design elements into cognitive tasks, can promote participant engagement (Sailer et al., 
2017) and improve the reliability of task measures (Kucina et al., 2023; Verdejo-Garcia et al., 2021). 
Moreover, hierarchical Bayesian models – which exert a pooling effect on person-level variables, in 

effect correcting them for measurement error (Haines, Sullivan-Toole & Olino, 2023; Rouder & Haaf, 
2019) – have been frequently shown to improve the reliability of task measures (Brown et al., 2020; 
Sullivan-Toole et al., 2022; Waltmann, Schlagenhauf & Deserno, 2022). Finally, practice effects can 

be lessened by designing tasks in such a way that prevents participants from discovering and using 

task-specific knowledge to enhance their performance on subsequent attempts (McLean, Mattiske 

& Balzan, 2018). 

Here we investigate the reliability and repeatability of a novel version of the Pavlovian go/no-go 

task, with the aim of designing a variant of the task that is optimized for use in computational 
psychiatry and other individual differences research. We conducted two experiments involving two 

independent samples of adult participants who completed a gamified version of the task multiple 

times over several weeks. We used hierarchical Bayesian models to derive reinforcement-learning 

model-based indices of their task performance, and additionally to estimate the reliability of these 
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233 measures. In Experiment 1, using a gamified version of the classic task, participants exhibited large 

practice effects, which negatively impacted the test-retest reliability of the performance measures. 
To address this issue, in Experiment 2, participants completed a modified version of the task that 
reduced practice effects, and led to significant improvements in the test-retest reliability of the 

reinforcement learning model parameters. 

EXPERIMENT 1 

METHODS 

Participants 

A total of N = 148 participants were recruited in May, 2020, from Amazon Mechanical Turk via 

CloudResearch (Litman, Robinson & Abberbock, 2017). Participants were eligible to participate if 
they were at least 18 years old and resided in the United States. Following best practice recommen-
dations (Robinson et al., 2019), no other inclusion criteria were applied. The study was approved 

by the Institutional Review Board of Princeton University and all participants provided informed 

consent. Total study duration was 15–20 minutes. Participants received monetary compensation 

for their time (rate: USD $12/hr), plus an incentive-compatible bonus up to $1.50 based on 

task performance. 

Data from N = 45 participants who completed the first session were excluded prior to analysis (see 

“Exclusion criteria” below), leaving a final sample of N = 103 participants. These participants were 

re-invited to complete follow-up experiments 3, 14, and 28 days later. Once invited, participants 
were permitted 48 hours to complete each follow-up experiment. Retention was high for each 

follow-up session (Day 3: N = 94 [91.3%]; Day 14: N = 92 [89.3%]; Day 28: N = 89 [86.4%]). In 

addition to the performance bonus, participants received a retention bonus of $1.00 for each 

completed follow-up session. Detailed demographic information is presented in Table S1. The 

majority of participants identified as men (55 men; 47 women; 1 non-binary) and participants 
were 35.5 years old on average (SD = 10.3, range: 20–69 years). 

Experimental protocol 
In each session, after providing consent, participants started by completing some or all of the 

following self-report questionnaires: the 7-item generalized anxiety disorder scale (GAD-7; Spitzer 
et al., 2006); the 14-item manic and depressive tendencies scale (7-up/7-down; Youngstrom et al., 
2013); and the abbreviated 12-item behavioral activation/inhibition scale (BIS/BAS; Pagliaccio et al., 
2016). Participants also indicated their current mood using an affective slider (Betella & Verschure, 
2016). Note that participants completed the GAD-7 and mood slider on each session, but the 7-
up/7-down and BIS/BAS scales only twice (on Days 0 and 28). These measures were included for 
exploratory analyses not reported here. 

Next, participants completed a gamified version of the Pavlovian go/no-go task. In the task, 
participants observed different ‘robot’ stimuli (Figure 1A). On every trial, a robot was shown 

traveling down a conveyor belt into a ‘scanner’. Once inside, participants had 1.5 seconds to decide 

to either ‘repair’ the robot by pressing the space bar (“Go” response) or press nothing (“No-Go” 
response). A trial where there was no response within this time window was treated as a “No-Go” 
response, such that there were no “missed trials” and all 240 trials per participant contributed to 

the analyses. Participants were told that they would see different types of robots (indicated by a 

symbol on the robots’ chestplates), and that their goal was to learn which types of robots needed 

repairing based on feedback (points won/lost) following their actions. 

The task involved four trial types that differed by their correct action (Go, No-Go) and outcome 

domain (reward, punishment; Figure 1B). Specifically, the four trial types were: go to win points 
(GW); no-go to win points (NGW); go to avoid losing points (GAL); and no-go to avoid losing 

points (NGAL). Note that GW and NGAL trials are Pavlovian-instrumental ‘congruent’ because 

there is a match between the correct response and the expected approach/avoidance bias due 

to winning or losing points for each. In contrast, NGW and GAL trials are Pavlovian-instrumental 
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234 ‘incongruent’. In rewarding trials (GW, NGW), the possible outcomes were +10 or +1 points where 

a correct action was rewarded with +10 on 80% of the trials and +1 otherwise; in turn, an 

incorrect action was rewarded with +1 on 80% of the trials and +10 otherwise. In punishing 

trials (GAL, NGAL), outcomes were –1 or –10 points, where the correct action led to –1 on 80% 

of trials and the incorrect action led to –10 on 80% of trials (Figure 1C). We refer to the 80% of 
trials where participants received the prescribed reward magnitude for their response as having 

‘veridical feedback,’ whereas the remaining 20% of trials are considered to have ‘sham feedback,’ 
as participants received misleading reward magnitudes that suggested a correct response was 
incorrect and vice versa (e.g., a correct response in the reward domain leading to +1 point). The 

outcome domain of each robot was explicitly signaled to participants by a blue or orange ‘scanner 
light’ (one color signaling reward domain and the other punishment domain, randomized within 

participants across sessions). 

Figure 1 (A) Schematic of the 
Pavlovian go/no-go task. On 
each trial, a robot entered the 
‘scanner’ from the left of screen, 
prompting a response (go or 
no-go) from the participant 
during a response window 
(Experiment 1: 1.5 seconds; 
Experiment 2: 1.3 seconds). The 
outcome (number of points won 
or lost) was subsequently 
presented on the scanner 
display (Experiment 1: 1.0 
seconds; Experiment 2: 1.2 
seconds), followed by an 
inter-trial interval animation 
(1 second) in which the 
conveyor belt carried the old 
robot out of view and a new 
robot into the scanner. The 
color of the scanner light 
denoted outcome domain (e.g., 
blue denoting reward and red 
denoting punishment). (B) The 
four trial types, produced by a 
factorial combination of 
outcome domain (rewarding, 
punishing) and correct action 
(go, no-go). (C) Outcome 
probabilities for each outcome 
domain following a correct or 
incorrect response. Correct 
responses yielded the better of 
the two possible outcomes with 
80% chance. (D) Trial 
composition. In Experiment 1, 
participants saw 8 total robots 
(two of each trial type), each 
presented for 30 trials (240 total 
trials). In Experiment 2, 
participants saw 24 total robots 
(6 of each trial type), each for 8, 
10, or 12 trials (240 total trials). 

Participants saw eight unique robots in each session of the task. Each individual robot was 
presented for 30 trials (240 trials total; Figure 1D). Trials were divided into two blocks with four 
robots per block (one of each trial type). Prior to task start, participants were required to review 

instructions, correctly answer five comprehension questions that touched on all essential parts of 
the instructions, and complete several practice trials. Failing to correctly answer all comprehension 

questions forced the participant to reread sections of the instructions. Participants were required 

to complete the instructions and comprehension questions in each session. Participants were 

provided a break between blocks. After completing the task, participants appraised the task 

along three dimensions: difficulty, fun, and clarity of instructions (see Table S2). The task was 
programmed in jsPsych (De Leeuw, 2015) and distributed using custom web-application software 

(see Code Availability). 

Exclusion criteria 

To ensure data quality, data from multiple participants from the initial session were excluded 

prior to analysis for one or both of the following reasons: failing more than one attention 

check embedded in the self-report measures (i.e., incorrect response on items that resembled 

other items in that instrument but had obvious correct answers, such as “I was able to 

remember my own name”) and/or demonstrating careless responding patterns such as zigzag 

or straight-line responses (Kim et al., 2018; Zorowitz et al., 2023) (N = 13), or exhibiting chance-
level performance (<55% correct responses) on go-to-win trials (N = 43). In total, data from 

N = 45 participants who completed the first session were excluded based on these criteria, 
leaving a final sample of N = 103 participants. No exclusions were applied to subsequent 
session data. 

Zorowitz, Karni et al. 
Computational Psychiatry 
DOI: 10.5334/cpsy.127 



235 Descriptive analyses 

We first evaluated participants’ choice behavior using five performance measures: overall percent 
correct responses; go bias, calculated as the difference in correct responses between Go and 

No-Go trials; valence bias, calculated as the difference in correct responses between rewarding 

and punishing trials; Pavlovian bias, which was the difference in correct responses between 

Pavlovian-instrumental congruent and incongruent trials; and feedback sensitivity, calculated as 
the difference in correct responses between trials following veridical or sham feedback (that is, 
following 80% of the trials where feedback aligned with the correctness of the response, and 

the 20% of trials with feedback matching the alternative response, respectively). Consistent with 

previous research (Guitart-Masip et al., 2012; Saeedpour et al., 2023), only small or nonsignificant 
valence biases were observed. As such, these statistics are reported only in the Supplementary 

Materials (Table S4). 

For each session and measure, we tested if the median value across participants was significantly 

different than zero (or 50% for overall percent correct responses). We used the median due to skew 

in the performance measures. We also tested if the median value of each measure was significantly 

different between each pair of sessions. P-values were derived via permutation testing, where 

a null distribution of values was obtained by permuting the condition labels (for within-session 

tests) or session labels (for between-session tests) 5,000 times. Within-session tests were not 
corrected for multiple comparisons as each test constituted an individual hypothesis test; however, 
between-session tests were corrected using the family-wise error rate correction (Winkler et al., 
2014) because they constituted a disjunctive test (Rubin, 2021). 

Reinforcement learning models 

To more precisely characterize participants’ performance on the Pavlovian go/no-go task, we fit 
a nested set of reinforcement learning models to the choice data. All models were variants of 
the Rescorla-Wagner model and have previously been used to predict choice behavior on this task 

(Guitart-Masip et al., 2012; Mkrtchian et al., 2017; Moutoussis et al., 2018; Swart et al., 2017). Under 
the most complex model (M7), the probability that a participant makes a go response following 

stimulus k was defined as: 

p(y = go) = (1 – 𝜉) ⋅ logit–1 (𝛽vk 
⋅ [Qk(Go) – Qk(NoGo)] + 𝜏vk 

) +
2 

𝜉 
(1) 

where 𝛽vk 
was the reward sensitivity (if the valence v of stimulus k was rewarding) or the 

punishment sensitiivty (if stimulus k was punishing), Qk(go) and Qk(no-go) were learned stimulus-
action values for the go and no-go responses for stimulus k, respectively, 𝜏vk 

was an approach bias 
(if stimulus k was rewarding) or avoidance bias parameter (if stimulus k was punishing), and 𝜉 was 
the lapse rate (i.e., the rate of choosing actions randomly due to lapse of attention). The Q values 
were learned through feedback according to a learning rule: 

Qk(action) ← 𝜂vk 
⋅ [r – Qk(action)] (2) 

where r was the observed outcome on this trial and 𝜂vk 
was the learning rate or step-size parameter 

(𝜂+ if stimulus k was a reward/gain domain robot, 𝜂– if it was a punishment/loss domain robot). To 

allow comparison of model parameters to previous studies, and since point values are arbitrary, 
in our models we encoded rewards as r = 1 for the better of the two possible outcomes and r = 0 

for the worse of the two possible outcomes. This was done for convenience only, and the same 

results are obtained when using the true point values as r as the two encodings are mathematically 

equivalent. This is because Q-values are learned separately for reward and punishment domains 
(as in Guitart-Masip et al., 2012) and the softmax choice function is invariant to additive constants, 
thus action probabilities derived from Q-values of, say, –1 and 0 are identical to those derived 

from Q-values of 0 and 1. As the possible reward magnitudes were instructed and the reward/pun-
ishment domain signaled on every trial, only the relative reward within condition was germane to 

action selection, and we therefore initialized Q-values to 0.5. 

Simplifications of this model involved either fixing parameters to be equal to zero (e.g., no lapse 

rate) or fixing parameters to be equal for reward and punishment domains. Specifically, the base 
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236 model (M1) had only two free parameters: a single outcome sensitivity parameter and a single 

learning rate, both shared across outcome domains (i.e., 𝛽+ = 𝛽–; 𝜂+ = 𝜂–; 𝜏+ = 𝜏– = 0, 𝜉 = 0). Model 2 

added a static action bias parameter that was shared across outcome domains (i.e., 𝜏+ = 𝜏–). 
Model 3 added to M2 independent approach (𝜏+) and avoidance (𝜏–) parameters. Models 4 and 5 

respectively added to M3 independent outcome sensitivity (𝛽+, 𝛽–; M4) or learning rate (𝜂+, 𝜂–; M5) 
parameters by outcome domain. Model 6 included both independent outcome sensitivity and 

learning rate parameters. Finally, Model 7, the most complex model, added to M6 a potentially 

non-zero lapse rate (𝜉). 

All models were estimated within a hierarchical Bayesian modeling framework using Hamiltonian 

Monte Carlo sampling as implemented in Stan (v2.30; Carpenter et al., 2017). The hierarchical 
structure decomposes each parameter into group mean, participant-specific, and session-specific 

components (see Equation 3, below). This decomposition allows the model to separate stable 

individual differences from session-to-session variability and measurement noise, with the pooling 

effect occurring because individual estimates are informed by both that person’s data and 

group-level patterns. 

For each model, four separate chains with randomized start values each drew 7,500 samples from 

the posterior. Each chain generated 5,000 warm-up samples and 2,500 post-warmup samples. The 

warm-up samples were discarded, and every even numbered sample of the remaining samples 
was discarded via thinning (thin = 2), retaining 1,250 post-warmup samples per chain for a total of 
5,000 samples overall for parameter estimation (1,250 × 4 chains). The R ̂ values for all parameters 
were ≤1.01, indicating acceptable convergence between chains, and there were no divergent 
transitions in any chain. For all models, we specified priors that reflected reasonable assumptions 
about parameter ranges and distributions based on the task design and participant selection 

criteria (Table S3). The learning-rate priors assumed a weak bimodal distribution reflecting 

expected heterogeneity, while the lapse-rate prior concentrated mass below 0.5 given our quality-
control procedures that excluded participants with chance or below-chance performance. 

Fits of the models to behavioral data were assessed using posterior predictive checks. Specifically, 
we inspected each model’s ability to reproduce both group-averaged learning curves by trial type 

and each participant’s proportion of go responses by trial type. Model fits were compared using 

approximate leave-one-trial-out cross-validation via Pareto smoothed importance sampling (PSIS-
LOO; Vehtari, Gelman & Gabry, 2017). (Note this may, in principle, differ from cross-validation at 
the participant level, which has been argued to be a relevant unit of exchangeability at which to 

compare models (Stephan et al., 2009).) We considered a difference in PSIS-LOO values that is four 
times larger than the mean PSIS-LOO standard error as a significant improvement in model fit due 

to additional parameters (Vehtari, 2023). 

We also investigated the reliability of the model parameters for the best-fitting model using 

a Bayesian hierarchical modeling framework, in which data were pooled within and across 
participants (Rouder & Haaf, 2019). After identifying the best-fitting model architecture using 

approximate LOO cross-validation, we re-estimated this model with session-specific (for test-
retest reliability) or block-specific (for split-half reliability) group-level parameters while maintaining 

the hierarchical structure that pools information across participants. Specifically, each parameter 
𝜃 ∈ {𝛽+, 𝛽–, 𝜂+, 𝜏+, 𝜏–, 𝜉} was estimated as follows: 

𝜃i1 = 𝜇1 + 𝜃ic – 𝜃id 
(3)

𝜃i2 = 𝜇2 + 𝜃ic + 𝜃id 

where 𝜃i1 and 𝜃i2 are a given parameter (e.g., reward sensitivity, 𝛽+) for participant i in sessions 
or blocks 1 and 2, respectively; 𝜇1 and 𝜇2 are the group-averaged parameters for sessions or 
blocks 1 and 2 estimated jointly with individual-level parameters; 𝜃ic is the common effect for 
participant i (i.e., the component of a participant-level parameter that is different from the group 

mean and stable across sessions or blocks); and 𝜃id is the difference effect for participant i (i.e., the 

parameter component that is variable across sessions or blocks). The collection of 𝜃ic parameters 
constituted between-participants variability, whereas the collection of 𝜃id parameters constituted 
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237 within-participants variability. Both 𝜃ic and 𝜃id were assumed to be normally distributed with zero 

means and independent estimated variances. Split-half and test-retest reliability estimates were 

calculated by taking both Spearman correlations and intraclass correlation (ICC) coefficients of 
𝜃i1 and 𝜃i2 across task blocks and sessions, respectively (Brown et al., 2020; Pike et al., 2022). 
We used the Spearman correlation because we were primarily interested in the consistency of 
rank ordering of participants’ parameter estimates over time. We calculated ICC as the ratio of 

𝜍2 
between between-participant variance to total variance (ICC = 

) 
), which provides a measure of 

(𝜍2 
between+𝜍

2 
within 

the proportion of total variance attributable to stable individual differences. Although arbitrary, 
we followed convention and defined 𝜌 ≥ 0.7 and rICC ≥ .6 as the thresholds for “acceptable”, and 

“good” reliability, respectively (Cicchetti, 1994). 

RESULTS 

Descriptive analyses 

Trial-by-trial choice behavior for each session is presented in Figure 2A. Performance in the first 
session qualitatively conformed to the expected pattern of results (i.e., worse performance on 

Pavlovian-instrumental incongruent trials [GAL, NGW]). However, this effect seemed diminished 

in all follow-up sessions. Indeed, group-averaged performance measures by session (Figure 2B; 
complete descriptive statistics are reported in Table S4) showed that participants made the correct 
response on 85.0% of trials on the first session (Day 0), which increased to near-ceiling levels in 

all subsequent sessions. Pairwise comparisons confirmed that performance was indeed worse on 

Day 0 compared to each follow-up session (all p < 0.001); no other comparisons were significant. 
Participants’ self-reported mood and anxiety were largely stable over the same period (Figure S1), 

Figure 2 Large practice effects 
on the standard Pavlovian 
go/no-go task in Experiment 1. 
(A) Group-averaged learning 
curves for each trial type and 
session. Shaded regions indicate 
95% bootstrapped confidence 
intervals. (B) Group-averaged 
performance for each session. 
Performance measures from 
left-to-right: Correct responses, 
or overall accuracy; Go bias, or 
difference in accuracy between 
Go and No-Go trials; Congruence 
effect, or difference in accuracy 
between congruent (GW, NGAL) 
and incongruent (NGW, GAL) 
trials; and Feedback sensitivity, 
or the difference in accuracy on 
trials following veridical and 
sham feedback. Behavior on the 
first session was significantly 
different from all other sessions 
on all measures. ** Denotes 
significant pairwise difference 
(p < 0.05, corrected for multiple 
comparisons). (C) Distribution 
of correct responses across 
sessions by trial type. 
Percentage of participants, for 
each session and trial type, 
exhibiting at- or below-chance 
performance (< 60% response 
accuracy; grey), intermediate 
performance (≥ 60% response 
accuracy; light blue), or 
near-perfect performance 
(≥ 90% response accuracy; dark 
blue). Across sessions, 
performance improved on all 
trial types that were not already 
close to ceiling on the first 
session. 
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238 indicating this shift in performance more likely reflects practice effects rather than changes in 

participants’ state. 

Across sessions, participants made more correct responses on Go trials than on No-Go trials. 
However, this “Go bias” was significantly reduced in all follow-up sessions compared to Day 0 (all 
p < 0.001); so too was it on Day 28 compared to Day 3 (p < 0.001). Similarly, participants made 

more correct responses on congruent than incongruent trials. As with the Go bias, this “Pavlovian 

bias” was significantly reduced in all follow-up sessions compared to Day 0 (all p < 0.001; no other 
comparisons were significant). 

Feedback sensitivity also diminished from the first to later sessions. Across sessions, participants 
made more correct responses following veridical compared to sham feedback (all p < 0.001). 
However, feedback sensitivity was significantly reduced in all follow-up sessions compared to Day 

0 (all p < 0.001; no other comparisons were significant) suggesting that feedback had less of an 

effect on choice in later sessions. This is consistent with participants’ learning curves which show, 
in all days except Day 0, that participants quickly learned the correct action for each stimulus and 

maintained this policy despite the 20% sham feedback (Figure 2A). 

These results summarize group-averaged performance. To gain insight into individual differences, 
Figure 2C shows the proportion of participants who exhibited chance-level (<60% correct 
responses), intermediate (≥60% and <90%), or near-ceiling performance (≥90%) by session and 

trial type. Excepting GW trials, where performance of over 80% of participants was close to 

ceiling already in the first session, the percentage of participants nearing ceiling-level performance 

increases from a minority on Day 0 to the majority of participants in all follow-up sessions. Two-
way chi-squared tests confirmed this trend (GW: 𝜒2(6) = 8.149, p = 0.227; NGW: 𝜒2(6) = 55.458, p < 

0.001; GAL: 𝜒2(6) = 42.191, p < 0.001; NGAL: 𝜒2(6) = 39.287, p < 0.001). In sum, the improvements 
in task performance (and accompanying reductions in choice biases) with repeat testing observed 

at the group-level extended to the majority of participants. 

Model comparison 

The results of the model comparison are summarized in Table 1. Collapsing across sessions, the 

best-fitting model was the most complex one (i.e., the model including independent reward 

sensitivity, learning rate and approach/avoidance bias parameters per outcome domain, plus a 

lapse rate; M7). Importantly, this was also the best-fitting model within each session (Table S5). 
Posterior predictive checks indicated that this model provided excellent fits to the choice data from 

each session (Figure S3). 

Table 1 Model comparison 
collapsing across sessions. 
Accuracy = trial-level choice 
prediction accuracy between 
observed and model-predicted 
Go responses. PSIS-LOO = 
approximate leave-one-out 
cross-validation scores 
presented in deviance scale 
(smaller numbers indicate 
better fit). ΔPSIS-LOO = 
difference in PSIS-LOO values 
between each model and the 
best-fitting model (M7). 

MODEL PARAMETERS ACCURACY PSIS-LOO 𝚫PSIS-LOO (se) 

M1 𝛽, 𝜂 87.5% –151457.9 –5602.6 (68.3) 

M2 𝛽, 𝜏, 𝜂 89.0% –154011.9 –3048.6 (51.2) 

M3 𝛽, 𝜏+, 𝜏–, 𝜂 89.8% –155817.8 –1242.7 (31.3) 

M4 𝛽+, 𝛽–, 𝜏+, 𝜏–, 𝜂 89.8% –156261.6 –798.8 (22.6) 

M5 𝛽, 𝜏+, 𝜏–, 𝜂+, 𝜂– 89.9% –156265.9 –794.6 (20.7) 

M6 𝛽+, 𝛽–𝜏+, 𝜏–, 𝜂+, 𝜂– 89.9% –156401.8 –658.6 (18.8) 

M7 𝛽+, 𝛽–𝜏+, 𝜏–, 𝜂+, 𝜂–, 𝜉 90.1% –157060.5 – 
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Model parameters 

Figure 3A shows the estimated group-level parameters from the best-fitting model. Consistent 
with the descriptive analyses above, large shifts in parameter values were observed following 

Day 0. The reward and punishment sensitivity parameters (𝛽+, 𝛽–) exhibited an almost threefold 

increase between Days 0 and 3, and stabilized thereafter. The inverse pattern was observed for 
the reward learning rate (𝜂+). Crucially, the approach/avoidance bias parameters followed a similar 
pattern. The approach bias (𝜏+) decreased significantly between Days 0 and 3, and qualitatively 



239 declined thereafter. In turn, the avoidance bias (𝜏–) increased significantly between Days 0 and 3, 
and stabilized thereafter. That is, Pavlovian biases diminished in absolute and relative terms (i.e., 
compared to the outcome sensitivity parameters) with repeat testing. 

Figure 3 Reinforcement 
learning model parameters in 
Experiment 1 show evidence of 
practice effects and low 
reliability. (A) Group-level 
model parameters for each 
session. Error bars indicate 95% 
Bayesian confidence intervals 
(CIs). ** Denotes pairwise 
comparison where 95% CI of 
the difference excludes zero. 
(B) Test-retest reliability 
estimates for each model 
parameter. Dotted lines indicate 
average across pairs of sessions. 
Shaded region indicates 
conventional range of 
acceptable reliability (𝜌 ≥ 0.7). 
(C) Test-retest reliability 
estimates for each model 
parameter using ICC. Dotted 
lines indicate average across the 
three sessions. Shaded region 
indicates conventional range of 
good reliability (rICC ≥ 0.6). 

The test-retest reliability estimates for each model parameter are presented in Figure 3B–C. The 

results were mixed. Averaging across session pairs, acceptable test-retest reliability was observed 

for the outcome sensitivity parameters (𝛽+: 𝜌 = 0.903, 95% CI = [0.873, 0.919], rICC = 0.871, 95% 

CI = [0.806, 0.956]; 𝛽–: 𝜌 = 0.973, 95% CI = [0.959, 0.979], rICC = 0.960, 95% CI = [0.920, 0.991]) 
and the punishment learning rate (𝜂–: 𝜌 = 0.711, 95% CI = [0.633, 0.771], rICC = 0.853, 95% CI = 

[0.821, 0.893]). 

Conversely, test-retest reliability was unacceptable according to Spearman correlation coefficients 
for the approach and avoidance bias parameters (𝜏+: 𝜌 = 0.402, 95% CI = [0.290, 0.501]; 𝜏–: 
𝜌 = 0.470, 95% CI = [0.369, 0.554]) and the reward learning rate (𝜂+: 𝜌 = 0.403, 95% CI = [0.294, 
0.497]), though ICC estimates for these parameters reached “good” reliability thresholds (𝜏+: 
rICC = 0.650, 95% CI = [0.613, 0.673]; 𝜏–: rICC = 0.692, 95% CI = [0.630, 0.787]; 𝜂+: rICC = 0.676, 95% 

CI = [0.649, 0.710]). A similarly mixed pattern was observed for the split-half reliability estimates 
(Figure S5A). 

DISCUSSION 

Our goal was to evaluate the stability and reliability of individual differences in performance on 

a gamified version of the popular Pavlovian go/no-go task. At both the group and participant 
levels, we observed significant practice effects following the first session. An increasing majority 

of participants exhibited near-ceiling performance, across trial types, with each additional task 

administration. Consequently, the magnitude of group-averaged behavioral effects including the 
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240 go bias, Pavlovian bias, and feedback sensitivity were diminished by half or more after the first 
session. This was reflected in the group-level parameters of a reinforcement learning model fit 
to participants’ choice data, which indicated that Pavlovian biases were significantly attenuated 

in follow-up sessions. Consequently, we found that the Pavlovian bias parameters exhibited 

poor-to-moderate test-retest reliability. This last result is perhaps unsurprising insofar that low 

between-participants variability diminishes reliability (Zorowitz & Niv, 2023). 

The results of Experiment 1 raise two questions: what underlies these practice effects and what 
can be done to mitigate or prevent them? With respect to the first question, one possibility is that, 
after the initial session, participants rely on the already learned structure of the task to solve it more 

effectively. Specifically, in the canonical Pavlovian go/no-go task, for every Go stimulus (e.g., GW) 
there is a corresponding No-Go stimulus (e.g., NGW). As such, learning the correct action for one 

stimulus provides information about the correct action for its complement. Recognizing this, savvy 

participants may forego reinforcement learning in favor of a process-of-elimination strategy to 

deduce which is the Go and which is the No-Go stimulus in each pair. Indeed, feedback from several 
participants in this study suggested that they may have utilized this form of top-down strategy. 
This interpretation is further supported by reaction time data (Figure S6), which showed that 
participants in Experiment 1 became significantly faster across sessions, suggesting increasingly 

automatic responding consistent with learned task structure. In contrast, Experiment 2 showed 

stable reaction times across sessions, aligning with the reduced practice effects observed in 

that version. 

This suggests that a version of the task with a less predictable trial structure might reduce 

practice effects. By eliminating the dependence between stimuli, motivated participants aiming 

to maximize their performance should have no strategy better than learning from the feedback 

for each of their actions. By minimizing practice effects and increasing between-participants 
variability, it is plausible that parameter reliability would also improve. In the next experiment, 
we investigated precisely this. 

EXPERIMENT 2 

METHODS 

Participants 

A total of N = 156 participants were recruited in December, 2020, from Amazon Mechanical Turk 

via CloudResearch (Litman, Robinson & Abberbock, 2017). Inclusion criteria were the same as in 

Experiment 1. The study was approved by the Institutional Review Board of Princeton University, 
and all participants provided informed consent. Total study duration was again 15-20 minutes. 
Monetary compensation, including the performance bonus, was the same as in Experiment 1. 

Data from N = 46 participants who completed the first session were excluded prior to analysis 
(see “Exclusion criteria” below), leaving a final sample of N = 110 participants. These participants 
were re-invited to complete follow-up experiments 3 and 14 days later. (There was no follow-
up session at 28 days due to overlap with the Christmas holiday.) Once invited, participants were 

permitted 48 hours to complete the follow-up experiment. Participant retention was again high 

for each follow-up session (Day 3: N = 97 [88.2%]; Day 14: N = 99 [90.0%]). Participants again 

received a retention bonus of $1.00 for each completed follow-up session. Detailed demographic 

information is presented in Table S1. The majority of participants identified as men (65 men; 
53 women; 1 non-binary individual; 1 rather not say) and were 39.6 years old on average (SD = 

11.52, range: 23–69 years). 

Experimental protocol 
The overall experimental protocol for Experiment 2 was almost identical to Experiment 1. In each 

session, participants started by completing the same self-report questionnaires with the exception 

that the 7-up/7-down was replaced with the 7-item depression subscale from the depression, 
anxiety, and stress scale (DASS; Henry & Crawford, 2005). Participants completed the BIS/BAS scale 

Zorowitz, Karni et al. 
Computational Psychiatry 
DOI: 10.5334/cpsy.127 



241 once (on Day 0), but completed the GAD-7, DASS, and mood slider scales at the start of every 

session. These measures were included for exploratory analyses not reported here. 

Next, participants completed a modified version of the gamified Pavlovian go/no-go task with 

a trial structure similar to (Wittmann et al., 2008). In particular, instead of 8 unique robots 
each presented for 30 trials, participants saw a total of 24 unique robots presented for 8, 10, 
or 12 trials each. Each robot was presented for fewer trials as we were interested in measuring 

the learning process, where the expression of Pavlovian biases is typically largest, rather than 

asymptotic performance. Robots were presented to participants in mini-batches, each involving 

four robots and totaling approximately 40 trials. Crucially batches were not required to represent 
all four trial types (see Figure S2 for an example). That is, in any section of the task, participants 
were not guaranteed to observe one of each type of robot. As such, learning about one robot 
did not imply information about another robot and participants could not rely on a top-down 

process-of-elimination strategy. Participants completed six mini-batches, which were divided 

into two blocks of 120 trials each (12 unique robots per block; three robots of each trial type; 
Figure 1D). 

The task was visually similar to Experiment 1 except in two respects. First, the scanner colors 
were now blue and red (instead of blue and orange), and fixed such that blue always indicated 

rewarding trials and red indicated punishing trials. This was intended to align better with natural 
reward and punishment domains and potentially enhance Pavlovian biases (Elliot & Maier, 2012; 
Mehta & Zhu, 2009; Xia et al., 2016). This design choice represents a departure from the Guitart-
Masip paradigm (Guitart-Masip et al., 2012), where outcome domains were not signaled. We chose 

to signal the outcome domain explicitly, and do so in alignment with learned color mappings, 
with the goal of enhancing the Pavlovian biases we were attempting to measure and to avoid a 

period in which participants need to learn the mapping between each robot type and the relevant 
outcome domain (that was especially important given that our design presented each robot for 
few trials). Second, the symbols on the robots’ chestplates were drawn from one of two Brussels 
Artificial Character Sets (Vidal, Content & Chetail, 2017) or the English alphabet (randomized within 

participants across sessions). These new symbols were used in order to accommodate the need 

for three times the number of distinctly recognizable robots. Pairwise comparisons revealed no 

significant differences in percent correct responses by character set (all p > 0.90, corrected for 
multiple comparisons). The timing of the task was also unchanged except the response window 

was shortened (from 1.5 to 1.3 seconds) and the feedback window was lengthened (from 1.0 

to 1.2 seconds). 

Exclusion criteria 

Data from N = 46 participants who completed the experiment on Day 0 were excluded prior to 

analysis for one or more of the following reasons: failing one or more attention checks embedded 

in the self-report measures (providing an incorrect response on items with obvious correct answers 
and/or showing careless responding patterns such as zigzag or straight-line responses Kim et al. 
(2018) and Zorowitz et al. (2023); N = 30), making either all Go or all No-Go responses on more 

than 90% of trials (N = 5), or exhibiting chance-level performance on go-to-win trials (<55% correct 
responses; N = 22). These exclusion criteria left a final sample of N = 110 participants. No exclusions 
were applied to subsequent session data. 

Analyses 

Analyses for Experiment 2 were identical to those for Experiment 1. The only exception was the 

sampling procedure: each chain drew 6,250 samples from the posterior (5,000 warm-up samples 
and 1,250 post-warmup samples) with no thinning applied (thin = 1), which yielded an equivalent 
total of 5,000 post-warmup samples for parameter estimation (1,250 × 4 chains). In addition, 
we performed Wald tests to compare the magnitude of choice and practice effects between 

Experiments 1 and 2. P-values were derived from permutation testing, where a null distribution 

of values was obtained by permuting the experiment (1 or 2) and session labels (1, 2, or 3), across 
and within participants, respectively, 5,000 times. 
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242 RESULTS 

Descriptive analyses 

Figure 4A shows trial-by-trial choice behavior for each session of the experiment. In contrast to 

Experiment 1 (c.f. Figure 2A), performance in all sessions conformed to the expected pattern 

of results. Group-averaged performance measures per session (Figure 4B) show that while 

performance improved after Day 0, improvement was only marginal. In particular, pairwise 

comparisons showed performance was significantly better on Day 3 compared to Day 0 (p = 

0.009); however, no other pairwise comparisons were significant (complete descriptive statistics 
are reported in Table S6). In comparison to Experiment 1, performance accuracy on the modified 

task was lower (mean difference = 21.2%; F(1,589) = 518.618, p < 0.001). This is to be expected 

given that the modified task was designed in part to prevent participants from reaching asymptotic 

performance. Crucially, practice effects (defined as the average difference in performance between 

the first and all follow-up sessions) were significantly reduced for the modified task in comparison 

to Experiment 1 (mean difference = –5.6%; F(1,589) = 8.373, p < 0.001). 

Figure 4 Smaller or no practice 
effects on the modified 
Pavlovian go/no-go task in 
Experiment 2. (A) Group-
averaged learning curves for 
each trial type and session. 
Shaded regions indicate 95% 
bootstrapped confidence 
intervals. (B) Group-averaged 
performance for each session. 
Performance indices from 
left-to-right: Correct responses, 
or overall accuracy; Go bias, or 
difference in accuracy between 
Go and No-Go trials; 
Congruency effect, or difference 
in accuracy between Pavlovian 
congruent (GW, NGAL) and 
incongruent (NGW, GAL) trials; 
and Feedback sensitivity, or the 
difference in accuracy on trials 
following veridical and sham 
feedback. ** Denotes significant 
pairwise difference (p < 0.05, 
corrected for multiple 
comparisons). (C) The 
percentage of participants, for 
each session and trial type, 
exhibiting at- or below-chance 
performance (<60% response 
accuracy; grey), intermediate 
performance (≥60% and <90% 
response accuracy; light blue), 
or near-perfect performance 
(≥90% response accuracy; 
dark blue). 

In all sessions, participants performed better on Go trials than on No-Go trials (“Go bias”). The 

Go bias on Day 0 was significantly greater than that for all other sessions (all p < 0.005); no 

other between-session comparisons were significant. And although the practice effect for the Go 

bias was numerically smaller for the modified task, it was not significantly different than that 
for Experiment 1 (mean difference = –1.7%; F(1,589) = 0.760, p = 0.388). Nevertheless, Go biases 
across sessions were significantly greater than those observed in Experiment 1 (mean difference = 

8.6%; F(1,589) = 88.026, p < 0.001). 
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243 Participants also performed better on Pavlovian-instrumental congruent compared to incongruent 
trials in all sessions, manifesting a Pavlovian bias. The Pavlovian bias on Day 0 was significantly 

greater than that for all other sessions (both p = 0.027); no other between-session comparisons 
were significant. Unlike the Go bias, the practice effect for the Pavlovian bias was significantly 

reduced for the modified task in comparison to Experiment 1 (mean difference = –2.9%; F(1,589) = 

4.173, p = 0.037). And like the Go bias, Pavlovian biases were significantly greater than those 

observed in Experiment 1 (mean difference = 5.3%; F(1,589) = 59.284, p < 0.001). 

Regarding feedback sensitivity, across sessions participants made more correct responses 
following veridical compared to sham feedback. No pairwise comparison between sessions 
was significant (all p > 0.10), suggesting that feedback sensitivity was largely conserved across 
sessions. As a result, the practice effect for feedback sensitivity was significantly smaller in 

comparison to Experiment 1 (mean difference = –5.4%; F(1,589) = 8.591, p < 0.001). Moreover, 
feedback sensitivity was significantly greater across sessions than that observed in Experiment 1 

(mean difference = 22.4%; F(1,589) = 643.245, p < 0.001). In sum, group-averaged behavior on the 

modified task showed evidence of residual practice effects. However, despite this, the expected 

choice biases were significantly larger than those observed in Experiment 1 and practice effects on 

the modified task were, with one exception, significantly reduced. 

Turning next to individual variation in performance, the proportion of participants who exhibited 

chance-level, intermediate, or near-ceiling performance by session and trial type is presented in 

Figure 4C. In contrast to Experiment 1, ceiling performance was relatively rare and the majority of 
participants exhibited intermediate levels of performance across all trial types and sessions (the 

only exception was for NGW trials on Day 0, where the majority of participants showed chance-
level performance). Two-way chi-squared tests of independence confirmed that, with an exception 

for NGW trials, no significant shift in participants’ performance across sessions was observed 

(GW: 𝜒2(4) = 1.163, p = 0.884; NGW: 𝜒2(4) = 13.343, p = 0.010; GAL: 𝜒2(4) = 6.499, p = 0.165; NGAL: 
𝜒2(4) = 5.097, p = 0.278). Thus, the majority of participants exhibited and maintained intermediate 

levels of performance on the modified Pavlovian go/no-go task. 

Model comparison 

Results of the model comparison are summarized in Table 2. Trial-level choice prediction for all 
models was worse in Experiment 2 than in Experiment 1, which is to be expected insofar as it is 
easier to predict asymptotic behavior, whereas the modified task primarily measures participants’ 
performance during learning (i.e., when choice is most stochastic). As in Experiment 1, collapsing 

across sessions, the best-fitting model was M7, the most complex model. This was also the best-
fitting model within each session (Table S7). Posterior predictive checks indicated that this model 
provided excellent fits to the choice data from each session (Figure S4). 

Table 2 Model comparison 
collapsing across sessions. 
Accuracy = trial-level choice 
prediction accuracy between 
observed and model-predicted 
Go responses. PSIS-LOO = 
approximate leave-one-out 
cross-validation presented in 
deviance scale (smaller 
numbers indicate better fit). 
ΔPSIS-LOO = difference in 
PSIS-LOO values between each 
model and the best-fitting 
model (M7). 

MODEL PARAMETERS ACCURACY PSIS-LOO 𝚫PSIS-LOO (se) 

M1 𝛽, 𝜂 72.9% –95806.3 –6205.2 (73.2) 

M2 𝛽, 𝜏, 𝜂 76.5% –99616.0 –2395.5 (48.9) 

M3 𝛽, 𝜏+, 𝜏–, 𝜂 77.6% –101283.0 –728.5 (28.2) 

M4 𝛽+, 𝛽–, 𝜏+, 𝜏–, 𝜂 77.5% –101422.4 –589.0 (21.1) 

M5 𝛽, 𝜏+, 𝜏–, 𝜂+, 𝜂– 77.7% –101519.0 –492.4 (19.1) 

M6 𝛽+, 𝛽–𝜏+, 𝜏–, 𝜂+, 𝜂– 77.8% –101548.7 –462.7 (17.2) 
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M7 𝛽+, 𝛽–𝜏+, 𝜏–, 𝜂+, 𝜂–, 𝜉 78.1% –102011.4 – 

Model parameters 

The estimated group-level parameters from the best-fitting model are presented in Figure 5A. 
In comparison to Experiment 1, we observed smaller but still significant changes in the reward 

and punishment sensitivity parameters across days. Specifically, reward sensitivity (𝛽+) was 



244 significantly larger on Day 14 compared to Days 0 and 3, whereas punishment sensitivity (𝛽–) 
was significantly larger on Days 3 and 14 compared to Day 0. Both the reward and punishment 
sensitivity parameters were on average smaller in Experiment 2 as compared to Experiment 1 

(reward sensitivity: mean difference between experiments = –15.895, 95% CI = [11.934, 19.832]; 
punishment sensitivity: mean difference = –14.771, 95% CI = [10.531, 18.708]). Practice effects 
manifest in this task as increases in the proportion of correct responses in follow-up sessions. In 

the model, this appears as a between-sessions increase in the reward and punishment sensitivity 

parameters. Therefore, one way to quantify practice effects is as the difference in reward and 

punishment sensitivity parameters between Day 0 and the average of all other days. This difference 

was significantly smaller in Experiment 2 compared to Experiment 1 (reward sensitivity: mean 

difference = –17.106, 95% CI = [–23.753, –11.385]; punishment sensitivity: mean difference = 

–11.700, 95% CI = [–18.486, –4.777]). 

Figure 5 Reinforcement 
learning model parameters in 
Experiment 2 show improved 
stability and reliability. 
(A) Group-level model 
parameters for each session. 
Error bars indicate 95% 
Bayesian confidence intervals 
(CIs). ** Denotes pairwise 
comparison where 95% CI of 
the difference excludes zero. 
(B) Test-retest reliability 
estimates for each model 
parameter. Filled circles denote 
estimates for Experiment 2; 
open circles denote estimates 
from Experiment 1, for 
comparison. Grey vertical lines 
show the change in reliability 
across experiments. Dotted 
lines indicates average reliability 
for Experiment 2. Shaded region 
indicates conventional range of 
acceptable reliability (𝜌 ≥ 0.7). 
(C) Test-retest reliability 
estimates for each model 
parameter using ICC. Dotted 
lines indicate average across 
pairs of sessions. Shaded region 
indicates conventional range of 
good reliability (rICC ≥ 0.6). 

The inverse pattern was observed for reward (𝜂+) and punishment learning rates (𝜂–): reward 

learning rates were significantly higher on Day 14 compared to Days 0 and 3, while punishment 
learning rates were significantly lower on Days 3 and 14 compared to Day 0. In comparison 

to Experiment 1, both reward and punishment learning rates were greater on average (reward 

learning rate: mean difference = 0.133, 95% CI = [0.094, 0.170]; punishment learning rate: mean 

difference = 0.186, 95% CI = [0.079, 0.301]). Practice effects for reward learning rates were not 
significantly different between the two experiments (mean difference = –0.015, 95% CI = [–0.098, 
0.068]), but were in fact larger for the punishment learning rate in Experiment 2 (mean difference = 

0.186, 95% CI = [0.079, 0.301]). 

Finally, the approach bias (𝜏+) was slightly but significantly larger on Day 0 compared to Days 
3 and 14. No significant differences across sessions were observed in the avoidance bias (𝜏–). 
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245 Therefore, although Pavlovian biases were somewhat diminished through repeated testing, in 

both absolute and relative terms (i.e., compared to the outcome sensitivity parameters), they 

remained largely intact in later sessions. Relative to the magnitude of the reward sensitivity 

parameter, the approach bias was significantly larger on average in the modified task than in 

Experiment 1 (mean difference = 0.049, 95% CI = [0.027, 0.071]), although practice effects 
between the two experiments were not significantly different (mean difference = –0.015, 95% CI = 

[–0.070, 0.041]). Also in relative terms, the avoidance bias was not significantly different between 

the two experiments (mean difference = 0.004, 95% CI = [–0.006, 0.015]), nor was the difference 

in practice effects (mean difference = 0.020, 95% = [–0.005, 0.045]). The Pavlovian bias (defined 

here as the difference between the approach and avoidance parameters) was significantly greater 
in the modified task compared to Experiment 1 (mean difference = 0.045, 95% CI = [0.022, 0.071]). 
Thus, in line with the descriptive results, Pavlovian biases were larger in the modified task despite 

the residual practice effects. 

The estimated test-retest reliability of the model parameters is presented in Figure 5B–C. 
In contrast to Experiment 1, acceptable test-retest reliability was observed for essentially 

all parameters when averaging across session pairs. For outcome sensitivity parameters (𝛽+: 
𝜌 = 0.976, 95% CI = [0.962, 0.982], rICC = 0.981, 95% CI = [0.975, 0.993]; 𝛽–: 𝜌 = 0.951, 95% 

CI = [0.925, 0.964], rICC = 0.951, 95% CI = [0.924, 0.991]), learning rates (𝜂+: 𝜌 = 0.850, 95% 

CI = [0.800, 0.882], rICC = 0.896, 95% CI = [0.802, 0.965]; 𝜂–: 𝜌 = 0.726, 95% CI = [0.655, 0.780], 
rICC = 0.852, 95% CI = [0.821, 0.893]), and approach/avoidance bias parameters (𝜏+: 𝜌 = 0.708, 
95% CI = [0.629, 0.771], rICC = 0.810, 95% CI = [0.761, 0.894]; 𝜏–: 𝜌 = 0.692, 95% CI = [0.617, 
0.750], rICC = 0.692, 95% CI = [0.630, 0.787]), both correlation and ICC estimates indicated good to 

excellent reliability. 

Compared to Experiment 1, test-retest reliability was significantly improved for reward sensitivity 

(change in average 𝜌 = 0.072, 95% CI = [0.062, 0.088]), approach bias (change in average 𝜌 = 0.305, 
95% CI = [0.269, 0.708]), avoidance bias (change in average 𝜌 = 0.222, 95% CI = [0.196, 0.248]), 
and reward learning rate (change in average 𝜌 = 0.446, 95% CI = [0.385, 0.505]); no parameters 
showed significantly worsened reliability. A similar pattern of results was observed for the split-half 
reliability estimates (Figure S5B). 

DISCUSSION 

The goal of the second experiment was to evaluate the stability and reliability of individual 
differences in performance on a modified version of the Pavlovian go/no-go task that was designed 

to keep participants learning and to lessen practice effects. At the group level, participants 
showed the desired behavioral effects (e.g., go bias, Pavlovian bias, and feedback sensitivity) 
at significantly greater levels than observed in Experiment 1 across all sessions. Although 

participants continued to exhibit practice effects on the modified task, these were significantly 

reduced for the majority of task performance indices. Moreover, the fraction of participants 
maintaining an intermediate level of performance was largely conserved across sessions. These 

findings were reflected in the parameters of a reinforcement learning model fit to participants’ 
choice data, where parameters were largely stable and consequently exhibited acceptable test-
retest reliability. 

GENERAL DISCUSSION 

Despite considerable use in individual-differences and computational psychiatry research, previous 
studies of the psychometric properties of the Pavlovian go/no-go task found that both descriptive 

and model-based measures of task performance showed poor reliability (Moutoussis et al., 2018; 
Pike et al., 2022; Saeedpour et al., 2023). Here, we investigated the psychometric properties of 
two variants of the task in an attempt to develop a more reliable version – one that would be 

usable in clinical practice where patients may perform a task multiple times (e.g., before, during, 
and after treatment). In the first experiment, we used a gamified version of the standard task. 
Here, we observed considerable practice effects whereby the majority of participants exhibited 
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246 near-ceiling levels of performance with repeat testing. Consequently, the test-retest reliability 

of multiple reinforcement-learning model parameters estimated from participants’ behavior was 
unacceptable. To address these issues, in Experiment 2 we designed a version of the task 

that measures choice behavior primarily during learning and prevents undesirable process-of-
elimination strategies. Participants exhibited reduced practice effects on this version of the task 

and, as a consequence, the test-retest reliability of reinforcement-learning model parameters was 
significantly improved. 

The estimates of model-parameter reliability observed in both our experiments were larger than 

previously reported for the Pavlovian Go/No-Go task (Moutoussis et al., 2018; Pike et al., 2022; 
Saeedpour et al., 2023). This likely reflects a confluence of factors. First, both versions of the 

task studied here were gamified. Gamification has previously been shown to promote participant 
engagement and minimize confusion (Sailer et al., 2017) and benefit the reliability of cognitive task 

measures (Kucina et al., 2023; Verdejo-Garcia et al., 2021). Second, we used a hierarchical Bayesian 

modeling framework to estimate model parameters for the reliability analyses. Hierarchical models 
exert a pooling or regularization effect on model parameters, which decreases measurement 
error and improves estimates of reliability (Haines, Sullivan-Toole & Olino, 2023; Rouder & Haaf, 
2019). Indeed, our results are consistent with previous empirical studies that have demonstrated 

the benefits of hierarchical Bayesian models for estimating parameter reliability (Brown et al., 
2020; Waltmann, Schlagenhauf & Deserno, 2022). Finally, in Experiment 2, we redesigned the 

trial structure of the Pavlovian go/no-go task such as to prevent practice effects. Practice effects 
can harm reliability when they induce ceiling performance (as in Experiment 1) or when they are 

not uniformly expressed by participants (e.g., as a function of age (Anokhin et al., 2022)). It is 
possible that such effects worsened reliability estimates in a prior study where practice effects 
were observed in an adolescent sample (Moutoussis et al., 2018). 

The occurrence of practice effects with repeated administrations is common for cognitive tasks 
(Hausknecht et al., 2007; Scharfen, Peters & Holling, 2018). Practice effects may reflect a number 
of factors, such as reductions in performance anxiety or the acquisition of task-specific knowledge 

or strategies. In Experiment 1, practice effects were ostensibly attributable to participants adopting 

a qualitatively different strategy after their initial completion of the Pavlovian go/no-go task. 
Specifically, participants were able to exploit acquired knowledge of implicit dependencies between 

stimuli in the task to develop a process-of-elimination strategy that resulted in rapid learning and 

the attenuation of the desired choice biases. To address this issue, in Experiment 2 we redesigned 

the task to eliminate these dependencies and the formation of such a top-down strategy. This 
approach is consistent with previous research, whereby preventing participants from becoming 

aware of critical elements of a task design resulted in improved consistency and reliability of 
behavior, even with practice (McLean, Mattiske & Balzan, 2018). An important practical implication 

of these findings is that researchers seeking stable individual-difference measures should consider 
implementing a pre-baseline session protocol. Since parameters stabilize after the first session, 
conducting an initial familiarization session could effectively minimize initial learning biases when 

stable parameter estimates are needed. 

It is important to note that although practice effects were reduced in our modified version of the 

Pavlovian go/no-go task, they were not eliminated altogether. Indeed, we observed smaller but 
still significant reductions in participants’ go and Pavlovian biases (with corresponding decreases 
in the approach bias model parameter) following the initial test session. For the purposes of 
individual-differences correlational research, these residual practice effects are tolerable because 

the reliabilities of the model parameters are still in an acceptable range. However, they may be 

worrisome for longitudinal studies where systematic changes in task performance are of interest 
(e.g., reduction in Pavlovian biases following psychotherapy (Geurts et al., 2022)). One possible 

solution might be increasing the length of the practice block, which was relatively brief in this study, 
and could be extended to help participants reach “steady state” performance prior to starting the 

actual task. Indeed, our results showed stability of performance on days 3 and 14, suggesting that 
task administrations after a longer practice may be usable for measuring changes in performance 

over the course of a mental health condition or treatment. 
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247 The current study has several notable limitations. We investigated the psychometric properties of 
two versions of the Pavlovian go/no-go task in a sample of online adult participants. The reliability 

of task measures, however, can vary as a function of the sample and the test setting. For example, 
previous research has shown that the reliability of a task completed by healthy adults can differ 
from that for adults with psychopathology (Cooper et al., 2017) or healthy children (Arnon, 2020). 
Importantly, our general sample of adult participants rated the modified Pavlovian go/no-go task 

as more mentally demanding than the original task (see Table S2). As such, our task may prove 

to be too challenging for other groups (e.g., children; patients) which may affect reliability. Future 

research is therefore necessary to validate the modified version of the task in other populations, or 
develop simplified variants of it. 

A second limitation is that we only studied participants’ choice behavior. Previous studies have 

found that Pavlovian biases also manifest in response times (Algermissen et al., 2022; Millner et al., 
2018), and these may be a meaningful index of individual differences (Betts et al., 2020; Millner 
et al., 2019; Scholz et al., 2020). Previous work also introduced a computational framework for 
jointly modeling participants’ choice and response time behavior on the task (Millner et al., 2019, 
2018). This is notable because joint modeling of choice and response time had been found to 

improve the precision and reliability of parameter estimates from reinforcement learning models 
(Ballard & McClure, 2019; Shahar et al., 2019). As such, more research is warranted to investigate 

how the reliability of model-derived measures of behavior on the Pavlovian go/no-go task could be 

further improved by incorporating response times. 

Limitations notwithstanding, our study demonstrates that it is possible to derive performance 

measures from the Pavlovian go/no-go task that are sufficiently reliable for use in individual-
differences research. We encourage researchers to use and further adapt the modified version 

of the task presented here. In support of this goal, we have made all of our data and code publicly 

available (see Data and Code Availability statements). 
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The data that support the findings of this study are openly available on Github at https://github. 
com/nivlab/RobotFactory. 

CODE AVAILABILITY 

All code for data cleaning and analysis associated with this study is available at https://github.com/ 
nivlab/RobotFactory. The experiment code is available at the same link. The custom web-software 

for serving online experiments is available at https://github.com/nivlab/nivturk. A playable demo 

of the task is available at https://nivlab.github.io/jspsych-demos/tasks/pgng/experiment.html. 

CITATION DIVERSITY STATEMENT 

Recent work in several fields of science has identified a bias in citation practices such that papers 
from women and other minority scholars are under-cited relative to the number of such papers 
in the field (Bertolero et al., 2020; Dworkin et al., 2020). Here we sought to proactively consider 
choosing references that reflect the diversity of the field in thought, form of contribution, gender, 
race, ethnicity, and other factors. First, we obtained the predicted gender of the first and last 
author of each reference by using databases that store the probability of a first name being 

carried by a woman (Dworkin et al., 2020). By this measure (and excluding self-citations to the first 
and last authors of our current paper), our references contain 9.52% woman(first)/woman(last), 
15.87% man/woman, 23.81% woman/man, and 50.79% man/man. This method is limited in 

that a) names, pronouns, and social media profiles used to construct the databases may not, 
in every case, be indicative of gender identity and b) it cannot account for intersex, non-binary, 
or transgender people. Second, we obtained predicted racial/ethnic category of the first and 

last author of each reference by databases that store the probability of a first and last name 

being carried by an author of color (Ambekar et al., 2009; Sood & Laohaprapanon, 2018). 
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By this measure (and excluding self-citations), our references contain 3.82% author of color 
(first)/author of color(last), 12.98% white author/author of color, 16.75% author of color/white 

author, and 66.46% white author/white author. This method is limited in that a) names and 

Florida Voter Data to make the predictions may not be indicative of racial/ethnic identity, and 

b) it cannot account for Indigenous and mixed-race authors, or those who may face differential 
biases due to the ambiguous racialization or ethnicization of their names. We look forward 

to future work that could help us to better understand how to support equitable practices 
in science. 

ADDITIONAL FILE 

The additional file for this article can be found as follows: 

• Supplementary materials. Figures S1 to S6 and Tables S1 to S7. DOI: https://doi.org/10.5334/ 
cpsy.127.s1 
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