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ABSTRACT

Background: The Pavlovian go/no-go task is commonly used to measure individual
differences in Pavlovian biases and their interaction with instrumental learning. The task
has also been widely used in computational psychiatry research, to correlate Pavlovian
biases with mental health symptoms. However, prior research has reported unacceptable
reliability for computational model-based performance measures for this task, limiting its
usefulness in individual-differences research. Here, we apply several strategies previously
shown to enhance task-measure reliability (e.g., task gamification, hierarchical Bayesian
modeling for model estimation) to the Pavlovian go/no-go task, to improve the reliability
of the task as a tool for future research.

Methods: In two experiments, two independent samples of adult participants (N = 103,
N = 110) completed a novel, gamified version of the Pavlovian go/no-go task multiple
times over several weeks. We used hierarchical Bayesian modeling to derive reinforcement
learning model-based indices of participants’ task performance, and to estimate the
reliability of these measures.

Results: In Experiment 1, we observed considerable practice effects, with most
participants reaching near-ceiling levels of performance with repeat testing. Consequently,
the test-retest reliability of some model parameters was unacceptable (as low as 0.379).
In Experiment 2, participants completed a modified version of the task designed to
lessen these practice effects. We observed greatly reduced practice effects and improved
estimates of the test-retest reliability (range: 0.696-0.989).

Conclusion: The results demonstrate that model-based measures of performance on
our modified Pavlovian go/no-go task can reach levels of reliability sufficient for use in
individual-differences research. We therefore provide the task code for use by the compu-
tational psychiatry community (as well as other researchers). Additional investigation is
necessary to validate the modified version of the task in other populations and settings.

computational
psychiatry

RESEARCH ARTICLE

]u[ ubiquity press

CORRESPONDING AUTHOR:
Yael Niv

Princeton Neuroscience
Institute, Princeton University,
USA; Department of Psychology,
Princeton University, USA

yael@princeton.edu

KEYWORDS:

Pavlovian go/no-go task;
Pavlovian bias; reinforcement
learning; reliability

TO CITE THIS ARTICLE:
Zorowitz, S., Karni, G.,

Paredes, N., Daw, N., & Niv, Y.
(2025). Improving the Reliability
of the Pavlovian Go/No-Go Task
for Computational Psychiatry
Research. Computational
Psychiatry, 9(1), pp. 231-252.
DOL: https://doi.org/10.5334/
cpsy.127


https://orcid.org/0009-0008-4037-0205
mailto:yael@princeton.edu
https://doi.org/10.5334/cpsy.127
https://doi.org/10.5334/cpsy.127

INTRODUCTION

Humans (and other animals) have an innate tendency to approach rewarding stimuli and shrink
from punishing stimuli (Carver & White, 1994). Depending on the context, these hardwired
Pavlovian biases can either benefit or interfere with instrumental (i.e., action-outcome) learning.
This is epitomized in the Pavlovian go/no-go task in which the required action (Go, No-Go) and
outcome valence (reward, punishment) are orthogonalized (Guitart-Masip et al., 2012, 2014).
In the task, participants are typically faster to learn actions that are congruent with Pavlovian
response biases (i.e., a “Go” response to receive reward and a “No-Go” response to avoid
punishment) as compared to Pavlovian-instrumental incongruent responses (i.e., inhibit action to
receive reward, initiate action to avoid punishment).

The Pavlovian go/no-go task has been used in a large number of studies to probe individual
differences in reward and punishment learning, of which many have reported changes in Pavlovian
biases as a function of psychiatric conditions. For example, an increased tendency towards passive
avoidance has been observed in individuals with generalized and social anxiety (Mkrtchian et al.,
2017; Peterburs, Albrecht & Bellebaum, 2021), whereas active avoidance is amplified in individuals
with a history of suicidal thoughts or behaviors (Millner et al., 2019). Pavlovian biases are larger in
individuals with trauma exposure (Ousdal et al., 2018) and first-episode psychosis (Montagnese
et al.,, 2020), but attenuated in individuals with depression (Huys et al., 2016) and schizophrenia
(Albrecht et al., 2016). Pavlovian biases have also been associated with individual differences in
personality (e.g., impulsivity; Eisinger et al., 2020) and genetics (Richter et al,, 2014, 2021). In
developmental and lifespan research, Pavlovian biases have been shown to exhibit a U-shape,
decreasing from childhood to young adulthood and increasing again in older age (Betts et al., 2020;
Raab & Hartley, 2020). At a finer temporal scale, Pavlovian biases are also reportedly modulated
by state effects including mood (Weber et al., 2022), anger (Wonderlich, 2020), stress (de Berker
et al,, 2016), and fear (Mkrtchian, Roiser & Robinson, 2017).

However, three independent studies found that descriptive and computational-model based
measures of performance on the Pavlovian go/no-go task exhibited low test-retest reliability
over short (two-week) and long (6-, 18-month) retest intervals (Moutoussis et al., 2018; Pike
et al,, 2022; Saeedpour et al.,, 2023). Specifically, Moutoussis et al. (2018) reported Spearman
correlations ranging from 0.10 to 0.43 over 6-18 month intervals, with the Pavlovian bias
parameter showing particularly weak stability (o =0.10, p=0.017); Pike et al. (2022) reported
correlations ranging from 0.18 to 0.495 for task accuracy, with computational model parameters
showing even lower reliability; and Saeedpour et al. (2023) reported test-retest reliability of
0.40 for descriptive estimates of Pavlovian bias and 0.25 for model-based estimates over a
two-week interval.

There are multiple strategies for improving the reliability of cognitive task measures (Zorowitz &
Niv, 2023). For example, prior research has found that gamification, or the incorporation of (video)
game design elements into cognitive tasks, can promote participant engagement (Sailer et al.,
2017) and improve the reliability of task measures (Kucina et al., 2023; Verdejo-Garcia et al., 2021).
Moreover, hierarchical Bayesian models - which exert a pooling effect on person-level variables, in
effect correcting them for measurement error (Haines, Sullivan-Toole & Olino, 2023; Rouder & Haaf,
2019) - have been frequently shown to improve the reliability of task measures (Brown et al., 2020;
Sullivan-Toole et al., 2022; Waltmann, Schlagenhauf & Deserno, 2022). Finally, practice effects can
be lessened by designing tasks in such a way that prevents participants from discovering and using
task-specific knowledge to enhance their performance on subsequent attempts (MclLean, Mattiske
& Balzan, 2018).

Here we investigate the reliability and repeatability of a novel version of the Pavlovian go/no-go
task, with the aim of designing a variant of the task that is optimized for use in computational
psychiatry and other individual differences research. We conducted two experiments involving two
independent samples of adult participants who completed a gamified version of the task multiple
times over several weeks. We used hierarchical Bayesian models to derive reinforcement-learning
model-based indices of their task performance, and additionally to estimate the reliability of these
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practice effects, which negatively impacted the test-retest reliability of the performance measures. DOL: 10.5334/cpsy.127

To address this issue, in Experiment 2, participants completed a modified version of the task that

reduced practice effects, and led to significant improvements in the test-retest reliability of the

reinforcement learning model parameters.

EXPERIMENT 1
METHODS

Participants

A total of N = 148 participants were recruited in May, 2020, from Amazon Mechanical Turk via
CloudResearch (Litman, Robinson & Abberbock, 2017). Participants were eligible to participate if
they were at least 18 years old and resided in the United States. Following best practice recommen-
dations (Robinson et al.,, 2019), no other inclusion criteria were applied. The study was approved
by the Institutional Review Board of Princeton University and all participants provided informed
consent. Total study duration was 15-20 minutes. Participants received monetary compensation
for their time (rate: USD $12/hr), plus an incentive-compatible bonus up to $1.50 based on
task performance.

Data from N = 45 participants who completed the first session were excluded prior to analysis (see
“Exclusion criteria” below), leaving a final sample of N = 103 participants. These participants were
re-invited to complete follow-up experiments 3, 14, and 28 days later. Once invited, participants
were permitted 48 hours to complete each follow-up experiment. Retention was high for each
follow-up session (Day 3: N = 94 [91.3%]; Day 14: N = 92 [89.3%]; Day 28: N = 89 [86.4%]). In
addition to the performance bonus, participants received a retention bonus of $1.00 for each
completed follow-up session. Detailed demographic information is presented in Table S1. The
majority of participants identified as men (55 men; 47 women; 1 non-binary) and participants
were 35.5 years old on average (SD = 10.3, range: 20-69 years).

Experimental protocol

In each session, after providing consent, participants started by completing some or all of the
following self-report questionnaires: the 7-item generalized anxiety disorder scale (GAD-7; Spitzer
et al,, 2006); the 14-item manic and depressive tendencies scale (7-up/7-down; Youngstrom et al.,
2013); and the abbreviated 12-item behavioral activation/inhibition scale (BIS/BAS; Pagliaccio et al.,
2016). Participants also indicated their current mood using an affective slider (Betella & Verschure,
2016). Note that participants completed the GAD-7 and mood slider on each session, but the 7-
up/7-down and BIS/BAS scales only twice (on Days 0 and 28). These measures were included for
exploratory analyses not reported here.

Next, participants completed a gamified version of the Pavlovian go/no-go task. In the task,
participants observed different ‘robot’ stimuli (Figure 1A). On every trial, a robot was shown
traveling down a conveyor belt into a ‘scanner’. Once inside, participants had 1.5 seconds to decide
to either ‘repair’ the robot by pressing the space bar (“Go” response) or press nothing (“No-Go”
response). A trial where there was no response within this time window was treated as a “No-Go”
response, such that there were no “missed trials” and all 240 trials per participant contributed to
the analyses. Participants were told that they would see different types of robots (indicated by a
symbol on the robots’ chestplates), and that their goal was to learn which types of robots needed
repairing based on feedback (points won/lost) following their actions.

The task involved four trial types that differed by their correct action (Go, No-Go) and outcome
domain (reward, punishment; Figure 1B). Specifically, the four trial types were: go to win points
(GW); no-go to win points (NGW); go to avoid losing points (GAL); and no-go to avoid losing
points (NGAL). Note that GW and NGAL trials are Pavlovian-instrumental ‘congruent’ because
there is a match between the correct response and the expected approach/avoidance bias due
to winning or losing points for each. In contrast, NGW and GAL trials are Pavlovian-instrumental



‘incongruent’. In rewarding trials (GW, NGW), the possible outcomes were +10 or +1 points where
a correct action was rewarded with +10 on 80% of the trials and +1 otherwise; in turn, an
incorrect action was rewarded with +1 on 80% of the trials and +10 otherwise. In punishing
trials (GAL, NGAL), outcomes were -1 or -10 points, where the correct action led to -1 on 80%
of trials and the incorrect action led to -10 on 80% of trials (Figure 1C). We refer to the 80% of
trials where participants received the prescribed reward magnitude for their response as having
‘veridical feedback,” whereas the remaining 20% of trials are considered to have ‘sham feedback,’
as participants received misleading reward magnitudes that suggested a correct response was
incorrect and vice versa (e.g., a correct response in the reward domain leading to +1 point). The
outcome domain of each robot was explicitly signaled to participants by a blue or orange ‘scanner
light’ (one color signaling reward domain and the other punishment domain, randomized within
participants across sessions).

A. Task schematic

Task as seen by participants

:
Response Outcome Inter-trial
window Displayed interval
150r13s 1.00r1.2s 1s

B. Trial types C. Outcome probabilities D. Trial composition
Outcome domain Outcome domain Experiment 1 Experiment 2

Reward Punishment Reward  Punishment 2 x GW (30 trials) 6 x GW (8-12 trials)
[0
g G GotoWin Go to Avoid Correct +10 80% -1 80% 2 x NGW (30 trials) 6 x NGW (8-12 trials)
@ (GW) Losing (GAL) Response 41 20% 10 20% 2x GAL (30 trials) 6x GAL (8-12 trials)
g No-go No-go toWin  No-go to Avoid Incorrect *+1 80%  -10 80% 2 x NGAL (30 trials) 6 x NGAL (8-12 trials)
8 (NGW) Losing (NGAL) Response +19 20% -1 20% Total: 240 trials Total: 240 trials

Participants saw eight unique robots in each session of the task. Each individual robot was
presented for 30 trials (240 trials total; Figure 1D). Trials were divided into two blocks with four
robots per block (one of each trial type). Prior to task start, participants were required to review
instructions, correctly answer five comprehension questions that touched on all essential parts of
the instructions, and complete several practice trials. Failing to correctly answer all comprehension
questions forced the participant to reread sections of the instructions. Participants were required
to complete the instructions and comprehension questions in each session. Participants were
provided a break between blocks. After completing the task, participants appraised the task
along three dimensions: difficulty, fun, and clarity of instructions (see Table S2). The task was
programmed in jsPsych (De Leeuw, 2015) and distributed using custom web-application software
(see Code Availability).

Exclusion criteria

To ensure data quality, data from multiple participants from the initial session were excluded
prior to analysis for one or both of the following reasons: failing more than one attention
check embedded in the self-report measures (i.e., incorrect response on items that resembled
other items in that instrument but had obvious correct answers, such as “I was able to
remember my own name”) and/or demonstrating careless responding patterns such as zigzag
or straight-line responses (Kim et al., 2018; Zorowitz et al., 2023) (N = 13), or exhibiting chance-
level performance (<55% correct responses) on go-to-win trials (N = 43). In total, data from
N = 45 participants who completed the first session were excluded based on these criteriq,
leaving a final sample of N = 103 participants. No exclusions were applied to subsequent
session data.
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Figure 1 (A) Schematic of the
Pavlovian go/no-go task. On
each trial, a robot entered the
‘scanner’ from the left of screen,
prompting a response (go or
no-go) from the participant
during a response window
(Experiment 1: 1.5 seconds;
Experiment 2: 1.3 seconds). The
outcome (number of points won
or lost) was subsequently
presented on the scanner
display (Experiment 1: 1.0
seconds; Experiment 2: 1.2
seconds), followed by an
inter-trial interval animation

(1 second) in which the
conveyor belt carried the old
robot out of view and a new
robot into the scanner. The
color of the scanner light
denoted outcome domain (e.g.,
blue denoting reward and red
denoting punishment). (B) The
four trial types, produced by a
factorial combination of
outcome domain (rewarding,
punishing) and correct action
(go, no-go). (C) Outcome
probabilities for each outcome
domain following a correct or
incorrect response. Correct
responses yielded the better of
the two possible outcomes with
80% chance. (D) Trial
composition. In Experiment 1,
participants saw 8 total robots
(two of each trial type), each
presented for 30 trials (240 total
trials). In Experiment 2,
participants saw 24 total robots
(6 of each trial type), each for 8,
10, or 12 trials (240 total trials).



Descriptive analyses

We first evaluated participants’ choice behavior using five performance measures: overall percent
correct responses; go bias, calculated as the difference in correct responses between Go and
No-Go trials; valence bias, calculated as the difference in correct responses between rewarding
and punishing trials; Pavlovian bias, which was the difference in correct responses between
Pavlovian-instrumental congruent and incongruent trials; and feedback sensitivity, calculated as
the difference in correct responses between trials following veridical or sham feedback (that is,
following 80% of the trials where feedback aligned with the correctness of the response, and
the 20% of trials with feedback matching the alternative response, respectively). Consistent with
previous research (Guitart-Masip et al., 2012; Saeedpour et al., 2023), only small or nonsignificant
valence biases were observed. As such, these statistics are reported only in the Supplementary
Materials (Table S4).

For each session and measure, we tested if the median value across participants was significantly
different than zero (or 50% for overall percent correct responses). We used the median due to skew
in the performance measures. We also tested if the median value of each measure was significantly
different between each pair of sessions. P-values were derived via permutation testing, where
a null distribution of values was obtained by permuting the condition labels (for within-session
tests) or session labels (for between-session tests) 5,000 times. Within-session tests were not
corrected for multiple comparisons as each test constituted an individual hypothesis test; however,
between-session tests were corrected using the family-wise error rate correction (Winkler et al.,
2014) because they constituted a disjunctive test (Rubin, 2021).

Reinforcement learning models

To more precisely characterize participants’ performance on the Pavlovian go/no-go task, we fit
a nested set of reinforcement learning models to the choice data. All models were variants of
the Rescorla-Wagner model and have previously been used to predict choice behavior on this task
(Guitart-Masip et al., 2012; Mkrtchian et al., 2017; Moutoussis et al., 2018; Swart et al., 2017). Under
the most complex model (M7), the probability that a participant makes a go response following
stimulus k was defined as:

p(y=go)=(1-¢&)-logit " (8,, - [Q(Go) - Qx(NoGo)] + 7, ) + g 1)

where g, was the reward sensitivity (if the valence v of stimulus k was rewarding) or the
punishment sensitiivty (if stimulus k was punishing), Q,(go) and Q,(no-go) were learned stimulus-
action values for the go and no-go responses for stimulus k, respectively, 7, was an approach bias
(if stimulus k was rewarding) or avoidance bias parameter (if stimulus k was punishing), and & was
the lapse rate (i.e., the rate of choosing actions randomly due to lapse of attention). The Q values
were learned through feedback according to a learning rule:

Qk(action) « 7, - [r - Q,(action)] (2)

where r was the observed outcome on this trial and 5,, was the learning rate or step-size parameter
(n. if stimulus k was a reward/gain domain robot, 7_ if it was a punishment/loss domain robot). To
allow comparison of model parameters to previous studies, and since point values are arbitrary,
in our models we encoded rewards as r =1 for the better of the two possible outcomes and r=0
for the worse of the two possible outcomes. This was done for convenience only, and the same
results are obtained when using the true point values as r as the two encodings are mathematically
equivalent. This is because Q-values are learned separately for reward and punishment domains
(asin Guitart-Masip et al., 2012) and the softmax choice function is invariant to additive constants,
thus action probabilities derived from Q-values of, say, -1 and 0 are identical to those derived
from Q-values of 0 and 1. As the possible reward magnitudes were instructed and the reward/pun-
ishment domain signaled on every trial, only the relative reward within condition was germane to
action selection, and we therefore initialized Q-values to 0.5.

Simplifications of this model involved either fixing parameters to be equal to zero (e.g., no lapse
rate) or fixing parameters to be equal for reward and punishment domains. Specifically, the base
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model (M1) had only two free parameters: a single outcome sensitivity parameter and a single
learning rate, both shared across outcome domains (i.e., B+ =B_; 9+ =n_; 7+ = 7. =0, £ = 0). Model 2
added a static action bias parameter that was shared across outcome domains (i.e., 7. =1.).
Model 3 added to M2 independent approach (z.) and avoidance (z_) parameters. Models 4 and 5
respectively added to M3 independent outcome sensitivity (8., B_; M4) or learning rate (5., n_; M5)
parameters by outcome domain. Model 6 included both independent outcome sensitivity and
learning rate parameters. Finally, Model 7, the most complex model, added to M6 a potentially
non-zero lapse rate (&).

All models were estimated within a hierarchical Bayesian modeling framework using Hamiltonian
Monte Carlo sampling as implemented in Stan (v2.30; Carpenter et al., 2017). The hierarchical
structure decomposes each parameter into group mean, participant-specific, and session-specific
components (see Equation 3, below). This decomposition allows the model to separate stable
individual differences from session-to-session variability and measurement noise, with the pooling
effect occurring because individual estimates are informed by both that person’s data and
group-level patterns.

For each model, four separate chains with randomized start values each drew 7,500 samples from
the posterior. Each chain generated 5,000 warm-up samples and 2,500 post-warmup samples. The
warm-up samples were discarded, and every even numbered sample of the remaining samples
was discarded via thinning (thin = 2), retaining 1,250 post-warmup samples per chain for a total of
5,000 samples overall for parameter estimation (1,250 x 4 chains). The R values for all parameters
were <1.01, indicating acceptable convergence between chains, and there were no divergent
transitions in any chain. For all models, we specified priors that reflected reasonable assumptions
about parameter ranges and distributions based on the task design and participant selection
criteria (Table S3). The learning-rate priors assumed a weak bimodal distribution reflecting
expected heterogeneity, while the lapse-rate prior concentrated mass below 0.5 given our quality-
control procedures that excluded participants with chance or below-chance performance.

Fits of the models to behavioral data were assessed using posterior predictive checks. Specifically,
we inspected each model’s ability to reproduce both group-averaged learning curves by trial type
and each participant’s proportion of go responses by trial type. Model fits were compared using
approximate leave-one-trial-out cross-validation via Pareto smoothed importance sampling (PSIS-
LOO; Vehtari, Gelman & Gabry, 2017). (Note this may, in principle, differ from cross-validation at
the participant level, which has been argued to be a relevant unit of exchangeability at which to
compare models (Stephan et al., 2009).) We considered a difference in PSIS-LOO values that is four
times larger than the mean PSIS-LOO standard error as a significant improvement in model fit due
to additional parameters (Vehtari, 2023).

We also investigated the reliability of the model parameters for the best-fitting model using
a Bayesian hierarchical modeling framework, in which data were pooled within and across
participants (Rouder & Haaf, 2019). After identifying the best-fitting model architecture using
approximate LOO cross-validation, we re-estimated this model with session-specific (for test-
retest reliability) or block-specific (for split-half reliability) group-level parameters while maintaining
the hierarchical structure that pools information across participants. Specifically, each parameter
6 €{B+, B, m+, T+, T, £} Was estimated as follows:

O =1+ 6 - Oy a)
O =1y + 6 + Oy

where 6;; and 6;, are a given parameter (e.g., reward sensitivity, 8.) for participant i in sessions
or blocks 1 and 2, respectively; u, and u, are the group-averaged parameters for sessions or
blocks 1 and 2 estimated jointly with individual-level parameters; 6, is the common effect for
participant i (i.e., the component of a participant-level parameter that is different from the group
mean and stable across sessions or blocks); and 64 is the difference effect for participant i (i.e., the
parameter component that is variable across sessions or blocks). The collection of 6. parameters
constituted between-participants variability, whereas the collection of 6,y parameters constituted
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within-participants variability. Both 6. and 6,4 were assumed to be normally distributed with zero
means and independent estimated variances. Split-half and test-retest reliability estimates were
calculated by taking both Spearman correlations and intraclass correlation (ICC) coefficients of
6,1 and 6,, across task blocks and sessions, respectively (Brown et al., 2020; Pike et al., 2022).
We used the Spearman correlation because we were primarily interested in the consistency of
rank ordering of participants’ parameter estimates over time. We calculated ICC as the ratio of

2
Ohetween
2 2
(Ubetween+owfthin)

the proportion of total variance attributable to stable individual differences. Although arbitrary,
we followed convention and defined p > 0.7 and ricc > .6 as the thresholds for “acceptable”, and

“good” reliability, respectively (Cicchetti, 1994).

between-participant variance to total variance (ICC = ), which provides a measure of

RESULTS

Descriptive analyses

Trial-by-trial choice behavior for each session is presented in Figure 2A. Performance in the first
session qualitatively conformed to the expected pattern of results (i.e., worse performance on
Pavlovian-instrumental incongruent trials [GAL, NGW]). However, this effect seemed diminished
in all follow-up sessions. Indeed, group-averaged performance measures by session (Figure 2B;
complete descriptive statistics are reported in Table S4) showed that participants made the correct
response on 85.0% of trials on the first session (Day 0), which increased to near-ceiling levels in
all subsequent sessions. Pairwise comparisons confirmed that performance was indeed worse on
Day 0 compared to each follow-up session (all p < 0.001); no other comparisons were significant.
Participants’ self-reported mood and anxiety were largely stable over the same period (Figure S1),

A. Trial-by-trial behavior by session
e G\ e NGW e=» CAL e NGAL
Day 0 Day 3 Day 14 Day 28

1.0 fw—
N j\/h/\/"w 6W
—~ 0.6
o
0.4
0.2
1 5 10 15 20 25 3 1 5 10 15 20 25 30 1 5 10 15 20 25 30

p(G

0.0
1 5 10 15 20 25 30
Trial Trial Trial Trial

B. Systematic changes in behavior by session
Correct responses Go bias

*x

Pavlovian bias Feedback sensitivity

*x

*k
—

9299 946% 946%

T
85.0%

*x
—

11.7% T 9.4%

9.2%
5.0%
0% 42% 53 0.8%
3.39 o
% 17% 7% T

Day0 Day3 Day 14 Day 28 Day0 Day3 Day 14 Day 28

T
4.5%

T T
3.0% 2.8%

Day0 Day3 Day 14 Day 28 Day0 Day3 Day 14 Day 28

C. Distribution of correct responses across participants
<60% mm =60% mm =90% correctresponses

100% - SW Ll —
23.3%
80% 53.2% .
“"M63.0% 68.1%
) ) ) . 70.8% " W78.3%W77.5%

RN 52 5% W o5 50, 54 5% [ 85.4%

40%

20%

0%

NGAL

38.8%
57.4%
75.0%@75.3%

Day0 Day3 Day 14 Day28

Percent of sample

Day0 Day3 Day14 Day28 Day0 Day3 Day 14 Day28 Day0 Day3 Day14 Day28
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Figure 2 Large practice effects
on the standard Pavlovian
go/no-go task in Experiment 1.
(A) Group-averaged learning
curves for each trial type and
session. Shaded regions indicate
95% bootstrapped confidence
intervals. (B) Group-averaged
performance for each session.
Performance measures from
left-to-right: Correct responses,
or overall accuracy; Go bias, or
difference in accuracy between
Go and No-Go trials; Congruence
effect, or difference in accuracy
between congruent (GW, NGAL)
and incongruent (NGW, GAL)
trials; and Feedback sensitivity,
or the difference in accuracy on
trials following veridical and
sham feedback. Behavior on the
first session was significantly
different from all other sessions
on all measures. ** Denotes
significant pairwise difference
(p < 0.05, corrected for multiple
comparisons). (C) Distribution
of correct responses across
sessions by trial type.
Percentage of participants, for
each session and trial type,
exhibiting at- or below-chance
performance (< 60% response
accuracy; grey), intermediate
performance (> 60% response
accuracy; light blue), or
near-perfect performance

(> 90% response accuracy; dark
blue). Across sessions,
performance improved on all
trial types that were not already
close to ceiling on the first
session.



indicating this shift in performance more likely reflects practice effects rather than changes in
participants’ state.

Across sessions, participants made more correct responses on Go trials than on No-Go trials.
However, this “Go bias” was significantly reduced in all follow-up sessions compared to Day O (all
p < 0.001); so too was it on Day 28 compared to Day 3 (p < 0.001). Similarly, participants made
more correct responses on congruent than incongruent trials. As with the Go bias, this “Pavlovian
bias” was significantly reduced in all follow-up sessions compared to Day O (all p < 0.001; no other
comparisons were significant).

Feedback sensitivity also diminished from the first to later sessions. Across sessions, participants
made more correct responses following veridical compared to sham feedback (all p < 0.001).
However, feedback sensitivity was significantly reduced in all follow-up sessions compared to Day
0 (all p < 0.001; no other comparisons were significant) suggesting that feedback had less of an
effect on choice in later sessions. This is consistent with participants’ learning curves which show,
in all days except Day 0, that participants quickly learned the correct action for each stimulus and
maintained this policy despite the 20% sham feedback (Figure 2A).

These results summarize group-averaged performance. To gain insight into individual differences,
Figure 2C shows the proportion of participants who exhibited chance-level (<60% correct
responses), intermediate (>60% and <90%), or near-ceiling performance (>90%) by session and
trial type. Excepting GW trials, where performance of over 80% of participants was close to
ceiling already in the first session, the percentage of participants nearing ceiling-level performance
increases from a minority on Day 0 to the majority of participants in all follow-up sessions. Two-
way chi-squared tests confirmed this trend (GW: y?(6) = 8.149, p = 0.227; NGW: 2(6) = 55.458,p <
0.001; GAL: x2(6) =42.191, p < 0.001; NGAL: ¥?(6) =39.287, p < 0.001). In sum, the improvements
in task performance (and accompanying reductions in choice biases) with repeat testing observed
at the group-level extended to the majority of participants.

Model comparison

The results of the model comparison are summarized in Table 1. Collapsing across sessions, the
best-fitting model was the most complex one (i.e., the model including independent reward
sensitivity, learning rate and approach/avoidance bias parameters per outcome domain, plus a
lapse rate; M7). Importantly, this was also the best-fitting model within each session (Table S5).
Posterior predictive checks indicated that this model provided excellent fits to the choice data from
each session (Figure S3).

MODEL  PARAMETERS ACCURACY  PSIS-LOO  APSIS-LOO (se)
M1 B 87.5% -151457.9  -5602.6 (68.3)
M2 81,7 89.0% ~154011.9  -3048.6 (51.2)
M3 BT T 89.8% -155817.8  -1242.7 (31.3)
M4 B, BT, T 7 89.8% -156261.6  -798.8 (22.6)
M5 B Te T 1) 89.9% ~156265.9  -794.6 (20.7)
M6 Bi,BTr, T M- 89.9% ~156401.8  -658.6 (18.8)
M7 B, BT, T, & 90.1% -157060.5 -

Model parameters

Figure 3A shows the estimated group-level parameters from the best-fitting model. Consistent
with the descriptive analyses above, large shifts in parameter values were observed following
Day 0. The reward and punishment sensitivity parameters (8., 8.) exhibited an almost threefold
increase between Days 0 and 3, and stabilized thereafter. The inverse pattern was observed for
the reward learning rate (.). Crucially, the approach/avoidance bias parameters followed a similar
pattern. The approach bias (z.) decreased significantly between Days 0 and 3, and qualitatively
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Table 1 Model comparison
collapsing across sessions.
Accuracy = trial-level choice
prediction accuracy between
observed and model-predicted
Go responses. PSIS-LOO =
approximate leave-one-out
cross-validation scores
presented in deviance scale
(smaller numbers indicate
better fit). APSIS-LOO =
difference in PSIS-LOO values
between each model and the
best-fitting model (M7).



declined thereafter. In turn, the avoidance bias (z_) increased significantly between Days 0 and 3,
and stabilized thereafter. That is, Pavlovian biases diminished in absolute and relative terms (i.e.,
compared to the outcome sensitivity parameters) with repeat testing.

A. Systematic changes in model parameters
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C. Test-retest reliability of model parameters via ICC
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The test-retest reliability estimates for each model parameter are presented in Figure 3B-C. The
results were mixed. Averaging across session pairs, acceptable test-retest reliability was observed
for the outcome sensitivity parameters (8.: p =0.903, 95% CI = [0.873, 0.919], ricc =0.871, 95%
CI = [0.806, 0.956]; B_: p=0.973, 95% CI = [0.959, 0.979], r;cc =0.960, 95% CI = [0.920, 0.991])
and the punishment learning rate (n_: p=0.711, 95% CI = [0.633, 0.771], rjcc =0.853, 95% CI =
[0.821, 0.893]).

Conversely, test-retest reliability was unacceptable according to Spearman correlation coefficients
for the approach and avoidance bias parameters (r.: p=0.402, 95% CI = [0.290, 0.501]; 7_:
0 =0.470, 95% CI = [0.369, 0.554]) and the reward learning rate (7,: p = 0.403, 95% CI = [0.294,
0.497]), though ICC estimates for these parameters reached “good” reliability thresholds (z.:
fce = 0.650, 95% CI = [0.613, 0.673]; 7_: rcc = 0.692, 95% CI = [0.630, 0.787]; 7.: ricc = 0.676, 95%
CI=1[0.649, 0.710]). A similarly mixed pattern was observed for the split-half reliability estimates
(Figure S5A).

DISCUSSION

Our goal was to evaluate the stability and reliability of individual differences in performance on
a gamified version of the popular Pavlovian go/no-go task. At both the group and participant
levels, we observed significant practice effects following the first session. An increasing majority
of participants exhibited near-ceiling performance, across trial types, with each additional task
administration. Consequently, the magnitude of group-averaged behavioral effects including the
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Figure 3 Reinforcement
learning model parameters in
Experiment 1 show evidence of
practice effects and low
reliability. (A) Group-level
model parameters for each
session. Error bars indicate 95%
Bayesian confidence intervals
(CIs). ** Denotes pairwise
comparison where 95% CI of
the difference excludes zero.

(B) Test-retest reliability
estimates for each model
parameter. Dotted lines indicate
average across pairs of sessions.
Shaded region indicates
conventional range of
acceptable reliability (o > 0.7).
(C) Test-retest reliability
estimates for each model
parameter using ICC. Dotted
lines indicate average across the
three sessions. Shaded region
indicates conventional range of
good reliability (ricc > 0.6).



go bias, Pavlovian bias, and feedback sensitivity were diminished by half or more after the first
session. This was reflected in the group-level parameters of a reinforcement learning model fit
to participants’ choice data, which indicated that Pavlovian biases were significantly attenuated
in follow-up sessions. Consequently, we found that the Pavlovian bias parameters exhibited
poor-to-moderate test-retest reliability. This last result is perhaps unsurprising insofar that low
between-participants variability diminishes reliability (Zorowitz & Niv, 2023).

The results of Experiment 1 raise two questions: what underlies these practice effects and what
can be done to mitigate or prevent them? With respect to the first question, one possibility is that,
after the initial session, participants rely on the already learned structure of the task to solve it more
effectively. Specifically, in the canonical Pavlovian go/no-go task, for every Go stimulus (e.g., GW)
there is a corresponding No-Go stimulus (e.g., NGW). As such, learning the correct action for one
stimulus provides information about the correct action for its complement. Recognizing this, savvy
participants may forego reinforcement learning in favor of a process-of-elimination strategy to
deduce which is the Go and which is the No-Go stimulus in each pair. Indeed, feedback from several
participants in this study suggested that they may have utilized this form of top-down strategy.
This interpretation is further supported by reaction time data (Figure S6), which showed that
participants in Experiment 1 became significantly faster across sessions, suggesting increasingly
automatic responding consistent with learned task structure. In contrast, Experiment 2 showed
stable reaction times across sessions, aligning with the reduced practice effects observed in
that version.

This suggests that a version of the task with a less predictable trial structure might reduce
practice effects. By eliminating the dependence between stimuli, motivated participants aiming
to maximize their performance should have no strategy better than learning from the feedback
for each of their actions. By minimizing practice effects and increasing between-participants
variability, it is plausible that parameter reliability would also improve. In the next experiment,
we investigated precisely this.

EXPERIMENT 2
METHODS

Participants

A total of N = 156 participants were recruited in December, 2020, from Amazon Mechanical Turk
via CloudResearch (Litman, Robinson & Abberbock, 2017). Inclusion criteria were the same as in
Experiment 1. The study was approved by the Institutional Review Board of Princeton University,
and all participants provided informed consent. Total study duration was again 15-20 minutes.
Monetary compensation, including the performance bonus, was the same as in Experiment 1.

Data from N = 46 participants who completed the first session were excluded prior to analysis
(see “Exclusion criteria” below), leaving a final sample of N = 110 participants. These participants
were re-invited to complete follow-up experiments 3 and 14 days later. (There was no follow-
up session at 28 days due to overlap with the Christmas holiday.) Once invited, participants were
permitted 48 hours to complete the follow-up experiment. Participant retention was again high
for each follow-up session (Day 3: N = 97 [88.2%]; Day 14: N = 99 [90.0%]). Participants again
received a retention bonus of $1.00 for each completed follow-up session. Detailed demographic
information is presented in Table S1. The majority of participants identified as men (65 men;
53 women; 1 non-binary individual; 1 rather not say) and were 39.6 years old on average (SD =
11.52, range: 23-69 years).

Experimental protocol

The overall experimental protocol for Experiment 2 was almost identical to Experiment 1. In each
session, participants started by completing the same self-report questionnaires with the exception
that the 7-up/7-down was replaced with the 7-item depression subscale from the depression,
anxiety, and stress scale (DASS; Henry & Crawford, 2005). Participants completed the BIS/BAS scale
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once (on Day 0), but completed the GAD-7, DASS, and mood slider scales at the start of every
session. These measures were included for exploratory analyses not reported here.

Next, participants completed a modified version of the gamified Pavlovian go/no-go task with
a trial structure similar to (Wittmann et al., 2008). In particular, instead of 8 unique robots
each presented for 30 trials, participants saw a total of 24 unique robots presented for 8, 10,
or 12 trials each. Each robot was presented for fewer trials as we were interested in measuring
the learning process, where the expression of Pavlovian biases is typically largest, rather than
asymptotic performance. Robots were presented to participants in mini-batches, each involving
four robots and totaling approximately 40 trials. Crucially batches were not required to represent
all four trial types (see Figure S2 for an example). That is, in any section of the task, participants
were not guaranteed to observe one of each type of robot. As such, learning about one robot
did not imply information about another robot and participants could not rely on a top-down
process-of-elimination strategy. Participants completed six mini-batches, which were divided
into two blocks of 120 trials each (12 unique robots per block; three robots of each trial type;
Figure 1D).

The task was visually similar to Experiment 1 except in two respects. First, the scanner colors
were now blue and red (instead of blue and orange), and fixed such that blue always indicated
rewarding trials and red indicated punishing trials. This was intended to align better with natural
reward and punishment domains and potentially enhance Pavlovian biases (Elliot & Maier, 2012;
Mehta & Zhu, 2009; Xia et al., 2016). This design choice represents a departure from the Guitart-
Masip paradigm (Guitart-Masip et al., 2012), where outcome domains were not signaled. We chose
to signal the outcome domain explicitly, and do so in alignment with learned color mappings,
with the goal of enhancing the Pavlovian biases we were attempting to measure and to avoid a
period in which participants need to learn the mapping between each robot type and the relevant
outcome domain (that was especially important given that our design presented each robot for
few trials). Second, the symbols on the robots’ chestplates were drawn from one of two Brussels
Artificial Character Sets (Vidal, Content & Chetail, 2017) or the English alphabet (randomized within
participants across sessions). These new symbols were used in order to accommodate the need
for three times the number of distinctly recognizable robots. Pairwise comparisons revealed no
significant differences in percent correct responses by character set (all p > 0.90, corrected for
multiple comparisons). The timing of the task was also unchanged except the response window
was shortened (from 1.5 to 1.3 seconds) and the feedback window was lengthened (from 1.0
to 1.2 seconds).

Exclusion criteria

Data from N = 46 participants who completed the experiment on Day 0 were excluded prior to
analysis for one or more of the following reasons: failing one or more attention checks embedded
in the self-report measures (providing an incorrect response on items with obvious correct answers
and/or showing careless responding patterns such as zigzag or straight-line responses Kim et al.
(2018) and Zorowitz et al. (2023); N = 30), making either all Go or all No-Go responses on more
than 90% of trials (N = 5), or exhibiting chance-level performance on go-to-win trials (<55% correct
responses; N =22). These exclusion criteria left a final sample of N=110 participants. No exclusions
were applied to subsequent session data.

Analyses

Analyses for Experiment 2 were identical to those for Experiment 1. The only exception was the
sampling procedure: each chain drew 6,250 samples from the posterior (5,000 warm-up samples
and 1,250 post-warmup samples) with no thinning applied (thin = 1), which yielded an equivalent
total of 5,000 post-warmup samples for parameter estimation (1,250 x 4 chains). In addition,
we performed Wald tests to compare the magnitude of choice and practice effects between
Experiments 1 and 2. P-values were derived from permutation testing, where a null distribution
of values was obtained by permuting the experiment (1 or 2) and session labels (1, 2, or 3), across
and within participants, respectively, 5,000 times.
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RESULTS

Descriptive analyses

Figure 4A shows trial-by-trial choice behavior for each session of the experiment. In contrast to
Experiment 1 (c.f. Figure 2A), performance in all sessions conformed to the expected pattern
of results. Group-averaged performance measures per session (Figure 4B) show that while
performance improved after Day O, improvement was only marginal. In particular, pairwise
comparisons showed performance was significantly better on Day 3 compared to Day 0 (p=
0.009); however, no other pairwise comparisons were significant (complete descriptive statistics
are reported in Table S6). In comparison to Experiment 1, performance accuracy on the modified
task was lower (mean difference = 21.2%; F(1,589) = 518.618, p < 0.001). This is to be expected
given that the modified task was designed in part to prevent participants from reaching asymptotic
performance. Crucially, practice effects (defined as the average difference in performance between
the first and all follow-up sessions) were significantly reduced for the modified task in comparison
to Experiment 1 (mean difference = -5.6%; F(1,589) = 8.373, p < 0.001).

A. Trial-by-trial behavior by session
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In all sessions, participants performed better on Go trials than on No-Go trials (“Go bias”). The
Go bias on Day 0 was significantly greater than that for all other sessions (all p < 0.005); no
other between-session comparisons were significant. And although the practice effect for the Go
bias was numerically smaller for the modified task, it was not significantly different than that
for Experiment 1 (mean difference = -1.7%; F(1,589) = 0.760, p = 0.388). Nevertheless, Go biases
across sessions were significantly greater than those observed in Experiment 1 (mean difference =
8.6%; F(1,589) = 88.026, p < 0.001).
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Figure 4 Smaller or no practice
effects on the modified
Pavlovian go/no-go task in
Experiment 2. (A) Group-
averaged learning curves for
each trial type and session.
Shaded regions indicate 95%
bootstrapped confidence
intervals. (B) Group-averaged
performance for each session.
Performance indices from
left-to-right: Correct responses,
or overall accuracy; Go bias, or
difference in accuracy between
Go and No-Go trials;
Congruency effect, or difference
in accuracy between Pavlovian
congruent (GW, NGAL) and
incongruent (NGW, GAL) trials;
and Feedback sensitivity, or the
difference in accuracy on trials
following veridical and sham
feedback. ** Denotes significant
pairwise difference (p < 0.05,
corrected for multiple
comparisons). (C) The
percentage of participants, for
each session and trial type,
exhibiting at- or below-chance
performance (<60% response
accuracy; grey), intermediate
performance (>60% and <90%
response accuracy; light blue),
or near-perfect performance
(=90% response accuracy;
dark blue).



Participants also performed better on Pavlovian-instrumental congruent compared to incongruent
trials in all sessions, manifesting a Pavlovian bias. The Pavlovian bias on Day 0 was significantly
greater than that for all other sessions (both p=0.027); no other between-session comparisons
were significant. Unlike the Go bias, the practice effect for the Pavlovian bias was significantly
reduced for the modified task in comparison to Experiment 1 (mean difference =-2.9%; F(1,589) =
4,173, p=0.037). And like the Go bias, Pavlovian biases were significantly greater than those
observed in Experiment 1 (mean difference = 5.3%; F(1,589) = 59.284, p < 0.001).

Regarding feedback sensitivity, across sessions participants made more correct responses
following veridical compared to sham feedback. No pairwise comparison between sessions
was significant (all p > 0.10), suggesting that feedback sensitivity was largely conserved across
sessions. As a result, the practice effect for feedback sensitivity was significantly smaller in
comparison to Experiment 1 (mean difference = -5.4%; F(1,589) = 8.591, p < 0.001). Moreover,
feedback sensitivity was significantly greater across sessions than that observed in Experiment 1
(mean difference =22.4%; F(1,589) = 643.245, p < 0.001). In sum, group-averaged behavior on the
modified task showed evidence of residual practice effects. However, despite this, the expected
choice biases were significantly larger than those observed in Experiment 1 and practice effects on
the modified task were, with one exception, significantly reduced.

Turning next to individual variation in performance, the proportion of participants who exhibited
chance-level, intermediate, or near-ceiling performance by session and trial type is presented in
Figure 4C. In contrast to Experiment 1, ceiling performance was relatively rare and the majority of
participants exhibited intermediate levels of performance across all trial types and sessions (the
only exception was for NGW trials on Day 0, where the majority of participants showed chance-
level performance). Two-way chi-squared tests of independence confirmed that, with an exception
for NGW trials, no significant shift in participants’ performance across sessions was observed
(GW: x2(4) = 1.163, p = 0.884; NGW: x?(4) = 13.343, p = 0.010; GAL: y?(4) = 6.499, p = 0.165; NGAL:
x2(4)=5.097, p=0.278). Thus, the majority of participants exhibited and maintained intermediate
levels of performance on the modified Pavlovian go/no-go task.

Model comparison

Results of the model comparison are summarized in Table 2. Trial-level choice prediction for all
models was worse in Experiment 2 than in Experiment 1, which is to be expected insofar as it is
easier to predict asymptotic behavior, whereas the modified task primarily measures participants’
performance during learning (i.e., when choice is most stochastic). As in Experiment 1, collapsing
across sessions, the best-fitting model was M7, the most complex model. This was also the best-
fitting model within each session (Table S7). Posterior predictive checks indicated that this model
provided excellent fits to the choice data from each session (Figure S4).

MODEL PARAMETERS ACCURACY  PSIS-LOO APSIS-LOO (se)
M1 B, 72.9% -95806.3 -6205.2 (73.2)
M2 B,1,m 76.5% -99616.0 -2395.5 (48.9)
M3 B, T+, 7,7 77.6% -101283.0 -728.5(28.2)
M4 B, By T T 77.5% ~101422.4  -589.0 (21.1)
M5 B, T4, T, N4, M- 77.7% -101519.0  -492.4(19.1)
Mé B, BT+, T, N4, M- 77.8% -101548.7  -462.7(17.2)
M7 B, B-T+, T, e, M-, & 78.1% -102011.4 -

Model parameters

The estimated group-level parameters from the best-fitting model are presented in Figure 5A.
In comparison to Experiment 1, we observed smaller but still significant changes in the reward
and punishment sensitivity parameters across days. Specifically, reward sensitivity (B.) was
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Table 2 Model comparison
collapsing across sessions.
Accuracy = trial-level choice
prediction accuracy between
observed and model-predicted
Go responses. PSIS-LOO =
approximate leave-one-out
cross-validation presented in
deviance scale (smaller
numbers indicate better fit).
APSIS-LOO = difference in
PSIS-LOO values between each
model and the best-fitting
model (M7).



significantly larger on Day 14 compared to Days 0 and 3, whereas punishment sensitivity (8.)
was significantly larger on Days 3 and 14 compared to Day 0. Both the reward and punishment
sensitivity parameters were on average smaller in Experiment 2 as compared to Experiment 1
(reward sensitivity: mean difference between experiments = -15.895, 95% CI = [11.934, 19.832];
punishment sensitivity: mean difference = -14.771, 95% CI = [10.531, 18.708]). Practice effects
manifest in this task as increases in the proportion of correct responses in follow-up sessions. In
the model, this appears as a between-sessions increase in the reward and punishment sensitivity
parameters. Therefore, one way to quantify practice effects is as the difference in reward and
punishment sensitivity parameters between Day 0 and the average of all other days. This difference
was significantly smaller in Experiment 2 compared to Experiment 1 (reward sensitivity: mean
difference = -17.106, 95% CI = [-23.753, -11.385]; punishment sensitivity: mean difference =
-11.700, 95% CI = [-18.486, -4.777]).

A. Systematic changes in model parameters
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The inverse pattern was observed for reward (n.) and punishment learning rates (n_): reward
learning rates were significantly higher on Day 14 compared to Days 0 and 3, while punishment
learning rates were significantly lower on Days 3 and 14 compared to Day 0. In comparison
to Experiment 1, both reward and punishment learning rates were greater on average (reward
learning rate: mean difference = 0.133, 95% CI = [0.094, 0.170]; punishment learning rate: mean
difference = 0.186, 95% CI = [0.079, 0.301]). Practice effects for reward learning rates were not
significantly different between the two experiments (mean difference =-0.015, 95% CI = [-0.098,
0.068]), but were in fact larger for the punishment learning rate in Experiment 2 (mean difference =
0.186,95% CI =[0.079, 0.301]).

Finally, the approach bias (z,) was slightly but significantly larger on Day O compared to Days
3 and 14. No significant differences across sessions were observed in the avoidance bias (z_).
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Figure 5 Reinforcement
learning model parameters in
Experiment 2 show improved
stability and reliability.

(A) Group-level model
parameters for each session.
Error bars indicate 95%
Bayesian confidence intervals
(CIs). ** Denotes pairwise
comparison where 95% CI of
the difference excludes zero.
(B) Test-retest reliability
estimates for each model
parameter. Filled circles denote
estimates for Experiment 2;
open circles denote estimates
from Experiment 1, for
comparison. Grey vertical lines
show the change in reliability
across experiments. Dotted
lines indicates average reliability
for Experiment 2. Shaded region
indicates conventional range of
acceptable reliability (o > 0.7).
(C) Test-retest reliability
estimates for each model
parameter using ICC. Dotted
lines indicate average across
pairs of sessions. Shaded region
indicates conventional range of
good reliability (ricc > 0.6).



Therefore, although Pavlovian biases were somewhat diminished through repeated testing, in
both absolute and relative terms (i.e., compared to the outcome sensitivity parameters), they
remained largely intact in later sessions. Relative to the magnitude of the reward sensitivity
parameter, the approach bias was significantly larger on average in the modified task than in
Experiment 1 (mean difference = 0.049, 95% CI = [0.027, 0.071]), although practice effects
between the two experiments were not significantly different (mean difference =-0.015, 95% CI =
[-0.070, 0.041]). Also in relative terms, the avoidance bias was not significantly different between
the two experiments (mean difference = 0.004, 95% CI = [-0.006, 0.015]), nor was the difference
in practice effects (mean difference = 0.020, 95% = [-0.005, 0.045]). The Pavlovian bias (defined
here as the difference between the approach and avoidance parameters) was significantly greater
in the modified task compared to Experiment 1 (mean difference = 0.045, 95% CI=[0.022, 0.071]).
Thus, in line with the descriptive results, Pavlovian biases were larger in the modified task despite
the residual practice effects.

The estimated test-retest reliability of the model parameters is presented in Figure 5B-C.
In contrast to Experiment 1, acceptable test-retest reliability was observed for essentially
all parameters when averaging across session pairs. For outcome sensitivity parameters (8.:
p=0.976, 95% CI = [0.962, 0.982], rjcc =0.981, 95% CI = [0.975, 0.993]; B_: p=0.951, 95%
CI = [0.925, 0.964], ricc =0.951, 95% CI = [0.924, 0.991]), learning rates (n.: p=0.850, 95%
CI = [0.800, 0.882], ricc =0.896, 95% CI = [0.802, 0.965]; n_: p=0.726, 95% CI = [0.655, 0.780],
rcc =0.852, 95% CI = [0.821, 0.893]), and approach/avoidance bias parameters (z.: p =0.708,
95% CI = [0.629, 0.771], ricc =0.810, 95% CI = [0.761, 0.894]; 7_: p=0.692, 95% CI = [0.617,
0.750], ricc =0.692, 95% CI=[0.630, 0.787]), both correlation and ICC estimates indicated good to
excellent reliability.

Compared to Experiment 1, test-retest reliability was significantly improved for reward sensitivity
(changein average p =0.072,95% CI =[0.062, 0.088]), approach bias (change in average p = 0.305,
95% CI =[0.269, 0.708]), avoidance bias (change in average p=0.222, 95% CI = [0.196, 0.248]),
and reward learning rate (change in average p = 0.446, 95% CI = [0.385, 0.505]); no parameters
showed significantly worsened reliability. A similar pattern of results was observed for the split-half
reliability estimates (Figure S5B).

DISCUSSION

The goal of the second experiment was to evaluate the stability and reliability of individual
differences in performance on a modified version of the Pavlovian go/no-go task that was designed
to keep participants learning and to lessen practice effects. At the group level, participants
showed the desired behavioral effects (e.g., go bias, Pavlovian bias, and feedback sensitivity)
at significantly greater levels than observed in Experiment 1 across all sessions. Although
participants continued to exhibit practice effects on the modified task, these were significantly
reduced for the majority of task performance indices. Moreover, the fraction of participants
maintaining an intermediate level of performance was largely conserved across sessions. These
findings were reflected in the parameters of a reinforcement learning model fit to participants’
choice data, where parameters were largely stable and consequently exhibited acceptable test-
retest reliability.

GENERAL DISCUSSION

Despite considerable use in individual-differences and computational psychiatry research, previous
studies of the psychometric properties of the Pavlovian go/no-go task found that both descriptive
and model-based measures of task performance showed poor reliability (Moutoussis et al., 2018;
Pike et al., 2022; Saeedpour et al., 2023). Here, we investigated the psychometric properties of
two variants of the task in an attempt to develop a more reliable version - one that would be
usable in clinical practice where patients may perform a task multiple times (e.g., before, during,
and after treatment). In the first experiment, we used a gamified version of the standard task.
Here, we observed considerable practice effects whereby the majority of participants exhibited
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near-ceiling levels of performance with repeat testing. Consequently, the test-retest reliability
of multiple reinforcement-learning model parameters estimated from participants’ behavior was
unacceptable. To address these issues, in Experiment 2 we designed a version of the task
that measures choice behavior primarily during learning and prevents undesirable process-of-
elimination strategies. Participants exhibited reduced practice effects on this version of the task
and, as a consequence, the test-retest reliability of reinforcement-learning model parameters was
significantly improved.

The estimates of model-parameter reliability observed in both our experiments were larger than
previously reported for the Pavlovian Go/No-Go task (Moutoussis et al., 2018; Pike et al.,, 2022;
Saeedpour et al,, 2023). This likely reflects a confluence of factors. First, both versions of the
task studied here were gamified. Gamification has previously been shown to promote participant
engagement and minimize confusion (Sailer et al., 2017) and benefit the reliability of cognitive task
measures (Kucina et al., 2023; Verdejo-Garcia et al., 2021). Second, we used a hierarchical Bayesian
modeling framework to estimate model parameters for the reliability analyses. Hierarchical models
exert a pooling or regularization effect on model parameters, which decreases measurement
error and improves estimates of reliability (Haines, Sullivan-Toole & Olino, 2023; Rouder & Haaf,
2019). Indeed, our results are consistent with previous empirical studies that have demonstrated
the benefits of hierarchical Bayesian models for estimating parameter reliability (Brown et al.,
2020; Waltmann, Schlagenhauf & Deserno, 2022). Finally, in Experiment 2, we redesigned the
trial structure of the Pavlovian go/no-go task such as to prevent practice effects. Practice effects
can harm reliability when they induce ceiling performance (as in Experiment 1) or when they are
not uniformly expressed by participants (e.g., as a function of age (Anokhin et al.,, 2022)). It is
possible that such effects worsened reliability estimates in a prior study where practice effects
were observed in an adolescent sample (Moutoussis et al., 2018).

The occurrence of practice effects with repeated administrations is commmon for cognitive tasks
(Hausknecht et al., 2007; Scharfen, Peters & Holling, 2018). Practice effects may reflect a number
of factors, such as reductions in performance anxiety or the acquisition of task-specific knowledge
or strategies. In Experiment 1, practice effects were ostensibly attributable to participants adopting
a qualitatively different strategy after their initial completion of the Pavlovian go/no-go task.
Specifically, participants were able to exploit acquired knowledge of implicit dependencies between
stimuli in the task to develop a process-of-elimination strategy that resulted in rapid learning and
the attenuation of the desired choice biases. To address this issue, in Experiment 2 we redesigned
the task to eliminate these dependencies and the formation of such a top-down strategy. This
approach is consistent with previous research, whereby preventing participants from becoming
aware of critical elements of a task design resulted in improved consistency and reliability of
behavior, even with practice (MclLean, Mattiske & Balzan, 2018). Animportant practical implication
of these findings is that researchers seeking stable individual-difference measures should consider
implementing a pre-baseline session protocol. Since parameters stabilize after the first session,
conducting an initial familiarization session could effectively minimize initial learning biases when
stable parameter estimates are needed.

It is important to note that although practice effects were reduced in our modified version of the
Pavlovian go/no-go task, they were not eliminated altogether. Indeed, we observed smaller but
still significant reductions in participants’ go and Pavlovian biases (with corresponding decreases
in the approach bias model parameter) following the initial test session. For the purposes of
individual-differences correlational research, these residual practice effects are tolerable because
the reliabilities of the model parameters are still in an acceptable range. However, they may be
worrisome for longitudinal studies where systematic changes in task performance are of interest
(e.g., reduction in Pavlovian biases following psychotherapy (Geurts et al., 2022)). One possible
solution might be increasing the length of the practice block, which was relatively brief in this study,
and could be extended to help participants reach “steady state” performance prior to starting the
actual task. Indeed, our results showed stability of performance on days 3 and 14, suggesting that
task administrations after a longer practice may be usable for measuring changes in performance
over the course of a mental health condition or treatment.
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The current study has several notable limitations. We investigated the psychometric properties of
two versions of the Pavlovian go/no-go task in a sample of online adult participants. The reliability
of task measures, however, can vary as a function of the sample and the test setting. For example,
previous research has shown that the reliability of a task completed by healthy adults can differ
from that for adults with psychopathology (Cooper et al., 2017) or healthy children (Arnon, 2020).
Importantly, our general sample of adult participants rated the modified Pavlovian go/no-go task
as more mentally demanding than the original task (see Table S2). As such, our task may prove
to be too challenging for other groups (e.q., children; patients) which may affect reliability. Future
research is therefore necessary to validate the modified version of the task in other populations, or
develop simplified variants of it.

A second limitation is that we only studied participants’ choice behavior. Previous studies have
found that Pavlovian biases also manifest in response times (Algermissen et al., 2022; Millner et al.,
2018), and these may be a meaningful index of individual differences (Betts et al., 2020; Millner
et al,, 2019; Scholz et al., 2020). Previous work also introduced a computational framework for
jointly modeling participants’ choice and response time behavior on the task (Millner et al., 2019,
2018). This is notable because joint modeling of choice and response time had been found to
improve the precision and reliability of parameter estimates from reinforcement learning models
(Ballard & McClure, 2019; Shahar et al., 2019). As such, more research is warranted to investigate
how the reliability of model-derived measures of behavior on the Pavlovian go/no-go task could be
further improved by incorporating response times.

Limitations notwithstanding, our study demonstrates that it is possible to derive performance
measures from the Pavlovian go/no-go task that are sufficiently reliable for use in individual-
differences research. We encourage researchers to use and further adapt the modified version
of the task presented here. In support of this goal, we have made all of our data and code publicly
available (see Data and Code Availability statements).

DATA ACCESSIBILITY STATEMENT

The data that support the findings of this study are openly available on Github at https://github.
com/nivlab/RobotFactory.

CODE AVAILABILITY

All code for data cleaning and analysis associated with this study is available at https://github.com/
nivlab/RobotFactory. The experiment code is available at the same link. The custom web-software
for serving online experiments is available at https://github.com/nivlab/nivturk. A playable demo
of the task is available at https://niviab.github.io/jspsych-demos/tasks/pgng/experiment.html.

CITATION DIVERSITY STATEMENT

Recent work in several fields of science has identified a bias in citation practices such that papers
from women and other minority scholars are under-cited relative to the number of such papers
in the field (Bertolero et al.,, 2020; Dworkin et al., 2020). Here we sought to proactively consider
choosing references that reflect the diversity of the field in thought, form of contribution, gender,
race, ethnicity, and other factors. First, we obtained the predicted gender of the first and last
author of each reference by using databases that store the probability of a first name being
carried by a woman (Dworkin et al., 2020). By this measure (and excluding self-citations to the first
and last authors of our current paper), our references contain 9.52% woman(first)/woman(last),
15.87% man/woman, 23.81% woman/man, and 50.79% man/man. This method is limited in
that a) names, pronouns, and social media profiles used to construct the databases may not,
in every case, be indicative of gender identity and b) it cannot account for intersex, non-binary,
or transgender people. Second, we obtained predicted racial/ethnic category of the first and
last author of each reference by databases that store the probability of a first and last name
being carried by an author of color (Ambekar et al., 2009; Sood & Laohaprapanon, 2018).
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By this measure (and excluding self-citations), our references contain 3.82% author of color
(first)/author of color(last), 12.98% white author/author of color, 16.75% author of color/white
author, and 66.46% white author/white author. This method is limited in that a) names and
Florida Voter Data to make the predictions may not be indicative of racial/ethnic identity, and
b) it cannot account for Indigenous and mixed-race authors, or those who may face differential
biases due to the ambiguous racialization or ethnicization of their names. We look forward
to future work that could help us to better understand how to support equitable practices
in science.

ADDITIONAL FILE

The additional file for this article can be found as follows:

* Supplementary materials. Figures S1 to S6 and Tables S1 to S7. DOI: https://doi.org/10.5334/
cpsy.127.s1
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