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ABSTRACT Computational psychiatry is a nascent field that
seeks to use computational tools from neuroscience and cog-
nitive science to understand psychiatric illness. In this chap-
ter we make the case for computational cognitive models as a
bridge between the cognitive and affective deficits experi-
enced by those with a psychiatric illness and the neurocom-
putational dysfunctions that underlie these deficits. We first
review the history of computational modeling in psychiatry
and conclude that a key moment of maturation in this field
occurred with the transition from qualitative comparison
between computational models and human behavior to for-
mal quantitative model fitting and model comparison. We
then summarize current research at one of the most exciting
frontiers of computational psychiatry: reinforcement-learning
models of mood disorders. We review state-of-the-art applica-
tions of such models to major depression and bipolar disor-
der and outline important open questions to be addressed by
the coming wave of research in computational psychiatry.

The brain must needs primarily be misaffected, as the seat of
reason ... for our body is like a clock, if one wheel be amiss,
all the rest are disordered; the whole fabric suffers.

—Robert Burton, The Anatomy of Melancholy

For a watch repairer, the first task in fixing a faulty watch
is diagnosis: What is the dysfunctional mechanism that
is responsible for the fault? If the watch is losing time,
is it because the mainspring is insufficiently wound, or
could dirt be causing the gears to stick? If the watch has
stopped, could this be the result of a loose balance
wheel, or does the battery simply need changing?

In his analogy between human mental illness and
the faulty mechanics of a clock, Robert Burton captured
the essence of one of the most durable problems of con-
temporary biological psychiatry. In a clock a given
functional disturbance, such as running fast or running
slow, may be the result of any number of mechanical
faults, and it is typically impossible to determine which
mechanism is primarily amiss by observing the time-
keeping dysfunction alone. Moreover, this inverse prob-
lem grows in difficulty with the complexity of the

mechanism inside the watch: a fault is easier to diag-
nose when the underlying mechanism is simpler (e.g., a
vibrating quartz crystal in a modern analog watch) than
when it is complex (e.g., the many gears and springs of
a 17th-century watch). Analogously, it has long been
understood that psychiatric symptoms such as thought
disorder and mania are aberrant behaviors produced
by dysfunctions within an exceedingly complex dynam-
ical system, the human brain (Hoffman, 1987; Joseph,
Frith, & Waddington, 1979). It is no surprise, then, that
identifying the specific neural-processing deficits that
cause a given psychiatric symptom is difficult.

In this chapter we argue that computational psychia-
try should approach this problem using computational
cognitive models, with a focus on testing specific behav-
ioral predictions made by different candidate neuro-
computational dysfunctions. Just as the ticking sounds
of a clock can be decomposed with spectral analyses to
diagnose a mechanical fault (He, Su, & Du, 2008), com-
putational cognitive models can be used to infer the
latent neurocomputational deficits that underlie psy-
chiatric conditions as diverse as depression and psycho-
sis. However, just as in the clock analogy, the utility of
these inferences critically depends upon two factors:
first, an accurate mechanistic model of how the system
operates and second, a sensitive behavioral assay of its
operations. To this end, computational psychiatry
should seek to integrate normative and process models
from computational neuroscience and biological psy-
chiatry with behavioral tests from cognitive psychology,
computer science, and economics. By applying compu-
tational cognitive models to sensitive measures of human
behavior, we may make substantial progress in identify-
ing the dysfunctions of neural computation that give
rise to psychiatric illness.

This chapter first reviews the history of the
computational-modeling paradigm in psychiatry
through the cognitive revolution of the 1960s and 1970s
and the rise of parallel distributed processing and
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reinforcement-learning models in the 1980s and 1990s.
We then summarize the current state of the art of com-
putational psychiatry in the study of mood disorders
such as major depression and bipolar disorder using
reinforcement-learning models.

The History of Computational Psychiatry

Psychopathology has been rather a disappointment to the
instinctive materialism of the doctors, who have taken the
view that every disorder must be accompanied by actual
lesions of some specific tissue involved... . This distinction
between functional and organic disorders is illuminated by
the consideration of the computing machine.

—Norbert Wiener, Cybernetics

The idea that psychiatric illness might result from dys-
functions of neural or mental computation was pro-
posed within 10 years of the invention of the modern
digital computer. Writing in 1948 as part of a broader
argument that the central nervous system ought to be
treated as a self-regulating circuit, Norbert Wiener sug-
gested a novel perspective on the 19th-century psychi-
atric distinction between organic and functional
disorders (Furstner, 1881, as cited by Beer, 1996). This
dichotomy contrasts organic disorders caused by a
purely biological pathology (such as a brain tumor or
neurodegeneration) with functional disorders that
cannot be diagnosed solely by the inspection of brain
tissue. Wiener proposed that functional disorders—
among which he included schizophrenia and bipolar
disorder—could be best understood by analogy with
the operations of a computer. This was, he proposed,
because deficits in these disorders arose not from aber-
rations in the physical structure of the brain but from
dysfunctions in the way the physical structure pro-
cessed information (Wiener, 1948).

This information-processing paradigm was immensely
influential in early cognitive psychology but gained
traction much more slowly in psychiatry. Early research
using computational models in psychiatry was rudi-
mentary and consisted of little more than qualitative
comparisons between simple computational models
and aspects of contemporary psychiatric theory. For
instance, Callaway (1970) pursued the analogy of a
malfunctioning computer in an attempt to understand
conceptual disorganization and the loosening of asso-
ciations in schizophrenia. Drawing upon contemporary
advances in cognitive science, Callaway posited that
cognitive structures in schizophrenia could be repre-
sented as simple computational architectures called
TOTE (test-operate-test-exit) units (Miller, Galanter, &
Pribram, 1960). Deficits in schizophrenia were posited
to result from interference in the test operations of

440

these units by excessive neural noise. While the TOTE
architecture has not proved durable, Callaway’s notion
that deficits in schizophrenia result from excessive lev-
els of noise in neural computation has remained influ-
ential to the present day (e.g., Silverstein, Wibral, &
Phillips, 2017; Winterer & Weinberger, 2004).

Separately, Colby (1964) used a computational dic-
tionary seeded with quotations from human psychiat-
ric patients to generate synthetic dialogues resembling
those of a therapist with a psychiatric patient (e.g.,
“Father preferred sister. I avoid father.” Colby, 1964,
p- 221). Colby proposed that distorted beliefs in psycho-
sis arose as a result of conflict between mutually exclu-
sive impulses. Colby, Hilf, Weber, and Kraemer (1972)
presented practicing psychotherapists with teletype
printouts of a number of putative therapist/patient
dialogues—halfreal and half generated by algorithm—
and assessed the therapists’ ability to distinguish real
patients from simulated ones. It was found that thera-
pists could not identify the real patients at an above-
chance level and in some cases offered detailed
psychoanalytic interpretations of the unconscious pro-
cesses underlying algorithmically generated dialogues.
The algorithm that generated the text engaged in dia-
logue by performing a rudimentary form of natural
language processing with the intention of classifying its
interlocutor’s statements as either malevolent, benevo-
lent, or neither. Depending on the values of the variables
used to perform this classification, the algorithm then
selected an internal response (e.g., anger or fear) and a
corresponding utterance (e.g., verbal hostility in the case
of high levels of anger). This algorithm can therefore
be thought of as an early cognitive model of psychosis
(albeit one that does not invoke unconscious processing,
contrary to then-dominant theoretical ideas).

Other early work applying computational and math-
ematical methods to psychiatric illness did not adapt
the computer metaphor directly. For instance, Rashevsky
(1964) posited a rudimentary biophysical neural-
processing system to explain the positive symptoms of
schizophrenia in terms of the excessive reinforcement
of endogenously generated responses. Houghton (1969)
sought to specify a formal mathematical framework for
understanding psychoanalysis by positing a negative
feedback relationship between an “id module” and an
“ego module,” resulting in distortions of a topological
space. Such theories have little empirical relevance for
contemporary research; instead, they primarily rein-
force the importance of grounding models of psychiat-
ric illness in biologically principled models of neural
computation.

The first computational models that are of more than
historical interest to current research in computational
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psychiatry were made possible by advances in computa-
tional models of neural information processing. For
instance, a computational theory of the distribution of
attention among stimuli based on recurrent lateral inhi-
bition between noisy processing channels (Walley &
Weiden, 1973) gave rise directly to a computational
model of attentional deficits in schizophrenia (Joseph,
Frith, & Waddington, 1979). This model proposed that
an excess of dopaminergic activity led to increased over-
all levels of mutual inhibition between sensory inputs
in schizophrenia and thereby to a dysfunction in the
system’s ability to produce winner-take-all network
dynamics.

The advent of more advanced neural network archi-
tectures in the 1980s stimulated the development of
more sophisticated computational psychiatric models.
For instance, Hopfield (1982) described a fully inter-
connected neural network that produced emergent
properties resembling human recognition memory, cat-
egorization, and generalization. In turn, Ralph Hoffman
showed how dysfunctions of computation within Hop-
field nets led to aberrant dynamics resembling schizo-
phrenia and mania (Hoffman, 1987) and linked the
putative computational deficit in schizophrenia to aber-
rant patterns of cortical pruning in frontal cortex (Hoff-
man & Dobscha, 1989). At the same time, the immense
influence of parallel distributed-processing connection-
ist architectures in cognitive science (Rumelhart &
McClelland, 1987) led naturally to the adaptation of
multilayer neural networks for psychiatric research (e.g.,
Ruppin, 1995; Spitzer, 1995; Stein & Ludik, 1998).

Of particular note, Cohen and Servan-Schreiber
(1992) used a multilayer neural network to model a
failure to maintain mental context in schizophrenia.
This work demonstrated a quantitative correspondence
between the behavior of trained neural network mod-
els and the behavior of patients with schizophrenia on
three tasks: a Stroop task, a continuous performance
task, and a lexical disambiguation task. The computa-
tional mechanism by which these deficits were pro-
duced in the model was a reduction of the gain of units
in the network representing task context, and this com-
putational dysfunction was linked by the authors to
decreased dopaminergic activity in the prefrontal cor-
tex in schizophrenia. This work marks a point of transi-
tion between qualitative and quantitative comparisons
of models and behavior in computational psychiatry. As
such, it stands in contrast to prior research that had
proceeded after the fashion of Callaway (1970) by sug-
gesting qualitative parallels between patterns of infor-
mation processing in psychiatric illness and patterns of
information processing in real or hypothetical compu-
tational architectures.

Arguably, this development—the quantitative fitting
of computational models to behavior produced by indi-
viduals with a psychiatric illness—is responsible for
much of the subsequent achievement, and much of the
future promise, of computational methods in psychiat-
ric research. The ability of computational models to
make quantitative predictions about human behavior
means that different psychiatric theories can be com-
pared by instantiating each as a different model and
determining which model provides the most accurate
and parsimonious account of behavior. Once identified,
a model serves at least two purposes: First, it provides a
quantitative device for the measurement of cognitive-
psychiatric symptoms that may aid in diagnosis and
treatment selection in psychiatry in much the same way
that a blood glucose test aids in diagnosing and treat-
ing diabetes. Second, a good correspondence between
the predictions of a model and observed behaviors may
offer a window into the functional causes of aberrant
experiences in psychiatric illness, since it suggests mech-
anisms by which these symptoms may be produced.

As computational approaches to psychiatry have
expanded in recent years, the behavioral model-fitting
and model-comparison paradigm has grown to encom-
pass computational models from disciplines including
economic game theory (King-Casas et al., 2008), hier-
archical probabilistic inference (Friston, Stephan,
Montague, & Dolan, 2014), and Bayesian decision the-
ory (Huys, Daw, & Dayan, 2015). In the remainder of
this chapter, we review these developments with a spe-
cific focus on the state-of-the-art computational model-
ing of two mood disorders: major depression and bipolar
disorder. In particular, we explore the extent to which
dysfunctions in these conditions can be understood
through the lens of reinforcement learning (see, e.g.,
Maia & Frank, 2011).

Reinforcement Learning Models of Mood Disorders

Below, we summarize the insights that reinforcement-
learning models provide into the neurocomputational
substrates of depression and bipolar disorder. Our inten-
tion is not to claim that mood disorders are disorders
of learning narrowly defined. Instead, we argue that
the mathematical formalisms of reinforcement learn-
ing provide a language that can describe how represen-
tations of the reinforcement value of the environment
go astray in mood disorders.

Briefly, reinforcement learning describes a set of
computational principles by which an agent in an uncer-
tain or complex environment can act to maximize
future expected reward (Dayan & Niv, 2008; Sutton &
Barto, 1998). The framework relies on several relatively
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simple psychological primitives: Representations of dif-
ferent states of the environment, of the actions that can
be taken by the agent in each state, and of the rewards
that are received following each action. Reinforcement-
learning algorithms then describe operations by which
an agent can update its representations of the values of
different actions as it interacts with the environment.

The foundational computational variable in rein-
forcement learning is the prediction error J, calculated
as the difference between the actual reward received
after taking some action and the amount of reward an
agent had expected to result from that action:

0=R-0Q, (s, a) (37.1)

Here, R, denotes the reward (or, if negative, punish-
ment) received on trial ¢, and Q, (s, a) denotes the
expected value on trial ¢ of taking action ¢, in state s,. &
takes a positive value when the received reward exceeds
the expected reward amount (a positive reward predic-
tion error) and a negative value when the reward received
is less than expected. Given this prediction error, one
can then update expectations for trial {+1 according to
a simple Rescorla-Wagner learning rule (Rescorla &
Wagner, 1972):

Qt+1 (Sp “/,) = Qt(st’ dt) +n- o (372)

where 77 is a learning rate parameter controlling the
speed with which action values are acquired. Equation
37.2 ensures that the expected value of actions will be
incremented following positive reward prediction errors
and decremented following negative reward prediction
errors. Neurally, the prediction error signal 6 (and, more
precisely, its temporal difference cousin that accounts
for the timing of prediction error signals within a trial;
Schultz, Dayan, & Montague, 1997) is thought to be
instantiated in the brain by the phasic release of dopa-
mine in the basal ganglia.

From this foundation we can derive increasingly com-
plex and sophisticated reinforcementlearning algo-
rithms. For instance, the simple update rule described
above is typically referred to as model-free reinforce-
ment learning since it learns solely about the value of
taking particular actions in particular states and not
about the structure of the environment itself. This con-
trasts with model-based reinforcement learning, in
which agents learn an internal model of the environ-
ment (possibly using prediction error signals) and use
this model to plan actions through mental simulations
of alternative options and their predicted outcomes
(see, e.g., Doll, Simon, & Daw, 2012).

The domain of reinforcement learning is an agent’s
cognitive and behavioral responses to the affective
feedback (i.e., rewards and punishments) thatitreceives
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from the environment. This domain is also a primary
area of cognitive dysfunction in mood disorders, includ-
ing major depression and bipolar disorder (Admon &
Pizzagalli, 2015; Eshel & Roiser, 2010; Whitton, Tread-
way, & Pizzagalli, 2015). As such, reinforcement-learning
models are well suited to the study of neurocomputa-
tional dysfunction in mood disorders. For instance,
individuals with depression show a number of cognitive
biases consistent with a reduced learned value of the
environment and the preferential processing of negative
information, such as pessimistic expectations regard-
ing the value of future events (Showers & Ruben, 1990),
an increased tendency to retrieve negatively valenced
items from memory (Blaney, 1986), and decreased sen-
sitivity to rewarding feedback (Henriques & Davidson,
2000). Similarly, a recent theory has suggested that
oscillatory mood dynamics characteristic of bipolar dis-
order might be produced by an interaction between
mood and the valuation of outcomes (Eldar & Niv,
2015; Eldar, Rutledge, Dolan, & Niv, 2016). As we will
show, each of these phenomena can be described well
in terms of dysfunctions of computation within a
reinforcement-learning model.

Depression

Phenomenology and theories of depression The two most
common diagnostic taxonomies of psychiatric illness,
the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) and the International Statistical Classifi-
cation of Diseases (/CD-10), concur on two primary
symptoms of major depression: persistent low mood or
sadness and an inability to take pleasure in everyday
events (anhedonia). The two taxonomies also concur
on other secondary symptoms of depression, including
fatigue or lack of energy (anergia), poor concentration,
disturbances of sleep and appetite, thoughts of suicide
or self-harm, feelings of guilt or worthlessness, and psy-
chomotor disturbances (either agitation or motor
slowing).

Cognitive theories of depression have posited a num-
ber of distinct information- processing biases that might
underlie these symptoms (Gotlib & Joormann, 2010;
Ingram, 1984). For instance, Beck (1967) proposed that
preexisting representations (schemas) of oneself, other
people, and the external world bias the processing of
emotional information in a schema-congruent way.
One example of a depressive schema, for instance, is a
core belief that one is unlovable; this belief would lead
to the interpretation of neutral or ambiguous social
cues as consistent with the fact that one is unlovable,
thereby reinforcing the schema. Other cognitive theo-
ries have emphasized the operation of different
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cognitive processes, but most agree that the biased pro-
cessing of emotional information plays a crucial role in
the onset and maintenance of depression. For instance,
Bower (1981) and Ingram (1984) emphasized the role
of disturbed semantic networks in depression, leading
to the increased activation of negatively valenced nodes
in an associative network. By contrast, Lewinsohn (1974)
adopted a behaviorist perspective and emphasized the
role of a lack of response-contingent reinforcement in
depression, whereas Rehm (1977) emphasized the role
of self-control in the selective processing of negative
outcomes, and Seligman (1975) highlighted the role of
learned helplessness (that is, the distorted belief that
one’s experiences of positive and negative events are
not under one’s own control).

Cognitive theories of depression have been highly
influential, both in empirical research on cognition in
depression and in the development of applied cognitive
therapies for depression. However, these theories are
persistently criticized because they merely redescribe
known phenomena and do not offer any novel insights
(Blaney, 1977; Ingram, 1984). The computational
approach to psychiatry that we argue for in this chapter
provides a tool to address this shortcoming. This is
because the requirement that theories of psychiatric
illness be embedded in a computational model means
that quantitative behavioral predictions of different
theories can be generated directly via model simula-
tion. Empirical work can then test the extent to which
these predictions are borne out by human behavior.
Additionally, by mapping information-processing biases
in depression onto putative neural computations—
especially within the framework of reinforcement
learning—computational models can flesh out cogni-
tive theories of depression with reference to our under-
standing of how these computations are implemented
in the human brain.

Computational — modeling of  depression The basic
reinforcement-learning framework detailed in equa-
tions 37.1 and 37.2 can be extended to capture the
cognitive phenomena of depression in a number of
ways. One possibility proposed by Huys, Pizzagalli, Bog-
dan, and Dayan (2013) is that anhedonia represents a
diminished hedonic response to rewarding outcomes
in depression, which affects prediction errors as below:

S=p-R—0Q,(s, a,) (37.3)

where 0<p<1 is a reward sensitivity parameter that
describes the degree to which primary hedonic responses
to rewarding outcomes are diminished in individuals
with depression. The pattern of behavior produced by
this model matches the phenomenological experience
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of anhedonia in the sense that since the effective
reward value of outcomes is diminished, individuals
with lower values of p will experience outcomes as sub-
jectively less rewarding. Because reinforcement learn-
ing from prediction errors means they will also learn
that the reward value of actions and options in the
environment is lower, such individuals will form pessi-
mistic expectations about future outcomes.

To provide evidence for this model, Huys et al. (2013)
fit a version of the computational model described by
equation 37.3 to the behavior of individuals with vary-
ing levels of anhedonia as they performed a simple
learning task designed to measure reward sensitivity
(Pizzagalli, Jahn, & O’Shea, 2005). Huys et al. (2013)
found that across both healthy individuals and those
with major depression, self-reported anhedonia was pos-
itively correlated with participants’ estimated reward
sensitivity p but not their estimated learning-rate
parameter 7).

However, further evidence complicates this view and
suggests that anhedonia should not be simply viewed as
a deficiency in hedonic responses to rewarding out-
comes (Huys et al., 2015). If it were true that primary
hedonic responses to rewards were diminished in
depression, it would be expected that individuals with
depression would report less enjoyment of pleasant pri-
mary rewards, such as sweet liquids. However, this is not
the case: those with depression do not differ from
healthy controls in the self-reported pleasantness of
sucrose solutions (Amsterdam, Settle, Doty, Abelman,
& Winokur, 1987). In addition, a recent study found no
differences between those with depression and healthy
controls in the strength of the relationship between
reward prediction error magnitude and self-reported
mood during a gambling task (Rutledge et al., 2017).
This leads to the question: What computational mecha-
nisms other than reduced hedonic response to rewards
might explain an apparent reduction in reward sensi-
tivity in depression?

A re-examination of cognitive theories of depression
suggests asymmetric responses to positive and negative
outcomes as one candidate. For instance, the self-
control theory of Rehm (1977) proposes that depres-
sion is associated with selective attention to negative
outcomes, as well as a tendency to make stronger infer-
ences about the self from negative feedback than posi-
tive feedback. Similarly, the reinforcement theory of
Lewinsohn (1974) posits that a reduction in the degree
to which actions are reinforced by positive feedback is
central to depression. From the perspective of rein-
forcement learning, one way of capturing this proposed
information-processing bias is as an asymmetry in
learning rates for positive versus negative reward
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prediction errors (Gershman, 2015; Mihatsch & Neu-
neier, 2002; Niv, Edlund, Dayan, & O’Doherty, 2012):

Qt(SN at)+ n+'5, 5 >0
37.4
Qs a)+m -6, 6<0 ( )

In equation 37.4, 17* is the learning rate for positive
reward prediction errors, and 1" is the learning rate for
negative reward prediction errors. When 1n~> 17", value
updates are affected more strongly by negative reward
prediction errors, consistent with the proposed nega-
tive information-processing bias in major depression.
This bias produces an underestimation of the value of
uncertain rewards that is qualitatively similar to that
produced by a reduction of the reward sensitivity
parameter p in equation 37.3. However, deterministic
rewards are learned correctly by this model (Niv et al.,
2012).

Importantly, underestimations of reward value could
be produced in equation 37.4 by hypersensitivity to
negative reward prediction errors (increased 17), by
hyposensitivity to positive reward prediction errors
(decreased 1,), or both. Empirical evidence from
behavioral studies of depression is divided on this ques-
tion. While there is consistent evidence that individuals
with depression display diminished learning from posi-
tive feedback (Henriques & Davidson, 2000; Hen-
riques, Glowacki, & Davidson, 1994; Korn, Sharot,
Walter, Heekeren, & Dolan, 2014; Robinson, Cools,
Carlisi, Sahakian, & Drevets, 2012; Vrieze et al., 2013),
evidence for increased sensitivity to negative feedback
is more equivocal. Some studies have shown that those
with depression respond more to worse than expected
outcomes than healthy controls, (Garrett et al., 2014;
Nelson & Craighead, 1977) but others have found no
difference (Henriques & Davidson, 2000; Henriques,
Glowacki, & Davidson, 1994; Robinson et al., 2012;
Santesso et al., 2008). This suggests, on balance, that
aberrant reward processing in depression is more likely
to result from hyposensitivity to positive reward predic-
tion errors than from hypersensitivity to negative
reward prediction errors. Further study of this question
is required, however, and an important open question
is whether different symptom profiles of depression are
associated with different patterns of learning from pos-
itive and negative reward prediction errors. For
instance, it is known that anxiety, a disorder highly
comorbid with major depression (Sartorius, Ustiin,
Lecrubier, & Wittchen, 1996), is associated with hyper-
sensitivity to punishment and increased attention to
potentially threatening events (Bishop, 2007). This sug-
gests the interesting possibility that low-level computa-
tional mechanisms of depression might differ between
major depression with and without comorbid anxiety.

Qs a)=
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As a further prediction, asymmetric learning rates as
per equation 37.4, but not changes in reward sensitivity
as per equation 37.3, induce preferences with respect to
the risk of outcomes (in the economic sense of risk,
referring to outcome variance; Mihatsch & Neuneier,
2002). Learning rate asymmetry in depression would
therefore also predict that individuals with depression
should display increased risk aversion. This is because
high-risk choice options are those associated with larger
deviations, on average, between individual instances of
reward and long-term reward averages, meaning larger
absolute reward prediction errors. As a result, high-risk
choice options will be more devalued when 177> 77" than
low-risk choice options, resulting in risk aversion. This
prediction is consistent with behavioral data showing
increased risk aversion in individuals with depression
performing the Iowa Gambling Task (Smoski et al.,
2008), as well as greater self-reported risk aversion
(Leahy, Tirch, & Melwani, 2012; Wiersma et al., 2011).

Separately, recent theories in computational psychia-
try have also proposed a role for the dysfunction of
model-based reinforcement learning in depression. As
introduced above, model-based reinforcement learning
applies to scenarios in which an agent’s decisions are
dependent upon a learned internal model of the envi-
ronment (a model of the environment, hence model-based
reinforcement learning). This is distinguished from
model-free reinforcement learning, in which agents
learn solely about the values of individual actions (Daw,
Gershman, Seymour, Dayan, & Dolan, 2011). Two can-
didate model-based mechanisms for depression pro-
posed by Huys et al. (2015) are biased attention toward
negative possibilities in internal estimates of a current
state and a failure to “prune” negative states from con-
templation in planning future sequences of action.

The first of these, a bias in the internal representa-
tion of a state, reflects the fact that states of the world (s
in the equations above) are not necessarily observable
features; instead, a “state” represents an agent’s infer-
ences about the structure of rewards in the world at a
given point in time and about the way that structure
may change if different actions are taken (Schuck, Cai,
Wilson, & Niv, 2016). For instance, while waiting at a
bus stop, one can only estimate whether the state of the
world is “the bus is shortly arriving” or “the bus already
passed and I missed it.” If the inferences used to con-
struct this state are biased in a pessimistic way—such as
because negative potential outcomes are weighted
more strongly than positive outcomes—then an agent
may believe itself to be in a worse state than is truly the
case. Such a process might underlie the pessimistic
representations of future outcomes in depression and
might also provide an explanation for experiences of
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anergia, since low response vigor and reduced energy
expenditure are rational strategies for an agent to adopt
in states where few rewarding outcomes can result from
action.

The second model-based mechanism is a failure to
“prune” negative states from future planned actions in
depression. In planned decision-making, nondepressed
individuals typically avoid excessive focus upon the
future possible states associated with large negative
outcomes (Huys et al., 2012). This is an adaptive strategy
since it means that cognitive resources can be directed
instead toward plans that have a high a priori chance of
reaching future states associated with a high reward
value. Less pruning of negative states would be associ-
ated with a relatively greater focus on negative-valued
paths in future planning, potentially leading to the pat-
terns of ruminative thought characteristic of depres-
sion (Whitmer & Gotlib, 2013).

Open questions for the computational modeling of depres-
sion The literature reviewed above suggests several
important open questions to be addressed via the com-
putational modeling of behavior in depression.

First, to what extent can anhedonia in depression be
characterized by asymmetric learning from positive and
negative reward prediction errors, rather than reduced
consummatory pleasure in reward receipt? Second,
what combination of model-based and model-free rein-
forcement learning best describes the cognitive deficits
observed in depression? On the one hand, depression
may be associated with a low-level asymmetryin (model-
free) learning. On the other hand, depression may be
better characterized by model-based deficits in the con-
struction of the present state and planning for future
states. Or, depression may involve both deficits. Impor-
tantly, these questions can be answered using computa-
tional models and tasks specifically tailored to measure
the parameters of these models in each individual.

Finally, how might the computational deficits under-
lying depression be expressed in different contexts? As
Beck (1967) observed, inferences in depression are far
more likely to be negatively biased when their object is
one’s own worth than when their object is an abstract
statistical quantity. In the language of reinforcement
learning, it is almost certainly not the case that learn-
ing rates for positive and negative prediction errors will
be expressed equivalently in all domains. Instead, one
possibility is that individual differences in the alloca-
tion of attention to positive and negative outcomes in
different settings might provide a principled explana-
tion for apparent differences in reinforcement sensitiv-
ity in depression. For instance, itis possible that attention
to outcomes—and therefore learning rates—may
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fluctuate commensurate with the outcomes’ congru-
ency with prior beliefs regarding oneself. Designing
sensitive measures of the context-dependence of rein-
forcement learning dysfunction in depression is there-
fore a crucial task for future research.

Bipolar Disorder

Phenomenology and subtypes of bipolar disorder In con-
trast to major depression, which is characterized solely
by episodes of depression, bipolar disorder is character-
ized by episodes of both depression and mania. Under
common definitions in the DSM-5 and ICD-10, mania
refers to a state in which mood is elevated (euphoria),
and there is increased energy and goal-directed activ-
ity. Mania, and its less severe counterpart hypomania,
are also typically characterized by increased risk-taking
behavior, a decreased subjective need for sleep, and
increased self-esteem, potentially leading to delusions
of grandiosity (Goodwin & Jamison, 2007).

Typologies of bipolar disorder distinguish between
two subtypes, bipolar I and bipolar II, which differ in
the relative frequency and intensity of manic and
depressed episodes. Bipolar I disorder is characterized
by at least one episode of mania and often (but not
necessarily) by other episodes of depression. By con-
trast, bipolar II disorder is typified by episodes of both
major depression and hypomania (not meeting the full
criteria for mania). Both forms of bipolar disorder are
typified by a functional recovery between episodes of
mania or depression to a mood in the normal range.

Whereas cognitive theories of depression have
abounded since the 1960s, until recent years bipolar
disorder was largely viewed through a psychopharma-
cological lens (Goodwin & Jamison, 2007), with a rela-
tive paucity of cognitive theorizing (but see, e.g., Alloy
et al,, 2008). One finding in this literature, however, is
of mood-congruent information-processing biases in
bipolar disorder. That is, individuals with bipolar disor-
der may display negative information-processing biases
when in a low mood, as in depression, but positive
information-processing biases when in a good mood
(for reviews, see Alloy, Reilly-Harrington, Fresco, &
Flannery-Schroeder, 2005; Whitton, Treadway, & Piz-
zagalli, 2015). This mood congruence is a critical feature
of bipolar disorder that computational models must
seek to account for; it also represents a significant point
of contrast with cognitive theories of depression, which
rather emphasize trait-level information-processing
biases as a cognitive mechanism for the disorder.

Computational modeling of bipolar disorder A recent model
has posited a set of computational mechanisms that
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may partly explain mood-congruent information-
processing biases in bipolar disorder. Using a
reinforcement-learning framework, Eldar and Niv (2015)
proposed that mood oscillations and information-
processing biases may be governed by a dynamic inter-
action between mood and outcome valuation.
Specifically, their model proposed that the reward
value of outcomes R, is biased by a mood-dependent
factor f™ in the calculation of prediction errors:

0= SR = Qs )

Here,—1<m,<1 represents mood at trial ¢, with nega-
tive values of m, denoting negatively valenced moods
and positive values of m, denoting positively valenced
moods. fis a parameter governing the strength of the
interaction between mood and outcome valuation such
thatvalues of fgreater than 1 indicate mood-congruent
changes in outcome valuation (i.e., the overestimation
of outcome value in good moods and the underestima-
tion of outcome value in bad moods).

The model also proposes that mood changes over
time according to a weighted average of recent reward
prediction errors that is transformed to lie between —1
and 1 by a sigmoidal function:

By =hyy + My (6—h)
m,=tanh (06— h,)

(37.5)

(37.6)
(37.7)

where 17, is a learning-rate parameter for this reward
prediction error history. Together, equations 37.5-37.7
specify a dynamic system in which reward prediction
errors trigger the mood-congruent processing of subse-
quent rewards. This, in turn, leads to escalatory mood
dynamics that may explain the emergence of mania
and depression in bipolar disorder.

There is an important parallel between this model of
bipolar disorder and the models of depression reviewed
above. Specifically, the form of equation 37.5 closely
resembles that of the reward-sensitivity model of depres-
sion in equation 37.3, as posited by Huys et al. (2013).
The difference between the two models is that Huys
et al. (2013) posit a trait-level parameter p to govern
blunted reward sensitivity in depression, whereas Eldar
and Niv (2015) propose a mood-dependent term f.

This comparison may be instructive. In reviewing the
models of depression above, we observed that the
reward-sensitivity model of depression posited by Huys
et al. (2013) made predictions similar to a model in
which depression affected not the hedonic value of
rewards (through p) but rather the asymmetry between
the effects of positive and negative reward prediction
errors (through 77" and 7). A similar principle applies
to models of bipolar disorder. This means that an alter-
native model to that of Eldar and Niv (2015) is one in
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which mood affects not the hedonic value of rewards
but the relative strength of learning from positive ver-
sus negative reward prediction errors:

Ql(sta at)+ fm"77+'5, >0

Qs a)+ f™-n -6, 6<0
(37.8)
where J is defined according to equation 37.3, not
equation 37.5. The cognitive interpretation of equation

37.8 is that positive moods lead to increases in learning
rate from positive reward prediction errors and

Qs @)=

decreases in learning from negative reward prediction
errors and vice versa for negative moods.

Here, too, the reward-sensitivity model of Eldar and
Niv (2015) and the model specified by equation 37.8
make different predictions concerning attitudes toward
risk in bipolar disorder. This is because equation 37.8,
but not the model of Eldar and Niv (2015), predicts that
positive moods should be associated with decreased
risk aversion (increased risk seeking). This is consistent
with a large body of evidence suggesting that mania
and hypomania are associated with increased risk-taking
behavior (e.g., Mason, O’Sullivan, Montaldi, Bentall, &
El-Deredy, 2014; Thomas, Knowles, Tai, & Bentall, 2007),
as well as with diagnostic guidelines specifying risk-
taking as a symptom of bipolar disorder in the DSM-5.
Testing this prediction via behavioral model fitting in
bipolar disorder is therefore a key task for future
research.

Conclusion

In the 17th century, Robert Burton compared psychiat-
ric illness to a clock in which one faulty gear interfered
with the operation of the whole machine. In adapting
this metaphor, we realize that in every age the brain
has been likened to the most sophisticated con-
temporary machine—including clocks, steam locomo-
tives, and now digital computers—none of which the
brain is likely all that similar to. Nevertheless, the pre-
sent chapter has considered how, given such a clock, we
might apply computational methods to determine
which gear is at fault. We have reviewed the history of a
computational approach to psychiatric illness, with a
focus on the current state of the art for reinforcement-
learning models of major depression and bipolar disor-
der. Cutting-edge future research in this field will
involve two lines of work: research to identify the algo-
rithmic principles that govern human mood and affect
and research to characterize how these algorithms go
awry in psychiatric illness. Our contention is that these
questions are best addressed by adapting computa-
tional cognitive models to human behavioral data.
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A strong version of our behavioral argument holds
thatitis only by making distinct predictions about human
behavior that psychiatric theories can meaningfully dif-
fer from one another. After all, if two different psychi-
atric theories made entirely equivalent predictions about
behavior (and therefore about all phenomenological
aspects of a patient’s experience that are accessible to
empirical inquiry), it would be reasonable to conclude
that these two theories were functionally isomorphic,
even if they proposed seemingly dissimilar theoretical
constructs to explain psychiatric dysfunction (Putnam,
1975). A less strong, more pragmatic version of this same
argument is that by adopting the quantitative prediction
of behavior as the ground truth of psychiatric theory, it
is relatively straightforward to reject theories that may
seem conceptually sound while making no sensible pre-
dictions regarding behavior (e.g., Houghton, 1969). A
focus on the prediction of behavior evaluates theories
according to their empirical content and not the sophis-
tication of their mathematical superstructures.

Ifitis true that scientific revolutions occur not neces-
sarily because of serendipitous discovery but because
certain scientists come to ask better questions, then the
promise of computational psychiatry lies in the nature
of the questions that it can ask about psychiatric illness.
We propose that as a source for such questions, compu-
tational cognitive models are a critically important tool.
Such models can be used to identify the nature of the
computations employed by the brain, the role of aber-
rant computations in the production of psychiatric ill-
ness, and the potential biological and cognitive remedies
for computational dysfunction.
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