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mechanism inside the watch: a fault is easier to diag-
nose when the underlying mechanism is simpler (e.g., a 
vibrating quartz crystal in a modern analog watch) than 
when it is complex (e.g., the many gears and springs of 
a 17th-century watch). Analogously, it has long been 
understood that psychiatric symptoms such as thought 
disorder and mania are aberrant behaviors produced 
by dysfunctions within an exceedingly complex dynam-
ical system, the human brain (Hoffman, 1987; Joseph, 
Frith, & Waddington, 1979). It is no surprise, then, that 
identifying the specific neural-processing deficits that 
cause a given psychiatric symptom is difficult.

In this chapter we argue that computational psychia-
try should approach this problem using computational 
cognitive models, with a focus on testing specific behav-
ioral predictions made by different candidate neuro-
computational dysfunctions. Just as the ticking sounds 
of a clock can be decomposed with spectral analyses to 
diagnose a mechanical fault (He, Su, & Du, 2008), com-
putational cognitive models can be used to infer the 
latent neurocomputational deficits that underlie psy-
chiatric conditions as diverse as depression and psycho-
sis. However, just as in the clock analogy, the utility of 
these inferences critically depends upon two factors: 
first, an accurate mechanistic model of how the system 
operates and second, a sensitive behavioral assay of its 
operations. To this end, computational psychiatry 
should seek to integrate normative and process models 
from computational neuroscience and biological psy-
chiatry with behavioral tests from cognitive psychology, 
computer science, and economics. By applying compu-
tational cognitive models to sensitive measures of human 
behavior, we may make substantial progress in identify-
ing the dysfunctions of neural computation that give 
rise to psychiatric illness.

This chapter first reviews the history of the 
computational-modeling paradigm in psychiatry 
through the cognitive revolution of the 1960s and 1970s 
and the rise of parallel distributed processing and 

abstract  Computational psychiatry is a nascent field that 
seeks to use computational tools from neuroscience and cog-
nitive science to understand psychiatric illness. In this chap-
ter we make the case for computational cognitive models as a 
bridge between the cognitive and affective deficits experi-
enced by those with a psychiatric illness and the neurocom-
putational dysfunctions that underlie these deficits. We first 
review the history of computational modeling in psychiatry 
and conclude that a key moment of maturation in this field 
occurred with the transition from qualitative comparison 
between computational models and human behavior to for-
mal quantitative model fitting and model comparison. We 
then summarize current research at one of the most exciting 
frontiers of computational psychiatry: reinforcement-learning 
models of mood disorders. We review state-of-the-art applica-
tions of such models to major depression and bipolar disor-
der and outline important open questions to be addressed by 
the coming wave of research in computational psychiatry.

The brain must needs primarily be misaffected, as the seat of 
reason … for our body is like a clock, if one wheel be amiss, 
all the rest are disordered; the whole fabric suffers.
—Robert Burton, The Anatomy of Melancholy

For a watch repairer, the first task in fixing a faulty watch 
is diagnosis: What is the dysfunctional mechanism that 
is responsible for the fault? If the watch is losing time, 
is it because the mainspring is insufficiently wound, or 
could dirt be causing the gears to stick? If the watch has 
stopped, could this be the result of a loose balance 
wheel, or does the battery simply need changing?

In his analogy between human mental illness and 
the faulty mechanics of a clock, Robert Burton captured 
the essence of one of the most durable problems of con
temporary biological psychiatry. In a clock a given 
functional disturbance, such as running fast or running 
slow, may be the result of any number of mechanical 
faults, and it is typically impossible to determine which 
mechanism is primarily amiss by observing the time-
keeping dysfunction alone. Moreover, this inverse prob
lem grows in difficulty with the complexity of the 
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these units by excessive neural noise. While the TOTE 
architecture has not proved durable, Callaway’s notion 
that deficits in schizophrenia result from excessive lev-
els of noise in neural computation has remained influ-
ential to the present day (e.g., Silverstein, Wibral, & 
Phillips, 2017; Winterer & Weinberger, 2004).

Separately, Colby (1964) used a computational dic-
tionary seeded with quotations from human psychiat-
ric patients to generate synthetic dialogues resembling 
those of a therapist with a psychiatric patient (e.g., 
“Father preferred sister. I avoid father.” Colby, 1964, 
p. 221). Colby proposed that distorted beliefs in psycho-
sis arose as a result of conflict between mutually exclu-
sive impulses. Colby, Hilf, Weber, and Kraemer (1972) 
presented practicing psychotherapists with teletype 
printouts of a number of putative therapist/patient 
dialogues—half real and half generated by algorithm—
and assessed the therapists’ ability to distinguish real 
patients from simulated ones. It was found that thera-
pists could not identify the real patients at an above-
chance level and in some cases offered detailed 
psychoanalytic interpretations of the unconscious pro
cesses underlying algorithmically generated dialogues. 
The algorithm that generated the text engaged in dia-
logue by performing a rudimentary form of natural 
language processing with the intention of classifying its 
interlocutor’s statements as either malevolent, benevo-
lent, or neither. Depending on the values of the variables 
used to perform this classification, the algorithm then 
selected an internal response (e.g., anger or fear) and a 
corresponding utterance (e.g., verbal hostility in the case 
of high levels of anger). This algorithm can therefore 
be thought of as an early cognitive model of psychosis 
(albeit one that does not invoke unconscious processing, 
contrary to then-dominant theoretical ideas).

Other early work applying computational and math-
ematical methods to psychiatric illness did not adapt 
the computer metaphor directly. For instance, Rashevsky 
(1964) posited a rudimentary biophysical neural-
processing system to explain the positive symptoms of 
schizophrenia in terms of the excessive reinforcement 
of endogenously generated responses. Houghton (1969) 
sought to specify a formal mathematical framework for 
understanding psychoanalysis by positing a negative 
feedback relationship between an “id module” and an 
“ego module,” resulting in distortions of a topological 
space. Such theories have little empirical relevance for 
contemporary research; instead, they primarily rein-
force the importance of grounding models of psychiat-
ric illness in biologically principled models of neural 
computation.

The first computational models that are of more than 
historical interest to current research in computational 

reinforcement-learning models in the 1980s and 1990s. 
We then summarize the current state of the art of com-
putational psychiatry in the study of mood disorders 
such as major depression and bipolar disorder using 
reinforcement-learning models.

The History of Computational Psychiatry

Psychopathology has been rather a disappointment to the 
instinctive materialism of the doctors, who have taken the 
view that every disorder must be accompanied by actual 
lesions of some specific tissue involved…  . This distinction 
between functional and organic disorders is illuminated by 
the consideration of the computing machine.
—Norbert Wiener, Cybernetics

The idea that psychiatric illness might result from dys-
functions of neural or mental computation was pro-
posed within 10 years of the invention of the modern 
digital computer. Writing in 1948 as part of a broader 
argument that the central nervous system ought to be 
treated as a self-regulating circuit, Norbert Wiener sug-
gested a novel perspective on the 19th-century psychi-
atric distinction between organic and functional 
disorders (Fürstner, 1881, as cited by Beer, 1996). This 
dichotomy contrasts organic disorders caused by a 
purely biological pathology (such as a brain tumor or 
neurodegeneration) with functional disorders that 
cannot be diagnosed solely by the inspection of brain 
tissue. Wiener proposed that functional disorders—
among which he included schizophrenia and bipolar 
disorder—could be best understood by analogy with 
the operations of a computer. This was, he proposed, 
because deficits in these disorders arose not from aber-
rations in the physical structure of the brain but from 
dysfunctions in the way the physical structure pro
cessed information (Wiener, 1948).

This information-processing paradigm was immensely 
influential in early cognitive psychology but gained 
traction much more slowly in psychiatry. Early research 
using computational models in psychiatry was rudi-
mentary and consisted of little more than qualitative 
comparisons between simple computational models 
and aspects of contemporary psychiatric theory. For 
instance, Callaway (1970) pursued the analogy of a 
malfunctioning computer in an attempt to understand 
conceptual disorganization and the loosening of asso-
ciations in schizophrenia. Drawing upon contemporary 
advances in cognitive science, Callaway posited that 
cognitive structures in schizophrenia could be repre-
sented as simple computational architectures called 
TOTE (test-operate-test-exit) units (Miller, Galanter, & 
Pribram, 1960). Deficits in schizophrenia were posited 
to result from interference in the test operations of 
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Arguably, this development—the quantitative fitting 
of computational models to behavior produced by indi-
viduals with a psychiatric illness—is responsible for 
much of the subsequent achievement, and much of the 
future promise, of computational methods in psychiat-
ric research. The ability of computational models to 
make quantitative predictions about human behavior 
means that different psychiatric theories can be com-
pared by instantiating each as a different model and 
determining which model provides the most accurate 
and parsimonious account of behavior. Once identified, 
a model serves at least two purposes: First, it provides a 
quantitative device for the measurement of cognitive-
psychiatric symptoms that may aid in diagnosis and 
treatment selection in psychiatry in much the same way 
that a blood glucose test aids in diagnosing and treat-
ing diabetes. Second, a good correspondence between 
the predictions of a model and observed behaviors may 
offer a window into the functional causes of aberrant 
experiences in psychiatric illness, since it suggests mech-
anisms by which these symptoms may be produced.

As computational approaches to psychiatry have 
expanded in recent years, the behavioral model-fitting 
and model-comparison paradigm has grown to encom-
pass computational models from disciplines including 
economic game theory (King-Casas et al., 2008), hier-
archical probabilistic inference (Friston, Stephan, 
Montague, & Dolan, 2014), and Bayesian decision the-
ory (Huys, Daw, & Dayan, 2015). In the remainder of 
this chapter, we review these developments with a spe-
cific focus on the state-of-the-art computational model-
ing of two mood disorders: major depression and bipolar 
disorder. In particular, we explore the extent to which 
dysfunctions in these conditions can be understood 
through the lens of reinforcement learning (see, e.g., 
Maia & Frank, 2011).

Reinforcement Learning Models of Mood Disorders

Below, we summarize the insights that reinforcement-
learning models provide into the neurocomputational 
substrates of depression and bipolar disorder. Our inten-
tion is not to claim that mood disorders are disorders 
of learning narrowly defined. Instead, we argue that 
the mathematical formalisms of reinforcement learn-
ing provide a language that can describe how represen
tations of the reinforcement value of the environment 
go astray in mood disorders.

Briefly, reinforcement learning describes a set of 
computational principles by which an agent in an uncer-
tain or complex environment can act to maximize 
future expected reward (Dayan & Niv, 2008; Sutton & 
Barto, 1998). The framework relies on several relatively 

psychiatry were made possible by advances in computa-
tional models of neural information processing. For 
instance, a computational theory of the distribution of 
attention among stimuli based on recurrent lateral inhi-
bition between noisy processing channels (Walley & 
Weiden, 1973) gave rise directly to a computational 
model of attentional deficits in schizophrenia (Joseph, 
Frith, & Waddington, 1979). This model proposed that 
an excess of dopaminergic activity led to increased over-
all levels of mutual inhibition between sensory inputs 
in schizophrenia and thereby to a dysfunction in the 
system’s ability to produce winner-take-all network 
dynamics.

The advent of more advanced neural network archi-
tectures in the 1980s stimulated the development of 
more sophisticated computational psychiatric models. 
For instance, Hopfield (1982) described a fully inter-
connected neural network that produced emergent 
properties resembling human recognition memory, cat-
egorization, and generalization. In turn, Ralph Hoffman 
showed how dysfunctions of computation within Hop-
field nets led to aberrant dynamics resembling schizo
phrenia and mania (Hoffman, 1987) and linked the 
putative computational deficit in schizophrenia to aber-
rant patterns of cortical pruning in frontal cortex (Hoff-
man & Dobscha, 1989). At the same time, the immense 
influence of parallel distributed-processing connection-
ist architectures in cognitive science (Rumelhart & 
McClelland, 1987) led naturally to the adaptation of 
multilayer neural networks for psychiatric research (e.g., 
Ruppin, 1995; Spitzer, 1995; Stein & Ludik, 1998).

Of particular note, Cohen and Servan-Schreiber 
(1992) used a multilayer neural network to model a 
failure to maintain mental context in schizophrenia. 
This work demonstrated a quantitative correspondence 
between the behavior of trained neural network mod-
els and the behavior of patients with schizophrenia on 
three tasks: a Stroop task, a continuous performance 
task, and a lexical disambiguation task. The computa-
tional mechanism by which these deficits were pro-
duced in the model was a reduction of the gain of units 
in the network representing task context, and this com-
putational dysfunction was linked by the authors to 
decreased dopaminergic activity in the prefrontal cor-
tex in schizophrenia. This work marks a point of transi-
tion between qualitative and quantitative comparisons 
of models and behavior in computational psychiatry. As 
such, it stands in contrast to prior research that had 
proceeded after the fashion of Callaway (1970) by sug-
gesting qualitative parallels between patterns of infor-
mation processing in psychiatric illness and patterns of 
information processing in real or hypothetical compu-
tational architectures.
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from the environment. This domain is also a primary 
area of cognitive dysfunction in mood disorders, includ-
ing major depression and bipolar disorder (Admon & 
Pizzagalli, 2015; Eshel & Roiser, 2010; Whitton, Tread-
way, & Pizzagalli, 2015). As such, reinforcement-learning 
models are well suited to the study of neurocomputa-
tional dysfunction in mood disorders. For instance, 
individuals with depression show a number of cognitive 
biases consistent with a reduced learned value of the 
environment and the preferential processing of negative 
information, such as pessimistic expectations regard-
ing the value of future events (Showers & Ruben, 1990), 
an increased tendency to retrieve negatively valenced 
items from memory (Blaney, 1986), and decreased sen-
sitivity to rewarding feedback (Henriques & Davidson, 
2000). Similarly, a recent theory has suggested that 
oscillatory mood dynamics characteristic of bipolar dis-
order might be produced by an interaction between 
mood and the valuation of outcomes (Eldar & Niv, 
2015; Eldar, Rutledge, Dolan, & Niv, 2016). As we will 
show, each of these phenomena can be described well 
in terms of dysfunctions of computation within a 
reinforcement-learning model.

Depression

Phenomenology and theories of depression  The two most 
common diagnostic taxonomies of psychiatric illness, 
the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) and the International Statistical Classifi-
cation of Diseases (ICD-10), concur on two primary 
symptoms of major depression: persistent low mood or 
sadness and an inability to take pleasure in everyday 
events (anhedonia). The two taxonomies also concur 
on other secondary symptoms of depression, including 
fatigue or lack of energy (anergia), poor concentration, 
disturbances of sleep and appetite, thoughts of suicide 
or self-harm, feelings of guilt or worthlessness, and psy-
chomotor disturbances (either agitation or motor 
slowing).

Cognitive theories of depression have posited a num-
ber of distinct information- processing biases that might 
underlie these symptoms (Gotlib & Joormann, 2010; 
Ingram, 1984). For instance, Beck (1967) proposed that 
preexisting representations (schemas) of oneself, other 
people, and the external world bias the processing of 
emotional information in a schema-congruent way. 
One example of a depressive schema, for instance, is a 
core belief that one is unlovable; this belief would lead 
to the interpretation of neutral or ambiguous social 
cues as consistent with the fact that one is unlovable, 
thereby reinforcing the schema. Other cognitive theo-
ries have emphasized the operation of different 

simple psychological primitives: Representations of dif
ferent states of the environment, of the actions that can 
be taken by the agent in each state, and of the rewards 
that are received following each action. Reinforcement-
learning algorithms then describe operations by which 
an agent can update its representations of the values of 
different actions as it interacts with the environment.

The foundational computational variable in rein-
forcement learning is the prediction error δ, calculated 
as the difference between the actual reward received 
after taking some action and the amount of reward an 
agent had expected to result from that action:

	 δ = Rt − Qt (st , at)	 (37.1)

Here, Rt denotes the reward (or, if negative, punish-
ment) received on trial t, and Qt (st, at) denotes the 
expected value on trial t of taking action at in state st. δ 
takes a positive value when the received reward exceeds 
the expected reward amount (a positive reward predic-
tion error) and a negative value when the reward received 
is less than expected. Given this prediction error, one 
can then update expectations for trial t + 1 according to 
a simple Rescorla-Wagner learning rule (Rescorla & 
Wagner, 1972):

	 Q t+1 (st, at) = Q t(st, at) + η · δ	 (37.2)

where η is a learning rate parameter controlling the 
speed with which action values are acquired. Equation 
37.2 ensures that the expected value of actions will be 
incremented following positive reward prediction errors 
and decremented following negative reward prediction 
errors. Neurally, the prediction error signal δ (and, more 
precisely, its temporal difference cousin that accounts 
for the timing of prediction error signals within a trial; 
Schultz, Dayan, & Montague, 1997) is thought to be 
instantiated in the brain by the phasic release of dopa-
mine in the basal ganglia.

From this foundation we can derive increasingly com-
plex and sophisticated reinforcement-learning algo-
rithms. For instance, the simple update rule described 
above is typically referred to as model-free reinforce-
ment learning since it learns solely about the value of 
taking particular actions in particular states and not 
about the structure of the environment itself. This con-
trasts with model-based reinforcement learning, in 
which agents learn an internal model of the environ-
ment (possibly using prediction error signals) and use 
this model to plan actions through mental simulations 
of alternative options and their predicted outcomes 
(see, e.g., Doll, Simon, & Daw, 2012).

The domain of reinforcement learning is an agent’s 
cognitive and behavioral responses to the affective 
feedback (i.e., rewards and punishments) that it receives 
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of anhedonia in the sense that since the effective 
reward value of outcomes is diminished, individuals 
with lower values of ρ will experience outcomes as sub-
jectively less rewarding. Because reinforcement learn-
ing from prediction errors means they will also learn 
that the reward value of actions and options in the 
environment is lower, such individuals will form pessi-
mistic expectations about future outcomes.

To provide evidence for this model, Huys et al. (2013) 
fit a version of the computational model described by 
equation 37.3 to the behavior of individuals with vary-
ing levels of anhedonia as they performed a simple 
learning task designed to measure reward sensitivity 
(Pizzagalli, Jahn, & O’Shea, 2005). Huys et al. (2013) 
found that across both healthy individuals and those 
with major depression, self-reported anhedonia was pos-
itively correlated with participants’ estimated reward 
sensitivity ρ but not their estimated learning-rate 
parameter η.

However, further evidence complicates this view and 
suggests that anhedonia should not be simply viewed as 
a deficiency in hedonic responses to rewarding out-
comes (Huys et al., 2015). If it were true that primary 
hedonic responses to rewards were diminished in 
depression, it would be expected that individuals with 
depression would report less enjoyment of pleasant pri-
mary rewards, such as sweet liquids. However, this is not 
the case: those with depression do not differ from 
healthy controls in the self-reported pleasantness of 
sucrose solutions (Amsterdam, Settle, Doty, Abelman, 
& Winokur, 1987). In addition, a recent study found no 
differences between those with depression and healthy 
controls in the strength of the relationship between 
reward prediction error magnitude and self-reported 
mood during a gambling task (Rutledge et al., 2017). 
This leads to the question: What computational mecha-
nisms other than reduced hedonic response to rewards 
might explain an apparent reduction in reward sensi-
tivity in depression?

A re-examination of cognitive theories of depression 
suggests asymmetric responses to positive and negative 
outcomes as one candidate. For instance, the self-
control theory of Rehm (1977) proposes that depres-
sion is associated with selective attention to negative 
outcomes, as well as a tendency to make stronger infer-
ences about the self from negative feedback than posi-
tive feedback. Similarly, the reinforcement theory of 
Lewinsohn (1974) posits that a reduction in the degree 
to which actions are reinforced by positive feedback is 
central to depression. From the perspective of rein-
forcement learning, one way of capturing this proposed 
information-processing bias is as an asymmetry in 
learning rates for positive versus negative reward 

cognitive processes, but most agree that the biased pro
cessing of emotional information plays a crucial role in 
the onset and maintenance of depression. For instance, 
Bower (1981) and Ingram (1984) emphasized the role 
of disturbed semantic networks in depression, leading 
to the increased activation of negatively valenced nodes 
in an associative network. By contrast, Lewinsohn (1974) 
adopted a behaviorist perspective and emphasized the 
role of a lack of response-contingent reinforcement in 
depression, whereas Rehm (1977) emphasized the role 
of self-control in the selective processing of negative 
outcomes, and Seligman (1975) highlighted the role of 
learned helplessness (that is, the distorted belief that 
one’s experiences of positive and negative events are 
not under one’s own control).

Cognitive theories of depression have been highly 
influential, both in empirical research on cognition in 
depression and in the development of applied cognitive 
therapies for depression. However, these theories are 
persistently criticized because they merely redescribe 
known phenomena and do not offer any novel insights 
(Blaney, 1977; Ingram, 1984). The computational 
approach to psychiatry that we argue for in this chapter 
provides a tool to address this shortcoming. This is 
because the requirement that theories of psychiatric 
illness be embedded in a computational model means 
that quantitative behavioral predictions of different 
theories can be generated directly via model simula-
tion. Empirical work can then test the extent to which 
these predictions are borne out by human behavior. 
Additionally, by mapping information-processing biases 
in depression onto putative neural computations—
especially within the framework of reinforcement 
learning—computational models can flesh out cogni-
tive theories of depression with reference to our under-
standing of how these computations are implemented 
in the human brain.

Computational modeling of depression  The basic 
reinforcement-learning framework detailed in equa-
tions 37.1 and 37.2 can be extended to capture the 
cognitive phenomena of depression in a number of 
ways. One possibility proposed by Huys, Pizzagalli, Bog-
dan, and Dayan (2013) is that anhedonia represents a 
diminished hedonic response to rewarding outcomes 
in depression, which affects prediction errors as below:

	 δ = ρ · Rt − Q t(st , at)	 (37.3)

where 0 ≤ ρ ≤ 1 is a reward sensitivity parameter that 
describes the degree to which primary hedonic responses 
to rewarding outcomes are diminished in individuals 
with depression. The pattern of behavior produced by 
this model matches the phenomenological experience 
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As a further prediction, asymmetric learning rates as 
per equation 37.4, but not changes in reward sensitivity 
as per equation 37.3, induce preferences with respect to 
the risk of outcomes (in the economic sense of risk, 
referring to outcome variance; Mihatsch & Neuneier, 
2002). Learning rate asymmetry in depression would 
therefore also predict that individuals with depression 
should display increased risk aversion. This is because 
high-risk choice options are those associated with larger 
deviations, on average, between individual instances of 
reward and long-term reward averages, meaning larger 
absolute reward prediction errors. As a result, high-risk 
choice options will be more devalued when η− > η+ than 
low-risk choice options, resulting in risk aversion. This 
prediction is consistent with behavioral data showing 
increased risk aversion in individuals with depression 
performing the Iowa Gambling Task (Smoski et  al., 
2008), as well as greater self-reported risk aversion 
(Leahy, Tirch, & Melwani, 2012; Wiersma et al., 2011).

Separately, recent theories in computational psychia-
try have also proposed a role for the dysfunction of 
model-based reinforcement learning in depression. As 
introduced above, model-based reinforcement learning 
applies to scenarios in which an agent’s decisions are 
dependent upon a learned internal model of the envi-
ronment (a model of the environment, hence model-based 
reinforcement learning). This is distinguished from 
model-free reinforcement learning, in which agents 
learn solely about the values of individual actions (Daw, 
Gershman, Seymour, Dayan, & Dolan, 2011). Two can-
didate model-based mechanisms for depression pro-
posed by Huys et al. (2015) are biased attention toward 
negative possibilities in internal estimates of a current 
state and a failure to “prune” negative states from con-
templation in planning future sequences of action.

The first of these, a bias in the internal representa
tion of a state, reflects the fact that states of the world (s 
in the equations above) are not necessarily observable 
features; instead, a “state” represents an agent’s infer-
ences about the structure of rewards in the world at a 
given point in time and about the way that structure 
may change if different actions are taken (Schuck, Cai, 
Wilson, & Niv, 2016). For instance, while waiting at a 
bus stop, one can only estimate whether the state of the 
world is “the bus is shortly arriving” or “the bus already 
passed and I missed it.” If the inferences used to con-
struct this state are biased in a pessimistic way—such as 
because negative potential outcomes are weighted 
more strongly than positive outcomes—then an agent 
may believe itself to be in a worse state than is truly the 
case. Such a process might underlie the pessimistic 
representations of future outcomes in depression and 
might also provide an explanation for experiences of 

prediction errors (Gershman, 2015; Mihatsch & Neu-
neier, 2002; Niv, Edlund, Dayan, & O’Doherty, 2012):

	
Qt+1(st ,  at )=

Qt(st ,  at )+ η+ ⋅δ ,  δ  > 0
Qt(st ,  at )+ η− ⋅δ , δ < 0

 
 

⎧
⎨
⎪

⎩⎪ 	
(37.4)

In equation 37.4, η+ is the learning rate for positive 
reward prediction errors, and η− is the learning rate for 
negative reward prediction errors. When η− > η+, value 
updates are affected more strongly by negative reward 
prediction errors, consistent with the proposed nega-
tive information-processing bias in major depression. 
This bias produces an underestimation of the value of 
uncertain rewards that is qualitatively similar to that 
produced by a reduction of the reward sensitivity 
parameter ρ in equation 37.3. However, deterministic 
rewards are learned correctly by this model (Niv et al., 
2012).

Importantly, underestimations of reward value could 
be produced in equation 37.4 by hypersensitivity to 
negative reward prediction errors (increased η−), by 
hyposensitivity to positive reward prediction errors 
(decreased η+), or both. Empirical evidence from 
behavioral studies of depression is divided on this ques-
tion. While there is consistent evidence that individuals 
with depression display diminished learning from posi-
tive feedback (Henriques & Davidson, 2000; Hen-
riques, Glowacki, & Davidson, 1994; Korn, Sharot, 
Walter, Heekeren, & Dolan, 2014; Robinson, Cools, 
Carlisi, Sahakian, & Drevets, 2012; Vrieze et al., 2013), 
evidence for increased sensitivity to negative feedback 
is more equivocal. Some studies have shown that those 
with depression respond more to worse than expected 
outcomes than healthy controls, (Garrett et  al., 2014; 
Nelson & Craighead, 1977) but others have found no 
difference (Henriques & Davidson, 2000; Henriques, 
Glowacki, & Davidson, 1994; Robinson et  al., 2012; 
Santesso et al., 2008). This suggests, on balance, that 
aberrant reward processing in depression is more likely 
to result from hyposensitivity to positive reward predic-
tion errors than from hypersensitivity to negative 
reward prediction errors. Further study of this question 
is required, however, and an important open question 
is whether different symptom profiles of depression are 
associated with different patterns of learning from pos-
itive and negative reward prediction errors. For 
instance, it is known that anxiety, a disorder highly 
comorbid with major depression (Sartorius, Üstün, 
Lecrubier, & Wittchen, 1996), is associated with hyper-
sensitivity to punishment and increased attention to 
potentially threatening events (Bishop, 2007). This sug-
gests the interesting possibility that low-level computa-
tional mechanisms of depression might differ between 
major depression with and without comorbid anxiety.
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fluctuate commensurate with the outcomes’ congru-
ency with prior beliefs regarding oneself. Designing 
sensitive measures of the context-dependence of rein-
forcement learning dysfunction in depression is there-
fore a crucial task for future research.

Bipolar Disorder

Phenomenology and subtypes of bipolar disorder  In con-
trast to major depression, which is characterized solely 
by episodes of depression, bipolar disorder is character-
ized by episodes of both depression and mania. Under 
common definitions in the DSM-5 and ICD-10, mania 
refers to a state in which mood is elevated (euphoria), 
and there is increased energy and goal-directed activ-
ity. Mania, and its less severe counterpart hypomania, 
are also typically characterized by increased risk-taking 
behavior, a decreased subjective need for sleep, and 
increased self-esteem, potentially leading to delusions 
of grandiosity (Goodwin & Jamison, 2007).

Typologies of bipolar disorder distinguish between 
two subtypes, bipolar I and bipolar II, which differ in 
the relative frequency and intensity of manic and 
depressed episodes. Bipolar I disorder is characterized 
by at least one episode of mania and often (but not 
necessarily) by other episodes of depression. By con-
trast, bipolar II disorder is typified by episodes of both 
major depression and hypomania (not meeting the full 
criteria for mania). Both forms of bipolar disorder are 
typified by a functional recovery between episodes of 
mania or depression to a mood in the normal range.

Whereas cognitive theories of depression have 
abounded since the 1960s, until recent years bipolar 
disorder was largely viewed through a psychopharma-
cological lens (Goodwin & Jamison, 2007), with a rela-
tive paucity of cognitive theorizing (but see, e.g., Alloy 
et al., 2008). One finding in this literature, however, is 
of mood-congruent information-processing biases in 
bipolar disorder. That is, individuals with bipolar disor-
der may display negative information-processing biases 
when in a low mood, as in depression, but positive 
information-processing biases when in a good mood 
(for reviews, see Alloy, Reilly-Harrington, Fresco, & 
Flannery-Schroeder, 2005; Whitton, Treadway, & Piz-
zagalli, 2015). This mood congruence is a critical feature 
of bipolar disorder that computational models must 
seek to account for; it also represents a significant point 
of contrast with cognitive theories of depression, which 
rather emphasize trait-level information-processing 
biases as a cognitive mechanism for the disorder.

Computational modeling of bipolar disorder  A recent model 
has posited a set of computational mechanisms that 

anergia, since low response vigor and reduced energy 
expenditure are rational strategies for an agent to adopt 
in states where few rewarding outcomes can result from 
action.

The second model-based mechanism is a failure to 
“prune” negative states from future planned actions in 
depression. In planned decision-making, nondepressed 
individuals typically avoid excessive focus upon the 
future possible states associated with large negative 
outcomes (Huys et al., 2012). This is an adaptive strategy 
since it means that cognitive resources can be directed 
instead toward plans that have a high a priori chance of 
reaching future states associated with a high reward 
value. Less pruning of negative states would be associ-
ated with a relatively greater focus on negative-valued 
paths in future planning, potentially leading to the pat-
terns of ruminative thought characteristic of depres-
sion (Whitmer & Gotlib, 2013).

Open questions for the computational modeling of depres-
sion  The literature reviewed above suggests several 
important open questions to be addressed via the com-
putational modeling of behavior in depression.

First, to what extent can anhedonia in depression be 
characterized by asymmetric learning from positive and 
negative reward prediction errors, rather than reduced 
consummatory pleasure in reward receipt? Second, 
what combination of model-based and model-free rein-
forcement learning best describes the cognitive deficits 
observed in depression? On the one hand, depression 
may be associated with a low-level asymmetry in (model-
free) learning. On the other hand, depression may be 
better characterized by model-based deficits in the con-
struction of the present state and planning for future 
states. Or, depression may involve both deficits. Impor-
tantly, these questions can be answered using computa-
tional models and tasks specifically tailored to measure 
the parameters of these models in each individual.

Finally, how might the computational deficits under
lying depression be expressed in different contexts? As 
Beck (1967) observed, inferences in depression are far 
more likely to be negatively biased when their object is 
one’s own worth than when their object is an abstract 
statistical quantity. In the language of reinforcement 
learning, it is almost certainly not the case that learn-
ing rates for positive and negative prediction errors will 
be expressed equivalently in all domains. Instead, one 
possibility is that individual differences in the alloca-
tion of attention to positive and negative outcomes in 
different settings might provide a principled explana-
tion for apparent differences in reinforcement sensitiv-
ity in depression. For instance, it is possible that attention 
to outcomes—and therefore learning rates—may 
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which mood affects not the hedonic value of rewards 
but the relative strength of learning from positive ver-
sus negative reward prediction errors:

	

Qt+1(st ,  at )=
Qt(st ,  at )+  f mt ⋅η+ ⋅δ , δ  > 0
Qt(st ,  at )+  f −mt ⋅η− ⋅δ , δ < 0

 
 

⎧
⎨
⎪

⎩⎪ 		
� (37.8)

where δ is defined according to equation 37.3, not 
equation 37.5. The cognitive interpretation of equation 
37.8 is that positive moods lead to increases in learning 
rate from positive reward prediction errors and 
decreases in learning from negative reward prediction 
errors and vice versa for negative moods.

Here, too, the reward-sensitivity model of Eldar and 
Niv (2015) and the model specified by equation 37.8 
make different predictions concerning attitudes toward 
risk in bipolar disorder. This is because equation 37.8, 
but not the model of Eldar and Niv (2015), predicts that 
positive moods should be associated with decreased 
risk aversion (increased risk seeking). This is consistent 
with a large body of evidence suggesting that mania 
and hypomania are associated with increased risk-taking 
behavior (e.g., Mason, O’Sullivan, Montaldi, Bentall, & 
El-Deredy, 2014; Thomas, Knowles, Tai, & Bentall, 2007), 
as well as with diagnostic guidelines specifying risk-
taking as a symptom of bipolar disorder in the DSM-5. 
Testing this prediction via behavioral model fitting in 
bipolar disorder is therefore a key task for future 
research.

Conclusion

In the 17th century, Robert Burton compared psychiat-
ric illness to a clock in which one faulty gear interfered 
with the operation of the whole machine. In adapting 
this metaphor, we realize that in every age the brain 
has been likened to the most sophisticated con
temporary machine—including clocks, steam locomo-
tives, and now digital computers—none of which the 
brain is likely all that similar to. Nevertheless, the pre
sent chapter has considered how, given such a clock, we 
might apply computational methods to determine 
which gear is at fault. We have reviewed the history of a 
computational approach to psychiatric illness, with a 
focus on the current state of the art for reinforcement-
learning models of major depression and bipolar disor-
der. Cutting-edge future research in this field will 
involve two lines of work: research to identify the algo-
rithmic principles that govern human mood and affect 
and research to characterize how these algorithms go 
awry in psychiatric illness. Our contention is that these 
questions are best addressed by adapting computa-
tional cognitive models to human behavioral data.

may partly explain mood-congruent information-
processing biases in bipolar disorder. Using a 
reinforcement-learning framework, Eldar and Niv (2015) 
proposed that mood oscillations and information-
processing biases may be governed by a dynamic inter-
action between mood and outcome valuation. 
Specifically, their model proposed that the reward 
value of outcomes Rt is biased by a mood-dependent 
factor f mt in the calculation of prediction errors:

	 δ =  f mt ⋅Rt −  Qt(st ,  at )	 (37.5)

Here, −1 ≤ mt ≤ 1 represents mood at trial t, with nega-
tive values of mt denoting negatively valenced moods 
and positive values of mt denoting positively valenced 
moods. f is a parameter governing the strength of the 
interaction between mood and outcome valuation such 
that values of f greater than 1 indicate mood-congruent 
changes in outcome valuation (i.e., the overestimation 
of outcome value in good moods and the underestima-
tion of outcome value in bad moods).

The model also proposes that mood changes over 
time according to a weighted average of recent reward 
prediction errors that is transformed to lie between −1 
and 1 by a sigmoidal function:

	 ht + 1 = ht + 1 + ηη · (δ − ht)	 (37.6)

	 mt = tanh (δ − ht)	 (37.7)

where ηh is a learning-rate parameter for this reward 
prediction error history. Together, equations 37.5–37.7 
specify a dynamic system in which reward prediction 
errors trigger the mood-congruent processing of subse-
quent rewards. This, in turn, leads to escalatory mood 
dynamics that may explain the emergence of mania 
and depression in bipolar disorder.

There is an important parallel between this model of 
bipolar disorder and the models of depression reviewed 
above. Specifically, the form of equation 37.5 closely 
resembles that of the reward-sensitivity model of depres-
sion in equation 37.3, as posited by Huys et al. (2013). 
The difference between the two models is that Huys 
et  al. (2013) posit a trait-level parameter ρ to govern 
blunted reward sensitivity in depression, whereas Eldar 
and Niv (2015) propose a mood-dependent term f mt.

This comparison may be instructive. In reviewing the 
models of depression above, we observed that the 
reward-sensitivity model of depression posited by Huys 
et  al. (2013) made predictions similar to a model in 
which depression affected not the hedonic value of 
rewards (through ρ) but rather the asymmetry between 
the effects of positive and negative reward prediction 
errors (through η+ and η−). A similar principle applies 
to models of bipolar disorder. This means that an alter-
native model to that of Eldar and Niv (2015) is one in 
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A strong version of our behavioral argument holds 
that it is only by making distinct predictions about human 
behavior that psychiatric theories can meaningfully dif-
fer from one another. After all, if two different psychi-
atric theories made entirely equivalent predictions about 
behavior (and therefore about all phenomenological 
aspects of a patient’s experience that are accessible to 
empirical inquiry), it would be reasonable to conclude 
that these two theories were functionally isomorphic, 
even if they proposed seemingly dissimilar theoretical 
constructs to explain psychiatric dysfunction (Putnam, 
1975). A less strong, more pragmatic version of this same 
argument is that by adopting the quantitative prediction 
of behavior as the ground truth of psychiatric theory, it 
is relatively straightforward to reject theories that may 
seem conceptually sound while making no sensible pre-
dictions regarding behavior (e.g., Houghton, 1969). A 
focus on the prediction of behavior evaluates theories 
according to their empirical content and not the sophis-
tication of their mathematical superstructures.

If it is true that scientific revolutions occur not neces-
sarily because of serendipitous discovery but because 
certain scientists come to ask better questions, then the 
promise of computational psychiatry lies in the nature 
of the questions that it can ask about psychiatric illness. 
We propose that as a source for such questions, compu-
tational cognitive models are a critically important tool. 
Such models can be used to identify the nature of the 
computations employed by the brain, the role of aber-
rant computations in the production of psychiatric ill-
ness, and the potential biological and cognitive remedies 
for computational dysfunction.
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