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Abstract

Sections

Schemas are rich and complex knowledge structures about the typical
unfolding of events in a context; for example, a schema of a dinner
atarestaurant. In this Perspective, we suggest that reinforcement
learning (RL), acomputational theory of learning the structure of

the world and relevant goal-oriented behaviour, underlies schema
learning. We synthesize literature about schemas and RL to offer that
three RL principles might govern the learning of schemas: learning

via prediction errors, constructing hierarchical knowledge using
hierarchical RL, and dimensionality reduction throughlearninga
simplified and abstract representation of the world. We then suggest
that the orbitomedial prefrontal cortex is involved in both schemas and
RLduetoitsinvolvementin dimensionality reduction and in guiding

memory reactivation throughinteractions with posterior brain regions.

Last, we hypothesize that the amount of dimensionality reduction
might underlie gradients of involvement along the ventral-dorsal
and posterior-anterior axes of the orbitomedial prefrontal cortex.
More specificand detailed representations might engage the ventral
and posterior parts, whereas abstraction might shift representations
towards the dorsal and anterior parts of the medial prefrontal cortex.
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Perspective

Introduction

Imagine entering a restaurant. You immediately know the likely
sequence of occurrences and the relevant set of behaviours. You will
beseatedatatable and givenamenu. After placing your order, you will
hopefully receive adelicious meal and maybe a glass of fine wine. This
will be followed by paying the bill and leaving the restaurant. The gen-
eral knowledge of what typically occursin an event and inwhat order,
as well as the appropriate behaviour, is referred to as its ‘schema” ™.
Although schemas are widely investigated in psychology and, more
recently, in neuroscience, they also remain notoriously elusive and
ill-defined*’. Importantly, in schema theory, a satisfying computa-
tional account of how schemas are learned through experience, guide
goal-oriented behaviour, and influence perception, attention, learning
and memory is lacking.

Reinforcement learning (RL) offers a computational theory of
how humans and animals learn goal-oriented behaviours through
experience®. Schemas are thought to represent information about
the environment that is useful for such behaviours (Box 1). In this
Perspective, we synthesize research from the seemingly disparate
fields of schemas and RL to propose that RL, and complementary
algorithms such as dimensionality reduction and latent cause inference,
provide a quantitative framework for schematheory. We begin witha
brief description of schemas and RL mechanisms to show how these
are related. We then focus on three core computational principles
that could underlie schemas: learning asummary of the environment
through prediction errors, grouping of states through hierarchical
RL and latent cause inference, and dimensionality reduction through
learning of abstract state representations (Fig. 1). We then build on
evidence emphasizing theimportance of the medial prefrontal cortex
(mPFC) and the medial orbitofrontal cortex (mOFC) tobothRL" " and
schemas®?'°to hypothesize that these regions mediate dimensional-
ity reduction and guide memory retrieval through communicating
with posterior brainregions. We conclude by postulating that graded
recruitment along the ventral-dorsal and anterior-posterior axes
of the mPFC might reflect the amount of dimensionality reduction
requiredinacurrent situation.

Conceptual mapping of schema to reinforcement
learning theory

Inthissection, we first briefly introduce the concept of schemas, noting
that there is no satisfying computational account for understanding
howschemasarelearned, instantiated and deployed. Then, we briefly
introduce RL as a potential account of schemas. The rest of the paper
willthenelaborate on this mapping between the mechanisms of RLand
the phenomenology of schemas, as well as their neural underpinnings.

Schemas

Schemas are learned knowledge structures that organize knowledge
of what typically occursinacontext>* ", including associative knowl-
edge of relationships and co-occurrences between the components of
recurring events (for example, ‘menu’ and food’ as components of a
meal at arestaurant). Schemas are learned through the extraction of
commonalities across multiple experiences, also termed episodes?,
and as such, schemas are devoid of specific episode details. In this
Perspective, we predominantly discuss schemas that are extended in
time (similar to the notion of ‘scripts” or ‘event schemas™°) and thus
include knowledge of the temporal structure of an event. The process
of retrieving schemas from memory is termed schema instantiation.
Onceinstantiated, schemas canbe deployed to guide behaviour as they

include knowledge of context-appropriate actions (for example, the
knowledge that upon receiving a menu, one should read it and place
anorder). Last, schemas can be thought of as hierarchically organized
‘modules’ that canbe recombined. Both the schema of arestaurantand
that of having dinner at home can include a module of sitting at the
table and eating, and the schema of anairport caninclude arestaurant
asamodule. Thus, schemas can be a part of other schemas, as well as
include other schemas.

Despite decades of research on the influence of schemas on
cognition"**?, itis not completely clear how schemas are learned and
instantiated and how they influence perception, action, learning and
memory'®?"?2, Computational models of semantic networks, concepts
and category learning'®***’ characterize some aspects of schemalearn-
ing, suchas how generalknowledge about the co-occurrence of entities
isextracted, but do notseemto capture fully the scope and richness of
schemas. Particularly relevantis the fact that schemas are learned and
instantiated through experiences that are multidimensional, dynamic
in time and involve goal-oriented actions. For these, we turn to the
framework of RL.

Reinforcement learning

RL providesaset of algorithms for goal-oriented learning and behaviour,
inwhichthegoalis typically conceptualized as maximizing reward while
minimizing costs or punishments®. Through trial and error over mul-
tiple instances of a task, an agent learns the sequence of actions most
suitable for achieving maximal reward in an environment. InRL theory,
tasksare divided into aseries of discrete timepoints or contexts, termed
‘states’. Forinstance, a visit toarestaurant canbe divided into the states
of standing at the entrance, sitting down at the table or havingamenu
inhand. Each state has an associated action policy — the probability of
takingeachactionavailable at that state. A state can also be associated
with avalue, which denotes the expected sum of (possibly discounted)
futurerewards whenin that state and assuming a specific action policy
(values canalsobelearned for eachaction takenin each state, in which
case they are termed state-action values). Tasks can be divided into
states at different levels of coarseness and, similarly, action policies can
be defined as single actions or high-level action groupings (for example,
‘adding salt’ groups reaching for the salt, grabbing it and sprinkling
salt on the food. See Hierarchical RL and latent cause inference may
contribute to learning and instantiating schema hierarchies).

In addition to learning an optimal action policy — what actions
lead to maximizing reward in each state — in a sequential task that
extends over time, the agent can learn a model of the environment,
that is, the probability of transitioning between different states con-
tingent on different actions®**, and the probability of encountering
(good or bad) outcomes at each state. In RL, learning occurs when an
agent experiences a prediction error: a situation in which the actual
outcome is different from the expected one®™*, Prediction errors
include both reward prediction errors, which refer to obtaining more
or less reward than expected, and state prediction errors, which refer
to transitioning to a state that is different than expected. Updating
expectations according to the prediction error aligns expectations
with actual outcomes and reduces future prediction errors. In this
way, through experience, the agent can learn a world model, which
includes representations of states, state-transition probabilities (G) and
the distribution of rewards in each state, and can mentally simulate
actions within this learned world model to determine which action is
bestinwhatsituation (termed ‘model-based RL or ‘goal-directed deci-
sion making™°). Alternatively, in ‘model-free RL’, the agent canlearnan
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Box 1| Partial mapping of schemas to standard reinforcement learning components

Schema components mapped onto reinforcement learning (RL)
nomenclature (states, action policy and state-transition probability;
see the figure) using three consecutive states (s, denoted by the
subscripts t, t+1 and t+2) in the schema of a restaurant. Essential
components (€{...}) of the situation (such as menu or food)
differentiate each state from other states (some, but not necessarily all
such components are denoted in the figure). Dimensionality reduction
and state abstraction can be observed in the schema. For example, the
ordering food state (s,) includes a menu, but does not specify whether
this is physical, online or even memorized, as this can change across
episodes (dimensionality reduction). Episodic details such as the
specific menu items in s, and the colour of the shirts and the use of
chopsticks in the following receiving order (s,,;) and eating (s.,) states
are not included in the schema (state abstraction). In this way, each
state is a generic one, and its learned action policy — a probability
distribution across possible actions in a state (r(s)) — will pertain to
episodes in many similar situations. The three states in this schema of a
restaurant have two actions for each state, ordered by their probability
from high to low (see the figure, shades of grey). The probability of
transitioning from one state to another (state-transition probability:
p(s’|s,a)) depends on the previous state (s) and the action taken (a), and
is often not deterministic. For example, if an order is not conveyed in s,,
the probability of transitioning to s,,; and receiving food is markedly
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lower, and even if food is ordered, a sudden power outage that closes
the kitchen can result in the order not being received and no state
transition from s, to s,.. As schemas are hierarchical, each state can also
further divide into a sequence of substates and respective policies.
Despite this close mapping, we are not claiming that RL can
account for all aspects of schemas, and instead hypothesize that
additional processes such as dimensionality reduction and latent
cause inference mediate schema learning (Fig. 1). Indeed, central
features of RL, such as reward and value, might not be an essential
part of schemas, but that might depend on the level of abstraction
or how well learned a schema is. For example, if the food is bad, that
might influence the choice of dish or restaurant in the next restaurant
experience, but it is unlikely to change the general representation
of states, state transitions and action policies in the schema of
a restaurant. Of course, if this bad experience repeats itself, one
might choose to stop going to restaurants, which could eventually
lead to loss of schema knowledge (especially if restaurant culture
changes in the meantime, unbeknownst to those converted into
home diners). Thus, rewarding experiences might be important to
motivate restaurant visits, but might not be essential to learning
the components of the restaurant schema. Consistent with this,
empirical studies reveal schema representations in the absence
of explicit reward®*"",
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action policy directly without learning a world model, from trial and
error using reward prediction errors.

Core computational principles that could

underlie schemas

The above descriptions suggest how schemas might be mappedtoarep-
resentation of atask, including the world model and the action policy
(Box 1). We now turn to computational principles that could support
this mapping (Fig. 1). We start by asking whether schemas are learned
through prediction errors. Then, we ask whether the hierarchical
nature of schemas might be learned and instantiated via hierarchical RL
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algorithms and complementary algorithms such as latent cause infer-
ence. We conclude this section by asking how dimensionality reduction
might mediate schema learning and instantiation.

Areschemaslearned through prediction errors?

AsRLalgorithms use prediction error-driven learning, the first question
we ask is whether schemas are also learned and updated via prediction
errors (Fig.1a). The alternative hypothesis is that asummary of the typ-
ical and repeating structure of the world is learned by tracking the
frequency of occurrences (‘unsupervised learning™). In this frequency
hypothesis, learning does not require a prediction and an update
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Fig.1| Three reinforcement learning principles
contribute to schemalearning. In the schemas and the
episodes, circles represent states or timepoints, with
different shades representing different state features (see
Box1).a, Prediction errors, namely the difference between
aschema-based prediction and the evidence froma specific
episode, drive schema updating. Both the evidence and
the schemaare selected through latent cause inference
from episodes in the stream of one’s experience, and thus
schema updating eventually converges to the typical
unfolding of events across episodes. b, The hierarchical
structure of schemas is learned via identifying subgoals
(yellow) that chunk subschemas. Subgoals are states that
areidentified as breaking points, which are used to train
policies of subschemas. How subgoals are identified is an
open question, potentially relying on transitions between
sequences of frequently occurring states or the discovery
of optimal breaking points. We additionally propose
salient changes as putative subgoals, offering a mechanism
that can identify subgoals rapidly. ¢, Dimensionality
reduction, implemented via schema-guided attention,
mediates the elimination of episodic details that differ
across similar episodes (symbols) during schemalearning.

Goal This dimensionality reduction results in the inclusion of

‘ goal-relevantinformationin the schema, as well as other

repeating information that is not necessarily goal relevant
(blue shades).
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following a prediction error; instead, learning occurs by averaging
of experience, regardless of predictions and their potential violation.

The discovery of ‘blocking™®* led animal-learning theorists to
shift from assuming that the frequency of co-occurrence (contiguity)
issufficient for associative learning, considering that predictionerrors
drivelearning. Inblocking, a neutral stimulus (such as light) previously
associated with amotivationally relevant outcome (such as an electric
shock or food) prevents a co-occurring neutral stimulus (such asatone)
from also becoming associated with the same outcome. As the first
stimulus fully predicts the outcome, no prediction error is possible

when the outcome occurs, and thus associative learning about the
newly added stimulus is ‘blocked”**. In humans, a wealth of research
shows that reward prediction errors not only drive learning®***°, but
also facilitate long-term memory*°*,

As schemas include state-transition probabilities (Box 1), to
establish that prediction errors drive schema learning, one can
test whether state prediction errors lead to updating of the schema
(Fig.1a) and to changes in behaviour. Recent work in rodents showed
blocking of learning of simple stimulus-stimulus associations,
thereby establishing that learning of ‘neutral” associations required
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state prediction errors***. Computational models thatlearn viastate
prediction errors explained human and animal choice data in stud-
ies that involved frequent changes (reversals) of state-transition
probabilities**~°. Studies also showed that participants trained on
state transitions exhibit enhanced memory for items that violated
these transitions® > and reduced memory for items that cued the
(surprisingly) not-transitioned-to future state’*’. This is consistent
with updating a model of the world through state prediction errors,
whereby the violating information is encoded and the incorrect pre-
dictionis weakened. Whether schemas are learned only via prediction
errorsor through acombination of frequency of occurrences and pre-
dictionerrorsisaquestion for future research (see Box 2 for arelated
discussion on the initial learning of schemas).

These studies, which focused on simplified tasks that trained
participants on few associations and over a few trials or sessions, pro-
vide evidence thatinitial learning of schemas might be driven by state
predictionerrors. By contrast, consolidated and well-learned semantic
knowledgeis thought to be stable and less amenable to change, largely
supported by cortical structures (whereas newly acquired knowledge
issupported by the hippocampus; Box2), and to be more abstract and
include fewer specific episodic details® 2. Thus, itis not clear that these
previous findings from simplified tasks generalize to the updating of
complex and well-learned schemas, as work in humans showed that
complex semantic knowledge can both impair and enhance learning
and memory of new associations®",

In the complexity of everyday life, cues and outcomes are not as
clearly defined as in many of the previously mentioned studies, but
rather dynamically evolve in time and span multiple temporal scales™ ™.
Indeed, viewers of continuous sport games remembered events within
the games that elicited prediction errors better than events that did
not™’°. Inanother study that directly targeted the updating of memories,
Sinclair and colleagues’ used rich movie-clip stimulito elicit predictions
of action outcomes learned over a lifetime of everyday experience (for
example, abatter hittingahome runduring abaseball game). They then
violated these action-outcome predictions by stopping the movie clips
before the expected outcome and moving on to the next (potentially
semantically related) clip. Inasubsequent memory test of the movie clips,
participants demonstrated memory intrusions, recalling details fromthe
semantically related movie clips asif they were in clips that were stopped
prematurely’”’8, These intrusions might reflect memory update of the
movie-clipmemories that wasenhanced by the violations of expectations.

These studies®>”>77"7°, consistent with learning and updating of
schemas, tested for memory of unique (one-trial) episodes but not for
memory of schemathatis semanticin nature. Historically, semantic ver-
sus episodic memories have been thought torely on distinct systems®*#!
(despite early recognition of the interactive nature of these systems'*).
However, recent views emphasize overlapping and highly interac-
tive memory representations®®. In our view, as episodes are used to
update schemas (via prediction error-based learning), better memory
of episodes that elicit a prediction error suggests that these episodes
areprioritizedinlearning and are more likely to influence the updating
of schemas. Likewise, poor memory of episodes in which a stimulus or
state elicited erroneous predictions might reflect the downweighing of
these episodesin representations of schemas. Nonetheless, the specific
mechanism by which better memory for unique episodes reflects or
influences learning and updating of schemas remains to be elucidated.

In summary, emerging literature suggests that schemas might
indeed belearned and updated via predictionerrors, similar tolearning
inRL.

Hierarchical reinforcement learning and latent cause
inference may contribute to learning and instantiating
schema hierarchies

Schemas are hierarchically organized: each schema can be composed
of subschemas and might be a subschema of another, larger schema.
Hierarchical RL algorithms®~*' might provide a blueprint for how such
aschema hierarchy is acquired (Fig. 1b). Learning via RL algorithms can
become prohibitively slow in complex environments, but hierarchically
grouping states and actions into larger units can provide a mechanism
toalleviate this scaling problem. In such ‘temporal abstraction>*? hier-
archical RL algorithms divide atemporally extended task into subunits,
called ‘subtasks’. Each subtaskis defined by aset of possible start states, a
subtask-specificactionpolicy and aset of termination states — also called
‘subgoals’ —in which the subtask will cede control back to the overarch-
ingaction policy (Fig.1b, middle and top)®*°°~*, Subtasks can be defined
by asubmodel, which includes the states, state-transition probabilities
andrewardsinthe subtask. For example, ‘addingsalt’ could be asubtask
that hasits start state initiated upon tasting bland food, continues with
anaction policy thatincludes reaching for the salt shaker, graspingitand
shakingitoverthefood, and thenterminates becauseits subgoal tosaltthe
food hasbeenreached. Subtasks canbe used across disparate tasks®>°
(for example, the ‘adding salt’ subtask could be used inboth ‘dining ata
restaurant’and ‘eating at home’ tasks). The term ‘subgoal’ distinguishes
thetermination state of the ‘adding salt’ subtask (food is salted) fromthe
overallgoal of the‘dining at arestaurant’ and ‘eating at home’tasks (having
afullstomach; Fig. 1b).Insome hierarchical RL algorithms, reaching asub-
goal leads to a pseudo-reward signal®®**?¢, Pseudo-rewards allow stand-
ard RL algorithms to learn the optimal action policy for the subtask that
maximizes pseudo-rewards, in the same way as these algorithms learn
reward-maximizing policies in non-hierarchical settings.

Box 2 | Rapid learning in the hippocampus
shapes new schemas

The idea that event boundaries can become subgoals could mean
that first instances of events — in which subgoals are created —
might be highly influential in shaping models of the structure of
the world. This contrasts with the idea that the structure of the
environment is extracted solely through incremental and relatively
slow learning'®>**. In reinforcement learning (RL) models, the
initial values bias learning and can be hard to overcome®. To avoid
this, in many RL algorithms, the rate of updating — the learning
rate — is high at the beginning of a task and decreases with time.
Indeed, Shteingart et al.””* showed that the first trial experience
greatly biases choices in future trials, and that assuming full
updating on the first trial (a learning rate of 1) best explained this
behaviour. Other studies showed relatively quick learning of
regularities'®>?%/?°'?> and generalization based on such regularities
within tens of trials. The hippocampus, known to be involved in
rapid learning®?’>?’%%"7 also mediates learning of the structure of
the environment??"?'?/8-288 The hippocampus also plays a central
role in event segmentation*?%*2°!, which might contribute to the
initial learning of schemas (see Hierarchical RL and latent cause
inference may contribute to learning and instantiating schema
hierarchies). Thus, converging behavioural and neural evidence
suggests that rapid initial learning shapes schema learning.
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Box 3 | Schemas are broader than
cognitive maps

Similarly to schemas, a cognitive map organizes aspects of an
experience and can be used to flexibly guide behaviour'#2°%2%4,
However, we suggest that schemas can include additional types
of information and are broader than cognitive maps"'®?#?2¢°_|n
most traditional conceptualizations of cognitive maps, information
is represented through some notion of distance, which can be
physical or mental**>** (indeed, although cognitive maps have
been studied extensively in spatial navigation, recent research
has extended the notion of cognitive maps to non-spatial
maps'©"162165166,281.286295296) 'gch distance relationships are, by
definition, symmetrical, whereas relationships in schemas do not
have to be symmetrical. Others view cognitive maps as more akin
to state-transition probabilities in reinforcement learning (RL)
(the probability of transitioning from one state to another; Box 1),
potentially generalized over several tasks"***?, which do not have
to be symmetrical. Some of these proposals also include in the
cognitive map the expected reward in each state™®*. In any case,
coghnitive maps and state-transition functions do not include the
action policy (the probability of executing an action per state; Box 1).
By contrast, action policies and options (hierarchical policies) are
central to schemas, thus schemas are broader than cognitive maps.
Another sense by which schemas are broader than cognitive
maps is that schemas may also include semantic relationships that
are difficult to reduce to a distance measure or a state-transition
probability (for example, that restaurants include menus). Such
relationships have been represented in computational models in
various ways, including symbolic representations®?’>?*"**°, How
such semantic relationships are encoded in the brain and how they
could be integrated with RL to account for schema learning and
instantiation are open questions.

Animportantquestioninhierarchical RLis how to select subgoals.
Interms of schemas, the analogous question is how to segment continu-
ous experience into discrete event schemas®. Hierarchical RL offers
more than one algorithm®°°?**_Some algorithms rely on exploring
anenvironment while keeping track of sequences of states and actions
that co-occur frequently (statistical learning®%%) and use states pre-
ceding a transition to another sequence of frequently co-occurring
states as subgoals®*”1°*, Other algorithms use Bayesian inference to
discover optimal hierarchal organizations of tasks into subtasks given
the structure of the environment”** and the cost of planning®°.

The above algorithms for subgoal discovery all rely on repeated
experienceto constructa hierarchical model of the world. We propose
that saliency canalso trigger the creation of a subgoal. Salient stimuli
create anintrinsic reward signal and engage motivation-related neural
systems, much like rewards'®™", Research on event segmentation
that focuses on how ongoing and continuous experience is chunked
into discrete events®*'>'> has shown that salient changes, termed
‘event boundaries’, cause humans to segment their experiences
in memory. For example, events that span an event boundary are
remembered as happening farther apartin time from each other, and
their temporal order is often remembered worse than that of events
not separated by aboundary™* ¢, This suggests that event boundaries,

like subgoals, structure experience into discrete, segmented units.
Indeed, reward prediction errors have been shown to structure
memories™’, consistent with our idea that such salience-induced
prediction errors create subgoals. A mechanism that relies on sali-
ent changes to create subgoals does not require repetition as even in
the first instance a change of context, perceptual details or internal
state can trigger event segmentation"*">'>18_ This discrete event
representation could then formabase that future episodes mightjoin,
eventually culminating to an event schema. This proposal resonates
with recent behavioural work suggesting that schemas can be cre-
ated rapidly™® (Box 2). Such rapid extraction of the structure of the
environment can facilitate goal-oriented learning and behaviour in
new situations’?'?! with later learning refining that initial structure
extracted”>'>,

Latent cause inference might be the computational process by
whichsalient changes bothinitiate anew schemaand instantiate exist-
ing (sub)schemas. Latent cause inference is a computational theory
of how observations that are similar to each other are grouped into
clusters (‘latent causes’)***>'**1%%, The latent cause underlying the cur-
rent observations can be inferred using Bayesian inference by com-
bining prior beliefs about the probability of various latent causes (for
example, the latent cause responsible for recent observationsis most
likely to underlie the next observation) with evidence from current
observations. Thus, observations that are sufficiently different from
existing latent causes prompt the creation of a new latent cause**'?’,
Recent theoretical work has begun to explore how salient changes,
suchaseventboundaries, trigger the inference of anew latent cause?'
or instantiate a relevant event schema®. Latent cause inference can
facilitate the grouping of states into subtasks in hierarchical RL, such
that each latent cause is treated as a separate subtask. In this way, for
eachlatent cause, the agent canlearn amodel (and submodels, as latent
causes canbe hierarchically constructed) and an action policy, asinthe
hierarchical RLmodels above.

Dimensionality reduction through selective attention might
mediate schemalearning

Schemas summarize information across multiple multidimensional
episodes. Learning this summary could be conceptualized as two
processes: a form of dimensionality reduction and state abstraction
(Fig. 1c). Regarding the former, representing the unique features of
each experience probably requires high-dimensional representa-
tions, and schemas can be thought of as a summary representation
that contains information from multiple experiences while elimi-
nating episode-unique dimensions. Note that unlike other forms
of dimensionality reduction that aim to preserve information, here
schemas ideally remove idiosyncratic episodic information to allow
generalization. To learn such reduced representations, one option is
that schemalearning involves simply averaging across features in all
dimensions across episodes, such that dimensions that repeat persist,
whereas features that change average out. Alternatively, schemalearn-
ing might involve goal-sensitive dimensionality reduction, whereby
dimensions thatinclude repeating goal-relevant features (such as meal
pricesonamenu) are prioritized, whereas unique episodic featuresin
goal-irrelevant dimensions (such as the colour of the server’s shirt) are
downweighted'?® (Box 1).

In RL, an optimal representation of a state focuses on only
goal-relevant information in the environment®?**°, The process by
which anagentlearns what dimensions of the environment areimpor-
tant to a given task has been termed ‘representation learning”*, and
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often involves dimensionality reduction. The idea is that through
experience, an agent learns what dimensions of the environment are
relevant to their goals and therefore should be attended to, as well as
what dimensions are irrelevant and thus should be ignored. Indeed,
learning the relevant (reward-predicting) dimensions of a state guides
attention to these dimensions, which in turn prioritizes learning pre-
dictions associated with the reward-predicting dimensions'1%,
These studies suggest that goal relevance and selective attention might
mediate dimensionality reduction during schemalearning.

However, repetition of features might result in learning of goal-
irrelevant dimensions as well. Indeed, people are faster to identify a
stimulus that appears in a location where, in other task trials, regu-
larities existed in a stream of symbols™**°, suggesting that they are
attending to that location despite it being goal irrelevant. Similarly,
across various behavioural tasks, processing of item pairs that are
semantically congruent and encountered repeatedly in daily life (such
asrestaurant and menu) is typically enhanced (reduced reaction times
and increased accuracy) compared with incongruent pairs that are
rarely encountered (such as spinach and train), even if congruency
is task irrelevant™! and item pairs are presented only briefly"**'*3,
Task-irrelevant congruence also enhances long-term memory**,
but perhaps not for unique episodic details'*. In addition, studies of
statistical learning have shown that predicting a goal-irrelevant but
repeating dimension comes at the expense of later memory of unique
episodic details®**""*°, Together, these findings suggest that attentional
mechanisms might prioritize learning of repeating information, goal
relevant or irrelevant, potentially at the expense of downweighting
unique episodic details, as we propose is key for schemalearning. This
mightbe adaptive because it allows flexible behaviour when the world
changes*™*'* (similar to cognitive maps; Box 3). For example, learn-
ing thatinrestaurants the cashier is typically next to the bar — eveniif
mostlyirrelevant because paymentis typically made at the table with
a waiter — can be useful if one is ever in a rush to leave and must pay
at the cashier.

Whereas dimensionality reduction can be seen as determining
what dimensions willbe included inaschema, state abstraction refers
to learning features within a dimension that generalize across similar
episodes™®*’ (Box 1). For example, in the price dimension, a schema
of arestaurant might represent that appetizers are generally cheaper
thanentrees, but abstract away specific prices that could change over
time and depend on the restaurant. Various computations have been
hypothesized to govern state abstraction and this is a topic of ongo-
inginvestigation (for example, seerefs. 150,151). We hypothesize that
prediction error learning could be one mechanism for learning the
abstracted features themselves (see ref. 152 and Fig. 1c). We note that
both dimensionality reduction and state abstraction can be viewed
throughasimilarlens, depending on the specifics of the representation
and the implementation.

Medial PFC involvement in schemas and
reinforcement learning

We now turn to mapping the ideas laid out above to potential neural
substrates. Substantial evidence supports that the orbitofrontal cor-
tex (OFC) and mPFC are involved in both RL and schema-related pro-
cesses; however, the functions these cortical regions have are intensely
debated (Box 4 and alsoseerefs.5,8,10,16,59,153-156). Here, we focus

to collectively refer to these areas. We first summarize evidence
thatthe mPFCrepresents bothschemasand RL states. We then offer that
low-dimensional representations in the mPFC that can activate
detailed memories in posterior brain regions might underlie these
representations'. Last, we postulate that the amount of dimensionality
reductioninthe mPFC determinesthe involvement of subparts along
its ventral-lateral and anterior-posterior axis.

mPFCrepresentations of both schemas and reinforcement
learning states

A prominent theory suggests that the mPFC and OFC represent a
map of task states in RL®'*%71¢° (but see Box 4 for alternative theo-
ries). Indeed, recent work found mOFC-vmPFC representations

Box 4 | The controversy over the role of the
OFC in learning and decision making

We have proposed a role for the orbitofrontal cortex (OFC) in
schema learning and instantiation. An alternative prominent view
suggests that the OFC represents economic value, which is the
expected reward for different options in a task'>*'*>**, This thesis has
been supported by a variety of studies across species showing that
OFC neurons encode economic value during decision making®°°=%2,
neuroimaging studies in humans showing OFC activation across
decision tasks?*°%3*%* and studies across species showing lesions to
the OFC impair value-based decision making®®°=,

However, the hallmark deficit due to OFC lesions are
impairments in reversing previously learned associations, that
is, a slowness in changing the preferred option when reward
contingencies reverse. In these tasks, lesions to the OFC in rodents
and primates spare initial learning, while consistently slowing the
shift of option preference after reversals®**=". As loss of encoding
of the value of the different options should have impaired initial
learning as well, this finding has been taken to suggest a role
for OFC in inhibitory control in particular®. An alternative view
suggests that these findings, and many others (including ones
attributed to representation of economic value), are consistent
with the OFC representing latent states or schemas. In this view,
slower reversal in the absence of a functioning OFC is attributed to
trial-and-error relearning of the now-correct action rather than the
more rapid shift between latent states (or schemas) representing
different action policies that are appropriate for different contexts
(pre- and post-reversal)™°.

One resolution of this controversy suggests that neurons in the
OFC show representation of economic value in electrophysiological
studies in animals in tasks in which the expected reward for
different options is a crucial part of the latent state representation.
However, when reward and states are dissociated, or when the task
does not include rewards (and therefore economic value) at all,
findings across species suggest that neural activity in the OFC, and
potentially mostly the mOFC-vmPFC (an area encompassing the
medial part of the OFC and the ventromedial prefrontal cortex, see
main text), represents latent states or schemas®®'60248313514 Another
possibility is that the overall level of activation or rate of neural
firing in the OFC represents economic value, whereas different

onthe medial part of the OFC (mOFC), ventromedial PFC (vmPFC) and subpopulations of OFC neurons represent latent states®9?°¢°" (see
the mid-mPFC (the area dorsal to the mOFC-vmPFC on the medial mPFC representations of both schemas and RL states).

wall, but ventral to the most dorsal part of the mPFC), using ‘mPFC’
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of task states and the relationships between them for conceptual
spaces'®"'®?, sequential structures®*>'* and social knowledge'°.
Some theories suggest that these mOFC-vmPFC representations are
particularlyimportant when states cannot be determined on the basis
of perceptual input alone but are latent (such as latent causes; see
Hierarchical RL and latent cause inference may contribute to learn-
ing and instantiating schema hierarchies) and require the retrieval
of information from memory'®’. Empirically, multivoxel activity
patterns in mOFC-vmPFC are consistent with Bayesian inference
of the current (latent) state when this inference requires integrat-
ing retrieved prior memories and current observations’. Another
study successfully classified task-state representations from the
mOFC-vmPFC that included information from the current and the
previous trial, and thus relied on memory’. The mid-mPFC also medi-
ates the retrieval and recombination of memories needed to make
choices about novel stimuli'*”*%,
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Schemas hold knowledge of what typically occurs in an event,
and therefore schemainstantiation requires retrieving information
from memory. Consistent with the mPFC representing latent task
states that rely onmemory, itis also involved in mediating schemas®".
Forinstance, lesions to the mOFC-vmPFC impaired the appropriate
deployment of schema knowledge'*'*"'”!, Moreover, recent stud-
ies showed that multivoxel activity patterns in the mid-mPFC were
more similar for events that belonged to the same schema (such
as visiting different restaurants) compared with different schemas
(such as visiting a restaurant versus an airport). This was true even
when computing similarity across video and audio stimuli, which
suggested a schema representation beyond perceptual features in
the mid-mPFC'>"7*'* Together with the finding that mPFC repre-
sentations of task states follow Bayesian inference’, these findings
strengthen the proposal that schemas are instantiated via Bayesian
latent cause inference'.
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Fig. 2| Dimensionality reduction in the mPFC. Empirical results from human
functional MRI studies of four disparate paradigms support our proposal that
the medial prefrontal cortex (mPFC) functions to reduce dimensionality in
schemas. a, In areinforcement learning task (top right), participants learned that
oneofthree category dimensions (faces, F; landmarks, ; tools, 7) is relevant for
obtaining reward. The model that best explained participants’ behaviour biased
attention towards that category both during choice (middle) and duringlearning
from the outcome (bottom), suggesting participants had a dimensionality-
reduced representation of the reinforcement learning task. In this model, the
expected reward for each choice (V) was calculated by weighting the value of
eachcomponentimage (v) by the attention toits category (®). After obtaining
reward, the value of componentimages was updated according to the prediction
error, §, reflecting the difference between expected and obtained reward, scaled
byalearningrate nand the same attention weight @). Activation (functional MRI
blood oxygen level-dependent response) in the mid-mPFC (top left) correlated with
predicted rewards, as estimated by that dimensionality-reduced representation.
b, Ina categorization task, participants categorized bugs on the basis of one, two
or three dimensions (antennae size, leg size and mandible shape). Ventromedial
prefrontal cortex (vmPFC) high-dimensional multivoxel activity patterns were
measured during categorization and orthogonal components explaining
variance in multivoxel activity patterns were extracted. Dimensionality reduction
(‘compression’) was quantified as the number of components that explained 90%
ofthe variance in vmPFC activity patterns (with fewer components interpreted as
stronger compression). As participants learned the categories over time, simpler

categorizations had stronger compression (plot), suggesting that dimensionality
reductionin vmPFC tracked the dimensions of the categories. ¢, Inan associative
memory task, participants first encoded associations between trial-unique objects
and several shared scenes. During retrieval trials, objects that had appeared during
encoding with the same scene (overlapping) had greater similarity in their neural
representations in mid-mPFC compared with those that appeared with different
scenes (non-overlapping). This similarity only emerged following a period of
consolidation (‘remote’), suggesting that during consolidation, specific episodes
(trial-unique objects) became grouped on the basis of ashared feature (the scene),
whereas details about the items within each episode were reduced. d, Inaschema
instantiation task, participants watched movie clips showing different instances
of'schemas (such as aschema of a restaurant, bottom). mPFC representations
generalized across different instances of the same schemas (such as all cafe clips,
right), asindicated by increased similarity within schemas compared with across
schemas. This suggested that the mPFC had reduced dimensions and alack of
specific details for each schemainstance viewed. Similar mPFC representations
were also found across visual versus auditory modalities, but not when the order
of events was compromised (left, the red reflects the z-score of the contrast,
comparingintact versus scrambled order activation), which suggested that
although the modality dimensionis reduced in mPFC schema representations, the
sequential information is preserved. Partais adapted with permission fromref. 134,
Elsevier. Partbis adapted fromref. 175, Springer Nature Limited. Part cis adapted
with permission from ref. 83, Elsevier. Part dis adapted fromref.12, CCBY 4.0
(leftand bottom) and ref. 173, Springer Nature Limited (right).

The mPFC might represent schemas and reinforcement
learning states through dimensionality reduction

Studies show dimensionality reduction in the mPFC across
paradigms'>'” (Fig. 2). For instance, in a RL task, mid-mPFC activation
correlated with predicted rewards computed on the basis of attend-
ing to one relevant task dimension out of three available™* (Fig. 2a).
More directly, Mack et al."” used a categorization task and extracted
the number of orthogonal components that accounted for variancein
mOFC-vmPFC multivoxel activity patterns. The results showed more
compression (namely, fewer components required to explain variance)
through learning, especially for categorizations that required fewer
dimensions (Fig.2b). Other studies exposed participants toitem-scene
associations, with some items sharing the same scene®’>"7°, After a
period of consolidation, the neural representations of items that shared
the same scene, but not different scenes, showed stronger similarity to
each other in the mid-mPFC, as if specific episodes (each item-scene
pair) had been grouped on the basis of a shared feature (the scene)
and details about the items within each episode were downweighted
(Fig.2c).Studies grouping episodes on the basis of similar attentional
goals obtained similar results'”. Last, studies that showed reduced
representation of episodic details in the mPFC also suggest dimen-
sionality reduction during schema instantiation'>'”* (Fig. 2d). Many of
these studies showed specificity to the mPFC*>%*', This is consistent
with the conclusion that the mPFC is performing dimensionality reduc-
tion in these RL and schema-related tasks, rather than the alternative
explanation that dimensionality reductionis performed elsewherein
the brain and is then communicated to the mPFC.

Lesion studies further demonstrate that the mOFC-vmPFC has a
causal role in the appropriate deployment of schemas>*'*°, although
whether dimensionality reduction underlies observed impairments
is an open question. Individuals with mOFC-vmPFC lesions are slower
to match concepts to a relevant schema and reject concepts that
belong to an irrelevant competing schema, and are also more likely to
rate concepts from anirrelevant schema as belonging to a currently

relevant schema''®. Individuals with mOFC-vmPFC lesions also do
not demonstrate the typical memory enhancement induced from
schema-related stimuli”""%, For instance, whereby neurotypical par-
ticipants often show false memory of words as having appeared in a
list of schematically related words, this false memory effect is reduced
in individuals with vmPFC-mOFC lesions"’. Damage to the mid-mPFC
leads to poor performance in the Wisconsin Card Sorting Test's°%3,
which requires participants to sort cards that have multiple dimensions
(colour,number and shape) based on only one dimension (for example,
colour). One hypothesis is that these lesion study findings are due to
impaired dimensionality reduction — relevant schema dimensions are
not prioritized, leading to behavioural and memoryimpairmentsinsome
cases'1 78180 and to fewer memory intrusions in others'”’. However,
this dimensionality-reduction hypothesis awaits direct testing in future
lesion studies.

Consistent with our proposal that dimensionality reduction pri-
oritizes both goal-relevant and repeating but goal-irrelevant dimen-
sions, evidence suggests that the mPFC represents both types of
information'®7160184185 and represents task structure even when it
is goal irrelevant'**1°¢1818¢ For example, the mOFC-vmPFC repre-
sented a cognitive map of atwo-dimensional social hierarchy evenin
a task that asked participants to make inferences based only on one
dimension'*®. In general, mOFC-vmPFC neural representations of
items that share adimension (such asthe context of learning) are more
similar than representations of items that do not share a dimension
(even when participants perform an unrelated task)'®"'**, The mPFC
also showed differential activity during encoding of semantically
congruentversusincongruentinformationnot only when participants
judged congruency™®°, but also when they judged grammatical
correctness of word stimuli (when semantic congruency was goal
irrelevant)™'%,

Temporal order seems to be a consistently important dimen-
sion in mPFC representations of schemas. Indeed, scrambling
the order of events in a schema disrupted their representation in the
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Box 5 | The contribution of cortical and
subcortical networks to schemas and states

Brain areas other than the medial prefrontal cortex (mPFC) probably
contribute to learning, representing and instantiating both schemas
and states. In particular, neural activity in lateral PFC is probably
essential to representations of both schemas and states™™®. The
lateral PFC is implicated in an array of executive functions®=",
Its role in executive function has been established across species
and paradigms, including the Wisconsin Card Sorting Test that
requires adaptive sorting of cards based on changing rules or
dimensions'®"'%*"° and tasks that require cognitive control of
episodic and semantic memory?%*?°=*%_Collectively, one can
describe lateral PFC function as selecting and maintaining neural
activity patterns that represent goals and the means to achieve
them®®*”, Consistent with this, it has been recently proposed
that the lateral PFC reformats task knowledge in schemas and
states (represented by neural activity in the medial orbitofrontal
cortex-ventromedial PFC and the medial temporal lobe; Box 2)
to perform action selection and produce behaviour'®.

The lateral PFC, and specifically the dorsolateral PFC, is a part
of the frontostriatal loop that includes the dorsal striatum and is
considered a substrate for model-based reinforcement learning
(RL)* (also called the ‘associative’ or ‘cognitive’ loop?%%9).
Some hierarchical RL models propose that within this loop,
the dorsolateral PFC represents hierarchical action policies®
(see Hierarchical RL and latent cause inference may contribute to
learning and instantiating schema hierarchies). Others suggest
that the lateral PFC performs Bayesian inference to select the
current context, which in turn determines the action policy
in the striatum®'*. Thus, frontostriatal loops, together with
midbrain dopaminergic modulation of learning in corticostriatal
synapses®°**' might mediate learning and executing of hierarchical
schemas®®/%82%23%3 Consistent with our view that salience can
trigger event segmentation and the creation of subgoals for
hierarchical RL and schemas, the dorsal striatum is activated at
event boundaries and this activity correlated with later memory of
events'¥?°°, The striatum, as well as midbrain areas, also respond
to prediction errors during learning of semantic knowledge®**,
state transitions** and novelty more broadly, even in the absence
of explicit rewards'®®"3%*, Other key regions are the hippocampus
and its prefrontal interactions®®""*°® (Box 2), as well as regions in the
temporal and parietal lobes®.

mPFC" (Fig. 2d). In rodents, lesions to the mPFC impaired temporal
memory™. In humans, mOFC-vmPFC lesions (specifically, BA25,
subcallosal vmPFC) impaired schema knowledge, while sparing cat-
egory knowledge'; arguably, the temporal order of events is a critical
aspect of the former, but not the latter. Studies in both humans and
rodents found representation of sequential order in the mPFC (see
refs. 195-197). These representations might be supported by strong
anatomical connections from mPFC to the hippocampus'*®2%' — widely
thought to represent temporal and sequential information'?2°*2% — ag
mPFC-hippocampal functional connectivity supports learning and
memory of sequential information®°**””, Such representations of tem-
poral order are consistent with representation of schemas because

schemas contain information about the sequence of typical occur-
rences in an event, just as state-transition probabilities in model-
based RL reflect a sequential transition from one state to another
(Fig.1and Box1).

The different functions of the mPFC versus the hippocampus
in supporting temporal information included in schemas is not yet
clear”12122208 One general idea is that the hippocampus is crucial
for initial encoding of memories (Box 2), and that as memories
become schematized, they become more dependent on the mPFC
and independent of the hippocampus®*¢®¢2, Although this shift from
hippocampal to mPFC encoding may occur for temporal informa-
tion as well, studies show the hippocampus represents temporal and
sequential information both for novel episodes and for well-learned
regularities?>?°7°>?% Thus, another suggestion is that the mPFC
represents sequential order memory, whereas the hippocampus
represents continuous and gradually changing temporal context*".
Another not mutually exclusive idea is that mPFC representations
of schemas provide dimensions for retrieval of temporal memory of
specific episodes represented by the hippocampus?®?, as well as other
brain areas”**".

Insum, evidence across paradigms suggests that bothinschemas
andinRL the mPFC might mediate dimensionality reduction. However,
questions remain regarding whether this is a causal role, and what
principles guide dimensionality reduction in the mPFC.

Gradients of dimensionality reduction and memory
reactivation along mPFC axes

One potential role of representations of schemas and states in the
mPFC is to guide the retrieval of knowledge via memory reactiva-
tion in posterior brain regions*'***2, For instance, mPFC neural activ-
ity precedes hippocampal and ventral temporal lobe activity during
memory retrieval®* 27, Mid-mPFC activity also correlates with the
persistence (across time) of ventral temporal lobe and hippocampal
representations of items experienced within the same context®, More
directly, arecent study showed that the extent of the representation
of aschemain the mPFC correlated with the strength of the poste-
rior medial cortex representation of specific events consistent with
that schema (for example, a specific visit to a restaurant)'’. Lesion
studies demonstrate causality: in arodent reversal-learning task that
requiredresolvinginterferencetoinfer the correct state, mPFC lesions
impaired hippocampal representations that mediated interference
resolution?’, Inhumans, mOFC-vmPFC lesions impair the evaluation of
retrieved memories****, which canresultin confabulation — retrieval
of memories that are irrelevant to a specific context or schema%%,
In addition, the mPFC might route the involvement of cortical versus
hippocampal systems based on how memories relate to the current
schema instantiation®": connectivity with posterior cortical regions
mediates memory of schema-consistentinformation, whereas connec-
tivity with the hippocampus mediates memory of schema-inconsistent
information13,15,17,189,190,2237227.

These memory reactivation findings were reported in different loci
inthe mPFC. Inthis Perspective, we hypothesize that the level of dimen-
sionality reduction, or the degree to which memories are schematic
and lack specific details, might underlie the gradual involvement of
subregions alongthe anterior to posterior and the ventral to dorsal axes
of the mPFC (regarding the medial to lateral axis, the lateral OFC has
been extensively discussed elsewhere as representing states based on
observable information'*****, and we discuss the lateral PFCin Box 5).
Our proposal is motivated by gradual changes in the anatomical
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structure and connectivity along the mPFC. There is awide agreement
on a gradual transition from agranular to granular cortex along the
posterior-anterior axis of the mPFC**%*°, Along the ventral-dorsal axis,
studiesin humans and monkeys generally show different connectivity
profile of mid-mPFC versus mOFC-vmPFC"*?°' (more below), and a
recent study found that these changes are gradual®.

We therefore propose that abstract representations might recruit
more anterior parts of the mPFC, whereas detailed memories might
recruit the posterior mPFC and its connectivity with the hippocampus.
Research suggests that the anterior part of the PFC is involved in rep-
resenting future or counterfactual states and actions, but not current
ones®?**_Studies on prospective planning and predictions also show
agradient of predictions inmPFC, whereby predictions of the far future
arerepresented more anteriorly and predictions of the near future are
represented more posteriorly’>™. Potentially, the farther one prospects
tothefuture, the more abstractand less concrete and detailed are one’s
thoughts*” ¥, and therefore they are represented more anteriorly. This
might also be true for counterfactual thoughts compared with actions
andevents that have materialized. Last, functional MRI studies of dimen-
sionality reductioninabstract tasks reportamore anterior cluster of vox-
elsinthe mOFC-vmPFC"*'” compared with studies addressing retrieval
of autobiographic memories of specific events*°. This posterior versus
anteriorlocalizationin the mPFC aligns with the connectivity of the more
posterior (and ventral) part of the mPFC and the hippocampus'®2”"
which is crucial for the encoding and retrieval of detailed memories,
potentially throughthe allocation of distinct representations that serve
to disambiguate similar stimuli?*'~2* and states****5,

Specificity versus abstraction might also underlie graded involve-
ment from ventral to dorsal mPFC, supported by differences in func-
tional connectivity. For instance, more ventral parts of the mPFC have
been shown to represent values of specific stimuli (for example, the
value of achocolate outcome) rather than more generic (scalar) value
representations that are invariant to the specific stimulus (for exam-
ple, when two different outcomes are equally valued)***°. Further,
although retrieval of specific autobiographical memories tends to
involve a ventral mPFC cluster of voxels**°, a study addressing rule
learning that required abstraction across multiple episodes showed
mid-mPFC activation®'. Whereas the mOFC-vmPFC is connected
to the hippocampus, which is important for detailed memories, the
mid-mPFCis connected with the posterior medial cortex®***"**2, which
represents events over large timescales by potentially abstracting
away more specific details**>%, Of note, the studies mentioned here
employed avariety of learning protocols and stimuli, so they are not all
directly comparable. Nevertheless, they are in line with our proposal
that the extent of dimensionality reduction underlies differential
involvement of mPFC subregions.

Although our hypothesis is consistent with existing data, we note
that other proposals exist for the function of the mPFC, including repre-
senting economic value®>>>¢, the evaluation of retrieved memories*”,
confidencein value estimates®’ or retrieved memories®”, or signalling
the congruency of perceptual information with the current schema®
(Box 4). In our view, recent studies that examined multivoxel activity
patterns support the hypothesis that the mPFC represents states or
schemas because these studies show different neural representations
for stimuli or memories associated with different states or schemas,
even when these had the same economic value, were retrieved with
similar levels of confidence or were similarly congruent with the current
schema?®7+24258 Thuys, different representations may be multiplexed
inthe mPFC: different populations of neurons might represent different

statesand schemas that, inturn, activate different neuron populationsin
posterior brainregions andlead to the retrieval of different memories™*,
whereas the overalllevel of activity in mPFC neurons might signal value,
congruency with existing schemas or other monitoring signals.

Conclusion and future directions

In this Perspective, we outlined how RL and event schemas might be
related. We proposed that schemas might be learned via RL-related
mechanisms such as prediction errors, hierarchical decomposition
of tasks and dimensionality reduction. We then hypothesized that
dimensionality reduction might underlie the involvement of the mPFC
inbothschemasandRL, and postulated that the extent of abstraction
might determine the locus of involvement along anatomical mPFC
axes. Although this hypothesisis consistent with the literature, it needs
to be further tested and compared with alternative proposals for the
functional role of the mPFC and OFC (Box 4).

Like episodic memories, schemas change through periods of
consolidation®*%622%2%0_An open question is how the computations
we outlined contribute to these changes. A few recent studies directly
tested aspects of this question by exposing subjects to unique loca-
tions, and then testing for memory of both the specific locations and
schema-like summary statistics of the distribution from which loca-
tions were drawn'??"%**_In both rodents and humans, these tests
showed that episodic memories of specific locations deteriorate
over time. In rodents, the formation of schemas (measured through
memory of the location distribution) required the passage of time®*?,
whereas in humans, schemas formed rapidly, even before memory
consolidation, and then remained stable' or also deteriorated*

Glossary

Action policy
A probability distribution across
possible actions in a state.

Multivoxel activity patterns
Blood oxygen level-dependent
activity patterns in functional

MRI that span across multiple
voxels (three-dimensional units

Agent
An entity (human or artificial) that learns
and behaves in the environment.

of measurement in functional
MRI) thought to reflect the neural
representations of stimuli, states,

Dimensionality reduction contexts and so on.
The projection of data into a
lower-dimensional subspace, in State

which dimensions reflect a weighted In reinforcement learning, a stateis a

combination of the original dimensions. summary of features that describe the

current situation.

Event boundaries

Changes in situations or salient
occurrences that cause the
segmentation of experience into
discrete event representations during
perception and in memory.

State prediction error
A signal that accompanies a transition
to a state that is different than expected.

State-transition probability
The probability of transitioning from one

Latent cause inference
A computational theory of how
observations are grouped into clusters

state to another.

(‘latent causes’) according to their
similarity.
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over time. An exciting future direction could be to combine such
paradigms with tasks that include hierarchical representations and
action sequences’"?”'?', Computational models of these tasks would
allow assessing the specific mechanisms we proposed here for schema
learning and instantiation, both early in learning (Box 2) and through
consolidation.

Although RL algorithms generally suffer from a curse of dimen-
sionality, namely they scale poorly to rich high-dimensional everyday
life events®'?, recent RL models combined hierarchical RL principles
and neural network models to learn multidimensional environments
and successfully completed very complex tasks (see refs. 265-267).
Whether such advanced RL algorithms are used by humans to learn
schemas of multidimensional and complex environmentsis aquestion
for future research?*®. We propose that ideas and findings from schema
research, such as those we have laid out in this Perspective, could
potentially inform further development of these models. For exam-
ple, exciting work now combines neural networks, latent cause infer-
ence and RL to explain schemas and event segmentation of complex
environments in humans®*,

Inaddition to these and other outstanding questions we outlined
throughout this Perspective, key questions for futureresearchinclude
what is the organizing principle of mPFC function, whether it indeed
performs dimensionality reduction and what are the computations
that brain-wide networks perform in learning hierarchical schemas
and states (Box 5). Broadly, rather than trying to map neural substrates
(regions or networks) to cognitive constructs, the approach we pro-
moted in this Perspective, and that has been proposed many times
before (see refs. 270-272), identifies computations (such as dimen-
sionality reduction) that serve putative cognitive constructs such as
schemas or RL (but that can also serve additional cognitive functions;
Box 4) and asks how these are implemented by different brain areas.
Theroad fromthebrainto cognition and behaviour thus goes through
computation.

Published online: 7 January 2025
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