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Schemas, reinforcement learning 
and the medial prefrontal cortex
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Abstract

Schemas are rich and complex knowledge structures about the typical 
unfolding of events in a context; for example, a schema of a dinner 
at a restaurant. In this Perspective, we suggest that reinforcement 
learning (RL), a computational theory of learning the structure of 
the world and relevant goal-oriented behaviour, underlies schema 
learning. We synthesize literature about schemas and RL to offer that 
three RL principles might govern the learning of schemas: learning 
via prediction errors, constructing hierarchical knowledge using 
hierarchical RL, and dimensionality reduction through learning a 
simplified and abstract representation of the world. We then suggest 
that the orbitomedial prefrontal cortex is involved in both schemas and 
RL due to its involvement in dimensionality reduction and in guiding 
memory reactivation through interactions with posterior brain regions. 
Last, we hypothesize that the amount of dimensionality reduction 
might underlie gradients of involvement along the ventral–dorsal 
and posterior–anterior axes of the orbitomedial prefrontal cortex. 
More specific and detailed representations might engage the ventral 
and posterior parts, whereas abstraction might shift representations 
towards the dorsal and anterior parts of the medial prefrontal cortex.
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include knowledge of context-appropriate actions (for example, the 
knowledge that upon receiving a menu, one should read it and place 
an order). Last, schemas can be thought of as hierarchically organized 
‘modules’ that can be recombined. Both the schema of a restaurant and 
that of having dinner at home can include a module of sitting at the 
table and eating, and the schema of an airport can include a restaurant 
as a module. Thus, schemas can be a part of other schemas, as well as 
include other schemas.

Despite decades of research on the influence of schemas on 
cognition1,4,5,19, it is not completely clear how schemas are learned and 
instantiated and how they influence perception, action, learning and 
memory16,21,22. Computational models of semantic networks, concepts 
and category learning18,23–29 characterize some aspects of schema learn-
ing, such as how general knowledge about the co-occurrence of entities 
is extracted, but do not seem to capture fully the scope and richness of 
schemas. Particularly relevant is the fact that schemas are learned and 
instantiated through experiences that are multidimensional, dynamic 
in time and involve goal-oriented actions. For these, we turn to the 
framework of RL.

Reinforcement learning
RL provides a set of algorithms for goal-oriented learning and behaviour, 
in which the goal is typically conceptualized as maximizing reward while 
minimizing costs or punishments6. Through trial and error over mul-
tiple instances of a task, an agent learns the sequence of actions most 
suitable for achieving maximal reward in an environment. In RL theory, 
tasks are divided into a series of discrete timepoints or contexts, termed 
‘states’. For instance, a visit to a restaurant can be divided into the states 
of standing at the entrance, sitting down at the table or having a menu 
in hand. Each state has an associated action policy — the probability of 
taking each action available at that state. A state can also be associated 
with a value, which denotes the expected sum of (possibly discounted) 
future rewards when in that state and assuming a specific action policy 
(values can also be learned for each action taken in each state, in which 
case they are termed state-action values). Tasks can be divided into 
states at different levels of coarseness and, similarly, action policies can 
be defined as single actions or high-level action groupings (for example, 
‘adding salt’ groups reaching for the salt, grabbing it and sprinkling 
salt on the food. See Hierarchical RL and latent cause inference may 
contribute to learning and instantiating schema hierarchies).

In addition to learning an optimal action policy — what actions 
lead to maximizing reward in each state — in a sequential task that 
extends over time, the agent can learn a model of the environment, 
that is, the probability of transitioning between different states con-
tingent on different actions30–32, and the probability of encountering 
(good or bad) outcomes at each state. In RL, learning occurs when an 
agent experiences a prediction error: a situation in which the actual 
outcome is different from the expected one33–35. Prediction errors 
include both reward prediction errors, which refer to obtaining more 
or less reward than expected, and state prediction errors, which refer 
to transitioning to a state that is different than expected. Updating 
expectations according to the prediction error aligns expectations 
with actual outcomes and reduces future prediction errors. In this 
way, through experience, the agent can learn a world model, which 
includes representations of states, state-transition probabilities (G) and 
the distribution of rewards in each state, and can mentally simulate 
actions within this learned world model to determine which action is 
best in what situation (termed ‘model-based RL’ or ‘goal-directed deci-
sion making’30). Alternatively, in ‘model-free RL’, the agent can learn an 

Introduction
Imagine entering a restaurant. You immediately know the likely 
sequence of occurrences and the relevant set of behaviours. You will 
be seated at a table and given a menu. After placing your order, you will 
hopefully receive a delicious meal and maybe a glass of fine wine. This 
will be followed by paying the bill and leaving the restaurant. The gen-
eral knowledge of what typically occurs in an event and in what order, 
as well as the appropriate behaviour, is referred to as its ‘schema’1–4. 
Although schemas are widely investigated in psychology and, more 
recently, in neuroscience, they also remain notoriously elusive and 
ill-defined2,5. Importantly, in schema theory, a satisfying computa-
tional account of how schemas are learned through experience, guide 
goal-oriented behaviour, and influence perception, attention, learning 
and memory is lacking.

Reinforcement learning (RL) offers a computational theory of 
how humans and animals learn goal-oriented behaviours through 
experience6. Schemas are thought to represent information about 
the environment that is useful for such behaviours (Box 1). In this 
Perspective, we synthesize research from the seemingly disparate 
fields of schemas and RL to propose that RL, and complementary 
algorithms such as dimensionality reduction and latent cause inference, 
provide a quantitative framework for schema theory. We begin with a 
brief description of schemas and RL mechanisms to show how these 
are related. We then focus on three core computational principles 
that could underlie schemas: learning a summary of the environment 
through prediction errors, grouping of states through hierarchical 
RL and latent cause inference, and dimensionality reduction through 
learning of abstract state representations (Fig. 1). We then build on 
evidence emphasizing the importance of the medial prefrontal cortex 
(mPFC) and the medial orbitofrontal cortex (mOFC) to both RL7–11 and 
schemas5,12–16 to hypothesize that these regions mediate dimensional-
ity reduction and guide memory retrieval through communicating 
with posterior brain regions. We conclude by postulating that graded 
recruitment along the ventral–dorsal and anterior–posterior axes 
of the mPFC might reflect the amount of dimensionality reduction 
required in a current situation.

Conceptual mapping of schema to reinforcement 
learning theory
In this section, we first briefly introduce the concept of schemas, noting 
that there is no satisfying computational account for understanding 
how schemas are learned, instantiated and deployed. Then, we briefly 
introduce RL as a potential account of schemas. The rest of the paper 
will then elaborate on this mapping between the mechanisms of RL and 
the phenomenology of schemas, as well as their neural underpinnings.

Schemas
Schemas are learned knowledge structures that organize knowledge 
of what typically occurs in a context2,4,17–19, including associative knowl-
edge of relationships and co-occurrences between the components of 
recurring events (for example, ‘menu’ and ‘food’ as components of a 
meal at a restaurant). Schemas are learned through the extraction of 
commonalities across multiple experiences, also termed episodes2, 
and as such, schemas are devoid of specific episode details. In this 
Perspective, we predominantly discuss schemas that are extended in 
time (similar to the notion of ‘scripts’3 or ‘event schemas’20) and thus 
include knowledge of the temporal structure of an event. The process 
of retrieving schemas from memory is termed schema instantiation. 
Once instantiated, schemas can be deployed to guide behaviour as they 
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action policy directly without learning a world model, from trial and 
error using reward prediction errors.

Core computational principles that could  
underlie schemas
The above descriptions suggest how schemas might be mapped to a rep-
resentation of a task, including the world model and the action policy 
(Box 1). We now turn to computational principles that could support 
this mapping (Fig. 1). We start by asking whether schemas are learned 
through prediction errors. Then, we ask whether the hierarchical  
nature of schemas might be learned and instantiated via hierarchical RL 

algorithms and complementary algorithms such as latent cause infer-
ence. We conclude this section by asking how dimensionality reduction 
might mediate schema learning and instantiation.

Are schemas learned through prediction errors?
As RL algorithms use prediction error-driven learning, the first question 
we ask is whether schemas are also learned and updated via prediction 
errors (Fig. 1a). The alternative hypothesis is that a summary of the typ
ical and repeating structure of the world is learned by tracking the 
frequency of occurrences (‘unsupervised learning’26). In this frequency 
hypothesis, learning does not require a prediction and an update 

Box 1 | Partial mapping of schemas to standard reinforcement learning components
 

Schema components mapped onto reinforcement learning (RL) 
nomenclature (states, action policy and state-transition probability; 
see the figure) using three consecutive states (s, denoted by the 
subscripts t, t+1 and t+2) in the schema of a restaurant. Essential 
components ( { })∈ …  of the situation (such as menu or food) 
differentiate each state from other states (some, but not necessarily all 
such components are denoted in the figure). Dimensionality reduction 
and state abstraction can be observed in the schema. For example, the 
ordering food state (st) includes a menu, but does not specify whether 
this is physical, online or even memorized, as this can change across 
episodes (dimensionality reduction). Episodic details such as the 
specific menu items in st and the colour of the shirts and the use of 
chopsticks in the following receiving order (st+1) and eating (st+2) states 
are not included in the schema (state abstraction). In this way, each 
state is a generic one, and its learned action policy — a probability 
distribution across possible actions in a state (π(s)) — will pertain to 
episodes in many similar situations. The three states in this schema of a 
restaurant have two actions for each state, ordered by their probability 
from high to low (see the figure, shades of grey). The probability of 
transitioning from one state to another (state-transition probability: 
p(s’|s,a)) depends on the previous state (s) and the action taken (a), and 
is often not deterministic. For example, if an order is not conveyed in st, 
the probability of transitioning to st+1 and receiving food is markedly  

lower, and even if food is ordered, a sudden power outage that closes 
the kitchen can result in the order not being received and no state 
transition from st to st+1. As schemas are hierarchical, each state can also 
further divide into a sequence of substates and respective policies.

Despite this close mapping, we are not claiming that RL can 
account for all aspects of schemas, and instead hypothesize that 
additional processes such as dimensionality reduction and latent  
cause inference mediate schema learning (Fig. 1). Indeed, central 
features of RL, such as reward and value, might not be an essential 
part of schemas, but that might depend on the level of abstraction 
or how well learned a schema is. For example, if the food is bad, that  
might influence the choice of dish or restaurant in the next restaurant  
experience, but it is unlikely to change the general representation 
of states, state transitions and action policies in the schema of 
a restaurant. Of course, if this bad experience repeats itself, one 
might choose to stop going to restaurants, which could eventually 
lead to loss of schema knowledge (especially if restaurant culture 
changes in the meantime, unbeknownst to those converted into 
home diners). Thus, rewarding experiences might be important to 
motivate restaurant visits, but might not be essential to learning 
the components of the restaurant schema. Consistent with this, 
empirical studies reveal schema representations in the absence  
of explicit reward9,12,173.

st: ordering food st+1: receiving order st+2: eating

st ∈ {diners, waiter, menu}
π(st): conveying order, chatting,...

st+1 ∈ {diners, waiter, food}
π(st+1): checking order, complaining,...

st+2 ∈ {diners, food}
π(st+2): eating, drinking,...

p(st+1| st,at) p(st+2| st+1,at+1)
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following a prediction error; instead, learning occurs by averaging 
of experience, regardless of predictions and their potential violation.

The discovery of ‘blocking’36,37 led animal-learning theorists to 
shift from assuming that the frequency of co-occurrence (contiguity) 
is sufficient for associative learning, considering that prediction errors 
drive learning. In blocking, a neutral stimulus (such as light) previously 
associated with a motivationally relevant outcome (such as an electric 
shock or food) prevents a co-occurring neutral stimulus (such as a tone) 
from also becoming associated with the same outcome. As the first 
stimulus fully predicts the outcome, no prediction error is possible 

when the outcome occurs, and thus associative learning about the 
newly added stimulus is ‘blocked’34,35. In humans, a wealth of research 
shows that reward prediction errors not only drive learning33,38,39, but 
also facilitate long-term memory40–43.

As schemas include state-transition probabilities (Box 1), to  
establish that prediction errors drive schema learning, one can  
test whether state prediction errors lead to updating of the schema 
(Fig. 1a) and to changes in behaviour. Recent work in rodents showed 
blocking of learning of simple stimulus–stimulus associations, 
thereby establishing that learning of ‘neutral’ associations required 

b    Hierarchical chunking  via subgroups

c    Abstraction through dimensionality reduction

Subschema

Time

Learning

GoalSubgoal

a    Prediction error learning

Episodes

Episodes

Episodes

Prediction

Update

Evidence Updated schema

Schema

Latent cause
inference

Di�erence

Fig. 1 | Three reinforcement learning principles 
contribute to schema learning. In the schemas and the 
episodes, circles represent states or timepoints, with 
different shades representing different state features (see 
Box 1). a, Prediction errors, namely the difference between 
a schema-based prediction and the evidence from a specific 
episode, drive schema updating. Both the evidence and 
the schema are selected through latent cause inference 
from episodes in the stream of one’s experience, and thus 
schema updating eventually converges to the typical 
unfolding of events across episodes. b, The hierarchical 
structure of schemas is learned via identifying subgoals 
(yellow) that chunk subschemas. Subgoals are states that 
are identified as breaking points, which are used to train 
policies of subschemas. How subgoals are identified is an 
open question, potentially relying on transitions between 
sequences of frequently occurring states or the discovery 
of optimal breaking points. We additionally propose 
salient changes as putative subgoals, offering a mechanism 
that can identify subgoals rapidly. c, Dimensionality 
reduction, implemented via schema-guided attention, 
mediates the elimination of episodic details that differ 
across similar episodes (symbols) during schema learning. 
This dimensionality reduction results in the inclusion of 
goal-relevant information in the schema, as well as other 
repeating information that is not necessarily goal relevant 
(blue shades).
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state prediction errors44,45. Computational models that learn via state  
prediction errors explained human and animal choice data in stud-
ies that involved frequent changes (reversals) of state-transition 
probabilities46–50. Studies also showed that participants trained on 
state transitions exhibit enhanced memory for items that violated 
these transitions51–55 and reduced memory for items that cued the 
(surprisingly) not-transitioned-to future state56,57. This is consistent 
with updating a model of the world through state prediction errors, 
whereby the violating information is encoded and the incorrect pre-
diction is weakened. Whether schemas are learned only via prediction 
errors or through a combination of frequency of occurrences and pre-
diction errors is a question for future research (see Box 2 for a related  
discussion on the initial learning of schemas).

These studies, which focused on simplified tasks that trained 
participants on few associations and over a few trials or sessions, pro-
vide evidence that initial learning of schemas might be driven by state 
prediction errors. By contrast, consolidated and well-learned semantic 
knowledge is thought to be stable and less amenable to change, largely 
supported by cortical structures (whereas newly acquired knowledge 
is supported by the hippocampus; Box 2), and to be more abstract and 
include fewer specific episodic details58–62. Thus, it is not clear that these 
previous findings from simplified tasks generalize to the updating of 
complex and well-learned schemas, as work in humans showed that 
complex semantic knowledge can both impair and enhance learning 
and memory of new associations63–71.

In the complexity of everyday life, cues and outcomes are not as 
clearly defined as in many of the previously mentioned studies, but 
rather dynamically evolve in time and span multiple temporal scales72–74. 
Indeed, viewers of continuous sport games remembered events within 
the games that elicited prediction errors better than events that did 
not75,76. In another study that directly targeted the updating of memories, 
Sinclair and colleagues77 used rich movie-clip stimuli to elicit predictions 
of action outcomes learned over a lifetime of everyday experience (for 
example, a batter hitting a home run during a baseball game). They then 
violated these action–outcome predictions by stopping the movie clips 
before the expected outcome and moving on to the next (potentially 
semantically related) clip. In a subsequent memory test of the movie clips, 
participants demonstrated memory intrusions, recalling details from the 
semantically related movie clips as if they were in clips that were stopped 
prematurely77,78. These intrusions might reflect memory update of the 
movie-clip memories that was enhanced by the violations of expectations.

These studies51–55,75,77–79, consistent with learning and updating of 
schemas, tested for memory of unique (one-trial) episodes but not for 
memory of schema that is semantic in nature. Historically, semantic ver-
sus episodic memories have been thought to rely on distinct systems80,81 
(despite early recognition of the interactive nature of these systems1,4). 
However, recent views emphasize overlapping and highly interac-
tive memory representations82,83. In our view, as episodes are used to 
update schemas (via prediction error-based learning), better memory 
of episodes that elicit a prediction error suggests that these episodes 
are prioritized in learning and are more likely to influence the updating 
of schemas. Likewise, poor memory of episodes in which a stimulus or 
state elicited erroneous predictions might reflect the downweighing of 
these episodes in representations of schemas. Nonetheless, the specific 
mechanism by which better memory for unique episodes reflects or 
influences learning and updating of schemas remains to be elucidated.

In summary, emerging literature suggests that schemas might 
indeed be learned and updated via prediction errors, similar to learning 
in RL.

Hierarchical reinforcement learning and latent cause 
inference may contribute to learning and instantiating 
schema hierarchies
Schemas are hierarchically organized: each schema can be composed 
of subschemas and might be a subschema of another, larger schema. 
Hierarchical RL algorithms84–91 might provide a blueprint for how such 
a schema hierarchy is acquired (Fig. 1b). Learning via RL algorithms can 
become prohibitively slow in complex environments, but hierarchically 
grouping states and actions into larger units can provide a mechanism 
to alleviate this scaling problem. In such ‘temporal abstraction’85,92, hier-
archical RL algorithms divide a temporally extended task into subunits, 
called ‘subtasks’. Each subtask is defined by a set of possible start states, a 
subtask-specific action policy and a set of termination states — also called 
‘subgoals’ — in which the subtask will cede control back to the overarch-
ing action policy (Fig. 1b, middle and top)88,90–94. Subtasks can be defined 
by a submodel, which includes the states, state-transition probabilities 
and rewards in the subtask. For example, ‘adding salt’ could be a subtask 
that has its start state initiated upon tasting bland food, continues with 
an action policy that includes reaching for the salt shaker, grasping it and 
shaking it over the food, and then terminates because its subgoal to salt the 
food has been reached. Subtasks can be used across disparate tasks88,95,96 
(for example, the ‘adding salt’ subtask could be used in both ‘dining at a 
restaurant’ and ‘eating at home’ tasks). The term ‘subgoal’ distinguishes 
the termination state of the ‘adding salt’ subtask (food is salted) from the 
overall goal of the ‘dining at a restaurant’ and ‘eating at home’ tasks (having  
a full stomach; Fig. 1b). In some hierarchical RL algorithms, reaching a sub-
goal leads to a pseudo-reward signal88,97,98. Pseudo-rewards allow stand-
ard RL algorithms to learn the optimal action policy for the subtask that 
maximizes pseudo-rewards, in the same way as these algorithms learn 
reward-maximizing policies in non-hierarchical settings.

Box 2 | Rapid learning in the hippocampus 
shapes new schemas
 

The idea that event boundaries can become subgoals could mean 
that first instances of events — in which subgoals are created — 
might be highly influential in shaping models of the structure of 
the world. This contrasts with the idea that the structure of the 
environment is extracted solely through incremental and relatively 
slow learning102,273. In reinforcement learning (RL) models, the 
initial values bias learning and can be hard to overcome6. To avoid 
this, in many RL algorithms, the rate of updating — the learning 
rate — is high at the beginning of a task and decreases with time. 
Indeed, Shteingart et al.274 showed that the first trial experience 
greatly biases choices in future trials, and that assuming full 
updating on the first trial (a learning rate of 1) best explained this 
behaviour. Other studies showed relatively quick learning of 
regularities165,207,261,275 and generalization based on such regularities119 
within tens of trials. The hippocampus, known to be involved in 
rapid learning61,273,276,277, also mediates learning of the structure of 
the environment207,271,278–288. The hippocampus also plays a central 
role in event segmentation112,289–291, which might contribute to the 
initial learning of schemas (see Hierarchical RL and latent cause 
inference may contribute to learning and instantiating schema 
hierarchies). Thus, converging behavioural and neural evidence 
suggests that rapid initial learning shapes schema learning.
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An important question in hierarchical RL is how to select subgoals. 
In terms of schemas, the analogous question is how to segment continu-
ous experience into discrete event schemas20. Hierarchical RL offers 
more than one algorithm88,90,91,94. Some algorithms rely on exploring 
an environment while keeping track of sequences of states and actions 
that co-occur frequently (statistical learning99–103) and use states pre-
ceding a transition to another sequence of frequently co-occurring 
states as subgoals85,87,104. Other algorithms use Bayesian inference to 
discover optimal hierarchal organizations of tasks into subtasks given 
the structure of the environment91,94 and the cost of planning90.

The above algorithms for subgoal discovery all rely on repeated 
experience to construct a hierarchical model of the world. We propose 
that saliency can also trigger the creation of a subgoal. Salient stimuli 
create an intrinsic reward signal and engage motivation-related neural 
systems, much like rewards105–111. Research on event segmentation 
that focuses on how ongoing and continuous experience is chunked  
into discrete events20,112,113 has shown that salient changes, termed  
‘event boundaries’, cause humans to segment their experiences  
in memory. For example, events that span an event boundary are 
remembered as happening farther apart in time from each other, and 
their temporal order is often remembered worse than that of events  
not separated by a boundary114–116. This suggests that event boundaries, 

like subgoals, structure experience into discrete, segmented units. 
Indeed, reward prediction errors have been shown to structure 
memories117, consistent with our idea that such salience-induced 
prediction errors create subgoals. A mechanism that relies on sali-
ent changes to create subgoals does not require repetition as even in 
the first instance a change of context, perceptual details or internal 
state can trigger event segmentation112,113,115,118. This discrete event 
representation could then form a base that future episodes might join, 
eventually culminating to an event schema. This proposal resonates 
with recent behavioural work suggesting that schemas can be cre-
ated rapidly119 (Box 2). Such rapid extraction of the structure of the 
environment can facilitate goal-oriented learning and behaviour in 
new situations95,120,121, with later learning refining that initial structure 
extracted122,123.

Latent cause inference might be the computational process by 
which salient changes both initiate a new schema and instantiate exist-
ing (sub)schemas. Latent cause inference is a computational theory 
of how observations that are similar to each other are grouped into 
clusters (‘latent causes’)22,95,124,125. The latent cause underlying the cur-
rent observations can be inferred using Bayesian inference by com-
bining prior beliefs about the probability of various latent causes (for 
example, the latent cause responsible for recent observations is most 
likely to underlie the next observation) with evidence from current 
observations. Thus, observations that are sufficiently different from 
existing latent causes prompt the creation of a new latent cause126,127. 
Recent theoretical work has begun to explore how salient changes, 
such as event boundaries, trigger the inference of a new latent cause22,113 
or instantiate a relevant event schema22. Latent cause inference can 
facilitate the grouping of states into subtasks in hierarchical RL, such 
that each latent cause is treated as a separate subtask. In this way, for 
each latent cause, the agent can learn a model (and submodels, as latent 
causes can be hierarchically constructed) and an action policy, as in the 
hierarchical RL models above.

Dimensionality reduction through selective attention might 
mediate schema learning
Schemas summarize information across multiple multidimensional 
episodes. Learning this summary could be conceptualized as two 
processes: a form of dimensionality reduction and state abstraction 
(Fig. 1c). Regarding the former, representing the unique features of 
each experience probably requires high-dimensional representa-
tions, and schemas can be thought of as a summary representation 
that contains information from multiple experiences while elimi-
nating episode-unique dimensions. Note that unlike other forms 
of dimensionality reduction that aim to preserve information, here 
schemas ideally remove idiosyncratic episodic information to allow 
generalization. To learn such reduced representations, one option is 
that schema learning involves simply averaging across features in all 
dimensions across episodes, such that dimensions that repeat persist, 
whereas features that change average out. Alternatively, schema learn-
ing might involve goal-sensitive dimensionality reduction, whereby 
dimensions that include repeating goal-relevant features (such as meal 
prices on a menu) are prioritized, whereas unique episodic features in 
goal-irrelevant dimensions (such as the colour of the server’s shirt) are 
downweighted128 (Box 1).

In RL, an optimal representation of a state focuses on only 
goal-relevant information in the environment6,129,130. The process by 
which an agent learns what dimensions of the environment are impor-
tant to a given task has been termed ‘representation learning’125, and 

Box 3 | Schemas are broader than  
cognitive maps
 

Similarly to schemas, a cognitive map organizes aspects of an 
experience and can be used to flexibly guide behaviour147,292–294. 
However, we suggest that schemas can include additional types 
of information and are broader than cognitive maps1,18,24,26,280. In 
most traditional conceptualizations of cognitive maps, information 
is represented through some notion of distance, which can be 
physical or mental292,293 (indeed, although cognitive maps have 
been studied extensively in spatial navigation, recent research 
has extended the notion of cognitive maps to non-spatial 
maps161,162,165,166,281,286,295,296). Such distance relationships are, by 
definition, symmetrical, whereas relationships in schemas do not 
have to be symmetrical. Others view cognitive maps as more akin 
to state-transition probabilities in reinforcement learning (RL) 
(the probability of transitioning from one state to another; Box 1), 
potentially generalized over several tasks154,292, which do not have 
to be symmetrical. Some of these proposals also include in the 
cognitive map the expected reward in each state154. In any case, 
cognitive maps and state-transition functions do not include the 
action policy (the probability of executing an action per state; Box 1). 
By contrast, action policies and options (hierarchical policies) are 
central to schemas, thus schemas are broader than cognitive maps.

Another sense by which schemas are broader than cognitive 
maps is that schemas may also include semantic relationships that 
are difficult to reduce to a distance measure or a state-transition 
probability (for example, that restaurants include menus). Such 
relationships have been represented in computational models in 
various ways, including symbolic representations24,273,297–299. How 
such semantic relationships are encoded in the brain and how they 
could be integrated with RL to account for schema learning and 
instantiation are open questions.
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often involves dimensionality reduction. The idea is that through 
experience, an agent learns what dimensions of the environment are 
relevant to their goals and therefore should be attended to, as well as 
what dimensions are irrelevant and thus should be ignored. Indeed, 
learning the relevant (reward-predicting) dimensions of a state guides 
attention to these dimensions, which in turn prioritizes learning pre-
dictions associated with the reward-predicting dimensions125,131–137. 
These studies suggest that goal relevance and selective attention might  
mediate dimensionality reduction during schema learning.

However, repetition of features might result in learning of goal- 
irrelevant dimensions as well. Indeed, people are faster to identify a 
stimulus that appears in a location where, in other task trials, regu-
larities existed in a stream of symbols138–140, suggesting that they are 
attending to that location despite it being goal irrelevant. Similarly, 
across various behavioural tasks, processing of item pairs that are 
semantically congruent and encountered repeatedly in daily life (such 
as restaurant and menu) is typically enhanced (reduced reaction times 
and increased accuracy) compared with incongruent pairs that are 
rarely encountered (such as spinach and train), even if congruency 
is task irrelevant141 and item pairs are presented only briefly142,143. 
Task-irrelevant congruence also enhances long-term memory144, 
but perhaps not for unique episodic details145. In addition, studies of 
statistical learning have shown that predicting a goal-irrelevant but 
repeating dimension comes at the expense of later memory of unique 
episodic details56,57,146. Together, these findings suggest that attentional 
mechanisms might prioritize learning of repeating information, goal 
relevant or irrelevant, potentially at the expense of downweighting 
unique episodic details, as we propose is key for schema learning. This 
might be adaptive because it allows flexible behaviour when the world 
changes2,132,147 (similar to cognitive maps; Box 3). For example, learn-
ing that in restaurants the cashier is typically next to the bar — even if 
mostly irrelevant because payment is typically made at the table with 
a waiter — can be useful if one is ever in a rush to leave and must pay 
at the cashier.

Whereas dimensionality reduction can be seen as determining 
what dimensions will be included in a schema, state abstraction refers 
to learning features within a dimension that generalize across similar 
episodes148,149 (Box 1). For example, in the price dimension, a schema 
of a restaurant might represent that appetizers are generally cheaper 
than entrees, but abstract away specific prices that could change over 
time and depend on the restaurant. Various computations have been 
hypothesized to govern state abstraction and this is a topic of ongo-
ing investigation (for example, see refs. 150,151). We hypothesize that 
prediction error learning could be one mechanism for learning the 
abstracted features themselves (see ref. 152 and Fig. 1c). We note that 
both dimensionality reduction and state abstraction can be viewed 
through a similar lens, depending on the specifics of the representation 
and the implementation.

Medial PFC involvement in schemas and 
reinforcement learning
We now turn to mapping the ideas laid out above to potential neural 
substrates. Substantial evidence supports that the orbitofrontal cor-
tex (OFC) and mPFC are involved in both RL and schema-related pro-
cesses; however, the functions these cortical regions have are intensely 
debated (Box 4 and also see refs. 5,8,10,16,59,153–156). Here, we focus 
on the medial part of the OFC (mOFC), ventromedial PFC (vmPFC) and  
the mid-mPFC (the area dorsal to the mOFC–vmPFC on the medial 
wall, but ventral to the most dorsal part of the mPFC), using ‘mPFC’ 

to collectively refer to these areas. We first summarize evidence  
that the mPFC represents both schemas and RL states. We then offer that  
low-dimensional representations in the mPFC that can activate 
detailed memories in posterior brain regions might underlie these 
representations16. Last, we postulate that the amount of dimensionality 
reduction in the mPFC determines the involvement of subparts along 
its ventral–lateral and anterior–posterior axis.

mPFC representations of both schemas and reinforcement 
learning states
A prominent theory suggests that the mPFC and OFC represent a 
map of task states in RL8,10,157–160 (but see Box 4 for alternative theo-
ries). Indeed, recent work found mOFC–vmPFC representations 

Box 4 | The controversy over the role of the 
OFC in learning and decision making
 

We have proposed a role for the orbitofrontal cortex (OFC) in 
schema learning and instantiation. An alternative prominent view 
suggests that the OFC represents economic value, which is the 
expected reward for different options in a task154,155,256. This thesis has 
been supported by a variety of studies across species showing that 
OFC neurons encode economic value during decision making300–302, 
neuroimaging studies in humans showing OFC activation across 
decision tasks250,303,304 and studies across species showing lesions to 
the OFC impair value-based decision making305–308.

However, the hallmark deficit due to OFC lesions are 
impairments in reversing previously learned associations, that 
is, a slowness in changing the preferred option when reward 
contingencies reverse. In these tasks, lesions to the OFC in rodents 
and primates spare initial learning, while consistently slowing the 
shift of option preference after reversals309–311. As loss of encoding 
of the value of the different options should have impaired initial 
learning as well, this finding has been taken to suggest a role 
for OFC in inhibitory control in particular312. An alternative view 
suggests that these findings, and many others (including ones 
attributed to representation of economic value), are consistent 
with the OFC representing latent states or schemas. In this view, 
slower reversal in the absence of a functioning OFC is attributed to 
trial-and-error relearning of the now-correct action rather than the 
more rapid shift between latent states (or schemas) representing 
different action policies that are appropriate for different contexts 
(pre- and post-reversal)10.

One resolution of this controversy suggests that neurons in the 
OFC show representation of economic value in electrophysiological 
studies in animals in tasks in which the expected reward for 
different options is a crucial part of the latent state representation. 
However, when reward and states are dissociated, or when the task 
does not include rewards (and therefore economic value) at all, 
findings across species suggest that neural activity in the OFC, and 
potentially mostly the mOFC–vmPFC (an area encompassing the 
medial part of the OFC and the ventromedial prefrontal cortex, see 
main text), represents latent states or schemas8,9,160,248,313,314. Another 
possibility is that the overall level of activation or rate of neural 
firing in the OFC represents economic value, whereas different 
subpopulations of OFC neurons represent latent states249,258,315 (see 
mPFC representations of both schemas and RL states).
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of task states and the relationships between them for conceptual 
spaces161,162, sequential structures9,163–165 and social knowledge166. 
Some theories suggest that these mOFC–vmPFC representations are 
particularly important when states cannot be determined on the basis 
of perceptual input alone but are latent (such as latent causes; see 
Hierarchical RL and latent cause inference may contribute to learn-
ing and instantiating schema hierarchies) and require the retrieval 
of information from memory10,157. Empirically, multivoxel activity 
patterns in mOFC–vmPFC are consistent with Bayesian inference 
of the current (latent) state when this inference requires integrat-
ing retrieved prior memories and current observations7. Another 
study successfully classified task-state representations from the 
mOFC–vmPFC that included information from the current and the 
previous trial, and thus relied on memory9. The mid-mPFC also medi-
ates the retrieval and recombination of memories needed to make 
choices about novel stimuli167,168.

Schemas hold knowledge of what typically occurs in an event, 
and therefore schema instantiation requires retrieving information 
from memory. Consistent with the mPFC representing latent task 
states that rely on memory, it is also involved in mediating schemas5,15. 
For instance, lesions to the mOFC–vmPFC impaired the appropriate 
deployment of schema knowledge14,169–171. Moreover, recent stud-
ies showed that multivoxel activity patterns in the mid-mPFC were 
more similar for events that belonged to the same schema (such 
as visiting different restaurants) compared with different schemas 
(such as visiting a restaurant versus an airport). This was true even 
when computing similarity across video and audio stimuli, which 
suggested a schema representation beyond perceptual features in 
the mid-mPFC12,172–174. Together with the finding that mPFC repre-
sentations of task states follow Bayesian inference7, these findings 
strengthen the proposal that schemas are instantiated via Bayesian 
latent cause inference16.
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The mPFC might represent schemas and reinforcement 
learning states through dimensionality reduction
Studies show dimensionality reduction in the mPFC across 
paradigms12,173 (Fig. 2). For instance, in a RL task, mid-mPFC activation 
correlated with predicted rewards computed on the basis of attend-
ing to one relevant task dimension out of three available134 (Fig. 2a). 
More directly, Mack et al.175 used a categorization task and extracted 
the number of orthogonal components that accounted for variance in 
mOFC–vmPFC multivoxel activity patterns. The results showed more 
compression (namely, fewer components required to explain variance) 
through learning, especially for categorizations that required fewer 
dimensions (Fig. 2b). Other studies exposed participants to item–scene 
associations, with some items sharing the same scene83,172,176. After a 
period of consolidation, the neural representations of items that shared 
the same scene, but not different scenes, showed stronger similarity to 
each other in the mid-mPFC, as if specific episodes (each item–scene 
pair) had been grouped on the basis of a shared feature (the scene) 
and details about the items within each episode were downweighted 
(Fig. 2c). Studies grouping episodes on the basis of similar attentional 
goals obtained similar results177. Last, studies that showed reduced 
representation of episodic details in the mPFC also suggest dimen-
sionality reduction during schema instantiation12,173 (Fig. 2d). Many of 
these studies showed specificity to the mPFC9,12,83,175. This is consistent 
with the conclusion that the mPFC is performing dimensionality reduc-
tion in these RL and schema-related tasks, rather than the alternative 
explanation that dimensionality reduction is performed elsewhere in 
the brain and is then communicated to the mPFC.

Lesion studies further demonstrate that the mOFC–vmPFC has a 
causal role in the appropriate deployment of schemas5,14,169, although 
whether dimensionality reduction underlies observed impairments 
is an open question. Individuals with mOFC–vmPFC lesions are slower 
to match concepts to a relevant schema and reject concepts that 
belong to an irrelevant competing schema, and are also more likely to 
rate concepts from an irrelevant schema as belonging to a currently 

relevant schema14,169. Individuals with mOFC–vmPFC lesions also do 
not demonstrate the typical memory enhancement induced from 
schema-related stimuli171,178. For instance, whereby neurotypical par-
ticipants often show false memory of words as having appeared in a 
list of schematically related words, this false memory effect is reduced 
in individuals with vmPFC–mOFC lesions179. Damage to the mid-mPFC 
leads to poor performance in the Wisconsin Card Sorting Test180–183, 
which requires participants to sort cards that have multiple dimensions 
(colour, number and shape) based on only one dimension (for example, 
colour). One hypothesis is that these lesion study findings are due to 
impaired dimensionality reduction — relevant schema dimensions are 
not prioritized, leading to behavioural and memory impairments in some 
cases14,169,171,178,180 and to fewer memory intrusions in others179. However, 
this dimensionality-reduction hypothesis awaits direct testing in future 
lesion studies.

Consistent with our proposal that dimensionality reduction pri-
oritizes both goal-relevant and repeating but goal-irrelevant dimen-
sions, evidence suggests that the mPFC represents both types of 
information10,157,160,184,185, and represents task structure even when it 
is goal irrelevant164,166,185,186. For example, the mOFC–vmPFC repre-
sented a cognitive map of a two-dimensional social hierarchy even in 
a task that asked participants to make inferences based only on one 
dimension166. In general, mOFC–vmPFC neural representations of 
items that share a dimension (such as the context of learning) are more 
similar than representations of items that do not share a dimension 
(even when participants perform an unrelated task)187,188. The mPFC 
also showed differential activity during encoding of semantically 
congruent versus incongruent information not only when participants 
judged congruency189,190, but also when they judged grammatical 
correctness of word stimuli (when semantic congruency was goal 
irrelevant)191–193.

Temporal order seems to be a consistently important dimen-
sion in mPFC representations of schemas. Indeed, scrambling 
the order of events in a schema disrupted their representation in the 

Fig. 2 | Dimensionality reduction in the mPFC. Empirical results from human 
functional MRI studies of four disparate paradigms support our proposal that 
the medial prefrontal cortex (mPFC) functions to reduce dimensionality in 
schemas. a, In a reinforcement learning task (top right), participants learned that 
one of three category dimensions (faces, F; landmarks, L; tools, T) is relevant for 
obtaining reward. The model that best explained participants’ behaviour biased 
attention towards that category both during choice (middle) and during learning 
from the outcome (bottom), suggesting participants had a dimensionality-
reduced representation of the reinforcement learning task. In this model, the 
expected reward for each choice (V) was calculated by weighting the value of 
each component image (v) by the attention to its category (Φ). After obtaining 
reward, the value of component images was updated according to the prediction 
error, δ, reflecting the difference between expected and obtained reward, scaled 
by a learning rate η and the same attention weight Φ). Activation (functional MRI 
blood oxygen level-dependent response) in the mid-mPFC (top left) correlated with 
predicted rewards, as estimated by that dimensionality-reduced representation. 
b, In a categorization task, participants categorized bugs on the basis of one, two 
or three dimensions (antennae size, leg size and mandible shape). Ventromedial 
prefrontal cortex (vmPFC) high-dimensional multivoxel activity patterns were 
measured during categorization and orthogonal components explaining 
variance in multivoxel activity patterns were extracted. Dimensionality reduction 
(‘compression’) was quantified as the number of components that explained 90% 
of the variance in vmPFC activity patterns (with fewer components interpreted as 
stronger compression). As participants learned the categories over time, simpler 

categorizations had stronger compression (plot), suggesting that dimensionality 
reduction in vmPFC tracked the dimensions of the categories. c, In an associative 
memory task, participants first encoded associations between trial-unique objects 
and several shared scenes. During retrieval trials, objects that had appeared during 
encoding with the same scene (overlapping) had greater similarity in their neural 
representations in mid-mPFC compared with those that appeared with different 
scenes (non-overlapping). This similarity only emerged following a period of 
consolidation (‘remote’), suggesting that during consolidation, specific episodes 
(trial-unique objects) became grouped on the basis of a shared feature (the scene), 
whereas details about the items within each episode were reduced. d, In a schema 
instantiation task, participants watched movie clips showing different instances 
of schemas (such as a schema of a restaurant, bottom). mPFC representations 
generalized across different instances of the same schemas (such as all cafe clips, 
right), as indicated by increased similarity within schemas compared with across 
schemas. This suggested that the mPFC had reduced dimensions and a lack of 
specific details for each schema instance viewed. Similar mPFC representations 
were also found across visual versus auditory modalities, but not when the order 
of events was compromised (left, the red reflects the z-score of the contrast, 
comparing intact versus scrambled order activation), which suggested that 
although the modality dimension is reduced in mPFC schema representations, the 
sequential information is preserved. Part a is adapted with permission from ref. 134, 
Elsevier. Part b is adapted from ref. 175, Springer Nature Limited. Part c is adapted 
with permission from ref. 83, Elsevier. Part d is adapted from ref. 12, CC BY 4.0  
(left and bottom) and ref. 173, Springer Nature Limited (right).
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mPFC12 (Fig. 2d). In rodents, lesions to the mPFC impaired temporal 
memory194. In humans, mOFC–vmPFC lesions (specifically, BA25, 
subcallosal vmPFC) impaired schema knowledge, while sparing cat-
egory knowledge14; arguably, the temporal order of events is a critical 
aspect of the former, but not the latter. Studies in both humans and 
rodents found representation of sequential order in the mPFC (see 
refs. 195–197). These representations might be supported by strong 
anatomical connections from mPFC to the hippocampus198–201 — widely 
thought to represent temporal and sequential information122,202–205 — as  
mPFC–hippocampal functional connectivity supports learning and 
memory of sequential information206,207. Such representations of tem-
poral order are consistent with representation of schemas because 

schemas contain information about the sequence of typical occur-
rences in an event, just as state-transition probabilities in model- 
based RL reflect a sequential transition from one state to another  
(Fig. 1 and Box 1).

The different functions of the mPFC versus the hippocampus 
in supporting temporal information included in schemas is not yet  
clear17,112,122,208. One general idea is that the hippocampus is crucial 
for initial encoding of memories (Box  2), and that as memories 
become schematized, they become more dependent on the mPFC 
and independent of the hippocampus59,60,62. Although this shift from 
hippocampal to mPFC encoding may occur for temporal informa-
tion as well, studies show the hippocampus represents temporal and 
sequential information both for novel episodes and for well-learned 
regularities122,207,209,210. Thus, another suggestion is that the mPFC  
represents sequential order memory, whereas the hippocampus 
represents continuous and gradually changing temporal context211. 
Another not mutually exclusive idea is that mPFC representations 
of schemas provide dimensions for retrieval of temporal memory of 
specific episodes represented by the hippocampus212, as well as other 
brain areas174,213.

In sum, evidence across paradigms suggests that both in schemas 
and in RL the mPFC might mediate dimensionality reduction. However, 
questions remain regarding whether this is a causal role, and what 
principles guide dimensionality reduction in the mPFC.

Gradients of dimensionality reduction and memory 
reactivation along mPFC axes
One potential role of representations of schemas and states in the 
mPFC is to guide the retrieval of knowledge via memory reactiva-
tion in posterior brain regions5,16,132. For instance, mPFC neural activ-
ity precedes hippocampal and ventral temporal lobe activity during 
memory retrieval214–217. Mid-mPFC activity also correlates with the 
persistence (across time) of ventral temporal lobe and hippocampal 
representations of items experienced within the same context218. More 
directly, a recent study showed that the extent of the representation 
of a schema in the mPFC correlated with the strength of the poste-
rior medial cortex representation of specific events consistent with 
that schema (for example, a specific visit to a restaurant)174. Lesion 
studies demonstrate causality: in a rodent reversal-learning task that 
required resolving interference to infer the correct state, mPFC lesions 
impaired hippocampal representations that mediated interference 
resolution219. In humans, mOFC–vmPFC lesions impair the evaluation of 
retrieved memories220,221, which can result in confabulation — retrieval 
of memories that are irrelevant to a specific context or schema170,222. 
In addition, the mPFC might route the involvement of cortical versus 
hippocampal systems based on how memories relate to the current 
schema instantiation5,15: connectivity with posterior cortical regions 
mediates memory of schema-consistent information, whereas connec-
tivity with the hippocampus mediates memory of schema-inconsistent 
information13,15,17,189,190,223–227.

These memory reactivation findings were reported in different loci 
in the mPFC. In this Perspective, we hypothesize that the level of dimen-
sionality reduction, or the degree to which memories are schematic 
and lack specific details, might underlie the gradual involvement of 
subregions along the anterior to posterior and the ventral to dorsal axes 
of the mPFC (regarding the medial to lateral axis, the lateral OFC has 
been extensively discussed elsewhere as representing states based on 
observable information10,156,184, and we discuss the lateral PFC in Box 5).  
Our proposal is motivated by gradual changes in the anatomical 

Box 5 | The contribution of cortical and 
subcortical networks to schemas and states
 

Brain areas other than the medial prefrontal cortex (mPFC) probably 
contribute to learning, representing and instantiating both schemas 
and states. In particular, neural activity in lateral PFC is probably 
essential to representations of both schemas and states159. The 
lateral PFC is implicated in an array of executive functions316–318. 
Its role in executive function has been established across species 
and paradigms, including the Wisconsin Card Sorting Test that 
requires adaptive sorting of cards based on changing rules or 
dimensions181,182,319 and tasks that require cognitive control of 
episodic and semantic memory208,320–325. Collectively, one can 
describe lateral PFC function as selecting and maintaining neural 
activity patterns that represent goals and the means to achieve 
them326,327. Consistent with this, it has been recently proposed 
that the lateral PFC reformats task knowledge in schemas and 
states (represented by neural activity in the medial orbitofrontal 
cortex–ventromedial PFC and the medial temporal lobe; Box 2)  
to perform action selection and produce behaviour159.

The lateral PFC, and specifically the dorsolateral PFC, is a part 
of the frontostriatal loop that includes the dorsal striatum and is 
considered a substrate for model-based reinforcement learning 
(RL)30 (also called the ‘associative’ or ‘cognitive’ loop328,329). 
Some hierarchical RL models propose that within this loop, 
the dorsolateral PFC represents hierarchical action policies88 
(see Hierarchical RL and latent cause inference may contribute to 
learning and instantiating schema hierarchies). Others suggest 
that the lateral PFC performs Bayesian inference to select the 
current context, which in turn determines the action policy 
in the striatum95,121. Thus, frontostriatal loops, together with 
midbrain dopaminergic modulation of learning in corticostriatal 
synapses330,331 might mediate learning and executing of hierarchical 
schemas88,97,98,332,333. Consistent with our view that salience can 
trigger event segmentation and the creation of subgoals for 
hierarchical RL and schemas, the dorsal striatum is activated at 
event boundaries and this activity correlated with later memory of 
events197,290. The striatum, as well as midbrain areas, also respond 
to prediction errors during learning of semantic knowledge334, 
state transitions44 and novelty more broadly, even in the absence 
of explicit rewards106,111,335. Other key regions are the hippocampus 
and its prefrontal interactions5,15,17,208 (Box 2), as well as regions in the 
temporal and parietal lobes5.
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structure and connectivity along the mPFC. There is a wide agreement 
on a gradual transition from agranular to granular cortex along the 
posterior–anterior axis of the mPFC228–230. Along the ventral–dorsal axis, 
studies in humans and monkeys generally show different connectivity 
profile of mid-mPFC versus mOFC–vmPFC198–201 (more below), and a  
recent study found that these changes are gradual231.

We therefore propose that abstract representations might recruit 
more anterior parts of the mPFC, whereas detailed memories might 
recruit the posterior mPFC and its connectivity with the hippocampus. 
Research suggests that the anterior part of the PFC is involved in rep-
resenting future or counterfactual states and actions, but not current 
ones232–236. Studies on prospective planning and predictions also show 
a gradient of predictions in mPFC, whereby predictions of the far future 
are represented more anteriorly and predictions of the near future are 
represented more posteriorly72,74. Potentially, the farther one prospects 
to the future, the more abstract and less concrete and detailed are one’s 
thoughts237–239, and therefore they are represented more anteriorly. This 
might also be true for counterfactual thoughts compared with actions 
and events that have materialized. Last, functional MRI studies of dimen-
sionality reduction in abstract tasks report a more anterior cluster of vox-
els in the mOFC–vmPFC134,175 compared with studies addressing retrieval 
of autobiographic memories of specific events240. This posterior versus 
anterior localization in the mPFC aligns with the connectivity of the more 
posterior (and ventral) part of the mPFC and the hippocampus198–201

, 
which is crucial for the encoding and retrieval of detailed memories, 
potentially through the allocation of distinct representations that serve 
to disambiguate similar stimuli241–245 and states246–248.

Specificity versus abstraction might also underlie graded involve-
ment from ventral to dorsal mPFC, supported by differences in func-
tional connectivity. For instance, more ventral parts of the mPFC have 
been shown to represent values of specific stimuli (for example, the 
value of a chocolate outcome) rather than more generic (scalar) value 
representations that are invariant to the specific stimulus (for exam-
ple, when two different outcomes are equally valued)249,250. Further, 
although retrieval of specific autobiographical memories tends to 
involve a ventral mPFC cluster of voxels240, a study addressing rule 
learning that required abstraction across multiple episodes showed 
mid-mPFC activation251. Whereas the mOFC–vmPFC is connected 
to the hippocampus, which is important for detailed memories, the 
mid-mPFC is connected with the posterior medial cortex201,231,252, which 
represents events over large timescales by potentially abstracting 
away more specific details174,253–255. Of note, the studies mentioned here 
employed a variety of learning protocols and stimuli, so they are not all 
directly comparable. Nevertheless, they are in line with our proposal 
that the extent of dimensionality reduction underlies differential 
involvement of mPFC subregions.

Although our hypothesis is consistent with existing data, we note 
that other proposals exist for the function of the mPFC, including repre-
senting economic value8,155,256, the evaluation of retrieved memories221, 
confidence in value estimates257 or retrieved memories221, or signalling 
the congruency of perceptual information with the current schema15 
(Box 4). In our view, recent studies that examined multivoxel activity 
patterns support the hypothesis that the mPFC represents states or 
schemas because these studies show different neural representations 
for stimuli or memories associated with different states or schemas, 
even when these had the same economic value, were retrieved with 
similar levels of confidence or were similarly congruent with the current 
schema9,83,174,249,258. Thus, different representations may be multiplexed 
in the mPFC: different populations of neurons might represent different 

states and schemas that, in turn, activate different neuron populations in 
posterior brain regions and lead to the retrieval of different memories15,59, 
whereas the overall level of activity in mPFC neurons might signal value, 
congruency with existing schemas or other monitoring signals.

Conclusion and future directions
In this Perspective, we outlined how RL and event schemas might be 
related. We proposed that schemas might be learned via RL-related 
mechanisms such as prediction errors, hierarchical decomposition 
of tasks and dimensionality reduction. We then hypothesized that 
dimensionality reduction might underlie the involvement of the mPFC 
in both schemas and RL, and postulated that the extent of abstraction 
might determine the locus of involvement along anatomical mPFC 
axes. Although this hypothesis is consistent with the literature, it needs 
to be further tested and compared with alternative proposals for the 
functional role of the mPFC and OFC (Box 4).

Like episodic memories, schemas change through periods of 
consolidation58,60,62,259,260. An open question is how the computations 
we outlined contribute to these changes. A few recent studies directly 
tested aspects of this question by exposing subjects to unique loca-
tions, and then testing for memory of both the specific locations and 
schema-like summary statistics of the distribution from which loca-
tions were drawn119,261–264. In both rodents and humans, these tests 
showed that episodic memories of specific locations deteriorate 
over time. In rodents, the formation of schemas (measured through 
memory of the location distribution) required the passage of time262, 
whereas in humans, schemas formed rapidly, even before memory 
consolidation, and then remained stable119 or also deteriorated263 

Glossary

Action policy
A probability distribution across 
possible actions in a state.

Agent
An entity (human or artificial) that learns 
and behaves in the environment.

Dimensionality reduction
The projection of data into a 
lower-dimensional subspace, in 
which dimensions reflect a weighted 
combination of the original dimensions.

Event boundaries
Changes in situations or salient 
occurrences that cause the 
segmentation of experience into 
discrete event representations during 
perception and in memory.

Latent cause inference
A computational theory of how 
observations are grouped into clusters 
(‘latent causes’) according to their 
similarity.

Multivoxel activity patterns
Blood oxygen level-dependent 
activity patterns in functional 
MRI that span across multiple 
voxels (three-dimensional units 
of measurement in functional 
MRI) thought to reflect the neural 
representations of stimuli, states, 
contexts and so on.

State
In reinforcement learning, a state is a 
summary of features that describe the 
current situation.

State prediction error
A signal that accompanies a transition 
to a state that is different than expected.

State-transition probability
The probability of transitioning from one 
state to another.
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over time. An exciting future direction could be to combine such 
paradigms with tasks that include hierarchical representations and 
action sequences71,97,121. Computational models of these tasks would 
allow assessing the specific mechanisms we proposed here for schema 
learning and instantiation, both early in learning (Box 2) and through 
consolidation.

Although RL algorithms generally suffer from a curse of dimen-
sionality, namely they scale poorly to rich high-dimensional everyday 
life events6,125, recent RL models combined hierarchical RL principles 
and neural network models to learn multidimensional environments 
and successfully completed very complex tasks (see refs. 265–267). 
Whether such advanced RL algorithms are used by humans to learn 
schemas of multidimensional and complex environments is a question 
for future research268. We propose that ideas and findings from schema 
research, such as those we have laid out in this Perspective, could 
potentially inform further development of these models. For exam-
ple, exciting work now combines neural networks, latent cause infer-
ence and RL to explain schemas and event segmentation of complex  
environments in humans22,269.

In addition to these and other outstanding questions we outlined 
throughout this Perspective, key questions for future research include 
what is the organizing principle of mPFC function, whether it indeed 
performs dimensionality reduction and what are the computations 
that brain-wide networks perform in learning hierarchical schemas 
and states (Box 5). Broadly, rather than trying to map neural substrates 
(regions or networks) to cognitive constructs, the approach we pro-
moted in this Perspective, and that has been proposed many times 
before (see refs. 270–272), identifies computations (such as dimen-
sionality reduction) that serve putative cognitive constructs such as 
schemas or RL (but that can also serve additional cognitive functions; 
Box 4) and asks how these are implemented by different brain areas. 
The road from the brain to cognition and behaviour thus goes through 
computation.

Published online: 7 January 2025
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