

based planning, had signal for treatment response ($\beta=2.29$, SE=1.17, $p=.05$).

Conclusions: Self-report measures were the most predictive of treatment response, over and beyond task-based cognitive measures. The next step is for machine learning models (i.e., elastic net regression, random forest) to test the predictive power of an algorithm based on these features.

Funding Source: MQ: transforming mental health (MQ16IP13)

Irish Research Council Enterprise Partnership Scheme Postgraduate with SilverCloud Health (EPSPG/2020/8)

Keywords: Treatment Prediction, Depression, Internet-Based Methodology, Internet-Based Cognitive Behavioural Therapy

A Reinforcement Learning Framework to Illuminate Change Mechanisms Underlying Specific Psychotherapy Interventions

Isabel M. Berwian¹, Sashank Pisupati¹, and Yael Niv²

¹Princeton Neuroscience Institute, Princeton University,

²Princeton University

Background: Advances in reinforcement learning and Bayesian inference could help illuminate the change processes underlying specific psychotherapy interventions.

Methods: We built a reinforcement learning agent who could learn from the environment using both model-based and model-free algorithms. It made inferences about the value of the current state with an arbitration function integrating model-based and model-free values in a time- and uncertainty-dependent manner. Similar to situations of patients with negative experiences, the agent first learned in an environment with positive and negative outcomes in different states. Subsequently, the environment changed such that all states led to positive outcomes. To assess how interventions helped the agent to adapt best, we operationalized behavioral therapies as exposures to the states previously leading to negative outcomes to experience their current positive nature, cognitive restructuring as an instructed change in the reward matrix of the model-based part of the agent, and the “being mode” in mindfulness with its focus on the current experience as an increase of the relative impact of the current reward in the state value inference process.

Results: In line with core findings by Furukawa et al. (2021), the largest individual patient meta-analysis to date, simulations showed that our agent qualitative and quantitative benefited most from behavioral therapies, fared well after mindfulness and cognitive restructuring, but was also prone to relapse after cognitive restructuring when faced with stress for a wide range of parameter settings.

Conclusions: The proposed framework might help to develop new theory-driven behavioral tasks to predict treatment response to the specific interventions.

Funding Source: NIH: R01 (Mood) - 10012117

Keywords: Mathematical Modeling, Reinforcement Learning Framework, Psychotherapy, Exposure Therapy, Cognitive Restructuring

SYMPOSIUM

Uncovering Novel Drug Targets for Psychiatric Illnesses by Harnessing Large-Scale Genomic and Brain Omics Data

Co-Chairs: Aliza Wingo, Panos Roussos

Multi-Ancestry eQTL Analysis of Human Brain Identifies Candidate Causal Variants for Psychiatric Disorders

Gabriel Hoffman¹

¹Icahn School of Medicine at Mount Sinai

Background: Large-scale, genome-wide association studies (GWAS) have identified hundreds of loci associated with psychiatric traits. Yet identification of the variants, genes and molecular mechanisms underlying these traits remains challenging. Integration of GWAS with expression quantitative trait loci (eQTLs) and identification of shared genetic architecture have been widely adopted to nominate genes and candidate causal variants.

Methods: We developed the multivariate multiple QTL approach and performed a large-scale, multi-ancestry eQTL meta-analysis to increase power and fine-mapping resolution. Analysis of 3,983 RNA-seq data from post mortem brain samples of from 2,119 donors of diverse ancestry gave an effective sample size of 3,154.

Results: Joint statistical fine-mapping of eQTL and GWAS identified 329 variant-trait pairs for 24 brain-related traits driven by 204 unique candidate causal variants for 189 unique genes.

Conclusions: This integrative analysis identifies candidate causal variants and elucidates potential regulatory mechanisms for genes underlying schizophrenia and bipolar disorder.

Funding Source: R01 MH109897/NIMH, I01 BX004189/VA, R01 AG067025/NIA, R01 AG065582/NIA, R01 MH125246/NIMH, U01 MH116442/NIMH, R01 AG050986/NIA, R01 MH109677/NIMH

Keywords: Expression Quantitative Trait Loci (eQTL), Gene Expression, Mixed-Effect Model, Brain Tissue

Integrating Human Brain Proteomes With GWAS Results to Identify Causal Brain Proteins for the Major Psychiatric Disorders

Thomas Wingo¹, Yue Liu², Ekaterina S. Gerasimov², Selina Vattathil², Jiaqi Liu², David Cutler¹, Michael Epstein¹, Gabriëlla Blokland³, Duc Duong¹, David Bennett⁴, Allan Levey¹, Nicholas Seyfried¹, and **Aliza Wingo**¹

¹Emory University, ²Emory University School of Medicine, ³Maastricht University, ⁴Rush Alzheimer's Disease Center

Background: Major psychiatric disorders such as major depressive disorder (MDD), bipolar disorder, schizophrenia, anxiety disorders, PTSD, and alcohol use disorder affect approximately 25% of the population annually; however, their treatments are effective in only a subset of the patients, highlighting a pressing need for more effective treatments.