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Abstract

In reinforcement learning (RL), a decision maker searching for the most rewarding option is
often faced with the question: What is the value of an option that has never been tried before? One
way to frame this question is as an inductive problem: How can I generalize my previous experi-
ence with one set of options to a novel option? We show how hierarchical Bayesian inference can
be used to solve this problem, and we describe an equivalence between the Bayesian model and
temporal difference learning algorithms that have been proposed as models of RL in humans and
animals. According to our view, the search for the best option is guided by abstract knowledge
about the relationships between different options in an environment, resulting in greater search effi-
ciency compared to traditional RL algorithms previously applied to human cognition. In two behav-
ioral experiments, we test several predictions of our model, providing evidence that humans learn
and exploit structured inductive knowledge to make predictions about novel options. In light of this
model, we suggest a new interpretation of dopaminergic responses to novelty.

Keywords: Reinforcement learning; Bayesian inference; Exploration—exploitation dilemma;
Neophobia; Neophilia

1. Introduction

Novelty is puzzling because it appears to evoke drastically different responses depending
on a variety of still poorly understood factors. A century of research has erected a formida-
ble canon of behavioral evidence for neophobia (the fear or avoidance of novelty) in
humans and animals, as well as an equally formidable canon of evidence for its converse,
neophilia, without any widely accepted framework for understanding and reconciling these
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data. We approach the puzzle of novelty through the theoretical lens of reinforcement learn-
ing (RL; Sutton & Barto, 1998), a computational framework that is concerned with how we
estimate values (expected future rewards) based on experience. Viewed through this lens,
novelty responses can be understood in terms of how values learned for one set of options
can be generalized to a novel (unexperienced) option, thereby guiding the decision maker’s
search for the option that will yield the most reward.

The starting point of our investigation is the idea that value generalization is influenced
by the decision maker’s inductive bias (Mitchell, 1997): prior beliefs about the reward
properties of unchosen options. An inductive bias is distinguished from non-inductive
biases in that an inductive bias involves an inference from observations to unknowns.
For example, if you have eaten many excellent dishes at a particular restaurant, it is rea-
sonable to infer that a dish that you have not tried yet is likely to be excellent as well. In
contrast, a non-inductive bias reflects a prepotent response tendency not derived from an
inferential process. From a psychological perspective, it seems plausible that humans
possess a rich repertoire of inductive biases that influence their decisions in the absence
of experience (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Here we ask:
Does human RL involve inductive biases, and if so, how are the biases acquired and
used?

We hypothesize that humans and animals learn at multiple levels of abstraction, such
that higher level knowledge constrains learning at lower levels (Friston, 2008; Kemp,
Perfors, & Tenenbaum, 2007; Lucas & Griffiths, 2010). Learning the specific properties
of a novel option is guided by knowledge about the class of options to which the novel
option belongs—high-level knowledge plays the role of inductive bias. In the restaurant
example above, high-level knowledge is comprised of your evaluation of the restaurant,
an inductive generalization made on the basis of previous experience at that restaurant as
a whole, which enables predictions about new dishes and future experiences. This form
of inductive generalization has the potential to accelerate the search for valuable options
by effectively structuring the search space.

The inductive nature of responses to novelty is intimately related to the exploration-
exploitation dilemma (Cohen, McClure, & Yu, 2007), which refers to the problem of
choosing whether to continue harvesting a reasonably profitable option (exploitation) or
to search for a possibly more profitable one (exploration). Choosing a novel option corre-
sponds to an exploratory strategy. Traditional theoretical treatments approach the problem
of determining the optimal balance between exploration and exploitation in terms of the
value of information (Howard, 1966): Reducing uncertainty by observing the conse-
quences of novel actions is inherently valuable because this can lead to better actions in
the future. This principle is formalized in the Gittins Index (Gittins, 1989), which dictates
the optimal exploration policy in multi-armed bandits (choice tasks with a single state
and multiple actions). The Gittins Index can be interpreted as adding to the predicted
reward payoff for each option an “exploration bonus” that takes into account the uncer-
tainty about these predictions. The influence of this factor on human behavior and brain
activity has been explored in several recent studies (Acuna & Schrater, 2010; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006b; Steyvers, Lee, & Wagenmakers, 2009).
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We shall come back to the exploration-exploitation dilemma when we discuss the results
of Experiment 2.

The rest of the paper is organized as follows. We first review the rather puzzling and
contradictory literature on responses to novelty in humans and animals, and relate novelty
responses to the neuromodulator dopamine, thought to play an important role in RL.
Then, in Section 2 we lay out a Bayesian statistical framework for incorporating induc-
tive biases into RL and show how this framework is related to the temporal difference
(TD) algorithm (Sutton & Barto, 1998) that has been widely implicated in neurophysio-
logical and behavioral studies of RL (Niv, 2009; Schultz, Dayan, & Montague, 1997). In
Sections 3-4 we present the results of two experiments designed to test the model’s pre-
dictions and compare these predictions to those of alternative models. Finally, in Section 5
we discuss these results in light of contemporary theories of RL in the brain.

1.1. The puzzle of novelty

In this section, we briefly survey some representative findings from prior studies of
neophobia and neophilia (see Corey, 1978; Hughes, 2007, for more extensive reviews).
We define neophobia operationally as the preference for familiar over novel stimuli (and
the reverse for neophilia). This encompasses not only approach/avoidance responses (the
typical behavioral index of novelty preference) but also instrumental or Pavlovian
responses to novel stimuli. For example, in the experiments we report below, we use pre-
diction and choice as measures of novelty preferences, under the assumption that both
choice and approach/avoidance result from predictions about future reward (see Dayan,
Niv, Seymour, & Daw, 2006).

Evidence for neophilia comes from a variety of preparations. Rats will learn to press a
bar for the sake of poking their heads into a new compartment (Myers & Miller, 1954),
will forgo food rewards in order to press a lever that periodically delivers a visual stimu-
lus (Reed, Mitchell, & Nokes, 1996), will display a preference for environments in which
novel objects have appeared (Bardo & Bevins, 2000), and will interact more with novel
objects placed in a familiar environment (Ennaceur & Delacour, 1988; Sheldon, 1969).
Remarkably, access to novelty can compete with conditioned cocaine reward (Reichel &
Bevins, 2008) and will motivate rats to cross an electrified grid (Nissen, 1930). The
intrinsically reinforcing nature of novelty suggested by these studies is further indicated
by the similarity between behavioral and neural responses to novelty and to drug rewards
(Bevins, 2001). Finally, it has been argued that neophilia should not be considered deriva-
tive of basic drives like hunger, thirst, sexual appetite, pain, and fear, since it is still
observed when these drives have ostensibly been satisfied (Berlyne, 1966).

Despite the extensive evidence for affinity to novelty in animals, many researchers
have observed that rats will avoid or withdraw from novel stimuli if given the opportu-
nity (Blanchard, Kelley, & Blanchard, 1974; King & Appelbaum, 1973), a pattern also
found in adult humans (Berlyne, 1960), infants (Weizmann, Cohen, & Pratt, 1971), and
non-human primates (Weiskrantz & Cowey, 1963). Flavor neophobia, in which animals
hesitate to consume a novel food (even if it is highly palatable), has been observed in a
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number of species, including humans (Corey, 1978). Suppressed consummatory behavior
is also observed when a familiar food is offered in a novel container (Barnett, 1958); ani-
mals may go 2 or 3 days without eating under these circumstances (Cowan, 1976).
Another well-studied form of neophobia is known as the mere exposure effect: Simply
presenting an object repeatedly is sufficient to enhance preference for that object relative
to a novel object (Zajonc, 2001). As an extreme example of the mere exposure effect, Ra-
jecki (1974) reported that playing tones of different frequencies to different sets of fertile
eggs resulted in the newly hatched chicks preferring the tone to which they were prena-
tally exposed.

A number of factors have been identified that modulate the balance between neophilia
and neophobia. Not surprisingly, hunger and thirst will motivate animals to explore and
enhance their preference for novelty (Fehrer, 1956; File & Day, 1972). Responses to nov-
elty also depend on “background” factors such as the level of ambient sensory stimulation
(Berlyne, Koenig, & Hirota, 1966) and the familiarity of the environment (Hennessy,
Levin, & Levine, 1977). For our purposes, the most relevant modulatory factor is prior
reinforcing experience with other cues. Numerous studies have shown that approach to a
novel stimulus is reduced following exposure to electric shock (Corey, 1978). One inter-
pretation of this finding is that animals have made an inductive inference that the envi-
ronment contains aversive stimuli, and hence new stimuli should be avoided. In this
connection, it is interesting to note that laboratory rats tend to be more neophilic than
feral rats (Sheldon, 1969); given that wild environments tend to contain more aversive
objects than laboratories, this finding is consistent with idea that rats make different
inductive generalizations based on their differing experiences.

1.2. Dopamine and shaping bonuses

RL theory has provided a powerful set of mathematical concepts for understanding the
neurophysiological basis of learning. In particular, theorists have proposed that humans
and animals employ a form of the TD learning algorithm, which uses prediction errors
(the discrepancy between received and expected reward) to update reward predictions
(Barto, 1995; Houk, Adams, & Barto, 1995; Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997); for a recent review, see Niv (2009). The firing of
midbrain dopamine neurons appears to correspond closely to a reward prediction error
signal (Bayer & Glimcher, 2005; Hollerman & Schultz, 1998; Schultz et al., 1997).
Despite this remarkable correspondence, the prediction error interpretation of dopamine
has been challenged by the observation that dopamine neurons also respond to the
appearance of novel stimuli (Horvitz, Stewart, & Jacobs, 1997; Schultz, 1998), a finding
not predicted by classical RL theories.

Kakade and Dayan (2002b) suggested that dopaminergic novelty responses can be
incorporated into RL theory by postulating shaping bonuses—optimistic initialization of
reward predictions (Ng, Harada, & Russell, 1999). These high initial values have the
effect of causing a positive prediction error when a novel stimulus is presented (see also
Suri, Schultz, et al., 1999). Wittmann, Daw, Seymour, and Dolan (2008) have shown that
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this model can explain both brain activity and choice behavior in an experiment that
manipulated the novelty of cues. Optimistic initialization is theoretically well motivated
(Brafman & Tennenholtz, 2003), based on the idea that optimism increases initial explo-
ration. However, the contribution of inductive biases to the dopaminergic novelty
response has not been systematically investigated, although there is evidence that dopa-
mine neurons will sometimes ‘“generalize” their responses from reward-predictive to
reward-unpredictive cues (Day, Roitman, Wightman, & Carelli, 2007; Kakade & Dayan,
2002a; Schultz, 1998).

It is important to distinguish between multiple forms of generalization that can occur
when a cue is presented. For example, Kakade and Dayan (2002b) examined generaliza-
tion arising from partial observability: uncertainty about the identity of an ambiguous
cue. This can result in neural responses to different cues being blurred together (see also
Daw, Courville, & Touretzky, 2006a; Rao, 2010), effectively leading to generalization.
Similarly, uncertainty about when an outcome will occur can also lead to the blending
together of neural responses across multiple points in time (Daw et al., 2006a). Our
focus, in contrast, is on generalization induced by uncertainty about the reward value of a
cue, particularly in situations where multiple cues occur in the same context. Our conjec-
ture is that contextual associations bind together cues such that experience with one cue
influences reward predictions for all cues in that context. In the next section, we present
a theoretical framework that formalizes this idea.

2. Theoretical framework

To formally incorporate inductive generalization into the machinery of RL, we appeal
to the theory of Bayesian statistics, which has received considerable support as the basis
of human inductive inferences (Griffiths et al., 2010) and has been applied to RL in a
number of previous investigations (Behrens, Woolrich, Walton, & Rushworth, 2007;
Courville, Daw, & Touretzky, 2006; Gershman, Blei, & Niv, 2010; Kakade & Dayan,
2002a; Payzan-LeNestour & Bossaerts, 2011). Our contribution is to formalize the influ-
ence of abstract knowledge in RL through a hierarchical Bayesian model (Kemp et al.,
2007; Lucas & Griffiths, 2010). In such a model, the reward properties of different
options are coupled together by virtue of being drawn from a common distribution. As a
consequence, an agent’s belief about one option is (and should be) influenced by the
agent’s experience with other options.

We derive our Bayesian RL model from first principles, starting with a generative
model of rewards that expresses assumptions, which we ascribe to the agent, about the
probabilistic relationships between cues and rewards in its environment." The agent then
uses Bayes’ rule to “invert” this probabilistic model and predict the underlying reward
probabilities. Finally, we show that there is a close formal connection between application
of Bayes’ rule and TD learning (see Dearden, Friedman, & Russell, 1998; Engel, Mannor,
& Meir, 2003, for other relationships between Bayes’ rule and TD learning).
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2.1. Hierarchical Bayesian inference

For concreteness, consider the problem of choosing whom to ask on a date. Each
potential date has some probability of saying “yes” (a rewarding outcome) or “no” (an
unrewarding outcome). These probabilities may not be independent from each other; for
example, there may be an overall bias towards saying “no” if people tend to already have
dates. In the Bayesian framework, the goal is to learn each person’s probability of saying
“yes,” potentially informed by the higher level bias shared across people.

Formally, we specify the following generative model (see Fig. 1) for reward r, on trial
t in a K-armed bandit (a choice problem in which there are K options on every trial, each
with a separate probability of delivering reward):

1. In the first step, a bias parameter b, which determines the central tendency of the
reward probabilities across arms, is drawn from a Beta distribution:

blbo, py ~ Beta(pybo, po(1 — bo)), (1)

where by, the mean, and p,, which is inversely proportional to the variance.” In the dating
example, b represents the overall propensity across people for agreeing to go on a date.

2. Given the bias parameter, the next step is to draw a reward probability 60; for each
arm. In the dating example, 6; represents a particular individual’s propensity for
agreeing to go on a date. These are drawn independently from a Beta distribution
with mean b:

Inductive
bias
9,- Rewarq.
K probability
) 4
I Reward
T o 02 o e o8 1

Fig. 1. Hierarchical Bayesian model. (Left) Graphical representation of the model as a Bayesian network.
Unshaded nodes represent unknown (latent) variables, shaded nodes represent observed variables, plates rep-
resent replications, and arrows represent probabilistic dependencies. See Pearl (1988) for an introduction to
Bayesian networks. (Right) Probability distributions over the reward parameter 6 induced by different settings
of b and p.
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0ilb, p ~Beta(pb, p(1 —b)). (2)

The parameter p controls the degree of coupling between arms: High p means that
reward probabilities will tend to be tightly clustered around b (see Fig. 1).

3. The last step is to draw a binary reward r; for each trial ¢, conditional on the chosen
arm ¢;, and the reward probability of that arm 0,,:

1|0, ¢, ~Bernoulli(6,,), (3)

where i € {1,...,K} indexes arms (options) and ¢, € {I,...,K} denotes the choice made
on trial ¢. In the dating example, r, represents whether or not the person you chose to ask
out on a particular night (¢,) agreed to go on a date.

Given a sequence of choices ¢ = {ci,...,cr} and rewards r = {r,...,rr}, the
agent’s goal is to estimate the reward probabilities 6 = {6,,...,0k}, so as to choose the
most rewarding arm. We now describe the Bayesian approach to this problem, and then
relate it to TD reinforcement learning. Letting C; denote the number of times arm i was
chosen and R; denote the number of times reward was delivered after choosing arm i, we
can exploit the conditional independence assumptions of the model to express the poster-
ior over reward probabilities as:

P(0|r,c) :/P(B,b|r,c)db
b

_ / P(blr, ¢)P(O]r, ¢, b)db (4)
b

_ /P(b|r, ¢) [] Beta(0:; R: + pb, Ci — Ri + p(1 — b))db.
b i

where Beta(0;; -, -) is the probability density function of the Beta distribution evaluated at
0;. We have suppressed explicit dependence on p, p, and by (which we earlier assumed
to be known by the agent) to keep the notation uncluttered. The conditional distribution
over b is given by:

P(b|r,c) o< P(b|py, bo) HB(RI' + ll;lz;)iz;(fl_—l-b,;)(l — b)) :

where B(-,-) is the beta function. The posterior mean estimator for 6; is thus given by

(5)

éi:[E[f)i’Lc] :/P(b|r,c)/HiP(Hi]ri,ci,b)dG,-db
b 0;

R; + pb
= [ P(b|r,¢)|———|db.
/b (0 )[Ci-l-/)}

(6)

This estimate represents the posterior belief that arm i will yield a reward, conditional
upon observing r and c. Although there is no closed-form solution to the integral in
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Eq. 6, it is bounded and one-dimensional, so we can easily approximate it numeri-
cally.

As an illustration of how the estimated reward probabilities are determined by
observed rewards, Fig. 2 shows examples of the joint posterior distribution for two arms
under different settings of R;. Notice that the estimate for 0 is regularized toward the
empirical mean of the other arm, R,/C,. Similarly, the estimate of 0, is regularized
toward the empirical mean of the first arm. The regularization occurs because the hierar-
chical model couples the reward probabilities across arms. Experience with one arm influ-
ences the estimate for the other arm by shifting the conditional distribution over the bias
parameter (Eq. 5), which is shared by both arms.

2.2. Relationship to temporal difference reinforcement learning

Although we are primarily interested in testing the validity of the Bayesian framework
to describe human behavior in relation to novelty, to relate this abstract statistical frame-
work to commonly used mechanistic models of learning in the brain, we now show how
a learner can estimate 0; online using a variant of TD learning. First, we establish that,
for given b, TD learning with a time-varying learning rate directly calculates 0;. We then
extend this to the case of unknown b. After choosing option ¢,, TD updates its estimate
of the expected reward (the value function, V) according to:

Visi(er) = Viler) + n,64, (7)

where 1, is a learning rate and 6, = r, — Vi(c,) is the prediction error.” This delta-rule
update (cf. Widrow & Hoff, 1960) is identical to the influential Rescorla—Wagner model
used in animal learning theory (Rescorla & Wagner, 1972). The same model has been

Fig. 2. Posterior distribution over reward probabilities. Heatmap displays P(f|r,c) for a two-armed bandit
under different settings of R; (lighter colors denote higher probability). The axes represent different hypothet-
ical settings of the reward probabilities (0; and 0,). The cross denotes the empirical proportions R;/C;, with
R, = 5and C; = C, = 10. The “x” denotes the posterior mean.
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applied by Gluck and Bower (1988b) to human category learning (see also Gluck &
Bower, 1988a). .

We now establish that Eq. 7 directly computes the posterior mean ;. We proceed by
setting the learning rate 7, such that V,(i) represents the posterior mean estimate of 0;
after observations 1 to t+ — 1. Let us define the auxiliary variables s = C; + p and
a = R; + pb, where the counts reflect observations 1,..., — 1. For known b, we can re-
express Eq. 6 in the following “delta rule” form:

a+r, a

a
== --). 8
s+1 s+nt<rt s) (8)

Note that the integral in Eq. 6 has disappeared here because we are conditioning on b.
The left-hand side of Eq. 8 is the posterior mean 0; after observations 1,.. .7, and 4 is the
posterior mean after observations 1,...,t — 1. After some algebraic manipulation, we can
solve for #,:

_sn—a s
yh_s(s+1)sr,—a
1
s+ ®)
1

TCrp+ 1

Notice that when 7 =1 (i.e., before any observations, when R; = C; = 0), ¢ = b. In
other words, the above equations imply that the initial value for all options is equal to
the prior mean, b. This means that TD learning using 1, = Ci%pﬂ and initializing all the
values to b yields a correct posterior estimation scheme, conditional on b.

There is a close connection between this posterior estimation scheme and the shaping
bonus considered by Kakade and Dayan (2002a) in their model of dopamine responses.
Recall that a shaping bonus corresponds simply to setting the initial value to a positive
constant in order to encourage exploration. This can be contrasted with a “naive” TD
model in which the initial value is set to 0. The analysis described above demonstrates
that according to the hierarchical Bayesian interpretation of TD, the initial value should
be precisely the prior mean. Thus, our theory provides a normative motivation for shap-
ing bonuses grounded in inductive inference. Different initial values represent different
assumptions (inductive biases) about the data-generating process. Another interesting
aspect of this formulation is that larger values of the coupling parameter p lead to faster
learning rate decay. This happens because larger p implies more sharing between options,
and hence effectively more information about the value of each individual option.

When b is unknown, we must average over its possible values. This can be done
approximately by positing a collection of value functions {V,(i;b,),..., V,(i;by)}, each
with a different initial value b,, such that they tile the [0,1] interval. These can be learned
in parallel, and their estimates can then be combined to form the marginalized hierarchi-
cal estimate:
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N
V(i) ~ anVt(i;bn), (10)

where
B P(b = byr,¢)
Z;V:I P(b = bjlrv C)

The intuition here is that the distribution over b represents uncertainty about initial val-
ues (i.e., about the prior probability of reward); by averaging over b the agent effectively
smoothes the values to reflect this uncertainty.

To summarize, we have derived a formal relationship between hierarchical Bayesian
inference and TD learning, and used this to show how shaping bonuses can be interpreted
as beliefs about the prior probability of reward, a form of inductive bias. We have also
shown how this inductive bias can itself be learned. The basic prediction of our theory is
that preferences for novel options should increase monotonically with the value of other
options experienced in the same context. In the following, we describe two experiments
designed to test implications of this prediction.

(11)

n

3. Experiment 1: Manipulating inductive biases in a reward prediction task

The purpose of Experiment 1 was to show that inductive biases influence predictions
of reward for novel options. Our general approach was to create environments in which
options tend to have similar reward probabilities, leading participants to form the expecta-
tion that new options in the same environment will also yield similar rewards. Partici-
pants played an “interplanetary farmer” game in which they were asked to predict how
well crops would grow on different planets, obtaining reward if the crop indeed grew. In
this setting, crops represent options and planets represent environments. “Fertile” planets
tended to be rewarding across many crops, whereas “infertile” planets tended to be unre-
warding. The Bayesian RL model predicts that participants will learn to bias their predic-
tions for new crops based on a planet’s fertility. Specifically, participants should show
higher reward predictions for novel crops on planets in which other crops have been fre-
quently rewarded, compared to predictions for novel crops on planets in which other
crops have been infrequently rewarded. Thus, the model predicts both “neophilia" and
“neophobia"” (in the generalized sense of a behavioral bias for or against novelty) depend-
ing on the participant’s previous experience in the task.

3.1. Methods
3.1.1. Participants

Fourteen Princeton University undergraduate students were compensated $10 for
45 min, in addition to a bonus based on performance. All participants gave informed
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consent and the study was approved by the Princeton University Institutional Review
Board.

3.1.2. Materials and procedure

Fig. 3 shows a schematic of the task. Participants were told that they would play the
role of “interplanetary farmers” tasked with planting various types of crops on different
planets, with each crop’s properties specific to a planet (i.e., apples might grow on one
planet but not on another). Participants were informed each time they began farming a
new planet.* On prediction trials (Fig. 3, top), participants were shown a single crop and
asked to rate their “gut feeling” that the crop will yield a profit (i.e., a binary reward).
Responses were registered using a mouse-controlled slider-bar. Crops were indicated by
color images of produce (fruits and vegetables). The experiment was presented using
Psychtoolbox (Brainard, 1997).

After making a response, the participant was presented with probabilistic reward feed-
back lasting 1,000 ms while the response remained on the screen. Reward feedback was
signalled by a dollar bill for rewarded outcomes and by a phase-scrambled dollar bill for
unrewarded outcomes. Rewards were generated according to the following process: For
each planet, a variable b was drawn from a Beta(1.5,1.5) distribution,’ and then a crop-
specific reward probability was drawn from a Beta(pb,p(1 — b)) distribution, with p = 5.
Participants were told that planets varied in their “fertility”: On some planets, many crops
would tend to be profitable (i.e., frequently yield rewards), whereas on other planets few
crops would tend to be profitable.

We used a prediction task (rather than a choice task) in order to disentangle inductive
bias from the value of gathering information (Howard, 1966). Because rewards in our
task do not depend on behavioral responses, participants cannot take actions to gain infor-
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Fig. 3. Task design. (Top row) A prediction trial, in which subjects rated their “gut feeling” (using a slider-
bar) that a crop will yield a reward. (Bottom row) A choice trial, in which subjects chose between two crops.
In both cases, participants received (probabilistic) reward feedback (right panels). Receipt of reward is repre-
sented by a dollar bill; no reward obtained is represented by a scrambled image of a dollar bill.
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mation. However, to confirm that participants were able to distinguish the reward proba-
bilities of different crops and were assessing each crop separately, we also included peri-
odic choice trials in which participants chose between two different crops. On these trials
(Fig. 3, bottom), participants were shown two crops from the current planet and were
asked to choose the crop they would prefer to plant. Feedback was then delivered accord-
ing to the same generative process used in the prediction trials. A cash bonus of $1-3
was awarded based on performance on the choice trials by calculating 10% of the partici-
pant’s earnings on these trials; thus, participants were encouraged to maximize the suc-
cess of their crops on these trials.

Each planet corresponded to 60 prediction trials (six planets total), with each crop
appearing 4-12 times. The crops were cycled, such that three crops were randomly inter-
leaved at each point in time, and every four trials one crop would be removed and
replaced by a new crop. Thus, except for the first and last two crops, each crop appeared
in three consecutive cycles. Choice trials were presented after every 10 prediction trials,
for a total of six choice trials per planet.

3.2. Results and discussion

To analyze the “gut feeling” prediction data, we fit several computational learning
models to participants’ predictions. These models formalize different assumptions about
inductive reward biases. In particular, we compared the Bayesian RL model to simple
variations on the basic TD algorithm. The “naive” TD model initialized values to
Vi = 0, and then updated them according to the TD rule (Eq. 7), with a stationary learn-
ing rate 1 that we treated as a free parameter. The “shaping” model incorporated shaping
bonuses by initializing V; > 0. For the shaping model, we treated V| as a free parameter
(thus the naive model is nested in the shaping model). The Bayesian RL model, as
described above, had two free parameters, p and by.

We used participants’ responses on prediction trials in order to fit the free parameters
of the models. For this, it was necessary to specify a mapping from learned values to
behavioral responses. Letting x denote the set of parameters on which the value function
depends in each model, we assumed that the behavioral response on prediction trial ¢, y;,
is drawn from a Gaussian with mean V,(c;;x) and variance o2 (a free parameter fit to
data). Because there is only one crop on each prediction trial, ¢, refers to the presented
crop on trial #. Note also that V; is implicitly dependent on the reward and choice history.

The free parameters of the models were fit for each participant separately, using Mar-
kov chain Monte Carlo (MCMC) methods (Robert & Casella, 2004). A detailed descrip-
tion of our procedure is provided in the Appendix. Briefly, we drew samples from the
posterior over parameters and used these to generate model predictions as well as the pre-
dictive probability of held-out data using a cross-validation procedure, where we held out
one planet while fitting all the others. Cross-validation evaluates the ability of the model
to generalize to new data and is able to identify “over-fitting” of the training data by
complex models. We reserved the choice trials for independent validation that participants
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were discriminating between the reward probabilities for different crops on a planet, and
we did not use them for model fitting.

Since we were primarily interested in behavior on trials in which a novel crop was pre-
sented, we first analyzed these separately. Fig. 4 (left) shows reward predictions for novel
crops as a function of average previous reward on a planet (across all crops). Participants
exhibited a monotonic increase in reward predictions for a novel crop as a function of
average reward, despite having no experience with the crop. This monotonic increase is
anticipated by the Bayesian RL model, but not by the shaping model. Participants also
appeared to display an a priori bias toward high initial reward predictions (i.e., optimism),
based on the fact that initial reward predictions were always greater than 0. The Bayesian
RL model was able to capture this bias with the higher level bias parameter, by.

Fig. 4 (right) shows the cross-validation results for the three models, favoring the
Bayesian model. To statistically quantify these results, we computed relative cross-valida-
tion scores by subtracting, for each subject, the predictive log-likelihood of the held-out
prediction trials under the shaping and naive models from the log-likelihood under the
Bayesian model. Thus, scores below 0 represent inferior predictive performance relative
to the Bayesian model. We performed paired-sample t-tests on the cross-validation scores
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Fig. 4. Human inductive biases in Experiment 1. (Left) Empirical and model-based reward predictions for
novel crops as a function of average past reward on a planet (across all crops). The average reward only
incorporates rewards prior to each response. The naive RL predictions correspond to a straight line at 0. Pre-
dictions were averaged within four bins equally spaced across the average reward axis. Error bars denote
standard error. (Right) Cross-validated predictive log-likelihood of shaping and naive models relative to the
Bayesian model. Points below the diagonal (higher log-likelihood) indicate a better fit of the Bayesian model.
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across participants. The scores for the Bayesian model were significantly higher compared
to the shaping model (#(13) =342, p<.005) and the naive model
(t(13) = 6.87,p < .00002). The score for the shaping model was also significantly higher
compared to the naive model (#(13) = 4.44, p < .0007).

These results rule out another alternative model that we have not yet discussed. In this
model, participants represent the planet context as an additional feature of each trial,
which can itself accrue value. When presented with a novel crop, this contextual feature
(and its corresponding value) can then guide valuation according to the reinforcement his-
tory of other crops on the same planet. The simplest instantiation of such a model would
be to calculate the aggregate value of a crop as the sum of its context and crop-specific
values, such as in the Rescorla—Wagner model (Rescorla & Wagner, 1972). In fact, this
type of feature combination is well-established in the RL literature, where it is known as
a linear function approximation architecture (Sutton & Barto, 1998). However, the precise
quantitative predictions of such a model disagree with our findings. To correctly predict
the reward value, the feature-specific reward predictions should sum to 1. This means that
rewards are essentially divided among the features; consequently, when presented with a
novel crop, its value under this context-feature model will of necessity be less than or
equal to the average reward previously experienced on that planet, in contradiction to the
results shown in Fig. 4. It is also worth noting that these findings are consistent with the
observation in the animal learning literature that contexts do not acquire value in the
same way as do punctate cues (Bouton & King, 1983).

An important question concerns whether participants truly learned separate values for
each crop or simply collapsed together all the crops on a planet. To address this, we per-
formed a logistic regression analysis on the choice trials to see whether the difference in
average reward between two crops is predictive of choice behavior (an intercept term was
also included). The regression analysis was performed for each subject separately, and
then the regression coefficients were tested for significance using a one-sample #-test. This
test showed that the coefficients were significantly greater than zero (#(13) = 5.09,
p < .0005), indicating that participants were able to discriminate between crops on the
basis of their reward history. On average, participants chose the better crop 68% of the
time (significantly greater than chance according to a binomial test, p < .01).

In summary, this experiment provides evidence that humans and animals learn at mul-
tiple levels of abstraction, such that higher level knowledge (here: about a planet) is
informed by, and also constrains learning at lower levels (e.g., about crops).

4. Experiment 2: Manipulating inductive biases in a decision-making task

Our previous experiment used a reward prediction task as a way of directly querying
participants’ values. However, this design sacrifices the decision-making aspect of RL,
the source of rich computational issues such as the exploration-exploitation trade-off. It
also makes it difficult to distinguish our experiments from formally similar causal learn-
ing experiments; indeed, our computational formalism is closely related to Bayesian theo-
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ries of causal learning (Glymour, 2003; Kemp, Goodman, & Tenenbaum, 2010). Experi-
ment 2 was, therefore, designed to study inductive biases in a choice setting, where par-
ticipants are asked to choose crops to maximize their cumulative rewards.

One problem with translating our paradigm into the choice setting is that choices are
primarily driven by relative value, and hence when all the crops are of high or low value,
any inductive biases related to the context will be obscured by the relative value of the
crops. To address this issue, we asked participants to choose between a continually
changing crop and a reference crop that was presented on every trial and always deliv-
ered rewards with probability 1/2. Inductive biases can then be revealed by examining
the probability that a novel crop will be chosen over the reference crop.

4.1. Methods

4.1.1. Participants

Fifteen Princeton University undergraduate students were compensated $10 for 45 min,
in addition to a bonus based on performance. All participants gave informed consent and
the study was approved by the Princeton University Institutional Review Board.

4.1.2. Materials and procedure

The procedure in Experiment 2 was similar to the choice trials in Experiment 1. Partic-
ipants were shown two crops from the same planet and were asked to choose the crop
with the greater probability of reward. One of the two crops was a reference crop that
delivered reward with probability 1/2 across all planets (participants were told this reward
probability). Feedback was then delivered probabilistically as in Experiments 1 and 2,
according to the chosen crop. A cash bonus of $1-$3 was awarded based on performance
on the choice trials, by calculating 10 percent of the participant’s earnings.

Each planet involved 100 trials (12 planets total), with a new crop appearing every 9
to 19 trials (chosen from a uniform distribution). Unlike in the previous experiments, the
crops were not cycled; instead, a single crop would appear in consecutive trials until
replaced by a new one. This allowed us to examine learning curves for a single crop. On
each planet, participants were presented with a total of seven to eight unique crops (not
including the reference crop). Planets were divided into equal numbers of “fertile” planets
on which all crops delivered a reward with probability 0.75, and “infertile” planets on
which all crops delivered a reward with probability 0.25.

To model the transformation of values into choice probabilities, we used the softmax
equation (Sutton & Barto, 1998):

exp{pVi(i)}

Pl =0 = S exp V()

(12)

where f is an inverse temperature parameter that governs the stochasticity of choice
behavior and j indexes crops available on the current trial. In all other aspects, our fitting
and evaluation procedures were identical to those described for Experiment 1.
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4.2. Results and discussion

Fig. 5 summarizes the results of this experiment. The probability of choosing a novel
crop on its first presentation increased monotonically as a function of average reward
(Fig. 5, left), despite no prior experience with the crop, consistent with the Bayesian RL
model. As in Experiment 1, the shaping and naive models were unable to capture this
pattern: The cross-validation results (Fig. 5, right) confirmed that the Bayesian RL model
was quantitatively better at predicting behavior than either alternative. The cross-valida-
tion scores for the Bayesian model were significantly higher compared to the shaping
model (#(14) = 5.69, p < .00005) and the naive model (#1(14) = 3.65, p < .005).

Consistent with the results of Experiment 1, we again found that participants had an a
priori bias toward novel crops superimposed on their inductive bias, as evidenced by the
fact that the novel crops were chosen over 40% of the time even when the previous crops
were rewarded only on 20 percent of the trials (compared to 50 percent for the reference
crop). This bias was captured by fitting the top-level bias parameter p,,.

Our experimental design provided us with an opportunity to study how participants use
inductive biases to balance the exploration-exploitation trade-off. In particular, a stronger
inductive bias should lead to less exploration and more exploitation, since the participant
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Fig. 5. Human inductive biases in Experiment 2. (Left) Empirical and model-based probability of choosing
a novel crop as a function of average past reward on a planet (across all crops). Predictions were averaged
within four bins equally spaced across the average reward axis. Error-bars denote standard error. (Right)
Cross-validated predictive log likelihood of shaping and naive models relative to the Bayesian model. Points
below the diagonal (higher log likelihood) indicate a better fit of the Bayesian model.
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is more confident in his/her reward predictions. According to the Bayesian RL model, the
inductive bias for novel crops will be stronger at the end of a planet than at the begin-
ning, since more evidence will have accumulated about the average value of crops on a
planet. Accordingly, we divided crops according to whether they appeared early in the
planet (within the first 25 trials) or late (after the first 25 trials).® We further distinguished
between “good” crops (with reward probability 0.75) and “bad” crops (with reward prob-
ability 0.25). We then examined the learning curves for each of these categories of crops
(Fig. 6, left).

For bad crops, the Bayesian RL model predicts a stronger inductive bias late in the
block compared to early in the block (Fig. 6, right), a pattern that is exhibited by partici-
pants’ choice behavior (Fig. 6, left). Thus, participants appear to explore less as their
inductive biases become stronger. The main discrepancy between the model and data is
the slightly lower novel choice probability on the first repetition of a bad crop late in the
block. In addition, the model appears to predict an overall higher novel choice probability
for bad crops than observed empirically.

The Bayesian RL model also predicts a smaller difference in early/late performance
for bad crops compared to good crops. Due to the baseline optimistic novelty bias
described above, participants will (according to the model) initially over-sample a reward-
ing novel option and then decrease (or at least not increase) their choice of this option so
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Fig. 6. Learning curves in Experiment 2. (Left) Empirical learning curves. (Right) Predicted learning curves.
Each curve shows the probability of choosing a non-reference crop as a function of the number of times that
crop has appeared, broken down by whether that crop is on a “good” or “bad” planet, and whether the trial
occurs late or early in the planet.
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as to calibrate their choice probability with the reward probability. This pattern is mani-
fested by the fitted Bayesian RL model (Fig. 6, right) for the good crops. Empirically,
however, this predicted decline was too small to detect (Fig. 6, left), probably because of
a ceiling effect.

5. General discussion

We hypothesized, on the basis of a hierarchical Bayesian RL model, that preferences
for novel options are affected by the value of other options experienced in the same con-
text. The results of two experiments provide support for this hypothesis, suggesting that
inductive biases play a role in human RL by influencing reward predictions for novel
options. Experiment 1 showed that these predictions corresponded well with those of a
Bayesian RL model that learned inductive biases from feedback. The essential idea
underlying this model is that reward predictions for different options within a single con-
text influence each other, such that the reward prediction for a new option in the same
context will reflect the central tendency of rewards for previously experienced options.
Experiment 2 replicated the results of Experiment 1 in a choice task, showing that
participants are more likely to choose novel options in a reward-rich (compared to a
reward-poor) context. In addition, Experiment 2 showed that participants’ inductive biases
influenced how they balanced the exploration-exploitation trade-off: Participants spent
less time exploring when they had stronger inductive biases, suggesting that inductive
biases accelerate the search for valuable options.

These findings contribute to a more complex picture of the brain’s RL faculty than pre-
viously portrayed (e.g., Houk et al., 1995; Montague et al., 1996; Schultz et al., 1997). In
this new picture, structured statistical knowledge shapes reward predictions and guides
option search (Acuna & Schrater, 2010; Gershman & Niv, 2010). It has been proposed
that humans exploit structured knowledge to decompose their action space into a set of
sub-problems that can be solved in parallel (Botvinick, Niv, & Barto, 2009; Gershman,
Pesaran, & Daw, 2009; Ribas-Fernandes et al., 2011). The current work suggests that
humans will also use structured knowledge to couple together separate options and learn
about them jointly, a form of generalization. An important question for future research is
how this coupling is learned. One possibility is that humans adaptively partition their
action space; related ideas have been applied to clustering of states for RL (Gershman
et al., 2010; Redish, Jensen, Johnson, & Kurth-Nelson, 2007) and category learning
(Anderson, 1991; Love, Medinm, & Gureckis, 2004).

The animal learning literature is rich with examples of “generalization decrement,” the
observation that a change in conditioned stimulus properties results in reduced responding
(Domjan, 2003). Our results suggest that the effects of stimulus change on responding
may be more adaptive: If the animal has acquired a high-level belief that stimuli in an
environment tend to be rewarding (or punishing), one would expect stimulus change to
maintain a high level of responding. In other words, generalization (according to our
account) should depend crucially on the abstract knowledge acquired by the animal from
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its experience, resulting in either decrement or increment in responding. Urcelay and
Miller (2010) have reviewed a number of studies showing evidence of such abstraction in
rats.

A conceptually related set of ideas has been investigated in the causal learning litera-
ture. For example, Waldmann and Hagmayer (2006) showed that people will generalize
causal predictions from one set of exemplars to another if the exemplars belong to the
same category (see also Kemp et al., 2010; Lien & Cheng, 2000). In a similar vein, Gop-
nik and Sobel (2000) showed that young children use object categories to predict the cau-
sal powers of a novel object. Our work, in particular the choice task explored in
Experiment 2, distinguishes itself from studies of causal learning in that participants are
asked to make decisions that optimize rewards. The incentive structure of RL introduces
computational problems that are irrelevant to traditional studies of causal learning, such
as how to balance exploration and exploitation, as well as implicating different underly-
ing neural structures. Still, our results are consistent with what has been shown for causal
learning.

The causal and category learning literatures offer alternative models that may be able
to explain our results, such as exemplar models (Nosofsky, 1986) that are yet another
mechanism for carrying out Bayesian inference (Shi, Griffiths, Feldman, & Sanborn,
2010). Exemplar models require a similarity function between exemplars; with complete
freedom to choose this function, it can be specified to produce the same predictions as
the Bayesian model. The choice of similarity function can also be seen as implicitly
embodying assumptions about the generative process that we are trying to explicitly cap-
ture in our Bayesian analysis.

Both exemplar models and TD models are specified at the algorithmic level (Marr,
1982). The primary goal of this paper was to develop a computational-level theory of
novelty. As such, we are not committed to any particular mechanistic implementation of
the theory. The reason for introducing TD models was to show how a particular set of
mechanistic ideas could be connected explicitly to this computational-level theory. This
specific implementation was motivated by previous work on RL in humans and animals,
which supports an error-driven learning rule that incrementally estimates reward predic-
tions (Niv, 2009; Rescorla & Wagner, 1972; Schultz et al., 1997).

The category literature has also emphasized the question of how people generalize
properties to novel objects. Shepard (1987) famously proposed his “universal law of gen-
eralization,” according to which generalization gradients decay approximately exponen-
tially as a function of the psychological distance between novel and previously
experienced objects. Shepard derived his universal law from assumptions about the geo-
metric structure of natural kinds in psychological space (the consequential region) and
the probability distribution over consequential regions. Subsequently, Gluck (1991)
showed how, given an appropriate choice of stimulus representation, exponential-like gen-
eralization gradients could be derived from precisely the sort of associative model that
we have investigated in this paper.

Dopamine has long played a central role in the neurophysiology of novelty (Hughes,
2007). The “shaping bonus” theory of Kakade and Dayan (2002b), which posits that
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reward predictions are initialized optimistically, has proven useful in rationalizing the
relationship between dopamine and novelty in RL tasks (Wittmann et al., 2008). Our
model predicts aspects of novelty responses that go beyond shaping bonuses. In particu-
lar, the dopamine signal should be systematically enhanced for novel cues when other
cues in the same context are persistently rewarded, relative to a context in which cues are
persistently unrewarded. In essence, we explain how the shaping bonus should be dynam-
ically set.

In conclusion, we believe that novelty is not as simple as previously assumed. We
have proposed, from a statistical point of view, that responses to novelty are inductive in
nature, guiding how decision makers evaluate and search through the set of options. Our
modifications of a classic RL model allowed it to accommodate these statistical consider-
ations, providing a better fit to behavior. The inductive interpretation offers, we believe, a
new path toward unraveling the puzzle of novelty.
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Notes

1. It is important to keep in mind that the generative model represents the agent’s
putative internal model of the environment, as distinct from our model of the
agent.

2. We have used a non-standard parameterization of the beta distribution because it
allows us to more clearly separate out mean and variance components.

3. We use a simplified version of TD learning that estimates rewards rather than
returns (cumulative future rewards), as is more common in RL theory (Sutton &
Barto, 1998). The latter would significantly complicate formal analysis, whereas
the former has the advantage of being appropriate for the bandit problems we
investigate. Furthermore, the simplified model has been used extensively to model
human choice behavior and brain activity in bandit tasks (e.g., Daw et al., 2006b;
Schonberg, Daw, Joel, & O’Doherty, 2007).

4. Although time and planetary context are confounded in this experiment (i.e., crops
experienced on a planet are also presented nearby in time), our model is neutral
with respect to what defines context. As long as the crops on a planet are grouped
together, this confound does not affect our model predictions.

5. We chose to use a Beta(1.5,1.5) distribution instead of a uniform distribution to
avoid near-deterministic reward probabilities.
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6. Qualitatively similar results were obtained with a symmetric (pre-50/post-50) split,
but we found that results with the asymmetric split were less noisy.
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Appendix: Model fitting and evaluation

Free parameters were fit to behavior, for each participant separately, using MCMC:
samples were drawn from a Markov chain whose stationary distribution corresponds to
the posterior distribution over model parameters conditional on the observed behavioral
data. In particular, we applied the Metropolis algorithm (see Robert & Casella, 2004, for
more information) using a Gaussian proposal distribution. Letting x” denote the parame-
ter vector at iteration m, the Metropolis algorithm proceeds by proposing a new parameter
x' ~ N (x™,31I) and accepting it with probability

mit _ oy _ o P, e r)P)
PX™ =X) = mln{l’P(y|x’",c,r)P(x’")}' (13)

If the proposal is rejected, x™*! is set to x™. We placed the following priors on the

parameters, with the goal of making relatively weak assumptions:
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o ~ Exponential(0.1) (14)

[ ~Exponential (0.1) (15)

p ~Gamma(3,2) (16)

po ~ Gamma(20, 1) (17)

bo ~ Beta(1, 1) (18)

n~Beta(1.2,1.2) (19)

V) ~ Exponential (10). (20)

Note that p, py, and by are specific to the Bayesian RL model, # is specific to the
naive and shaping models, and V; is specific to the shaping model. All models have a
noise parameter ¢. For each model, to ensure that the Metropolis proposals were in the
correct range, we transformed the parameters to the real line (using exponential or logis-
tic transformations) during sampling, inverting these transformation when calculating the
likelihood and prior. Note that in producing behavioral predictions, the bias parameter b
was integrated out numerically.

After M iterations of the Metropolis algorithm, we had M samples approximately dis-
tributed according to the posterior P(x|y.r,c). We set M = 3,000 and discarded the first
500 as “burn-in” (Robert & Casella, 2004). For cross-validation, we repeated this proce-
dure for each cross-validation fold, holding out one planet while estimating parameters
for the remaining planets. Model-based reward predictions y, were obtained by averaging
the reward predictions under the posterior distribution:

Vi = / V,(c,;x)P(x]y,r,c)dx

1 M
=Y Vilesx™).
Mm:l

As M— 00, this approximation approaches the exact posterior expectation.
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