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Abstract

Evidence suggests that attention and learning interact to help extract task-relevant dimensions in

a complex environment. How exactly these two mechanisms interplay and craft an internal repre-

sentation of our environment is still unclear. We tested human participants on a multidimensional

task, the Dimensions Task, in which they had to learn through trial and error to maximize reward.

We found behavioral evidence suggesting that the learned reward value of a feature influences how

that feature is encoded in the brain. Analyses also suggest that participants attend to the whole

dimension of higher rewarding features. By drawing on theoretical and other behavioral findings of

attention, we present an improved model of human decision-making in the Dimensions Task, which

mimics learning in naturalistic task settings. Model comparison provides empirical evidence of

informational benefits of selective attention. We hypothesize these benefits, implemented through

competitive statistics and gated learning according to the confidence in state representation, aid the

brain in simplifying and learning in a high-dimensional world.
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1. Introduction

1.1. Learning How to Learn: An Interdisciplinary Question

We live in a noisy, multidimensional world. Simple daily tasks, such as crossing the street, are

accompanied by a bombardment of sensory information that, if unprocessed, makes it difficult to

learn and make decisions. While reinforcement learning algorithms have had success in explaining

human behavior of simple tasks, these algorithms become inefficient in increasingly complex,

naturalistic task settings [Bellman, 1957, Sutton and Barto, 1998]. Yet, our brain appears to handle

this ‘curse of dimensionality’ with ease.

The brain’s efficiency in high dimensions is thought to come from its ability to identify structure

in its environment. Using this structure, the brain then filters down sensory inputs to internal state

representations where relevant information, such as the speed of an oncoming car rather than its

color, is emphasized [Gershman and Niv, 2010, Wilson et al., 2014]. This idea parallels those in

representation-learning research in machine learning. Representation learning, automating ways

to compress big data sets while maintaining the important features, has become a field in itself

[Bengio et al., 2013]. How this dynamic feature selection is realized in the brain is still not well

known. Understanding how the brain ‘learns how to learn’ and the computation behind this process

can therefore have cross-disciplinary implications.

1.2. Reward Learning Influences Selective Attention

Selective attention, the differential processing of stimuli, allows the brain to give preferential

treatment to some stimuli over others. How reward influences selective attention has been thought,

until recently, to lie within the classical dichotomy of attention: goal-directed (endogenous) versus

stimulus-driven (exogenous) attention. As an example of this dichotomy, imagine driving a car in a

friend’s neighborhood. The vibrancy of a red stop sign captures your attention due to its salient color

(stimulus-driven attention), while street-name signs gain preferential treatment when searching for

your friend’s street (goal-directed attention). Rewards have been thought to manipulate indirectly
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selective attention by modulating a subject’s motivation to select one stimulus over another in

behavioral tasks (that is, to influence endogenous attention) [Anderson, 2015].

However, it has been shown that associative reward directly influences selective attention. Previ-

ously rewarded stimuli persistently capture attention even when stimuli are no longer task-relevant or

rewarding [Anderson, 2015, Lee and Shomstein, 2014], and [Anderson et al., 2011] demonstrated

a distinctly value-driven attentional capture mechanism, disturbing the classical dichotomy. Findings

further suggest that it is not solely the associative value of a stimulus that drives attentional capture,

but rather the predictability of the stimulus [Lee and Shomstein, 2014, Sali et al., 2014]. Stimuli

that are themselves not rewarding but predict information about the rewarding stimulus become

prioritized [Le Pelley et al., 2015, Pearson et al., 2015, Bucker et al., 2015, Mine and Saiki, 2015].

1.3. Selective Attention Aids Reward Learning: A bidirectional relationship

The above findings are in line with theoretical work which argues that selective attention has statisti-

cal and informational benefits in learning under uncertainty and does not solely arise as a by-product

of limited attentional resources [Dayan et al., 2000]. Indeed, as previously discussed, this simplifi-

cation is crucial for learning in noisy, multidimensional environments. Recent work by Niv et al.

has implicated attention in helping subjects learn in a multidimensional task space [Niv et al., 2015],

while the orbitofrontal cortex is thought to encode this simplified, abstract representation of the

task [Niv et al., 2015, Wilson et al., 2014, Schuck et al., 2016]. This is supported by other behav-

ioral and computational work [Wilson and Niv, 2012, Leong et al., 2017, Jones and Canas, 2010,

Marković et al., 2015, Roelfsema and van Ooyen, 2005, Dayan et al., 2000], as well as lesion stud-

ies that provide causal evidence for the attention network’s function in selecting of stimulus

dimensions for successful learning [Vaidya and Fellows, 2016].

All this information combined suggests a two-way interaction between learning and attentional

mechanisms. [Leong et al., 2017] offers strong support for a bidirectional relationship between

attention and learning, where attention constrains reward associations to relevant dimensions while

the brain learns what to attend to through trial and error. Yet, how exactly are dimensions and
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features of dimensions included and disregarded in this evolving state representation as attention

and learning interact? Using the behavior and theoretical literature, can we better model how this

representation develops?

To approach this, in this study, participants played a probabilistic multidimensional learning task

where, in each game, one feature was associated with a higher probability of reward. Periodically,

we explicitly probed participants’ working memory of an entire dimension in order to understand

how learned feature values affect attention across trials. By first using the fRL+Decay model from

[Niv et al., 2015], it was found that if subjects — according to the model — perceived a feature (e.g.

pink) to have higher value, they had a higher probability of recalling that feature in the memory

probe. That is, the value of a feature modulated the degree to which that feature was encoded in

the brain. Furthermore, evidence was found to support the hypothesis that overtly attending to a

feature (e.g. pink) affects how the dimension of that feature (e.g. color) is processed. This paper

will examine these behavioral results, their implications on information processing in the brain,

and then present a series of computational models that offer descriptions of the brain’s underlying

algorithms.

1.4. The Dimensions Task

The “Dimensions Task,” a multi-armed bandit task, offers a way to study the interaction be-

tween attention and learning in a probabilistic-reward setting that simulates real-world conditions

[Wilson and Niv, 2012, Niv et al., 2015]. Variations of this task were used in this paper to uncover

how representation learning is computed in the brain. In the original paradigm, on each trial

participants were shown three stimuli that varied along three dimensions (e.g., color/shape/texture,

example stimuli in Appendix, Figure 11). Each dimension had three features; for example, the color

of a stimulus could be red, yellow, or green. These features were randomly permuted among the

three stimuli on each trial. During a “game,” a single dimension (e.g., color) was chosen to predict

reward. One feature in this dimension (e.g., red) was probabilistically rewarded 75% of the time

(regardless of shape and texture) while choosing either of the other two features led to reward 25%
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of the time. We define this highly rewarding feature, f ∗, as the target feature. The participant’s goal

was to make choices that maximize reward (i.e. learn which feature is the target feature). They

were not informed of the rewarding feature or dimension during the games. They were only notified

when a new game began, meaning that the most rewarding feature had changed.

1.5. Feature Reinforcement Learning Model with Decay (fRL+Decay)

The feature reinforcement learning (RL) model with decay proposed in [Niv et al., 2015] best

described subject choice behavior in the original Dimensions Task in comparison to a spectrum

of models ranging from sub-optimal (a naive RL model) to statistically optimal (a Bayesian

model for representation). Despite work suggesting that the human brain is Bayes-optimal

[Beierholm et al., 2009, Körding and Wolpert, 2004], Niv et al.’s cross-validation model compar-

isons, as well as interventional, causal model comparisons, suggest that representational learning is

not Bayesian in humans [Niv et al., 2015, Geana and Niv, 2014]. It is plausible that the brain does

not employ Bayesian methods for representation learning due to Bayes’ intractability when scaling

to realistic, high dimensional environments.

The fRL+Decay model, rather than tracking the posterior probability of a feature being the target

feature given previous choices and rewards (as in the Bayes model), uses reinforcement learning to

calculate a weight for each feature. This weight-value for a feature, W ( f ), represents a prediction

of how rewarding selecting a stimulus with that feature will be; this takes advantage of the fact that

features, rather than a whole stimulus, are responsible for reward. The model also incorporates a

form of memory loss and choice kernel by decaying the values of the features of unchosen stimuli.

The fRL+Decay model has three parameters: η (learning rate), β (softmax inverse temperature),

and d (decay rate). At the beginning of each game, weights W ( f ) for each of the nine features are

initialized to zero. The model then updates the weight (value) of each feature as the subject makes

decisions and receives rewards. The value of each stimulus S is calculated as the sum of its feature

weights. After obtaining reward, the weights of each feature of the chosen stimulus are updated as
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follows:

W new( f ) =W old( f )+η [Rt−V (Schosen)] ∀ f ∈ Schosen (1)

where Rt is the reward at time t (here, 0 or 1). The weights of unchosen stimuli are decayed to zero

with a fitted rate d:

W new( f ) = (1−d)W old( f ) ∀ f /∈ Schosen (2)

The model predicts subject’s choices according to a softmax function. The sum of features in a

stimulus equals the stimulus’s value, V , and the probability of the participant choosing the stimulus

Schosen becomes:

P(choice) =
eβ∗V (Schosen)

Σ(eβ∗V (Si))
, i ∈ {1,2,3} (3)

When modeling action selection in reinforcement learning algorithms, the inverse temperature β

can be thought of as modeling subjects’ trade-off between exploiting information about previously

rewarding actions and exploring less known actions. With an inverse temperature of zero, the

model exhibits random behavior and picks actions uniformly, regardless of action values. As the

inverse temperature grows, the selection policy approaches a greedy algorithm; the action with

the highest value has the highest probability of selection and the probability of other options scale

according to those actions’ values [Sutton and Barto, 1998]. In a similar way, the β in the softmax

can also indicate, to some degree, the model’s confidence in its predictions, assuming that subjects

themselves are not behaving randomly. The higher the β , the less noisy the model’s prediction.

As shown in [Leong et al., 2017], learning and attention have a bidirectional relationship that is

captured loosely in this model by the separate updating of chosen and unchosen features. Learning

is restricted to the chosen (strongly attended) stimuli each trial; the decay of unchosen (unattended)

stimuli weakens their representation and contribution to the next trial. In initial behavioral analysis,
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we used this model’s feature weights as predictors for behavior in a memory probe. This model was

used as a benchmark for comparison with other computational models developed in this paper.

2. First Approach: Preliminary Study and Bottom-up Attentional Effects

2.1. Participants

Four participants took part in this preliminary pilot. One participant was not included in the analysis

due to technical malfunctions during the experiment. Each participant played 60 games. Each game

had 20 trials. The experiment lasted approximately an hour.

2.2. Task and Procedures

In order to infer how participants encoded a multidimensional space as a function of learning,

participants were to recall the location of a feature from the immediately preceding trial of the

Dimensions Task (see Section 1.4 for details). After selecting a stimulus and receiving reward

feedback for the choice, three X’s appeared on the screen in place of the three stimuli, together with

the name of a feature (e.g. red). Participants then selected where they recalled red being in the trial

that just ended. This happened at three points during the game: once uniformly between trials 4-7,

once uniformly between trials 10-13, and once uniformly between trials 16-19.

2.2.1. Memory as a Proxy for Attention In both approaches presented in this paper, a memory

probe is used as a proxy for measuring attention. As previously stated, we are interested in

understanding how subjects internally represent a multidimensional space and how reward-learning

biases such representation. Specifically, we want to model how attention is distributed to simplify

what is learned about in a complex task space and how reward-learning then guides such attention.

To measure this, we used the subject’s memory of a trial during learning as a snapshot of what the

subject gauged to be important for allocating limited resources and for encoding. While the exact

relationship between working memory and attention is complex, it is thought that attention acts

as a central executive of working memory, controlling what enters working memory and how it is
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(a) First Approach, Section 2 (b) Revised Approach, Section 3

Figure 1: Error bars are SEM. (a) Average probe accuracy according to the probed dimension for
original Dimensions Task with a single feature probe. (b) Average probe accuracy according to the
probed dimension for revised Dimensions Task with a dimensional probe.

maintained [Buschman and Kastner, 2015]. In the case of this experiment, working memory of the

stimulus features of a trial gives us insight into how attention during that trial was allocated.

2.3. Behavioral Results

As a reminder, subjects were told to select stimuli which maximize their rewards in the Dimensions

Task. When a subject selects the stimulus containing the game’s target feature, they are rewarded

75% of the time; else, they are rewarded 25% of the time (see Section 1.4 for full details). A game

was considered "learned" if a participant selected the stimulus with the most rewarding feature (the

target feature) six times in a row at any point during the game. This happens approximately .1%

of the time by chance. Analysis of results showed that there was no significant difference in the

proportion of games learned according to dimension (two-tailed t-tests: between color and shape

p > 0.5, color and texture p > 0.1, shape and texture p > 0.5). However, despite no statistical

difference in learning across dimensions, analysis of probe data revealed a significant difference

between dimensions in the average accuracy of probes (Figure 1a). Probe accuracy for color features

was significantly higher than average accuracy for shape features and texture features (ps < 0.05,

one-tailed t-test). There was no significant difference between accuracy to shape and texture. Not
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only was color accuracy significantly higher than the other dimensions, but its across-subject average

was around 90% (95% confidence interval: [0.8495,0.9486]). This suggests that differences in

bottom-up salience of the three dimensions - color, shape, and texture - had a large effect on feature

memory.

The high recall of color is in line with studies that suggest color may be a more memorable

irrelevant dimension [Shin and Ma, 2016]; this may especially be the case when memory of color

is in competition with that of shape and texture, more complex dimensions. It could be conjectured

that color, particularly the distinct and bold colors used in the stimuli, may need less top-down

attention to encode; distinguishing between features is easily resolved with bottom-up attention

[McMains and Kastner, 2011]. With participants able to recall color so easily, it is possible that any

effects of value learning on encoding may have been greatly mitigated or eliminated.

In order to better measure how learning, rather than bottom-up salience, affects encoding and

memory, the Dimensions Task was redesigned to decrease this salience confound as well as

other limitations of this paradigm (See Section 2.4). While the revised approach addresses these

limitations to better understand nuanced interactions between learning and attention (Section 3), this

first approach is important in highlighting how dimensional salience can bias information processing.

How this dimensional salience can be manipulated as a function of feature-value learning drives our

second approach.

2.4. Limitations of Design

In addition to the significant difference in dimensional recall between color and the other dimensions,

other areas of improvement were considered when redesigning the paradigm:

Stimulus Location on Screen. In the original design, the stimuli were presented to the participants

in a row across the screen. However, this means that if a subject is selecting and foveating to the

stimulus on the left, the visual distance from the participant’s focus to the middle and to the right

stimuli are not the same. This difference could have some influence on the degree of encoding
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of the middle versus of the right stimulus. As we want to isolate only the effects of learning on

encoding, this feature of the paradigm is undesirable.

Amount of Information from a Probe. In order to get a better understanding of how a participant

encodes a multidimensional, multistimulus space, it would be helpful to know how an entire dimen-

sion, rather than a single feature, was represented. This would allow us to compare more easily

encoding of the stimulus a subject selects (and would presumably contain a valuable feature) to the

encoding of features not in that stimulus. It would also allow us to better answer the question of

how the degree of attention to a rewarding feature (e.g. red) affects encoding of the entire dimension

(i.e. color). While adding complexity to the secondary task may slightly increase distraction from

the primary task (i.e. getting reward), the trade-off for better records of working memory would

better address the research questions presented.

These limitations were addressed in the revised display and probe of the paradigm presented in

Section 3.

3. Second Approach: A Redesigned Dimensions Task and Memory Probe

3.1. Participants

Twenty-four young adults were recruited from the Princeton University community. Three subjects

were not used in the analysis due to a preset criterion: missing more than fifty trials and learning

fewer than 10% of the games. Learning was defined as correctly selecting the stimulus with the

most rewarding feature six times in a row at any point in a game. Each subject played around 54

games. In each game, a subject completed 21 trials. If a trial was missed (a stimulus was not chosen

quickly enough), the trial repeated. The experiment lasted approximately one hour.
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3.2. Task and Procedures

We used a variant of the Dimensions Task, a multidimensional bandit task, which aimed to equate

the salience and low-level visual representability of the dimensions. In this modified task, each

stimulus was a Gabor patch that varied in color, orientation, and frequency. These dimensions

were chosen so that all dimensions have some mapping to low-level visual processing. This was to

counter the effect of dimensional salience on probe memory in approach one (Figure 1a). The three

stimuli were presented in a triangle so the visual distance between any two stimuli was the same

(Figure 2a).

As in the original paradigm, on each trial participants were shown three stimuli. Each dimension

had three features; for example, the color of a stimulus could be pink, purple, or blue. When a

subject selects the stimulus containing the game’s target feature (selected randomly for each game,

e.g. pink) they are rewarded 75% of the time; else, they are rewarded 25% of the time (see Section

1.4 for full details). Participants were told this reward structure in an instructional period. The

participant’s goal was to select the stimulus on each trial that maximized reward.

Throughout the task, we probed the participant’s memory in the beginning, middle, and end

of each game (Figure 2b). The probe occurred after the participant selected a stimulus and was

given reward feedback for that choice. This probe happened at three points during the game: once

uniformly between trials 1-7, once uniformly between trials 8-14, and once uniformly between

trials 15-21. The probe consisted of a display of the three features of a dimension. Participants were

asked to determine which feature belonged to which stimulus in the immediately preceding trial to

the best of their ability. The dimension of the probe was randomly determined. It was emphasized

to the participants that they were to play the game as normally as possible, their performance on the

probes did not affect their scores, and the occurrence of probes was not related to their performance

on the Dimensions Task. This was done to mitigate any influence the probes could have on how

participants played the game. The probe allowed us to measure how well a participant had naturally

encoded features across a dimension during learning. For a discussion on using a memory probe as

a measure of attention, see Section 2.2.1.
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(a) The Dimensions Task (b) Memory Probe

Figure 2: Task Design: (a) Example of a trial: the participant chose a stimulus (pink, vertical orien-
tation, high frequency), was given feedback (0 points, i.e. no reward), followed by three new stimuli
for the next trial. (b) Example of a probe: the participant has chosen the "vertical" feature of the
orientation dimension and placed it in the location of the top stimulus. The probe continues until
the rest of the features are placed.

3.3. Behavioral Results

As a reminder, the redesign of the Dimensions Tasks and memory probe came from the discovery

that bottom-up salience may have had some influence on recall of the color dimension, with an

average accuracy of a probed color feature around 90% (See Section 2.3). The aim was to reduce the

influence of bottom-up salience so as to better measure top-down attentional modulation of learning

and state representation. In the new design, the average probe accuracy of the color dimension

was still significantly higher than the other two dimensions (frequency p < 0.005, orientation

p < 5e−04) and there was no significance between frequency and orientation (p > 0.1). However,

the average probe accuracy of color is now around 60% ([0.5642, 0.6598] 95% confidence interval)

(Figure 1b); this average memory accuracy was far enough from ceiling performance to allow

top-down value learning to influence probe memory, as we hoped to see.

3.3.1. RL Model Fitting for Attention Prediction Participants’ behavior was fit to the feature RL

model with decay (fRL+Decay) proposed in [Niv et al., 2015] using MATLAB’s fmincon function

(see section 1.5 for details on fRL+Decay). Fitted modeled weights were then used to predict a
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(a) (b)

Figure 3: Probe accuracy for the chosen stimulus as a function of its feature weight after feedback,
on the probed dimension. The dashed line represents chance. (a). Average accuracies across
participants, binned for each participant by the weight of the probed feature of the chosen stimulus.
To reduce noise, if a subject had fewer than three data points for a given bin, that bin was not
included in the overall average. Error bars are SEM. (b). Logistic regressions of accuracy as a
function of modeled feature value. Each lighter line shows the regression of a single subject’s data.
The dark line is a logistic with average slope and average intercept over all subject regressions.

subject’s memory of a dimension. We found a difference in the relationship between modeled

feature weights and correct performance on the probe test for the chosen stimulus as compared to

unchosen stimuli. (As a reminder, the chosen stimulus is the stimulus that the participant selected

on the trial just preceding the probe). We therefore report results for chosen and unchosen stimuli

separately.

3.3.2. Encoding the Chosen Stimulus When probed, participants in general recalled the feature of

the stimulus they chose with above-chance accuracy (Figure 3a), suggesting that they attended to

all three features of the stimulus they had selected. Importantly, a random effects analysis showed

that the value of the chosen feature (in the probed dimension) significantly affected probe accuracy.

For each subject’s data, a logistic regression was fit to accuracy on a chosen stimulus, either 1

(correct) or 0 (incorrect), against the modeled value of that feature. A two-tailed t-test showed

that the mean of the regression slopes from all subjects was significantly different than zero. The
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t-statistic specifically indicated a positive relationship between feature value and probe accuracy

(t-stat= 6.0027, p < 1e− 05 when regressing accuracy against modeled values before feedback

W old( f ); t-stat= 6.3220, p < 5e−06 when regressing accuracy against weights of the features after

feedback W new( f ), which depend on W old( f ), Figure 3b). This suggests that although participants

attended to all three features of the chosen stimulus, the higher the value of the feature, the more

strongly participants encoded that feature in memory. Moreover, the learned weights predicted not

only an increase in accuracy for higher positive feature weights, they also predicted a decrease in

accuracy for features with negative weights, as shown in the histogram in Figure 3a.

A similar trend was found when analyzing a subset of the probe trials in which the feature with the

highest modeled weight, f ∗, was not in the dimension that was probed, Dprobed. If a dimension did

not contain the highest modeled feature weight, f ∗ = max[W ( f )], its "relative value" was defined

as:

Rvalue(D) =
max[W ( f ), f ∈ D]

f ∗
(4)

An Rvalue(D) close to 0 (or less than zero for dimensions with maximum weights that were

negative) indicates that the maximum feature weight in the dimension was small in comparison to

the maximum feature weight over all dimensions. By contrast, a relative value close to 1 means that

the dimension’s maximum feature weight is close to f ∗. Random effects analysis again showed that

the relative value of Dprobed after feedback showed a positive relationship with the probe accuracy

of the chosen stimulus (Figure 4; p < 1e− 05). That is, as the difference increased between f ∗,

the maximum weight across dimensions, and the maximum weight of a probed dimension not

containing f ∗, participants’ accuracy on the chosen stimulus decreased. These results suggest that

even within the chosen stimulus, not all three dimensions were equally strongly encoded. Rather,

features of the chosen stimulus compete for representation (or attention) based on their learned

weights (reward-predictive values).
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(a) (b)

Figure 4: Probe accuracy for the chosen stimulus as a function of the probed dimension’s relative
value. See Equation 4. (a) Average across subject bin averages. To reduce noise, if a subject had
fewer than three data points for a given bin, that bin was not included in the overall average. Error
bars are SEM (b) Logistic regressions of accuracy against relative dimensional value. Each lighter
line shows the regression of a single subject’s data. The dark line is a logistic with average slope
and average intercept over all subject regressions.

3.3.3. Encoding the Unchosen Stimuli We hypothesized that participants attended to whole di-

mensions and not just the chosen, highest weighted feature. If this is true, participants should

be more accurate in remembering the features of unchosen stimuli when probed on an attended

dimension (a dimension with the highest feature weight) than on the unattended ones. To test this,

we divided the data into two sets. The first set, Pmax, was the average subject probe accuracies

of unchosen stimuli when f ∗, the unique modeled weight maximum before feedback, was in the

probed dimension and was in the chosen stimulus. Let Pother be the average subject accuracies

for when f ∗ was not in both the probed dimension and chosen stimulus. A one-tailed t-test con-

firmed that average probe accuracy in Pmax was higher than in Pother (t19 = 2.2331, p < 0.05).

When separating according to values after feedback, (t19 = 3.1949, p < 0.005). This suggests that

attention was allocated to the whole dimension and not only to the chosen, highest weighted feature.
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3.3.4. Behavioral Conclusions Behavioral analysis suggests that feature values of stimuli learned

through a simple reinforcement learning model can be used as predictors of attention and memory

in a multidimensional task. We observed a positive relationship between feature weights of stimuli

that subjects selected during the task and the recall of those features during an attentional memory

probe. This suggests that feature-value learning influences the way in which these features are

encoded in an internal representation. Relative value differences between dimensions can also

predict encoding. Furthermore, analyses suggest attention is allocated across the whole dimension

of the highest feature weight, rather than entirely on a feature-by-feature basis. We now move on

to developing computational models that capture this behavior and further explain the interaction

between learning and attention in solving multidimensional, probabilistic tasks.

4. Computational Models of Learning and Attention

The above behavioral results suggest that ongoing learning modulates how a multidimensional

environment is simplified and stored in the brain. Specifically, value learning biases processing

by strengthening the representation of more valuable features and weakening the encoding of

less valuable features. This feature-level learning also drives changes in dimensional processing.

Participants are more likely to recall unattended stimuli if they belong to the dimension of the

highest weighted feature.

The behavioral results of recall accuracy of the chosen stimulus in the task are in line with

computational models of learning and attention. The positive relationship between chosen stimulus

value and accuracy of recall (Fig 3) supports the model of associative learning which argues that

attention to features of a compound stimulus is stronger for features more predictive of reward

[Mackintosh, 1975]. An alternative model suggests attention is directed toward features with the

most uncertainty, where uncertainty of a feature means there is less evidence or data to accurately

predict its value [Pearce and Hall, 1980]. These two views were combined under a model by

[Dayan et al., 2000]. A theoretical neural network model, Attention-Gated Reinforcement Learning,

shares characteristics with the Dayan et al. (2000) model, specifically competitive dynamics and
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gated learning [Roelfsema and van Ooyen, 2005]. We will now discuss how these theoretical works

can be used to extend the fRL+Decay model by biasing choice and learning. After this, we will

combine these extensions to form five different models. We will then compare performance of these

models to fRL+Decay.

4.1. Extending the fRL+Decay Model

4.1.1. Biasing Choice. The Dayan et al. (2000) model theorizes that at choice, when estimating

a stimulus’s prediction of reward, each feature’s value should be biased by its relative reliability.

That is, the value of a more reliable feature - a feature with a lower variance of its reward history -

should contribute more to a combined prediction of reward for a stimulus. The model calculates this

relative reliability of a feature, i, compared to all other features, j, at time t in the following way:

πi(t) =
ρi(t)xi(t)

Σ jρ j(t)x j(t)
(5)

where x j(t) ∈ {0,1} (rewarded trial or not) and ρ j(t) = 1/τ2
j (t) is the reliability of stimulus, j. The

τ j(t) is the standard deviation of each prediction of the value of the feature, w j(t), around the true

value of the feature, j, assuming predictions across trials vary according to a Gaussian distribution

around the true feature value. The net prediction based on the features present should then be:

∑
i

πi(t)wi(t) (6)

This model incorporates selective attention via statistical competition between features (Equation

5) according to their relative predictability; this relative metric then biases how much a feature’s

value contributes to a compound stimulus’s prediction.

[Leong et al., 2017] found empirically that biasing feature choice with a composite attentional

metric (the smoothed product of MVPA and eyetracking) aided fRL performance. (The fRL model

calculates stimulus value, selects a stimulus, and updates chosen feature weights the same way as

the fRL+Decay model; it does not decay values of features in the unchosen stimulus). In the paper,

when calculating the value of a stimulus, rather than directly summing a compound stimulus’s
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features, their model used a sum of the feature weights biased by this composite dimensional-

attention measure (Figure 5). This is exactly the structure for the combined net prediction presented

in Dayan et al. (2000) in Equation 6.

Feature Attention at Choice. We can extrapolate this competitive dynamics concept and empirical

attention findings to bias choice in the fRL+Decay model. Specifically, rather than summing the

features of a stimulus to calculate its value, we can bias the feature value by some estimate of

relative feature attention, Φ:

V (S) = ∑
f∈S

Φ( f )W ( f ) (7)

How exactly should Φ be calculated? The Dayan et al. (2000) model uses competition between

the reliability of features. However, in the Dimensions Task, subjects know that only one feature,

the target feature, is associated with high reward. Therefore, subjects should instead allocate their

attention to a feature based on a relative measure of that feature being highly rewarding.

Since only one feature is highly rewarding, this relative metric should exhibit winner-takes-all

dynamics. The AGREL model previously mentioned implements this dynamic within a layer of a

neural network using the softmax function [Roelfsema and van Ooyen, 2005]. Since a high weight

means a feature is more predictive of high reward, we can use our feature weights as inputs to the

softmax function. The Φ( f ), our relative feature attention from Equation 7, then becomes:

Φ( f ) =
eβ×W ( f )

∑
9
i=1 eβ×W ( fi)

(8)

If we consider weights to be an evidence accumulator of a feature being the highest rewarding

feature, the magnitude of the softmax function’s inverse temperature β can then be thought of as

how sensitive a subject is to relative differences in evidence amongst the features. (Note that this β

is different from the β used to calculate the likelihood of the model predicting a subject’s choice). A

large β implies only small differences in weights are needed for subjects to exhibit greedy attention
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- allocating most of the attention to the highest weighted feature. Conversely, a small β requires

more evidence for a subject to disproportionately give one feature attention over others. This

logic fits nicely into the explore/exploit dynamic typically used to describe decision-making. In

decision-making, the trade-off between exploration and exploitation of different valued choices

has been found to have possible neural substrates in the brain [Cohen et al., 2007]. Specifically,

explore/exploit behavior is thought to be mediated by the firing mode of norepinephrine neurons

in the locus coeruleus (LC). It is plausible that this mechanism could be co-opted in attentional

dynamics, where a subject must choose between allocating attention to known rewarding stimuli

and allocating attention to less explored stimuli.

Dimension Attention at Choice. Rather than using a relative measure of a feature being the target

feature, participants could also bias choice using a relative metric that a dimension contains the

target feature. Recall that we used a calculation of relative dimension value to significantly predict

memory on the chosen stimulus (Figure 4); the higher the relative dimension value, the more likely

subjects were to recall the stimulus. The attentional metric used to improve the fRL model in

[Leong et al., 2017] also used dimensional attention (Figure 5). It was found earlier in this paper

that feature-level values predict effects of dimensional processing (Section 3.3.3). It is plausible,

then, that subjects bias choice using relative dimensional attention. We can again use the softmax

function to calculate relative dimensional attention.

First, for each dimension, we took the maximum feature weight in that dimension. This approxi-

mates a winner-takes-all dynamic on a dimensional level; these three values were then passed to a

softmax to calculate relative dimensional attention. For clarity:

V (S) = ∑
f∈S

ΦD( f )W ( f ) (9)
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where D( f ) means the dimension of the desired feature. The dimensional attention, ΦD, of a

dimension, D, is:

ΦD =
eβ×max{w|w=W ( f ′),∀ f ′∈D}

∑
3
i=1 eβ×max{w|w=W ( f ′),∀ f ′∈Di}

(10)

where Di is the ith dimension.

Figure 5: Model from [Leong et al., 2017]. The study showed that biasing choice and updating of
a fRL model (see 1.5, no decay) with experimental measures of dimensional attention (MVPA and
eye-tracking) improved model performance of predicting behavior in a variant of the Dimensions
Task.

4.1.2. Biasing Learning. Both the Dayan et al. (2000) model and the Leong et al. model biased

learning by some attention metric. The Leong et al. model modulates learning rate using the

composite attention metric to the benefit of model performance (Figure 5); the combined learning

and choice-biased model outperform models that bias only one or neither parts of the fRL model. The

Dayan et al. (2000) model suggests that when associating prediction errors with features, attention

and learning should be greater for more uncertain features (i.e. features with low evidence, for

example, at the start of a game in the Dimensions Task). As experience is accumulated, uncertainty

for some features goes down (e.g. for the feature pink, if the last six stimuli the participant selected

were pink) and therefore high learning and attention due to uncertainty should decrease for those

features. However, it is important to note that features’ uncertainties in the Dimensions Task are

dependent. Again, this is due to the structure of the task; since only one feature is highly rewarding,

evidence that a feature is the target feature is also evidence that the other features are not highly

rewarding. Instead, we again borrow a method from the AGREL model - lowering the learning rate
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for high contributing features. This makes features with higher certainty and predictability of high

reward more resistant to environmental noise.

Let us take the original fRL+Decay update equation, Equation 1:

W new( f ) =W old( f )+η [Rt−V (Schosen)] ∀ f ∈ Schosen

and modulate a feature’s learning rate as a function of its weight:

W new( f ) =W old( f )+σ

(
W old( f )

)
η [Rt−V (Schosen)] ∀ f ∈ Schosen (11)

where:

σ

(
W old( f )

)
=

1
1+ e−A(W old( f ))+B

(12)

for which A and B are the slope and intercept of the logistic, respectively. While each feature of the

chosen stimulus receives the same global error signal, the added σ allows for a more modular and

adaptive learning rate. The σ captures in some sense how [Dayan et al., 2000] theorizes attention at

learning should change due to feature uncertainty (low learning for features with high certainty),

though feature weights do not perfectly map to the uncertainty of a feature. The sigmoid function has

biological feasibility and can be thought of as a gating or threshold neuron that changes activation

monotonically according to its input [Bengio et al., 2015]. Model fitting shows that this sigmoid

converges to a negative slope, as predicted.
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4.2. The Models

By combining the modifications proposed in Section 4.1, we compared five different models:

• fRL+Decay As a benchmark of performance, we fit data to the original fRL+Decay model. See

Section 1.5.

• fRL+Decay+Dimensional Attention (DA) This model implemented a modified calculation of

stimulus value by biasing feature weights by a metric of relative dimensional attention. See

Equations 9 and 10.

• fRL+Decay+Feature Attention (FA) This model implemented the modified calculation of stimulus

value by biasing feature weights by a metric of relative feature attention. See Equations 7 and 8.

• fRL+Decay+DA+Sigmoid Modulated Learning Rate (DAS) This model implemented fRL+Decay+DA,

in addition to fitting a sigmoid which modulated learning rate of a feature according to the weight

of that feature. See Equations 11 and 12.

• fRL+Decay+FA+Sigmoid Modulated Learning Rate (FAS) This model implemented fRL+Decay+FA,

in addition to fitting a sigmoid which modulated learning rate of a feature according to the weight

of that feature. See Equations 11 and 12.

All feature weights were initialized to 1
9 . Fitted parameters can be found in Table 1.

4.3. Model Comparison Metric

We compared model probability of the proposed extensions of fRL+Decay by fitting behavioral data

from the second approach (Section 3) which used Gabor patches as stimuli. To compare models,

we used the Bayesian Information Criterion (BIC) [Schwarz et al., 1978], which is calculated as

follows:

BICmodel =− log
(
P(data|model)

)
+

M
2

log(N) (13)
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where M is the number of parameters in the model and N is the number of data points used to

fit the model (product of number of games completed by length of each game). BIC is used to

penalize models with high complexity so as to counter high performance with a measure of possible

overfitting. Best fitting parameters were found using MATLAB’s fmincon function. To calculate

the likelihood of the data give the model, log(P(data|model)), the sum of the log-likelihoods of

subject’s trial-by-trial choice data was calculated; each trial’s log-likelihood was the log of the

softmax in Equation 3. The BIC was calculated for each subject individually. The negative of

this sum was minimized and used in BIC comparison. The parameters with the lowest negative

log-likelihood over ten randomly initialized parameter starting points were used in the comparison.

When comparing models, a lower BIC metric signifies a better model.

4.4. Model Comparison Results

Biasing Choice. Biasing choice in the fRL+Decay+DA and fRL+Decay+FA was enough to sig-

nificantly outperform the reigning fRL+Decay model (BIC subject comparison, two-tailed t-test:

p < 5e−04, t-stat = 4.15; p < 1e−03, tstat = 3.88 respectively). The subject BICs between the

fRL+Decay+DA and fRL+Decay+FA models were not significantly different (two-tailed t-test,

p > 0.1). See Figure 6a. These results suggest subjects consider more heavily the values of, and by

extension attend more to, features more predictive of high reward or whose dimensions included

higher valued features. Furthermore, the competitive dynamic of attention based off relative predic-

tion of reward using a softmax gives empirical evidence for the statistical characteristics of selective

attention [Dayan et al., 2000].

Biasing Choice and Learning. The fRL+Decay+FAS outperformed all four other models on

the BIC metric. (BIC subject two-tailed t-test results: (fRL+Decay) p < 5e−06, t-stat = 6.024;

(fRL+Decay+DA) p< .01, t-stat = 3.135; (fRL+Decay+FA) p< 1e−03, t-stat= 3.944; (fRL+Decay+DAS)

p < 5e−04, t-stat = 4.526). While adding a modulated learning rate to the fRL+Decay+DA model

maintained its performance over fRL+Decay, its performance was not significantly different than

26



(a) (b)

(c)

Figure 6: Model Comparison. (a) fRL+Decay+FAS outperforms all models on BIC metric, including
original fRL+Decay. Other model variants also outperform fRL+Decay but have BICs significantly
greater than that of fRL+Decay+FAS. (b) Average likelihood per trial within subjects. (c) Trial average
likelihood for fRL+Decay+FAS is significantly above that of fRL+Decay for trials 5-21 (trials 5-18: ps
< 5e-05, trials 19-21: ps < .005). fRL+Decay is significantly above fRL+Decay+FAS for trials one and
two (p < .005, p < 1e-06). Error bars are SEM.

the model without modulated learning rate or fRL+Decay+FA (Figure 6a). Overall, these results

support a predominantly feature-centric rather than dimensional attention during learning.

The high β2 averages, but large standard deviations, for both fRL+Decay+FAS and fRL+Decay+DAS

suggest individual subject preferences on how much to trust small weight differences when biasing

attention at choice (Table 1). Despite the large range of β2 values, the extremes of these β2 values
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(a) High Beta, Learned Game (b) High Beta, Unlearned Game

(c) Low Beta, Learned Game (d) Low Beta, Unlearned Game

Figure 7: Example of how relative feature attention Φ (used to bias choice in fRL+Decay+FAS)
fluctuations in a game. Each line is the relative feature attention for a specific feature; the black
line is the relative feature attention of the game’s most rewarding feature. (a-b) Two example games
from subject with highest β2 value, used to calculate the Φ bias. β2 = 88.0299 (c-d) Two example
games from subject with lowest β2 = 1.064 value, used to calculate the Φ bias.

still describe subject choice better than or equivalent to the other four models. Figure 7 shows the

relative feature values, Φ( f ), for two example games (one learned and one unlearned game) for

the subject with the highest β2 value (β2 = 88.0299, average likelihood per trial = 0.5574; next

best likelihood per trial (fRL+Decay+DAS) = 0.5501) and the subject with the lowest β2 value

(β2 = 1.064, average likelihood per trial = 0.5482; next best likelihood per trial (fRL+Decay+FA)

= 0.5482). Subjects with high β2 are more likely to exhibit greedy attention, quickly selecting,
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narrowing, and then discarding attention on a single feature. These subjects appear to have rapid

fluctuations in attention. Meanwhile, subjects with lower β2 parameters appear to have broader

attention until sufficient evidence is collected for a single feature. Even then, the magnitude of

relative feature attention is much lower for the low β2 case.

When looking at the mean likelihood per trial of the fRL+Decay+FAS model as compared to the

fRL+Decay, the 95% confidence interval of difference between fRL+Decay+FAS and fRL+Decay

is [.0087,.0127], p < 5e−10, t-stat: 11.1690 (Figure 6b). This confirms that the new model indeed

improved upon the likelihood per trial of the old model. It is plausible to think that fRL+Decay+FAS

improved performance only during a short interval of the learning phase, but Figure 6c shows that

for the comparison of trial-by-trial average likelihoods, fRL+Decay+FAS significantly outperformed

fRL+Decay in all but the first four trials in a game.

A model which only gated learning and did not bias choice did not significantly outperform

the fRL+Decay model (results not graphed, p > .1). All these results combined imply that, while

biasing choice greatly aids the performance of the models, the combination of selective attention at

choice and gating plasticity of learning by some function of the feature weight captures important

characteristics of the brain’s underlying mechanism.

Looking more closely at the fitted parameters of the sigmoid revealed that features with higher

weight values have lower learning rates (Figure 8). All fitted slopes were negative, with a t-test

showing that the group’s mean slope was significantly below zero (one tailed t-test, p < 1e−12).

This makes sense using the logic from the theoretical work which motivated this modulation (See

Section 4.1.2). That is, the theory derived from [Roelfsema and van Ooyen, 2005] was that weights

contributing more to the net prediction of reward should be more robust to noise. The models

converged precisely to this behavior.

Curiously, small weights converged to high modulation of learning rates (Figure 8). While

large weights (which likely contribute more to reward prediction) are gated against learning, lower

weights are highly susceptible to prediction errors. Let us consider behavior with positive prediction

errors. When all feature weights are low (e.g., at the start of a game), there is not much evidence as
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(a) (b)

Figure 8: Modulating Learning Rate in fRL+Decay+FAS. (a) The lighter lines are the fitted sigmoids,
σ , of the 21 subjects used to modulate their learning rate in the fRL+Decay+FAS model. The dark
line is the sigmoid from taking the average slope and average intercept across subjects. (b) The
lighter lines are the fitted sigmoids, σ , of the 21 subjects used to modulate learning rate in the
fRL+Decay+FAS model multiplied by the respective subject’s fitted learning rate. This represents
exactly how a prediction error affects the old weight value of a feature as a function of the feature’s
old weight. (See Section 4.1.2 for how the sigmoid modulates learning rate). In general, the trend
shows that large weights are more robust to noisy prediction errors, and small weights are more
susceptible to prediction errors.

to which feature is most rewarding. In this scenario, according to [Dayan et al., 2000], the learning

rate should be in fact be high. If positive predictions errors (i.e. one feature grows in weight and

according to winner-takes-all dynamics is highly contributing), the magnitude of the prediction

error is small. Even though learning is high for small weights, they are not updated as rapidly as

when all weights are small. This persistent learning of features with smaller weights allows for

some record of previously rewarded choices if confidence in the current representation wanes. High

learning rate does not mean that low weighted features will suddenly acquire large weights and

surpass that of the highest weighted feature. Rather, this sigmoidal gating still preserves the general

hierarchy of weights representing the current task space while still allowing learning of alternate

hypotheses.

In the face of negative prediction errors, this modulation of learning rate also has statistical

advantages. As previously mentioned, if a weight is large, it means there is strong evidence it is
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Model Name Parameters Mean (SD) Range
fRL+Decay η (learning rate) 0.0972 ± 0.0237 0 to 1

β (softmax temperature†) 11.086 ± 1.811 0 to ∞

d (decay rate) 0.4929 ± 0.1498 0 to 1
fRL+Decay+DA η (learning rate) 0.2854 ± 0.0914 0 to 1

β (softmax temperature†) 9.3875 ± 5.2098 0 to ∞

d (decay rate) 0.4180 ± 0.1684 0 to 1
β2 (softmax temperature∗) 4.9007 ± 8.4394 0 to ∞

fRL+Decay+FA η (learning rate) 0.5633 ± 0.3362 0 to 1
β (softmax temperature†) 11.847 ± 16.552 0 to ∞

d (decay rate) 0.3809 ± 0.1716 0 to 1
β2 (softmax temperature∗) 7.6281 ± 11.8265 0 to ∞

fRL+Decay+DAS η (learning rate) 0.6308 ± 0.3399 0 to 1
β (softmax temperature†) 7.8424 ± 4.1452 0 to ∞

d (decay rate) 0.3829 ± 0.1857 0 to 1
β2 (softmax temperature∗) 29.2568 ± 113.4108 0 to ∞

A (slope of σ ) -6.2498 ± 6.5935 -50 to 50
B (intercept of σ ) -3.1866 ± 4.0748 -50 to 50

fRL+Decay+FAS η (learning rate) 0.8524 ± 0.2494 0 to 1
β (softmax temperature†) 7.5677 ± 3.6353 0 to ∞

d (decay rate) 0.2578 ± 0.1663 0 to 1
β2 (softmax temperature∗) 12.2973 ± 19.4231 0 to ∞

A (slope of σ ) -3.6989 ± 3.3707 -50 to 50
B (intercept of σ ) -0.4917 ± 1.0619 -50 to 50

Table 1: Parameter table of fitted learning models according to 21 subjects. †softmax inverse tem-
perature for calculating choice probability; ∗softmax inverse temperature for biasing choice

highly rewarding. It is important to preserve this representation against environmental noise and

lower the feature’s learning rate. Meanwhile, high learning of low weights with negative prediction

errors also is statistically sound. When all feature weights are low, this high learning allows for a

speedy process of elimination in finding the most rewarding feature. When one feature in the chosen

stimulus has a high weighter, this means a larger negative prediction error if reward is omitted. This

creates a larger divide between the more highly weighted feature and the smaller weighted features.

This may allow a subject to better perform hypothesis testing by filtering out distractors.

It is interesting to note that for the best fit parameters of the fRL+Decay+FAS model, 13 of the 21

subjects’ learning rates, η , converged to one. Recall that a subject updates the weights of the chosen

stimulus, where ∆W ( f ) = σ
(
W ( f )

)
η(R−V (S)) (see Equation 11). This means that this sigmoid

function entirely drove learning in these subjects. How the σ modulates learning rate can be seen
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in difference in sigmoidal shapes between Figure 8a and 8b. Other analyses show that fixing the

learning rate, η , of the f RL+Decay+FAS to one significantly outperforms f RL+Decay+FAS

on the BIC metric (due to lower model complexity, p < 5e−08), while the likelihoods per trial are

not significantly different than f RL+Decay+FAS (analysis not pictured). In general, these results

show that the weight of a feature in the Dimensions Task acts as a gating variable for the plasticity

and sensitivity of that weight to further learning.

4.5. Predicting Memory Probe

To ensure our fRL+Decay+FAS winning model still maintains fRL+Decay’s predictive power for

probe accuracy, we fixed the parameters found for the above model comparison. We then used the

model to predict probe accuracy. This was also done for the fRL+Decay model. Again, similar to

the original behavioral analysis of probe behavior (Section 3.3.1), we built models to separately

predict chosen and unchosen stimuli accuracy due to differences in encoding. We compared these

models’ performances to a null memory model described below. For a reminder of the memory

probe, see Section 3.2.

4.5.1. Chosen Stimulus

For memory of the chosen stimulus, we predicted the probability a subject would correctly recall

the feature of the chosen stimulus with a logistic sigmoid, in correspondence with the behavioral

results in Figure 3. The logistic was a function of feature weight or attention. The general structure

for the models is:

P(Memory of f ∈ Schosen,Dprobed) =
1

1+ e−A∗(X( f ))+B
(14)

where X( f ) is some predictor related to the feature f . The models compared are as follows:

• Null Memory Model Our null model for the chosen assumed that participants would correctly

recall the feature of the chosen stimulus when probed with some base probability, p, regardless of
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the feature’s associative value or probability of predicting high reward. As we consider the null

memory model independent of the learning and decision-making processes, the null model is the

same for fRL+Decay and fRL+Decay+FAS.

• fRL+Decay+W where predictors are X( f ) =W ( f ) as calculated by the fRL+Decay model after

feedback on the probed trial.

• fRL+Decay+FAS+W where predictors are X( f ) =W ( f ) as calculated by the fRL+Decay+FAS

model after feedback on the probed trial.

• fRL+Decay+FAS+Φ( f ) where predictors are X( f ) =Φ( f ) as calculated by the fRL+Decay+FAS

model for choice on the probed trial. See Equation 8 for how relative attention of the feature,

Φ( f ), is calculated.

• fRL+Decay+FAS+σ( f ) where predictors are X( f ) = σ( f ) as calculated by the fRL+Decay+FAS

model for learning on the probed trial. See Equation 12 for calculation of gated learning, σ( f ),

and Figure 8 for subject-level plots.

• fRL+Decay+FAS+ Φσ( f ) where predictors are X( f )=Φ×σ( f ) as calculated by the fRL+Decay+

FAS model for choice and learning on the probed trial.

As shown by Figure 9, while the fRL+Decay+FAS+W did not significantly outperform the null

memory model, the fRL+Decay+FAS with attention metrics as predictors did. fRL+Decay+FAS+Φ

(p < 0.01) and fRL+Decay+FAS+Φσ (p < 0.005), significantly outperformed the null model. The

performances of fRL+Decay+FAS+Φ and fRL+Decay+FAS+Φσ were not significantly different

than fRL+Decay+W. (fRL+Decay+W was significantly different than the null, p < 0.05); it is

probable that the weights in fRL+Decay capture some of the probability information contained in

Φ. The positive logistic slopes (Table 2) - i.e. larger attention metric, higher memory prediction

- further support the theory which argues attention is allocated to the more predictive stimuli

[Mackintosh, 1975, Dayan et al., 2000].

To extend this further, these results show that more predictive stimuli are not only more attended

but better encoded in the brain, evidence of attention’s role in constructing a simplified representa-
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(a) (b)

Figure 9: Model Comparison for Predicting Probe Accuracy of the Chosen Stimulus. (a) BIC com-
parison. * indicates the BIC of the model is significantly less than that of the null. The weights of
the fRL+Decay model continued to be good predictors of probe accuracy on the chosen stimulus.
They were the weights used in the behavioral results expressed in Figure 3. The weights of the
fRL+Decay+FAS models, however, were not sufficient to outperform the null model. Instead, the
attentional metric at choice, Φ, and Φ times the attention at learning, Φ×σ , served as sufficient
predictors of memory. Performance for the three starred models were not significantly different. (b)
A plot of the average likelihood per trial for the three models that outperformed the null model.

Model Name Parameters Mean (SD) Range
Null p (baseline memory) 0.7370 ± 0.1235 0 to 1
fRL+Decay+W A (slope of sigmoid) 5.5765 ± 2.8795 -50 to 50

B (intercept of sigmoid) -0.6139 ± 0.5461 -50 to 50
fRL+Decay+FAS+W A (slope of sigmoid) 1.8704 ± 1.5975 -50 to 50

B (intercept of sigmoid) -0.6525 ± 0.6115 -50 to 50
fRL+Decay+FAS+Φ A (slope of sigmoid) 3.5039 ± 2.0763 -50 to 50

B (intercept of sigmoid) -0.6170 ± 0.5284 -50 to 50
fRL+Decay+FAS+σ A (slope of sigmoid) -2.9096 ± 1.7168 -50 to 50

B (intercept of sigmoid) -2.3600 ± 1.1913 -50 to 50
fRL+Decay+FAS+Φσ A (slope of sigmoid) 17.1653 ± 8.4592 -50 to 50

B (intercept of sigmoid) -0.4291 ± 0.5685 -50 to 50

Table 2: Parameter table of fitted memory models for chosen stimulus according to 21 subjects.
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(a) (b)

(c) (d)

Figure 10: Predicting memory of unchosen stimuli of dimension probe using (a) weight predictors
(fRL+Decay) or (b-d) attentional predictors (fRL+Decay+FAS). While likelihoods of the four graphs
are significantly above the null (ps < 5e-04), BICs are significantly higher, meaning the models did
not outperform the null model (ps < 1e-10).

tion of a complex environment. It is important to note that σ alone was insufficient for predicting

memory; however, it did not tarnish performance (and for some subjects helped predict memory)

when combined with Φ. This suggests that while encoding and memory may be driven largely by

how predictable the feature is of high reward, that metric alone may not solely dictate representation

of the trial.

4.5.2. Unchosen Stimulus Predicting accuracy on the unchosen stimuli is less clear. Weights of

fRL+Decay in the original behavioral analysis were not predictive of the accuracy of unchosen

stimuli. To simplify this analysis, we looked at predicting the probability that both unchosen stimuli

were correct. As this is dependent on the chosen stimuli being correctly placed in the memory
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probe, we fit the data on all tested models only over those trials in which the chosen stimulus was

correctly placed. The null model again assumed that the unchosen stimuli conditioned on the chosen

stimulus being correct would also be placed correctly with some baseline probability, p. No model

variant of either f RL+Decay or f RL+Decay+FAS that was tested successfully outperformed

this null model. The weight or attention metrics of the feature in the chosen stimulus of the probed

dimension were used as predictors in the same way as when predicting chosen probe accuracy.

While the likelihood for some models was significantly higher than the null as seen in Figure 10, the

likelihood payoff is not enough to offset the added complexity of the model. Any effect on attention

of the unchosen stimulus according to feature learning appears to be minimal and nuanced, though

some trending effects seem to emerge on a subject-by-subject basis.

5. Discussion

The work in this paper offers an improved computational model of the Dimensions Task, f RL+

Decay+FAS, supported by model comparison evidence. The Dimensions Task, a multi-armed

bandit task, is used to simulate learning in a noisy, high dimensional environment. The new model

incorporates statistical ideas of attention derived from behavioral findings (some of which are

presented in this paper) and grounded in theoretical thinking. Specifically, the model combines

the concept of attention competitively allocated to stimuli according to their relative reliabil-

ity of predicting reward [Mackintosh, 1975, Dayan et al., 2000], and gated learning of features

[Roelfsema and van Ooyen, 2005, Dayan et al., 2000, Pearce and Hall, 1980]. Specifically, it does

this by fusing the concepts presented in Dayan et al. (2000) - which posits that competitive

predictability between stimuli biases calculations of compound expected reward - with softmax

winner-takes-all dynamics and robustness of high contributing features to feedback from Roelfsema

and van Ooyen (2005). By fitting the model to subject data and outperforming the fRL+Decay

model, this work offers empirical evidence of these theoretical concepts and supports the integrated,

bidirectional relationship of attention and learning proposed in [Leong et al., 2017]. Notably, this

reinforcement learning model relies solely on the current state according to RL values, rather than
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Bayesian inference, for selecting subsets of the feature space to learn and to attend.. Despite basic

reinforcement learning’s poor scaling to high dimensions, introducing attentional processing aids in

improving performance and plausibility.

Behaviorally, this work shows that, not only do subjects attend more highly to more predictive

features of a stimulus as other empirical work has shown, highly predictive features are encoded

more strongly in the memory of the stimulus. This novel result further supports the implication

of attention in discerning which features of a multidimensional space to include in an internal

representation. An extension of this work would be to confirm if this model could predict a more

rigorous metric of attention, such as eye-tracking or MVPA analysis, rather than memory. While

this study shows that attention measures in fRL+Decay+FAS can predict memory, as discussed in

Section 2.2.1, memory is an imperfect measure of attention.

To better understand how stimuli presented at choice are encoded, we propose two possible

variants of the memory probe. The first design uses the same stimulus and probe design, but rather

than probing after feedback, subjects should be probed directly after choice. Feedback should be

omitted for the probed trial. This approach will better disentangle how a multidimensional space

is encoded as the result of top-down processing. To complement this design, a separate group of

participants should be given the paradigm described in this study, but both unchosen stimuli should

remain on screen during feedback. This will allow for both chosen and unchosen stimuli to be

presented for the same time duration. This will possibly yield a better metric of how unchosen

stimuli are encoded during learning and may produce a clearer relationship between reinforcement

learning values and encoding of irrelevant stimuli. This dual-paradigm will better differentiate

encoding at choice versus learning.

Another variant to the memory probe is to ask subjects to report the three features of a specific

stimulus. This variant can better address how individual features of the same stimulus are pref-

erentially processed. Notably, unlike the dimensional probe presented in this paper, performance

of recall of the three probed features is independent, in that color location information does not

inform frequency location information. The σ of the fRL+Decay predicts updating differences in
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the lower weighted features of the chosen stimulus according to the magnitude of the prediction

error. Specifically, if one feature in the chosen stimulus is high and the others are lower, in the

event of no reward (i.e. large negative prediction error), the model would predict higher learning

from prediction error for the lower-valued features. This in turn might correspond to amplified

attention compared to when the prediction error is small. This hypothesis is in line with work by

[Rouhani et al., 2017], which shows larger prediction errors lead to stronger episodic memory. The

current design is not sufficient for this analysis.

Another interesting variation of the Dimensions Task to test extrapolated performance of the

model and its attention predictions would be a gradient of different reward probabilities and a

design where subjects are not told how reward is determined. For different reward probabilities, we

hypothesize that less noise in reward (e.g. if selecting the highly rewarding feature was rewarded

80% of the time, else reward is delivered 10% of the time) will lead to larger β2 values and flatter

logistic slopes. That is, subjects will exhibit greedier behavior in calculating probabilities and be

more sensitive to small changes in weight values. Subjects will also update lower weights less due

to lower noise in the environment.

If subjects are not told how reward is determined in a game and reward structure is left ambiguous

(e.g. if a stimuli contains any one of a subset of features, the stimulus is highly rewarding), we

hypothesize this model, as it is, will not perform well. This is because the model takes advantage of

the fact that the reward reliabilities and certainties of features are dependent - only one feature is

highly rewarding. The fRL+Decay+FAS model exploits information provided to the subject, and in

the absence of this assumption, a more general model is needed. (However, it is not unreasonable

that subjects adapt learning styles based on assumptions about the structure of the environment.)

The attentional framework proposed in the model can be extended, though how probabilities for

calculating expected value of a compound stimulus would need to be modified. Given the difficulty

subjects have in the original Dimensions Task, it is probable the noise in feedback will need to be

lessened for this variation.

38



It would be exciting to extend the gated learning of the model with some calculation of feature

uncertainty. This could be done with a running calculation of the average prediction error for a

feature weighted by recency. The current model does not truly capture the uncertainty attention

expressed in the Pearce-Hall model and Dayan et al. (2000) model, except whatever uncertainty

measure may be captured by feature weights.

Finally, an ignored aspect of selective attention in this model (that was briefly hinted at in Section

2) is selective attention due to low-level salience. As stated in the behavioral results section of

Section 2, low-level salience seems to play a large role in encoding if the dimension (e.g., color)

is highly salient. While the focus of this paper was to understand how top-down attention due to

associative learning affects stimulus encoding, a more unified model would integrate all three levels

of selective attention - exogenous, endogenous, and value-driven attention. Specifically, it would

be interesting to model how highly salient, though irrelevant features, change the magnitude of

associative learning’s influence on encoding of multi-dimensional stimuli.

The implications of this research fall into the broader view of representation learning and the

brain. It further implicates the ongoing interaction between attention and learning as the brain’s

mechanism for countering the curse of dimensionality. It suggests key characteristics of this

mechanism include statistical competition to encode an environment and gated updating of this

encoding process modulated by confidence in state representation. The bi-directionality of these

characteristics gives us the ability to filter the world according to current beliefs of what will most

inform success in our goals, while allowing us sensitivity to environmental changes and adaptability

if confidence in these internal beliefs shifts. This type of cyclical dynamic is essential for learning

effectively in a complex, noisy, and ever-changing world.
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6. Appendix

A. Original Dimensions Task

Reproduced below are example stimuli from the original Dimensions Task design by Niv et al. 2015

[Niv et al., 2015]. See paper for further details of study.

Figure 11: Example of original Dimensions Task stimuli

B. Modeling with Bayes’ Theorem

This paper focused exclusively on modeling the Dimensions Task with reinforcement learning

algorithms. An alternative way to model this task is by using Bayes’ Theorem to track the likeli-

(a) (b)

Figure 12: Model Comparison with Bayesian Models. Despite using a statistically optimal calcu-
lation of the probability a feature is highly rewarding, the fRL+Decay+BA continues to under per-
form in comparison to the fRL+Decay model. The Bayes model, in confirmation of the findings in
[Niv et al., 2015] and [Geana and Niv, 2014], under performs both the fRL+Decay and fRL+Decay+BA
models.
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hood of a feature being the most highly rewarding. As evidence points to in [Niv et al., 2015] and

[Geana and Niv, 2014], the brain likely does not implement Bayesian methods for representation

learning. However, as a source of reference, in this section we present a model comparison between:

• fRL+Decay

• Bayes A Bayesian model which updates the probability of the feature being the most highly

rewarding feature, f ∗, rather than calculating feature weights.

• fRL+Decay+BA Instead of using a softmax to calculate the probability of a feature being highly

rewarding to bias choice (Equation 7), this model instead uses the probabilities in the Bayes

model above. This is similar to the Hybrid Bayes-RL model in [Niv et al., 2015], though does

not update learning.

For calculation of Bayesian probabilities, see [Geana and Niv, 2014].

As seen in Figure 12, the fRL+Decay model continues to outperform both of the Bayesian models

(BIC comparison: (fRL+Decay+BA) p < 1e− 11, (Bayes) p < 5e− 13). Of particular note is

that while fRL+Decay+BA improves upon the Bayes model (p < 1e−12), it remains significantly

outperformed by the fRL+Decay model. This is in direct contrast to when values of stimuli are

biased by probabilities calculated by a softmax function of all feature weights, which improved

fRL+Decay performance.

C. Honor Code

This paper represents my own work in accordance with University regulations.

/s/ Alana Jaskir
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