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Abstract

Idiosyncratic experiences from the past guide our future predictions and decisions in

meaningful ways. We generalize what we learned from the past to similar situations.

This dissertation investigates how we group our experiences in a way that supports

effective retrieval of relevant experiences and generalization from those experiences. I

hypothesize that hidden causal structures that are assumed to have generated a set of

observable events, called latent causes, serve as a meaningful basis for generalization.

In Chapter 2, I first test whether external environmental contexts that have unique

sets of features generated from distinct latent causes organize episodic memories. In

this study, subjects learned a list of words while performing context-appropriate tasks

and recalled the words either in the same or in a different context. I demonstrate that

recalling memories in the original learning environmental context facilitates episodic

memory retrieval. This effect is larger when the words were judged to be conceptu-

ally more relevant to the context, suggesting that integration to the latent causes is

important in organizing memories of experiences. To further this idea, in Chapter

3, I propose a framework for grouping and segmenting events in episodic memory

that is based on inferring latent causes. This framework can reconcile seemingly con-

tradictory empirical findings, such as memory biases towards both extreme episodes

and the average of episodes, by sampling memories within a latent cause (item-level

sampling) or across latent causes (cluster-level sampling). In Chapter 4, I test the

predictions of cluster-level sampling in social decision making, in which impressions

about a group are biased as experiences with the group members are summarized at

the level of inferred latent causes. In the Conclusion, I discuss an ongoing project that

aims to directly measure the latent-cause inference process and map cognitive con-

structs onto model parameters. I propose how this latent-cause inference can provide

a framework for social cognition where key features such as current beliefs, mental

states, and traits are hidden.

iii



Acknowledgements

I would like to extend my deepest gratitude to my advisers, Yael Niv and Ken Norman,

for their unwavering support over the course of PhD. This dissertation certainly would

not have been possible without the guidance they graciously offered from the inception

of the projects. Their sharpest scientific intuition, which continues to amaze me even

after six years of working with them, has made even the most complicated models

and concepts more accessible. I feel deeply grateful to have had the opportunity to

grow up as a scientist with two most incredible scientists as my advisers. I hope to

pay it forward in some form or another, although I know that it would be a challenge

to reach their level of dedication to mentorship.

I would also like to thank my collaborators/friends/lab mates/and beyond. I

honestly do not think that a single category label is enough for most of them, which

makes this a really difficult clustering problem. If you are one of those people, I

believe you will know that you are a member of multiple clusters for me, and that

everything I say below applies to you, even though you are arbitrarily categorized as

one.

I am immensely thankful for my brilliant collaborators, Sarah DuBrow, Rolando

Masís-Obando, Neggin Keshavarzian, Riya Davé, Dan-Mircea Mirea, and Paul Kazelis,

who made the projects infinitely more fun and stimulating, whether we are in a VR

room in the PNI basement or talking over hangout/zoom. I am also greatly in-

debted to my friends at PNI, Nina Rouhani, Angela Radulescu, Lili Cai, Alex Libby,

Aaron Kurosu, and many, many others. Even if we did not directly work on projects

together, talking science with them has been invaluable and inspiring. I am enour-

mously thankful for my support network, Jeayoon Lee, Alice Yoon, DongWon Oh,

Susie Kim, and especially Liza Dzul. They have given me strength to become the

person I am today. Finally, I would like to thank my family for all their love and

support. I dedicate this dissertation to them.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

2 Retrieval of episodic memory and latent cause 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The organization of episodic memory and latent cause inference 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Why do we segment events? . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Potential Mechanisms of event segmentation . . . . . . . . . . . . . . 33

3.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Emergence of evaluation biases from latent cause inference 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



4.2 Experiment 1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Experiment 1B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Experiment 2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Experiments 2B, 2C . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion 86

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Ongoing Work: quantifying latent-cause inference . . . . . . . . . . . 87

5.3 Future Directions: scaling up to social inference . . . . . . . . . . . . 89

vi



List of Tables

3.1 Behavioral effects of event segmentation by boundary manipulations . 49

vii



List of Figures

2.1 Methods pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Recall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 An example of inference-based segmentation . . . . . . . . . . . . . . 39

3.2 Schematic for cluster-level and item-level sampling . . . . . . . . . . 43

4.1 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Experiment 1A results . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Experiment 1B results . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Sparsity biases in Experiment 2 . . . . . . . . . . . . . . . . . . . . . 67

4.5 Alternative model simulation results for Experiment 2A . . . . . . . . 68

4.6 Post-observation biases in Experiment 2 . . . . . . . . . . . . . . . . 73

4.7 Distributions matched for the mean of log-transformed values . . . . 78

5.1 Inference Task Schematics . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



Chapter 1

Introduction
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There are no two events that can be exactly the same, as at least one aspect–time–

is constantly moving forward. Nonetheless, these idiosyncratic experiences from the

past guide our future predictions and decisions in meaningful ways. We generalize

what we learned from the past to similar situations. For instance, when meeting

a new person, we may draw from previous encounters with other people who share

similar qualities with the person. In drawing from the past, which specific encounters

come to mind among the myriad of experiences we have accumulated throughout life?

How do we group our experiences in a way that supports effective retrieval of relevant

experiences and generalization from those experiences?

Context, defined as characteristics of the external or mental environment (Eich

et al., 1975; Underwood, 1977), can be the basis for the organization of the expe-

riences. In a classic study that investigated the effect of external environment in

episodic memory, Godden and Baddeley (1975) asked scuba divers to study a list of

words underwater or on land, and tested their memory either in the same or a dif-

ferent context. The divers who recalled the words in the original study environment

recalled more words than the ones who were tested in a different context, suggesting

that being in the same context facilitates the retrieval of memories that belong to the

context.

Context also influences learning in animals. For example, a rodent who has learned

that a tone predicts a shock in a cage shows a fear response upon their return to the

same cage, even after going through extinction in a different cage (Bouton and Bolles,

1979; Gershman et al., 2010). In experimental settings, context is often defined as

external physical environments as in the aforementioned examples, as the environ-

mental contexts are what the experimenters can easily manipulate. However, physical

surroundings are not always meaningful in guiding what subjects find relevant in a

given situation. Studies that only manipulate the environmental context have mixed

results (for a review, see Smith and Vela, 2001). Indeed, even in the same physical lo-
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cation, we can find ourselves in very different situations. For example, if we are asked

to give a talk at our alma mater’s lecture hall, it would be more helpful to remember

what happened in a similar situation (e.g., giving a talk at a different institution)

than events that occurred in the same lecture hall (e.g., taking a class). This idea

is in line with studies that show mentally reinstating the learning context, without

revisiting the physical site, is enough to bring back the memories from the context

(Smith, 1979). Even when external cues do not change, our internal state may change,

providing a different context for processing incoming information and retrieving old

information. What is it, then, that enables efficient retrieval and generalization of

our experiences?

“Latent causes” – hidden causal structures that are assumed to generate a set

of observable events, serve as a meaningful basis for generalization (Courville et al.,

2005; Gershman et al., 2010). For instance, when an event shares its latent cause

(e.g., giving a talk) with previous events, retrieving those events and generalizing

from them would be normative. In this thesis, I investigate how the hidden structure

of causes organizes episodic memories, segments a continuous stream of experiences,

and summarizes experiences to support decision-making.

In Chapter 2, I demonstrate that recalling memories in the original learning

context facilitates episodic memory retrieval. As we cannot directly manipulate what

latent cause is inferred by subjects, we manipulate a set of features that would en-

courage subjects to form and activate distinct latent causes. Specifically, we use two

semantically-distinct contexts (underwater and Mars), each associated with a sepa-

rate set of actions in a virtual reality task. We show that items are better recalled

later when they are retrieved in the same context where they were learned. We also

show that this memory benefit is larger for items deemed context-relevant at encod-

ing, potentially due to the importance of integrating items into an active latent cause

for the successful generation of this effect.
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In Chapter 3, I propose that a continuous stream of experiences can be seg-

mented and clustered by inferred latent causes. I review event segmentation theory,

overviewing how event segmentation influences ongoing processing, subsequent mem-

ory retrieval, and decision making, as well as some proposed underlying mechanisms.

I then explore how inferences, or beliefs, about what generates our experience (i.e.,

latent cause) may be the foundation of event cognition. In this inference-based frame-

work, experiences are grouped together according to their latent causes. Segmentation

then occurs when the inferred latent causes change, creating an event boundary. This

framework offers an alternative to dominant theories of event segmentation, allow-

ing boundaries to occur independent of perceptual change and even when transitions

between latent causes are predictable. I describe how this framework can reconcile

seemingly contradictory empirical findings (for example, the fact that memory can

be biased towards both extreme episodes and the average of episodes).

In Chapter 4, I investigate how we use latent causes to evaluate other people.

In particular, I propose that when we evaluate a group after observing its mem-

bers’ behaviors, biases can emerge when we infer the latent causes of the observed

behaviors. I use a Bayesian latent-cause inference model that learns environmental

statistics, combining highly similar events together and separating rare or highly vari-

able observations. The model predicts that group evaluations that rely on averaging

inferred latent causes will overweight variable events. I empirically test these model-

derived predictions in eight decision-making experiments, in which subjects observe a

sequence of social or non-social behaviors and are subsequently asked to estimate the

average of observed values. As predicted by a latent-cause model, when we queried

for the average estimate after subjects saw all events, the estimate was biased toward

rare and highly variable events. When subjects tracked a summary value as observa-

tions of events accrued, instead of parsing events into distinct latent causes, the bias

was eliminated. These results suggest that biases in evaluations of social groups, such
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as the negativity bias, may arise from inferring the hidden causes of group members’

behaviors.

In the Conclusion, I discuss an ongoing project that aims to measure the latent-

cause inference process directly and map cognitive constructs onto model parameters.

I propose how this latent-cause inference can provide a framework for social cognition

where key features such as current beliefs, mental states, and traits are hidden.
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Chapter 2

Retrieval of episodic memory and

latent cause

The contents of this chapter were published in Shin, Y.*, Masís-Obando, R.*, Ke-

shavarzian, N., Davé, R., & Norman, K. (2020, April 6). Context-dependent memory

effects in VR. https://doi.org/10.31234/osf.io/prdb7.
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2.1 Introduction

Returning to an alma mater for a reunion can bring back memories from the past.

Walking by campus may make it easier to recall past events that took place in the

dorms, classrooms, and dining halls, even when those memories are not easily re-

trievable elsewhere. This flood of memories when returning to an old environment is

known as the environmental reinstatement effect (Smith, 1979). Research in episodic

memory explains this effect with the encoding-specificity hypothesis, which posits

that increasing levels of overlap with the encoding context during retrieval aids mem-

ory performance (Tulving and Thomson, 1973). However, the beneficial effect of

context reinstatement in recall has not been consistently supported in the memory

literature (for a review, see Smith and Vela, 2001). Contexts have been manipulated

in various ways such as background colors (Weiss and Margolius, 1954; Isarida and

Isarida, 2007) and physical rooms (Eich, 1985; Fernandez and Glenberg, 1985), but

these manipulations do not always lead to a context-reinstatement effect (Isarida and

Isarida, 2007; Fernandez and Glenberg, 1985; Wälti et al., 2019). The discrepancy

between the strong anecdotal psychological experience and weak experimental evi-

dence indicates that extant experimental paradigms are missing key features that are

responsible for evoking context-dependent memory in real life. What, then, are these

missing features?

One of the seminal studies that showed strong context-dependency used rich,

real-world environments to manipulate the congruency between encoding and re-

trieval contexts (Godden and Baddeley, 1975). They found that scuba divers recalled

learned words better when the retrieval context (underwater or land) matched the

encoding context. It is worth noting, however, that subjects were put into vastly

different situations that likely activated different bodies of knowledge associated with

each environment (e.g., how to swim and breathe underwater). Similarly, Smith and

Manzano (2010) showed a robust context reinstatement effect in a study where con-
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texts were manipulated by video scenes showing situations that subjects were likely

to be already familiar with. Relatedly, a change in the mental representation of the

current situation can reduce access to episodes that happened before the change (for a

review, see DuBrow et al., 2017). These studies suggest that, in order to demonstrate

a robust context effect, subjects should mentally represent distinct situations and

activate distinct sets of knowledge while encoding and retrieving the items. Standard

laboratory experiments that merely change the physical environment or the color on a

screen may have failed to elicit the effect because they failed to make subjects believe

that they were in different situations.

These ideas fit with prior work in cognitive psychology (Bransford and Johnson,

1972; Alba and Hasher, 1983) and cognitive neuroscience (Poppenk and Norman,

2012; Whittington et al., 2019; Tse et al., 2007; Gilboa and Marlatte, 2017) showing

that activation of relevant pre-existing knowledge (i.e., schemas) can facilitate new

learning by providing a “scaffold” onto which new information can be attached. Once

information has been attached to this contextual scaffold, reinstating the scaffold at

test should facilitate recall, and taking it away should hurt recall, thereby leading to

a context change effect.

In the present study, we aimed to develop an experimental paradigm that can

produce a strong context reinstatement effect in a laboratory setting. First, we used

two virtual reality (VR) environments that we predicted would activate distinctive

pre-existing sets of knowledge (i.e. schemas) in the subjects, underwater (UW) and

Mars planet (MP) environments. In other words, these two environments differed not

only perceptually, but also in their prior conceptual associations. Furthermore, to

maximize the difference between the two contexts while expanding on their existing

knowledge, we also had subjects perform context-specific actions that were physically

distinctive: Subjects performed downward motions in UW and upward motions in MP

when interacting with objects to initiate each session (i.e., context-initiation action
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sequences) and to discover to-be-remembered word items (i.e., item-finding actions;

Fig. 2.1b). Second, in order for subjects to have these bodies of knowledge readily

available at the time of study and test, as was the case for the divers in Godden and

Baddeley (1975), we familiarized subjects with the virtual environments in a foraging

task where they collected objects dispersed throughout each environment. This was

followed by a practice of the associated sequences of actions (context-initiation action

sequences and item-finding actions) before they went into the main task (Fig. 2.1c

top row).

Another key desideratum is that, during encoding, these distinct bodies of knowl-

edge should be activated when performing the experimental tasks. If subjects are

aware of a future memory test, they may use mnemonic strategies unrelated to the

present context and ignore other inputs from the environment. Thus, to ensure con-

textual relevance during encoding and to conceal the purpose of the study, we used a

surprise memory test. Furthermore, a cover task for encoding forced subjects to delib-

erately integrate the memory items into the given context (Eich, 1985). Specifically,

we asked subjects to judge whether a shown item was useful in the context where it was

found. We hoped that these judgment tasks that were unique to each environment,

paired with the item-finding and context-initiation action sequences (also unique to

each environment), would foster the activation of context-unique associations during

encoding. Additionally, we hypothesized that items that were affirmatively judged to

be useful in the encoding environment would show a stronger context-change effect –

the idea being that schema-congruent items would be more strongly integrated into

the active schema at encoding and thus suffer more if that schema were not active

at retrieval (Bransford and Johnson, 1972). The context-initiation action sequences

were also performed at the beginning of the retrieval session, making the encoding

and retrieval sessions more similar for the “same” condition and more distinctive for

the “different” condition.
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Lastly, we also manipulated the interval between encoding and retrieval. When

items were encountered very recently, they may be retrievable without relying on

contextual cues, and this may weaken context dependency (Smith and Vela, 2001).

To test this, we used two levels of encoding-retrieval intervals, where a longer interval

(the “delay” condition) was expected to produce a stronger reinstatement effect than

a shorter interval (the “immediate” condition).

In summary, our approach was to combine as many factors as we could in the ser-

vice of ensuring that participants activated distinct bodies of knowledge (i.e., schemas)

when learning word lists in the two contexts. The benefit of this combined approach

is to maximize effect size (if our hypothesis is correct), with the complementary draw-

back that – if we obtain an effect – we are not in a position to say which of the factors

are necessary and sufficient for driving the effect.

2.2 Methods

2.2.1 Participants

Seventy-two adults (50 female; 22 male) recruited from Princeton University and the

university community participated in our study. All but two participants were right-

handed (1 left-handed, 1-ambidextrous). Informed consent was obtained from all

participants in accordance with Princeton Institutional Review Board, and subjects

were each provided with monetary compensation or course credit for participating in

the study. With the exception of 8 participants who did not complete the study due to

technical issues with the VR devices and/or Unity (e.g. VIVE wireless disconnected

or screen froze during encoding), a total of 64 subjects were included in the analyses.
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2.2.2 Task and Procedure

We used a 2 (study-test context congruency: same vs. different) x 2 (study-test

interval: immediate vs. delay) between-subjects design (Fig. 2.1a). The experimental

procedure was divided into three parts: a training phase with sessions in both UW and

MP (Fig. 2.1c top row), two encoding sessions in one of the two environments (Fig.

2.1c middle row), and a retrieval session either in the original encoding environment

(the “same” condition) or in the other environment (the “different” condition; Fig.

2.1c bottom row). In the “immediate” condition, encoding and retrieval occurred

on the same day, while for the “delay” condition, retrieval took place the day after

encoding.

Training

The training session is depicted in Fig. 2.1c, top row. After signing consent and

screening forms, subjects were handed a paper with a fictionalized mission statement

outlining the task to be performed in VR. Subjects were told that they were pioneers

developing alternative places for humans to inhabit in the future and instructed to

judge whether they should keep the items they discover based on the usefulness and

pertinence to thriving in the environment they were in. This was meant to obscure

the purpose of the study and the surprise memory test later.

After reading the mission statement, subjects were familiarized with the VR soft-

ware by entering a practice environment. In this environment, subjects learned how

to navigate and interact with objects that they would encounter in the main task.

Subjects learned how to navigate by teleportation and how to find and judge items

for the cover task (e.g., bending down, reaching upwards, etc.). Experimenters com-

municated with subjects during training via an intercom system connected to the

head-mounted display audio-device.

Subjects were then introduced to the MP and UW environments. The order of the
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environments was counterbalanced across subjects. In each environment, subjects first

performed a foraging task where subjects explored and collected 20 floating spheres

scattered across the environment. This was followed by a context-initiation action

sequence (Fig. 2.1b top row), which subjects would be required to perform at the

beginning of each session. For this, subjects in UW needed to bend down to reach

a key and insert it into the key-hole of a large treasure chest in the center of the

environment, while subjects in MP needed to reach upwards to grab a floppy-disk

and insert it to the side of a podium near the center of the crater. After the context-

initiation action sequence, subjects heard an audio instruction for the task they needed

to perform in the session. The instruction guided subjects to practice item-finding

actions and the judgment mechanics that required reaching out and picking either a

red or green cube with their controller. The item-finding actions were also unique

to the environment. Subjects in UW found a to-be-remembered item by bending

down and digging inside of a chest, whereas MP subjects did so by reaching up to a

floating rock and scanning it while it was latched onto the scanner (Fig. 2.1b middle

row). After finding and judging four items in the environment, they were teleported

out and asked to perform two types of distractor tasks. The first distractor task

was a countdown task in which subjects were instructed to count down from 100 to

negative 300 by a randomly-generated single-digit number in an empty environment.

The second distractor task was a monster-smash task that required subjects to hit as

many monster heads off the ground as possible. The countdown task and monster-

smash task both lasted 1 minute and were always performed in succession via virtual

transportation from the countdown room to the monster smashing platform. Subjects

repeated these tasks when trained in the second environment.
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Encoding

After the training phase was completed, subjects were either transported to MP or

UW for the encoding sessions. There were two encoding sessions (Fig. 2.1c middle

row). At the beginning of the encoding session, subjects first performed the context-

initiation task that was specific to the environment, after which they listened to

the recorded instruction. Subjects then performed a cover task where they made

judgments about whether the items they discovered should be kept in the environment

based on their perceived usefulness for surviving in that environment. There were

24 items in each session, and they were told that they should only keep roughly

half of the items. Immediately after the word item disappeared, the judgment cubes

(green for useful, red for harmful) appeared in front of the subjects’ virtual visual field

simultaneously and remained there for 6 seconds before disappearing. If no selection

was made within the 6 s trial window, the judgment trial was counted as missed.

After successfully discovering all 24 items in chests (in UW) or rocks (in MP),

subjects performed distractor tasks (i.e., countdown and monster-smash tasks). Once

both distractors were completed, subjects were virtually transported back to the same

encoding environment as the first encoding session and initiated the second encoding

session. The second encoding session was identical to the first except for the to-be-

remembered items (24 new words). After the second encoding session, subjects again

performed the two distractor tasks.
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Figure 2.1: Methods pipeline (a) Study design. We used a 2 (study-test context
congruency: same vs. different) x 2 (study-test interval: immediate vs. delay)
between-subjects design. Subjects were split between getting tested in either the same
environment where learning occurred or in the other environment. Dotted arrows indicate
the “different” condition while solid arrows indicate the “same” condition. Subjects went
into the free recall session either immediately or approximately 24 hours after learning of
the items occurred. (b) Environment-specific gameplay mechanics and stimuli.
Underwater (UW) and Mars planet (MP) each contained context-specific gameplay
mechanics (top and middle rows), with distinct visual and auditory stimuli (bottom row).
(c) Task procedure Our paradigm consisted of three main phases (delineated by the
three rows). Subjects first read the cover story and were familiarized with each of the
environments (top row) through the following tasks: (1) a foraging task, (2) the
context-specific initiation sequence, and (3) item-finding actions. Each practice run was
followed by the two distractor tasks. In the second phase (middle row), each subject went
through two encoding sessions in one of the two environments. Before encoding, subjects
performed the context-initiation sequence specific to the environment. They then found
to-be-remembered items by performing the environment-unique item-finding action and
judged whether the item was useful or not for survival in the present environment. They
did this for 24 items in a given session before proceeding to two distractor tasks (right
most middle row). The encoding session was performed twice in the same environment
with two non-overlapping sets of word items. Either immediately following the encoding
session or after a one-day delay (bottom row), subjects again performed the
context-initiation sequence specific to the retrieval environment, at which point they were
asked to recall all the words they had judged during study (i.e., 48 words).
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Retrieval

Following the encoding task, subjects were introduced to the retrieval session (Fig.

2.1c bottom row). Subjects in the “immediate” condition continued to the retrieval

task while subjects in the “delay” condition were told to return the next day for ad-

ditional missions. Before the retrieval session, subjects in the “delay” condition were

re-familiarized with the retrieval environment and performed the two distractor tasks.

Subjects in the “immediate” condition were transported to the retrieval environment

immediately after the distractor tasks that followed the second encoding session.

The “same” condition subjects returned to the same environment in which encod-

ing took place for retrieval (i.e., UW-UW or MP-MP), while the “different” condition

subjects faced the surprise memory test in the environment that differed from the

encoding session (i.e., UW-MP or MP-UW).

Once subjects were virtually transported to the retrieval environment, subjects

performed the corresponding context-initiation task after which they learned for the

first time that there was a surprise memory test. Subjects were instructed to verbally

recall all the word items they had discovered from both encoding sessions (i.e., 48

words), regardless of whether items were judged to be useful or not. The recall period

lasted 2 minutes.

2.2.3 Materials

Environments

Two distinctive VR environments were custom-built and explored by subjects with

a wireless head-mounted virtual reality display (HMD): underwater (UW) and Mars

planet (MP). To maximize the difference between the two contexts, each had a differ-

ent layout and a set of thematically corresponding specific player actions, objects, and

sounds (Fig. 2.1b). Sound effects were obtained online or made in-house with Able-
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ton Live software and instruction audios were created using a text-to-speech service

(fromtexttospeech.com).

The UW environment resembled the ocean floor. The landscape was tinted blue

with coral surrounding the play area, and 3-D models of shipwrecks, submarines,

boats, and chests were scattered around the environment. Items to be found were

words located inside small chests; to interact with the chests, subjects had to bend

down, lift the lid, and place their controller inside the chest to “dig” into the chest

to reveal the word to judge. In addition to the bubble and underwater sounds, all

instructions in the UW context were given by a male voice.

The MP environment resembled science fiction depictions of the planet Mars.

The landscape was tinted orange with mountains far in the distance of a large crater

which served as the play area. Models of spaceships, satellites, and floating rocks were

interspersed around the crater with additional spaceships hovering in the sky. In MP,

to interact with the floating rocks, subjects had to lift the rocks with their controller

and press the trigger button to “scan” them and reveal the word. To maximize

immersion, coarse wind sounds played in the background, and static sound effects

were triggered with every word discovery (e.g. “scanning rock”). All instructions in

the MP context were given by a female voice.

Words

Forty-eight concrete noun words were used as encoding items. The same set of 48

words was presented for both MP and UW. To ensure that roughly half of the items

were judged useful in both environments, we normed the words using Amazon Me-

chanical Turk, where the context was given by a screenshot of the corresponding VR

environment and 180 words were judged for usefulness in the given environment. The

mean probability of the chosen set of words being judged useful was 0.56 (SD = 0.28)

in MP and 0.48 (SD = 0.25) in UW.
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2.2.4 Apparatus

All tasks were presented on a wireless HTC Vive Pro head-mounted display (1440 ×

1600 resolution per eye, with a 90 Hz refresh rate, and built-in headphones and inte-

grated microphone) which was wirelessly connected (with a HTC Wireless Adapter)

to a custom-built computer running 64-bit Windows 10 on an Intel Core i7-7800X

CPU @ 3.50GHz with 32GB RAM and an Nvidia Geforce RTX 2080 graphics card.

All tasks were created and coded in Unity3D 2017.4.3, a game-development plat-

form, with Virtual Reality Toolkit (VRTK; vrtk.com), a virtual-reality program-

ming tool-kit for Unity3D. 3D models, textures, environments and other assets were

downloaded from the Unity Asset Store (assetstore.unity.com), Turbosquid (tur-

bosquid.com) and then modified or custom-built using Blender (blender.org).

2.2.5 Statistical Analyses

We performed statistical analyses using a generalized linear mixed-effects model in

R with the “lme4” package (Bates et al., 2015), treating subjects and word stimuli

as random effects. For confidence intervals, we performed bootstrapping, sampling

different sets of subjects with replacement 5000 times.

2.3 Results

2.3.1 Encoding

Overall, subjects spent 7.44 minutes per encoding session (SD = 0.92 min, 95%

bootstrap CI [7.23, 7.68]). Subjects spent more time in MP (M = 7.89 min, SD =

0.99 min, 95% bootstrap CI [7.57, 8.25]) than in UW (M = 7.00 min, SD = 0.58

min, 95% bootstrap CI [6.80, 7.20]; t(49.83) = 4.380, p < 0.001), reflecting longer

distance (in arbitrary units) traveled in MP (M = 6.13, SD = 0.49, 95% bootstrap
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CI [5.97, 6.31]) than in UW (M = 5.00, SD = 0.55, 95% bootstrap CI [4.81, 5.19]);

t(61.29) = 8.714, p < 0.001).

For the decision task, 52% (SD = 9%, 95% CI [50%, 55%]) of the items were

judged as useful for the environment. Mixed-effects logistic regression analysis showed

that there was no significant difference in the probability of judging items use-

ful between encoding environments (β = 0.098, SE = 0.107, Wald Z = 0.912,

p = 0.362; M = 0.51, SD = 0.10, 95% bootstrap CI [0.48, 0.55]; UW M = 0.54,

SD = 0.08, 95% bootstrap CI [0.51, 0.56]). Decision reaction times did not signifi-

cantly differ between “Useful” (M = 793.25 ms, SD = 271.27 ms, 95% bootstrap CI

[728.18, 860.91]) and “Harmful” (M = 868.58 ms, SD = 267.64 ms, 95% bootstrap

CI [805.36, 934.33]; t(125.98) = −1.582, p = 0.116) judgments, or between encod-

ing environments (t(61.25) = 1.510, p = 0.136; MP M = 864.91 ms, SD = 223.25

ms, 95% bootstrap CI [787.01, 943.16]; UW M = 775.54 ms, SD = 249.55 ms, 95%

bootstrap CI [689.70, 864.36]).

2.3.2 Retrieval

Overall accuracy was 0.29 (SD = 0.12, 95% bootstrap CI [0.26, 0.32]). First, we

tested the context reinstatement effect, the benefit in retrieving memory items in the

same environment as the encoding environment as opposed to a different environment.

Given that a mixed-effects logistic regression model that controlled for stimulus effect

(i.e., word items) as a random effect showed a better fit (BIC = 3416.433) than a

model that did not (BIC = 3646.219), we used a model with subjects and word items

as random effects to predict whether an item is recalled as a function of the context

congruency manipulation. The mixed-effects model showed a significant benefit for

the “same” condition (M = 0.32, SD = 0.11, 95% bootstrap CI [0.28, 0.36]) compared

to when recall was in a different environment (M = 0.26, SD = 0.11, 95% bootstrap

CI [0.22, 0.30]); β = 0.384, SE = 0.160, Wald Z = 2.406, p < 0.05; Fig. 2.2a),
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suggesting that retrieving items is easier when the retrieval environment matches the

encoding environment.

To investigate additional factors that affect context reinstatement effect, we tested

whether the effect depended on the interval between encoding and retrieval. Although

the interaction between context congruency and interval was not significant (β =

0.149, SE = 0.251, Wald Z = 0.595, p = 0.552) when tested using a mixed-effects

logistic regression model, the effect size for delay condition (Cohen’s D = 0.917) was

larger than the immediate condition (Cohen’s D = 0.599; Fig. 2.2b). There was a

main effect of interval where delayed recall performance was significantly worse than

immediate recall (β = −0.781, SE = 0.126, Wald Z = −6.205, p < 0.001).
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(a)

(b) (c)

Figure 2.2: Recall performance (a) The context reinstatement effect.
Subjects recalled significantly more words when the recall context was the same as the
encoding context (dark gray; N = 32) than when it was different (light gray; N = 32). (b)
Recall performance as a function of context congruency and study-test
interval. The interaction between context congruency and study-test interval was not
significant. In the “delay” condition, there was a significant benefit in recalling items in
the same context (dark gray; N = 16) compared to the different context (light gray; N =
16). This benefit was not significant in the “immediate” condition (the “same” condition
N = 16; the “different” condition N = 16) (c) Recall performance as a function of
context congruency and usefulness judgment. There was a significant interaction
between context congruency and usefulness judgment, where useful items showed a greater
benefit from context congruency. Note: Dots indicate individual subjects. Error bars
indicate 95% bootstrap confidence intervals. ∗∗p < 0.01, ∗p < 0.05, †p < 0.1, ~n.s.

20



To further explore the mechanisms by which context reinstatement affects memory

recall, we looked at the relationship between the usefulness judgment and context

congruency. A mixed-effects logistic regression model showed an interaction between

context congruency and usefulness judgment (β = 0.375, SE = 0.178, Wald Z =

2.106, p < 0.05), as well as main effects of context congruency (β = 0.344, SE =

0.163, Wald Z = 2.108, p < 0.05) and usefulness judgment (β = 0.371, SE = 0.100,

Wald Z = 3.714, p < 0.001; Fig. 2.2c). Planned comparisons showed that the

context reinstatement effect was significant among the “useful” items (β = 0.521,

SE = 0.180, Wald Z = 2.898, p < 0.01), but was not significant among the “harmful”

items (β = 0.177, SE = 0.193, Wald Z = 0.918, p = 0.359). These results suggest

that reinstating the context preferentially brings back memories for the contextually

relevant items, thereby boosting overall memory performance.

2.4 Discussion

In this study, we investigated the environmental context-dependent memory effect in

virtual reality, with a design intended to activate distinct bodies of context-specific

knowledge. Subjects studied items either underwater (UW) or on Mars planet (MP),

under a cover story in which they judged usefulness of items for the given context,

and took a surprise free recall test in either the same or different context as the study

context. We showed that the items were better recalled when retrieved in the same

context as the study context. Importantly, these context-dependent memory effects

were only obtained for items that were judged to be useful for survival in the encoding

environment.

Circling back to our central motivation, why has it been so difficult to replicate

context-dependent memory effects in the laboratory? In the introduction, we hypoth-

esized that the key to obtaining context-dependent memory effects was to integrate
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items into different schemas (bodies of knowledge) in the two contexts at encoding.

The interaction we observed between “usefulness” and context-congruency is consis-

tent with this idea: In our study, the items marked useful at encoding (i.e., items

that could be meaningfully integrated into the active schema) were the ones that

suffered when the schema active at encoding was not active at recall. Note that this

interaction effect cannot be solely explained by deeper encoding of useful items (e.g.,

survival-related items, Soderstrom and McCabe, 2011) – depth of encoding can ex-

plain the main effect of usefulness but not the benefit of reinstating context. Having

said this, our study did not directly manipulate schema-integration, so we need to

temper our conclusions about the role of schema-integration in driving these effects.

Relating this to the literature more broadly, a potential reason why the seminal

Godden and Baddeley (1975) study found such robust effects could be that their

subjects were well-familiarized with the sequence of actions of underwater diving as

well as those of being on land; consequently, they had “underwater” and “out of the

water” schemas that they could use to scaffold knowledge at encoding. Our find-

ings also resonate with prior work showing the importance of integrating items with

context (Eich, 1985; Murnane et al., 1999). Eich (1985) showed a larger reinstate-

ment effect in free recall when subjects integrated items into physical contexts (i.e.,

distinct rooms) by imagining them in the study environment. Similarly, Murnane

et al. (1999) found larger context-change effects on recognition sensitivity when items

could be integrated into a familiar situation (e.g., when words were shown on a pic-

ture of a blackboard in a classroom) vs. when they could not (e.g., when the context

was defined by combinations of word color, background color, and location). Our

usefulness-judgment results extend this idea by showing that simply having a mean-

ingful context (i.e., one that activates an existing schema) is not sufficient to yield

context-dependent memory; rather, subjects have to actually succeed in integrating

the item into the encoding context (i.e., the item has to be judged to be “useful” in
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that context) to get an effect of context congruency for that item at recall.

Our study used VR in order to provide both perceptually and semantically rich ex-

periences. The immersive nature of VR makes it a potentially useful tool for studying

context-dependent memory (Dunsmoor et al., 2014; Reggente et al., 2018). However,

the use of VR does not guarantee a context-dependent memory effect. For instance,

a recent study that also used VR did not find the context-reinstatement effect (Wälti

et al., 2019). In their study, Wälti and colleagues asked subjects to remember a list

of words presented on a background image, following the study by Isarida and Is-

arida (2007) where contexts were manipulated using the background color for studied

words. On each trial, a word was presented on a context image (i.e., a background

color, a landscape picture, a virtual background, or background flickering) for 3 sec-

onds, and the context was pseudorandomly selected on each trial such that the same

context did not appear for more than three words in a row.

While we also used VR, our study significantly differs from the Wälti et al. (2019)

study. Wälti and colleagues used VR to present backgrounds and did not allow direct

interaction with these backgrounds; by contrast, we used highly interactive virtual

environments to encourage activation of distinct schemas in the two environments.

Moreover, our study used a surprise memory test to prevent participants from using

other strategies that could potentially suppress processing of context information.

Lastly, the frequency of context switches was higher in the Wälti study – there were

at least seven context shifts during encoding. This context manipulation may have

been ineffective because the rate of context switch was too rapid to match the human

prior for a context change. For instance, it is unlikely that the room where we read

emails changes as quickly as the switch of tabs on a browser or apps on a phone.

In other words, it may be that contexts shift at hierarchically different timescales

(Zacks et al., 2001b; Kurby and Zacks, 2008; Collins and Frank, 2013). If the two

alternating contexts form a higher-level context in which there is an alternation be-
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tween the two background images with certain transition probabilities, then what is

designated as the “change” or “different context” condition may not actually involve a

context change (since subjects continue with same higher-level mental context active

in mind). Another implication of the idea that changes in the internal context repre-

sentation drive memory effects (more so than changes in sensory input) is that asking

participants to mentally reinstate the encoding context should reduce the size of the

context-dependent memory effect (as in Smith, 1979; this is a promising direction for

future work.

Lastly, in addition to the factors outlined above, we manipulated study-test delay:

There were two delay conditions, one in which subjects were tested immediately after

encoding and another after a 1-day delay. Our data show that the benefit of context

reinstatement for the 1-day delay was numerically (but not significantly) larger than

that of immediate recall. Increasing the delay might boost context-dependent memory

effects by boosting the extent to which participants rely on the hippocampus (Chen

et al., 2016) instead of PFC-mediated active maintenance of items (for a review, see

Richmond and Zacks, 2017). Hippocampal codes are known to be highly context-

dependent (Eichenbaum, 2004), so it follows that anything that increases reliance

on the hippocampus should increase context-dependence. Future studies can use

neuroimaging to test the role of hippocampal engagement in driving the context-

dependent recall effects observed here.

In summary, we showed a context reinstatement effect using environments that

were designed to activate pre-existing schemas (i.e., underwater and outer-space

planet environments), and schema-consistent items were most likely to show context-

dependent memory effects. These results suggest that integration of items into ac-

tive schemas plays a key role in driving context-dependent recall effects. However,

identifying the exact features of our paradigm that were necessary and sufficient for

obtaining these effects will require additional research.
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Chapter 3

The organization of episodic

memory and latent cause inference

The contents of this chapter were published in Shin, Y. S., & DuBrow, S. (2020).

Structuring Memory Through Inference-Based Event Segmentation. Topics in Cog-

nitive Science https://doi.org/10.1111/tops.12505.

25



3.1 Introduction

Humans have a natural tendency to segment the continuous stream of incoming in-

formation we experience into discrete events, broadly defined as units of activity with

an identifiable beginning and end (Zacks et al., 2007). People can detect the transi-

tions between events, called event boundaries, while reading (Speer and Zacks, 2005)

and watching films (Newtson, 1973), as well as during more naturalistic first-person

experiences (Magliano et al., 2014). Event segmentation may occur spontaneously, as

evidenced by longer processing times at boundaries in the absence of a segmentation

task (e.g., Speer and Zacks, 2005; Hard et al., 2011). In addition, neuroimaging data

has shown that the brain responds to boundaries during passive viewing (Zacks et al.,

2001a; Speer et al., 2007; Ben-Yakov and Henson, 2018; Baldassano et al., 2017), rep-

resenting information within an event more similarly than across events (Chen et al.,

2017). Segmentation behavior tends to be consistent across people both behaviorally

(Newtson, 1973; Jeunehomme and D’Argembeau, 2018; Zacks et al., 2001b) and neu-

rally (Speer et al., 2003; Ben-Yakov and Henson, 2018; Baldassano et al., 2017),

suggesting that event structure is construed in a systematic way. Moreover, segmen-

tation has been shown to have important behavioral consequences such as enhancing

memory for items encountered at boundaries (Swallow et al., 2009; Heusser et al.,

2018; Rouhani et al., 2020) and warping time perception such that intervals with

boundaries are estimated as longer in memory (Lositsky et al., 2016; Ezzyat and

Davachi, 2014). Here, we first review the behavioral effects of event segmentation,

then we review potential mechanisms of event segmentation, and finally we explore

the role of inference as a framework for event cognition.
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3.2 Why do we segment events?

Segmenting experience into distinct events has been shown to have extensive psy-

chological consequences (see Table 3.1). In this section, we review three domains

affected by event segmentation: 1) in-the-moment processing of ongoing experiences,

2) memory organization of past experiences, and 3) making decisions that best serve

the current situation. The effects of event segmentation observed in these domains

demonstrate a benefit for adaptive behavior.

3.2.1 Facilitation within ongoing event processing

When encountering incoming information, event segmentation can facilitate process-

ing by increasing access to the event that is currently being experienced. One measure

that has been used to assess facilitated processing is how long it takes to read narra-

tive passages with and without event boundaries. Reading time increases have been

observed in studies that explicitly signal time shifts (e.g., “an hour/day later” versus

“a moment later”, Zwaan, 1996; Speer and Zacks, 2005; “The next morning”, Petti-

john and Radvansky, 2016) as well as protagonist changes (Rinck and Weber, 2003).

These results suggest that narrative comprehension is facilitated within events versus

across event boundaries, perhaps because within-event content is predicted by learned

event schemas that involve sequences of states (Radvansky and Zacks, 2011; Franklin

et al., 2019) or situation models (Zwaan and Radvansky, 1998). Zacks, Speer and

Reynolds (2009) explicitly probed event segmentation and predictability and found

that narrative passages rated low in predictability showed longer reading times and

more identified boundaries. Moreover, consistent with a role for predictability in

mediating event segmentation, Pettijohn and Radvansky (2016) showed that reading

times do not slow down at shifts when they are foreshadowed (i.e., predicted). These

data suggest that predictable content that belongs to the same event facilitates rapid
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comprehension.

Similar to the reading time data, when presented with still frames of action

sequences, people tend to dwell longer on transition frames, suggesting increased

processing demands at boundaries (Hard et al., 2011 ). Interestingly, however, pre-

dictability generally enhances this dwell time effect. That is, the dwell time difference

between actions at boundaries and within-event actions increases as a function of ex-

perience (Hard et al., 2019; Kosie and Baldwin, 2019). This exaggeration may be

driven both by reduced processing time within events as the predictability of actions

increases, as well as by longer dwell times at boundaries as the anticipation of change

triggers viewers to gather more information .

When processing ongoing streams of input, it may be helpful to have selective

access to currently relevant information. Event segmentation can help prioritize in-

formation relevant to the currently active event, while making the information from

previous events less accessible. This has been demonstrated in paradigms that in-

terleave narrative reading or movie watching with recognition memory tests. When

there is an event boundary between the encoding of the probe and the recognition

test, people recognize the probe more slowly (Zwaan, 1996; Speer and Zacks, 2005)

and less accurately (Speer and Zacks, 2005; Swallow et al., 2011). In a similar set of

studies in which people experienced event boundaries by walking through doorways,

items learned in a previous room became less accessible (Radvansky and Copeland,

2006; Radvansky et al., 2011). This suggests that when an event ends, the information

that was learned within that event drops out of active working memory because it is

no longer relevant. Updating an active event in working memory (i.e., event model)

in this way is one of the principles of the Event Horizon framework (Radvansky and

Zacks, 2017; Radvansky, 2012) and has beneficial effects for online processing of in-

coming information within the same event (e.g., reduced reading time and increased

working memory access). Dropping previous information out of working memory may
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have the added benefit of preventing that irrelevant information from intruding on

the current processing. This may also protect information in the previous event from

retroactive interference, increasing the accuracy of later reconstruction (Gershman

et al., 2014).

3.2.2 Memory organization

Segmenting events can also support the encoding and retrieval of episodic memories.

One line of evidence that event segmentation helps episodic memory is that items that

belong to the same event show mutually facilitated recognition memory. For instance,

when people read multiple sentences, some of which share a location, they are faster

to recognize the sentences that share a common location compared to sentences that

do not (Radvansky and Zacks, 1991; Radvansky et al., 1998). This benefit may be

driven by recent activation of a sentence that could prime retrieval of other episodes

in the same event. One study that supports incidental retrieval of within-event items

used a subset of a previously studied group of words as a target for an unrelated

memory task, and showed that a lure from the same group was more likely to be

falsely recognized than a lure from a different group (Hoskin et al., 2019). While

this demonstrates that it can come at a cost at times, having segmented structure in

memory can keep related information together, facilitating later retrieval.

Memory studies have also directly probed whether people are more likely to re-

trieve items that belong to the same event together. Analogous to the suppression of

previous event information observed during ongoing processing, retrieving events from

episodic memory that have a boundary between them can be more challenging than

retrieving information from the same event. Zwaan (1996) used a cued recognition

paradigm where a sentence that was followed by a time shift signal phrase served as

a cue to facilitate recognition speed of the next target sentence. Event segmentation

was manipulated by shift magnitudes (“a day/hour/moment later”). Consistent with
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the prediction that event segmentation enhances retrieval of items in the same event

and diminishes retrieval of items in a different event, people were slower to recognize

the target sentence after a larger shift. Using a similar time shift signal (“an hour

later” vs “a moment later”), Ezzyat and Davachi (2011) asked people to recall what

came after a cued sentence. In the large shift condition, recall performance was lower

when a pre-shift sentence was used as a cue as compared with when a post-shift sen-

tence served as a cue. However, a difference was not observed when the time shift

was small. Complimenting the online predictability effects discussed in the previous

section, these results suggest a mechanism by which retrieving an episode from long-

term memory can cue the next episodes that occurred within the same event, guiding

predictions of what will happen next.

Relatedly, studies that probe the temporal order of items that either belong to the

same event or different events provide additional evidence for facilitated within-event

retrieval. In DuBrow and Davachi (2013, 2014), subjects judged the relative recency

of two items within or across boundaries that were created by switching stimulus cat-

egories and their associated tasks (e.g., male/female judgment for the face category;

bigger/smaller than shoebox judgment for the object category). Recency judgments

between two studied items were less accurate when the intervening sequence con-

tained boundaries. To examine whether this performance drop was due to retrieval

failure for the intervening items, recognition memory for those intervening items was

tested immediately after (i.e., primed by) the order judgments. Consistent with the

aforementioned studies that tested cued recall and cued recognition, when people

made a correct order judgment, the speed at which they recognized the intervening

items was faster when there was no event boundary, suggesting greater within-event

access to item sequences. The within-event versus across-events difference in tempo-

ral order memory has also been shown in more recent studies that used perceptual

boundaries (background color changes, Heusser et al., 2018) and spatial boundaries
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(room changes, Horner et al., 2016; turns in navigation, Brunec et al., 2018). These

experiments show that temporal information is better preserved within an event than

across events, potentially via better reconstruction of a study sequence.

Another way to test how individuals reconstruct sequences from memory is to

examine transition probabilities in verbal recall. In one study, people were asked to

recall items in the same order that they were studied. Accurate serial transitions

between recalled items were found to be more common within than across category

boundaries, providing additional support for the better reconstruction of a study

sequence within an event (DuBrow and Davachi, 2016). Similarly, in unconstrained

free recall studies, event-level clustering (Polyn et al., 2009) and a tendency towards

more forward serial transitions within events compared to across boundaries (Heusser

et al., 2018) have been observed. Since recall order was unconstrained, these results

suggest that event-level organization may be a fundamental property of recall. That

is, event structure may provide a scaffold for spontaneously recalling past experiences

in their sequential order.

3.2.3 Adaptive decision making

Interestingly, this sequential recall closely resembles sequential reactivation in the

hippocampus (Foster and Wilson, 2007), in which event structure has been observed

while an experience unfolds. In particular, Gupta and colleagues (2012) showed that

while rats navigate a maze, hippocampal activation reflects the segment of the envi-

ronment that is currently being navigated (i.e., the event model), disproportionately

representing paths ahead within the segment in the beginning and paths behind within

the segment as they approach its end. This activation of currently relevant informa-

tion has implications for decision making, where generalizing relevant past experiences

can guide decisions for unknown possible futures. Indeed, an extensive literature on

rodent navigation and decision making has shown that hippocampal activation of
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forward trajectories occurs preceding decisions about where to go next (Pfeiffer and

Foster, 2013; Johnson and Redish, 2007; for reviews, see Ólafsdóttir et al., 2018 and

Pezzulo et al., 2014). Similar neural reinstatement effects, both during rest (Schuck

and Niv, 2019; Momennejad et al., 2018) and prospectively at decision times (Doll

et al., 2015), have also been shown to influence subsequent decision-making in hu-

mans.

Although traditionally decision making has been viewed as relying on a representa-

tion of incrementally-learned value that is independent of episodic memory (Knowlton

et al. 1996; cf. Poldrack et al. 2001), replay of past experiences at decision points sug-

gests the potential contribution of episodic memories. Indeed, a growing literature has

shown that adaptive decisions are influenced by episodic memory retrieval (Shohamy

and Daw, 2015; Shadlen and Shohamy, 2016). For example, people are more likely to

choose previously encountered items that were associated with high values than low

values only when they remember such associations (Murty et al., 2016), and they may

rely more on individual episodes over summary values for decision making following

memory retrieval (Duncan et al., 2019). Linking the role of episodic memory and

event segmentation, Bornstein and Norman (2017) showed that, when reminded of

an image experienced in a previous event, people’s decisions are biased by the sum-

mary of their experiences in that event, not just the specific experience associated

with the reminded image. This result suggests that event segmentation can support

the interaction between episodic memory and decision making, by guiding retrieval

of past decision outcomes from previous events that most closely match the current

situation.

Together, these studies suggest that organizing information into event structures

can have important benefits for online processing and retrieval of relevant information

that, in turn, can help guide adaptive decision making. Given the widespread effects

of segmentation, it is crucial to appropriately segment our everyday experiences into
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events in a way that promotes later utilization. One of the major challenges in doing

so is the inherent ambiguity of when an event starts and ends. Many of the studies

reviewed showing the benefits for memory and decision making of event segmentation

cannot address this challenge, as they imposed stark changes in spatial contexts,

perceptual features, task sets, and so forth to manipulate segmentation (see Table

3.1). Experiments that use narratives to induce event boundaries are more ambiguous

because there can be multiple changes along different dimensions (cf. event indexing

theory; Zwaan et al., 1995a), but they still often contain signals for boundaries such as

time shifts or scene changes. When event boundaries are not overtly signaled, how do

we segment events? Below we review theories of event segmentation under ambiguity.

We focus on the traditional prediction error account and our proposed framework that

identifies boundaries based on changes in inference rather than extrinsic change.

3.3 Potential Mechanisms of event segmentation

3.3.1 Prediction error

The dominant account of event segmentation is that “prediction error”, the difference

between one’s experience-based expectation and the currently observed outcome, sig-

nals the end of events and induces event boundaries (Zacks et al., 2007). To test how

explicit predictions are related to event segmentation, Zacks and colleagues (2011)

showed people movie clips of everyday activities, and occasionally paused the clip to

ask them to predict what would happen in 5 seconds. When there was an interven-

ing event boundary, as identified by independent observers, the prediction accuracy

dropped, and there was greater activation in the substantia nigra, a region tradition-

ally associated with dopaminergic responses to reward prediction errors. In line with

this idea, a neural network model that implements perceptual prediction error as a

gating signal to update event representations can identify simulated event boundaries
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(Reynolds et al., 2007). However, there are major challenges regarding the precise

relationship between prediction errors and event segmentation.

First, prediction errors may not always signal meaningful changes in event percep-

tion, particularly when the environment is uncertain (O’Reilly, 2013). That is, while

it can be ideal to draw boundaries in order to discount the past when the underly-

ing statistics of the world change abruptly, disregarding the broader environmental

context would be suboptimal when the environment is noisy, as frequent high pre-

diction errors would lead to over-segmentation. Instead, when prediction errors are

frequent, boundaries should only be drawn following unexpected deviations (Dayan

and Yu, 2006), as expected deviations are not reflective of meaningful changes in the

underlying event structure. This can be accomplished by scaling down the degree

to which prediction error updates expectations (i.e., the learning rate) for these ex-

pected deviations, such that the overall update in value would be small for expected

deviations. Empirically, boundary-related memory effects that occur when changes

are infrequent are absent when changes occur frequently (Siefke et al., 2019). This

idea is further reflected in studies where people’s learning rates dynamically adjust to

the uncertainty of the environment, reducing the effects of prediction errors in noisy

environments while enhancing them in stable environments, in which a relatively high

prediction error indicates meaningful change (Pearce and Hall, 1980; Behrens et al.,

2007; Nassar et al., 2010, 2012). This suggests that the magnitude of the update (i.e.,

prediction error × learning rate) may be a better indicator of event boundaries than

prediction error alone, given the non-stationary nature of everyday experiences.

Second, prediction errors may not be necessary to create an event boundary.

For example, in narrative reading, when an event shift is foreshadowed, readers still

respond more slowly to the pre-shift memory probes even though they no longer

experience surprise nor slow their reading (Pettijohn and Radvansky, 2016). This

suggests that even expected change, when sufficiently meaningful, can drive event
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segmentation in memory. One demonstration of this is statistical learning (Saffran

et al., 1996). In one study, Schapiro and colleagues (2013) found that people could

identify boundaries in a series of stimuli based on their learned temporal transition

statistics without ever experiencing prediction errors. In their experiments, most

stimuli were exclusively followed by other stimuli within the same group, while some

stimuli served as entry/exit points where a transition across groups was available. No-

tably, the individual transition probability from a group’s exit point to a neighboring

group’s entry point was equal to the probability of each within-group transition, and

thereby did not induce prediction errors (see also Richmond and Zacks, 2017, for dis-

cussion). After learning, participants successfully indicated the transitions between

groups (i.e., the entry points) in the sequence of stimuli. This highlights the im-

portance of segmenting experience even at predictable transitions between events.

Indeed, predictable transitions may enhance segmentation effects by shifting atten-

tional resources to boundaries .

As reviewed here, prediction error defined as the difference between one’s expec-

tation and the observed outcome may not be sufficient nor necessary for segmenting

events. This calls for an alternative account of the mechanisms underlying event

segmentation.

3.3.2 Inference of event types

No two events can be exactly the same even when they are from the same category,

as at least one dimension, time, is always unique. For example, when items occur

in two different instances of the same category (i.e., ABA structure) there is an

intervening change in event type, and the two visits to A are idiosynctratic in terms

of time. When comparing this scenario to a single continuous instance of an event

(AAA structure), segmentation effects are observed despite comparing two items of

the same type (DuBrow and Davachi, 2013, 2014). Radvansky et al. (2011) used a
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more naturalistic boundary manipulation with the same structure by having people

walk around a series of rooms and then testing their memory. When returning to the

same room after having been to a different room (ABA), their memory was worse

than when they never left the room at all (AAA). Thus, staying in the same event

instance (no event boundaries) has a memory advantage over merely having shared

context (room A). This suggests that boundaries affect memory above-and-beyond

the effects of changing context.

Time-sensitive and idiosyncratic event instances do interact with the structure

of knowledge formed by multiple encounters with similar situations. In Radvansky

et al. (2011), people also performed better when they returned to the same room

(ABA) compared to when they went to another room (ABC). Thus, the event type

that represents a class of experiences (called event schemata in Event Segmentation

Theory, Zacks et al., 2007) is a key factor in understanding segmentation (for re-

views, see Zacks et al., 2007 and Radvansky and Zacks, 2011). For example, in the

statistical learning study described in the previous section, stimuli that tended to

be experienced in close temporal proximity became discrete clusters (event types) in

memory (Schapiro et al., 2013). When revisited, these clusters could be recognized

even though different paths were experienced across learning instances due to the

probabilistic structure. These studies raise the possibility that event types can be

a useful basis for promoting generalization of learning within type, allowing us to

extrapolate our previous experiences in an event to a new instance.

Event types can also stabilize event segmentation hierarchically such that, in

parsing events, low-level perceptual changes that are not relevant to the event type

carry less weight than changes along dimensions that are pertinent to the event type.

In a neural network application of this idea, the REPRISE model stabilizes low-

level perceptual and motor information to be consistent with the current event type

(called a “context vector”) when executing event-level control (Butz et al., 2019).
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Empirically, hierarchical structures in event segmentation are consistently observed

in behavioral (Zacks et al., 2001b) and brain imaging studies (Hasson et al., 2008;

Lerner et al., 2011; Baldassano et al., 2017), supporting the idea that event types are

utilized in segmenting experience.

It is important to note that these event types do not exist in isolation and are

continuously created and updated based on event instances. How do we dynamically

update and create new event types? To inform this, we turn to category learning,

where a similar set of challenges exists. Categories, like event types, help facili-

tate understanding of their individual members through generalization of category

properties. However, as in event perception, we do not know how many categories

exist in the world, and we need to update the existing categories’ summary statistics

based on their members, while being open to creating a completely new category.

The rational model of categorization addresses these challenges by proposing that a

stimulus is more likely to be a member of a prolific category with many members,

and yet a new category can be inferred at any point when the existing categories

are not a good match (Anderson, 1991; also called the Chinese Restaurant Process

(CRP), Aldous, 1985). In discovering clusters such as categories from observations,

this rich-gets-richer process reins in the tendency to create too many clusters and thus

keeps the model simple while still allowing for new cluster formation. The adaptable

nature of the model aids predictions within categories by extrapolating features and

functions within the categories, whether or not an explicit label was given to a new

category (Anderson, 1991). Thanks to its flexibility, this model can be generalized to

two popular models of categorization where instances of a category can either 1) be

lumped together such that one summary value can account for the category (proto-

type model; Reed, 1972) or 2) be perfectly preserved to be later compared with other

instances (exemplar model; Medin and Schaffer, 1978; Nosofsky, 1986), by varying a

single parameter that governs creation of a new category (Sanborn et al., 2010). The
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rational model provides a unified framework that successfully predicts categorization

behavior in humans across domains (Anderson, 1991; Sanborn et al., 2010).

The model is particularly useful in situations where there is a latent variable

(i.e., a cluster of experiences such as a category or event type) that needs to be

discovered to properly generalize across experiences. For example, the model can

explain how people effectively generalize between tasks by forming clusters of task

sets (Collins and Frank, 2013). In reinforcement learning, the model can explain how

the latent variable can guide reward predictions, and how a new latent variable can

be inferred when existing ones do not predict the outcome (Gershman et al., 2010).

This model performs better than classic reinforcement learning models in explaining

how compound reward cues are flexibly represented (Courville et al., 2005; Soto et al.,

2014) and why conditioned responses come back after extinction (Gershman et al.,

2010). In event perception, the latent variable would correspond to event types. That

is, we can identify an event type from a time-specific event instance, updating the

type based on the instance, or create a new event type when an instance does not fit

with any of the existing event types’ properties. The latent variable model would also

predict that, due to its rich-gets-richer property, we are more likely to infer an event

type that we encounter often (i.e., high prior probability) when it sufficiently explains

the current episode (i.e., high likelihood), rather than inferring a new event type de

novo. In this framework, event segmentation is likely to occur when the distribution

over inferred event types diverges from the distribution at the previous time point.

Event segmentation based on distributional changes can explain how experiences are

clustered into units even when there is no prediction error between experiences, as in

statistical learning-based clustering described above.

A demonstration of this inference process is depicted in Figure 3.1. As we watch

a movie, we learn that the character Julie recently lost her husband Patrice, a famous

composer, in an accident. Later, Julie discovers that Patrice’s assistant Olivier is
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Figure 3.1: An example of inference-based segmentation
(a) scenes from Krzysztof Kieslowski’s movie Three colors: Blue. In this movie,
Julie, a recent widow of a famous composer, tries to finish her husband’s score and tracks
down his mistress. (b) inference process of event types left: Prior probability of each
event type reflects the popularity of each event type (indicated by number of boxes
constituting the bars). Note that there is a small chance of creating a new event type that
was never observed yet. Center: The likelihood of event type “mistress conversation” is
higher than the likelihood of “unfinished score” given the current observation (low
attention on the piano). Right: Combining the prior distribution and likelihoods gives the
current posterior probability distribution over event types. Here, posterior probability is
higher for the “mistress conversation” than the “unfinished score” event type, although
the prior was higher for “unfinished score”. (c) changes in posterior probabilities The
posterior distribution over event types changes as observations change. Note that changes
in the location (denoted by the background color) are not always predictive of posterior
distribution changes. (d) probability of event segmentation Events are more likely to
be segmented when changes in the probability distribution from the previous time point
are large. Again, event segmentation (black dotted lines) and location change (grey dotted
lines) do not always correspond.
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trying to complete one of Patrice’s unfinished scores and that Patrice had a mistress.

When we see Julie approaching Olivier (Figure 3.1.a-1), we do not know whether

she will confront him about the score or the mistress, and the probabilities of the

two event types are uniformly distributed (Figure 3.1.c leftmost panel). When Julie

and Olivier have a conversation about the unfinished score (Figure 3.1.a-2) and then

the movie jumps to Olivier playing the song (Figure 3.1.a-3), the same “unfinished

score” event type is active despite the perceptual input and spatial context having

changed (denoted by the change in background color in Figure 3.1.c). Note that the

probability of event segmentation is low despite the location change (denoted by a

grey dotted line in Figure 3.1.c and d). Conversely, event segmentation can happen

without large perceptual changes (denoted by black dotted lines in Figure 3.1.c and

d). In scene 4, the prior for “unfinished score” is higher than “mistress conversation”

because of the greater number of previous instances of the “unfinished score” event

type (denoted by the number of boxes in (Figure 3.1.b left) and the model’s property

that favors prolific event types. However, despite occurring at the same location,

as Julie diverts her attention away from the piano to ask Olivier whether he knew

about the mistress, the likelihood of the “unfinished score” event decreases while the

likelihood of the “mistress conversation” increases (Figure 3.1.b center). Thus, the

updated posterior probability shifts towards “mistress conversation” (Figure 3.1.b

right). In the proposed framework, the divergence between the updated probability

distribution and that of the previous time point increases the probability of event

segmentation (Figure 3.1.d).

Inference-based segmentation can be useful when there is high uncertainty about

the upcoming event type, as it allows an event to end without introducing a new

event, thereby protecting the event that just ended from further interference. In the

example, when Olivier asks what Julie wants to do about the mistress (Figure 3.1.a-

5), the screen fades out (Figure 3.1.a-6). With no visual input, we can still make
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predictions about what will happen in the next scene. It turns out that the next

scene is the continuation of scene 5 where Julie answers Olivier that she wants to

meet the mistress (Figure 3.1.a-7). Note, the probability distribution at scene 7 is

similar to the one in scene 5, but event segmentation is still likely to occur between

scenes 5 and 7 because the prediction at scene 6 became highly uncertain and thus

the probability distributions diverged.

One key aspect of the framework is that the inference process makes use of previ-

ously created event types. For example, after meeting the mistress, we again see Julie

visiting Olivier (Figure 3.1.a-9), and are again unsure about what the topic of their

conversation will be. Thus, the probabilities of the two event types are uniformly

distributed. When we see that they start working on Patrice’s score together (Figure

3.1.a-10), instead of creating a whole new event type, we can reactivate the “unfin-

ished score” event type and update the event with new information. Again, notice

that the probability distributions for scenes 3 and 10 are similar, but segmentation

has occurred between those two event instances. Overall, this example illustrates

the inference process and three key features of the model: 1) event segmentation oc-

curs when the inferred event rather than observed features change, 2) common event

types are more likely to be inferred, and 3) previous event types can be revisited and

updated, enabling generalization.

3.3.3 Support for the latent variable account

Beyond online inference during event perception, the latent variable account also

makes specific predictions about memory retrieval related to its cluster organization

of individual episodes. As an analogy to memory retrieval, imagine looking back at

some photo albums of a recent trip to Hawaii during which you went surfing many

times and hiking just once (Fig. 2). You may look at the two photo albums “Surfing

in Hawaii” and “Hiking in Hawaii” and summarize your Hawaii trip as “surfing and
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hiking.” That is, summarizing experiences by sampling at the cluster (photo album)

level leads to an over-representation of rare episodes relative to how often they were

actually experienced. In this example, cluster-level sampling will bias the memory

towards equal weighting of surfing and hiking. By contrast, episodic sampling of the

individual images will accurately represent their relative frequency and reflect that

surfing was the main activity.

Relying on latent structure for summarizing experiences can also explain system-

atic memory distortions towards gist–the summary statistics of the latent variable.

For instance, in a study where the organizing structure was imposed by item cate-

gories (e.g., lamp), color memory for individual members of a category was distorted

toward the center of the color distribution of its category (Brady et al., 2018). At its

extreme, the latent variable can even create false memories such that words that are

not a part of the studied list yet exist at the conceptual/semantic center of the list are

falsely recalled as one of the studied items (Deese, 1959; Roediger and McDermott,

1995). These types of gist biases can be useful in summarizing experiences, albeit at

the cost of accuracy for each individual episode.

While the latent variable model can summarize experiences at the cluster level,

this does not preclude sampling individual episodes during retrieval. Indeed, episodic

sampling from clusters makes additional predictions for memory biases. Returning to

the photo album analogy, imagine choosing a few photos from each photo album. Any

given photo from an album with fewer photos would be more likely to be chosen. In

a similar sense, when searching memory for past experiences by going through latent

variables (events) and sampling from each of them (cluster-level sampling; Figure

3.2 top), the episodes that have fewer companions in a cluster are more likely to be

sampled, and thus are more likely to be retrieved. This idea is consistent with work

by Alves and colleagues (2015) where people were found to be better at recognizing

words that have fewer close conceptual neighbors in the same studied list. Sampling
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Figure 3.2: Schematic for cluster-level and item-level sampling
As an analogy to memory retrieval, imagine looking back at some photo albums of a
recent trip to Hawaii. If you summarize the trip, you may look at a few photos from each
album (cluster-level sampling; top dashed arrow). In this case, photos from a thinner
album (e.g., “Hiking”) would be more likely to be picked than ones from a thicker album
(e.g., “Surfing”), gaining prominence in the overall summary. On the other hand, you may
want to retrieve detailed experiences, looking at each photo (item-level sampling; bottom
dotted arrows). In this case, a photo will be more likely to be followed by another photo
from the same album (e.g., “Surfing”) than a different album (e.g., “Hiking”).
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in this way can also account for memory biases like the von Restorff effect in which

distinctive items are better remembered (von Restorff, 1933; Hunt, 1995) and the

cue overload effect in which memory is better for items whose retrieval cue has fewer

associated items (Watkins and Watkins, 1976).

What determines how many episodes each cluster contains when the clusters need

to be dynamically inferred? One answer is extreme events that deviate from the av-

erage of previously existing clusters in terms of the relevant feature dimensions (for

example, a very loud noise that is not commonly experienced). During inference,

the latent variable model is more likely to create an entirely new cluster for an ex-

treme event. Since any given episode in a small cluster is more likely to be sampled,

cluster-level sampling can account for memory and decision biases towards extreme

episodes. For example, when people directly experience risky outcomes, they become

risk seeking for gains and risk averse for losses (Hertwig et al., 2004; Ludvig and

Spetch, 2011). These decision biases are mediated by a memory bias in which ex-

treme outcomes are remembered better and judged to have occurred more frequently

(Madan et al., 2014, 2017). Similarly, episodes are better remembered when they

elicit high reward prediction errors, regardless of their valence (Rouhani et al., 2018).

Recent work by Lieder and colleagues (2014; 2018) also demonstrates that extreme

events are more likely to be sampled from memory, although they propose a different

sampling mechanism.

When trying to search for specific episodes, it would be useful to skim over a

range of events (e.g., skimming the cover of photo albums) and go deeper only once

we find the relevant event (e.g., open a photo album and look through the album).

Supporting this idea, neural replay patterns measured with magnetoencephalography

(MEG) have been shown to skip between events, reinstating only the entry points

of events in sequence (Michelmann et al., 2019). When retrieval continues (e.g.,

choosing photos one after another), however, episodic samples would be more likely
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to transition within events than across events (i.e., item-level sampling; Figure 3.2

bottom). That is, when we are motivated to retrieve details of episodic memories,

rather than providing a quick summary of the entire experiences, it is easier to hold

onto one album and to go through individual photos within an album than going

back and forth between albums. This idea is supported by empirical data that show

transitions within events are more likely than across events in free recall (Heusser

et al., 2018) and serial recall (DuBrow and Davachi, 2016). The latent variable

model would explain such recall behavior by modulating recall probability according

to the similarity between posterior distributions over latent variables. Linking the

latent variable model to episodic memory, Socher and colleagues (2009) showed that a

variant of the model can predict within-event transitions in human recall behavior. In

their variant, the probability of recalling a specific word was determined based on the

mixture of the latent topic structure (semantic context) and the temporal adjacency

(episodic context) active at a given time. This model could predict recall transitions

better than models with purely semantic or episodic context, suggesting that both

conceptual and temporal structures are critical features of clusters in memory.

3.4 Future directions

Theories of episodic memory organization provide additional insight into how tem-

poral information may play a role in structuring events. For instance, the Temporal

Context Model (Howard and Kahana, 2002) and the Context Maintenance and Re-

trieval model (Polyn et al., 2009) have emphasized how storing a separate temporal

representation may provide a scaffold for organizing memories. While these models

have been highly successful in predicting memory recall, the way in which time in-

teracts with ongoing event encoding and segmentation needs further investigation.

Rather than having to store an independent representation of temporal information
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(Socher et al., 2009), a nonparametric Bayesian model in which time is incorporated

into the process of inferring latent variables could be more parsimonious. That is,

the model could be sensitive to the recency of events without having to separately

track time, as the probability of a previous event would decay over time since it was

last active. In addition, by assuming that recently encountered event types have a

higher chance of producing the current observation, the model can provide temporal

stability in the inference process. One candidate model is a latent variable model

that utilizes distance in the prior probability of events, called the distance-dependent

Chinese Restaurant Process (ddCRP; Blei and Frazier, 2011). Instead of relying on

cluster popularities as the standard rational model of categorization and Chinese

Restaurant Process do, the ddCRP prior can assign probabilities according to the

temporal distance between previous and current observations. Similarly, a simpler

variant of this model in which a currently active cluster gets an extra boost, called

a sticky Chinese Restaurant Process (Fox et al., 2011), has been used to account

for stable event perception (Gershman et al., 2014; Franklin et al., 2019). Another

intriguing direction for event segmentation research is incorporating time into the

ddCRP hierarchically (cf. Ghosh et al., 2011) for event types to perform a stabilizing

function that can improve generalization across instances.

The exact mechanisms by which event types are inferred and how the inferred

event type interacts with event segmentation need further exploration. One possibility

is that events are segmented when there is a change in the distribution over inferred

event types (Figure 3.1). This would explain the event segmentation effects observed

when boundaries are imposed by time shift signals (e.g., “a while later”) before the

next event begins. That is, such phrases or other signals that the previous event

has ended and is no longer relevant (e.g., the fade-to-black sixth scene in Figure

3.1.a) would increase uncertainty over event types, thereby changing the probability

distribution and inducing an event boundary. A conceptual parallel can be found
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in a neural network model called the Connectionist Temporal Classification model

(Graves et al., 2006). In this model, boundaries can be created at moments of high

uncertainty (e.g., silence) where the likelihoods of any existing labels (event types)

are low. This approach of treating high uncertainty as a non-labeled state increases

flexibility in terms of how long an event lasts by allowing an event to end before the

next one begins. These models differ from Event Segmentation Theory, which assumes

that a new event begins as soon as the previous event ends (Kurby and Zacks, 2008).

Experiments that test specific hypotheses (for example, event boundaries will occur at

the offset of an event instance as well as at the onset) based on the proposed framework

would provide further insight as to how events are segmented from experiences, being

guided by, and guiding, predictions.

There are remaining questions regarding how transitions between event types are

learned and represented. In its current form, the latent variable framework does not

directly address how transition probabilities would be incorporated in event segmen-

tation. Neural network approaches have begun to investigate how transition models

between low-level event types (behavioral primitives) can be learned such that the

history of previous event transitions would inform the subsequent prediction at an

event boundary (Gumbsch et al., 2019). Another important question pertains to the

hierarchical structure of event types. That is, when one event type is repeatedly fol-

lowed by another, would those two event types continue to be recognized as distinct

or would they ultimately be merged into a single, more complex event type? In either

case, the mechanisms by which transition probabilities (within and across events) are

represented and utilized in event cognition will need further examination.
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3.5 Conclusion

A large body of work now suggests that event segmentation is a fundamental process

that emerges naturally and is remarkably consistent across individuals. Research on

how segmentation influences memory demonstrates its adaptive utility in increasing

access to relevant information and reducing interference. In order to better under-

stand the cognitive operations that support event segmentation, we must examine

patterns of behavior when the answer is not clear (i.e., during ambiguous transitions)

and model the internal processes that infer change based on ambiguous input. In

particular, we propose that latent variable inference provides a useful framework for

characterizing how we identify when an event is no longer relevant and select among

alternatives. This framework accounts for existing data on the consequences of event

segmentation for online processing, memory, and decision making, and generates new

predictions that can guide future research and model development.

In the next chapter, I test the prediction of cluster-level sampling discussed in this

chapter, by modeling the inference of a latent variable based on a set of observations.

I investigate how cluster-level sampling can be the basis of summarizing experiences

and lead to biases in the summary.
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Chapter 4

Emergence of evaluation biases

from latent cause inference

The contents of this chapter were published in Shin, Y., & Niv, Y. (2020, April 10).

Biased evaluations emerge from inferring hidden causes.
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4.1 Introduction

In impression formation, negative information tends to have a stronger impact than

positive information. Thus, the overall impression formed after positive and negative

information is more negative than the algebraic sum of valences of individual expe-

riences (Rozin and Royzman, 2001). This phenomenon, called negativity bias, has

been extensively demonstrated.

One potential source of the asymmetry in impression formation is the low fre-

quency of negative events. As they are rare, negative events are more surprising and

grab more attention. Supporting this idea, participants spend more time looking

at negative descriptions of a target person than they do positive descriptions, and

weighting valences of descriptions by looking time predicts the resulting evaluation

bias (Fiske, 1980). Indeed, reinforcement-learning models suggest that when tracking

a cue’s value, surprising outcomes update the value more strongly, resulting in greater

contributions of surprising—in this case, negative—events to the overall evaluation

(Pearce and Hall, 1980).

Diagnosticity of information is another important aspect in biases. For instance,

an intelligent person can occasionally behave unintelligently, but the opposite is less

likely. As intelligent behaviors are more diagnostic of intelligence than unintelligent

behaviors are, these diagnostic behaviors carry more weight and dominate evaluation

even when participants observe evidence of unintelligence more frequently (Rozin and

Royzman, 2001; Mende-Siedlecki et al., 2013). In social settings, in contrast, positive

behaviors are often the default (Alves et al., 2017a), making negative events more

diagnostic than positive ones. Therefore, negative information could weigh heavily in

such situations. Work on conceptual similarities is also in line with this idea: pairwise

similarity between negative words is judged to be lower than between positive words,

meaning that the distribution of negative concepts is sparser than positive concepts’

distribution (Unkelbach et al., 2008; Alves et al., 2015).
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If post-hoc impression judgments could rely on perfect encoding and retrieval of

memory, evaluations would accurately reflect experiences without distortions. How-

ever, we cannot remember every single encounter with every person we ever meet.

Therefore, we might lump together different similar experiences, clustering them in

memory for future use. The high variance in negative concepts could lead to less

clustering of those concepts in memory, leaving each individual observation more di-

agnostic of the valence of its cluster. Positive concepts, on the other hand, may form

a large cluster of positivity where each individual piece of information is less diag-

nostic of the overall “gist” of the cluster. Supporting the idea that positive-valence

concepts are clustered together more than are negative-valence concepts, processing

of a positive word is faster if it follows another positive word, whereas this is not the

case for negative words (Unkelbach et al., 2008). This could explain how the sparsity

of negative events, given by rarity and variance, seems to contribute to the negativity

bias (Alves et al., 2018).

“Latent causes” – hidden causal structures that are assumed to generate a set of

observable events, can be a meaningful basis for summarizing experiences (Courville

et al., 2005; Gershman et al., 2010; Gershman and Niv, 2010). For instance, when

we believe that a single underlying reason (e.g., a person wanting a future favor from

us) is causing ten separate events that we observe (e.g., friendly encounters with the

person), we can keep one summary of those ten events instead of trying to remember

each one of them. However, if we believe that two separate underlying causes (e.g.,

wanting a future favor from us and being socially anxious) generated five events each

(e.g., friendly encounters with the person and socially inadequate behaviors of the

person), we might keep two summaries. We may also care about generalizing across

people as a group, for example, for forming expectations about the norms of people

in different countries we may travel to. Relying on latent causes is normative when

generalizing past experiences to a new situation, as we can utilize what we learned
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from the past events that are caused by the latent cause we expect is active now, but

not the ones caused by other causes.

This approach, although rational, can also be a source of biases because we do not

know the true latent cause of each event. For example, we may infer distinctive latent

causes from seemingly different events even if, in truth, the events share one cause.

For instance, the sparsity of negative events may lead to inference of many distinctive

latent causes, while positive events may be attributed to a small number of causes

(Figure 4.1A). If we then make our overall impression at the level of these latent

causes—for instance by averaging over the valence of all the causes associated with

the person or group of people we are forming an impression about—the estimation

will be biased toward the sparse area where there are a larger number of inferred latent

causes. Here, we hypothesize that the negativity bias emerges from the combination of

normative segmentation of information into causes based on similarity and incorrectly

weighted averaging over latent causes.

To test this hypothesis, we manipulated the sparsity of event distributions such

that either the below-average values or above-average values were sparser than the

other (Figure 4.1B), and asked human participants to observe a sequence of events

drawn from either type of the distributions, described as donations (Experiment 1A,

Experiment 1B, Experiment 2A), sales (Experiment 2B), or rewards (Experiment 2C).

We then asked them to estimate the average value of the observed events, and com-

pared estimations between sparsity conditions, which all had the same true average.

If biases arise from inferring underlying causes such as intentions behind behaviors,

we would expect that the estimated average of a sequence consisting of sparse below-

average events would be lower than the estimated average of a sparse above-average

event sequence.
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Figure 4.1: (A) Hypothetical latent structure of positive and negative events.
Events (dots in middle) are generated from two true latent causes (dashed circles,
top). The observer infers these latent causes (solid circles, bottom) from the
observed events based on the similarity of events to each other. If events generated
from the “bad” latent cause are sparse, the observer may infer many distinctive
latent causes, each accounting only for a few observations. However, a small number
of causes may be inferred to account for the many, similar, good events. (B)
Experimental design for the sparse “stingy” donor and sparse “generous” donor
conditions. The donation amount was drawn from “stingy” (below the mean; light
gray) and “generous” (above the mean; dark gray) distributions. In the sparse
“stingy” condition, most donations were drawn from a homogeneous “generous”
distribution, while few, variable, donations were drawn from a “stingy” distribution.
The distribution was flipped in the sparse “generous” condition. In both conditions,
the true mean of donation amounts was 150. The subject observed the number of
coins donated on each trial, marking the amount on a slider bar to register it. (C)
Experimental Procedure. After subjects first guessed the general donation amount
(Guess 1), we showed them a symmetric training sequence (with no sparsity) to
adjust their expectations. They then guessed the general donation amount again
(Guess 2) and observed a test sequence according to their experimental condition.
After performing a filler task where they clicked a series of stimuli that appeared on
random locations, subjects estimated the overall donation amount for the test and
training sequences (post-observation estimations).

4.2 Experiment 1A

In Experiment 1A, we manipulated the sparsity of the distribution by variance and

rarity in two sparsity conditions: the sparse ”stingy” and the sparse ”generous” con-

ditions. We predicted that the estimation of average amount will be biased towards

the sparse area, such that the estimates when below-average donations are sparse (the

sparse ”stingy” condition) are below the estimates when above-average donations are
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sparse (the sparse ”generous” condition).

To test whether the biases can be predicted by an inference process, we com-

pared human participants’ biases to simulated estimate biases from an approximate

Bayesian inference model that inferred the latent structure using an infinite capacity

prior called Chinese Restaurant Process (CRP). CRP assigned each donor to a latent

cause, without predetermining the number of latent causes. That is, if a latent cause

already generated many donors, the prior probability that this popular cause would

generate the next donor is higher (“rich-gets-richer” property), and there is always

a small chance that a completely new latent cause would produce the next donor,

allowing flexibility in creating any number of causes. In combination with this prior

probability, each latent cause generates donors with similar donation amounts.

We predicted that, as more distinctive latent causes will be inferred from sparse

area, while a small number of causes may be inferred from dense area, events from the

sparse area will have higher impacts than events from the dense area in the average

estimate regardless of normalized valence (i.e., above- or below-average).

4.2.1 Methods

Participants

Eighty-three participants were recruited using Amazon Mechanical Turk (MTurk).

The Princeton University Institutional Review Board approved the experiment, and

we obtained informed consent online before participants began the task.

Participants were excluded when they did not pass the following criteria: (1) not

completing the task to the end, (2) failing to answer correctly on attentional checks,

(3) responding too slowly (> 60s) on any of the observation trials (4) not adjusting

general expectation properly after the training sequence and making a guess with a

value that they never observed during the training trials. This filtering was done to

ensure that participants attended to every observation, as our prediction is based on
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the particular set of values of the events. Seventy-six subjects passed the criteria and

were included in the following analyses (the sparse ”stingy” condition N = 34; the

sparse ”generous” condition N = 42).

Task and Procedure

Participants were told that they were visiting different schools for fundraiser events

and their job was to log the donation amounts. They observed two sequences of

40 donors making coin donations, where each donor made a single donation (Figure

4.1C). Each sequence was presented as a group of people who attended the same

college. The first sequence served as a training sequence to adjust participants’ prior

beliefs about donations. After reporting their general expectation for donation (Guess

1) on a scale of 1 to 300 coins, participants observed a training sequence presented as

donations from one college (“Brookview University”).

On each trial, coins were dropped on the screen with a prompt indicating the

donor and the amount (e.g., ”Bradley donated 148 coins.”). Participants logged the

amount either on a slider bar or in a text box next to the slider. The two response

methods were yoked such that moving the slider would show the number in the text

box and putting a number in the text box would move the slider to the number. The

trial could proceed only when the response exactly matched the prompted amount.

For the training sequence, donation amounts were equally distributed above and

below the mean donation (150 coins). To ensure that the training sequence indeed

adjusted participants’ prior beliefs close to the true mean, following this sequence we

again asked participants to report their general expectation for donations (Guess 2).

We then showed a test sequence for which the true mean was the same as the mean

of the training sequence, but the sparsity of below-mean and above-mean donors was

manipulated between subjects. The test sequence was presented as donations from

another college (“Cedar Springs University”). Participants in the sparse “stingy”
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condition (N = 34) observed a sequence where the below-mean (“stingy”) donor

distribution was sparser than the above-mean (“generous”) donor distribution. In this

condition, there were fewer stingy donors with higher variance in donation amount (10

“stingy” donors, M = 79.7, SD = 35.86) than generous donors (30 “generous” donors;

M = 173.73; SD = 10.28). The amounts donated by the fewer “stingy” donors were

more variable than the amounts donated by the many “generous” donors, to maintain

the overall mean (see Figure 4.1B). Participants in the sparse “generous” condition

(N = 42) observed a sequence whose donation values were flipped such that there

are fewer and more variable “generous” donors (10 “generous” donors M = 220.3,

SD = 35.86; 30 “stingy” donors, M = 126.26; SD = 10.28). After observing the test

sequence, participants performed a filler task where they completed a questionnaire

regarding their beliefs about human traits (Essentialism scale; Levy et al., 1998;

Bastian and Haslam, 2006). Following the filler task, a surprise test asked them to

estimate the average donation of the test sequence (post-observation estimate). This

was followed by a test on the average donation of the training sequence.

Latent-cause Inference model

Each event sample was sequentially introduced to a Bayesian inference model with

an infinite capacity Chinese Restaurant Process (CRP) prior (Aldous, 1985). In this

model, before observing any behavior, an observer has prior beliefs about the target

group’s stable latent causes:

p(Z = k) =



nk

K∑
k=1

nk + α

for k ≤ K

α
K∑
k=1

nk + α

for k > K

(Equation 4.1)

where Z is a variable denoting the latent cause of the next observation, k indexes
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latent causes that ranges from 1 to K, nk is the number of observations already

assigned to latent cause k, and the concentration parameter α determines the prior

tendency to assume new latent causes. This prior formalizes the idea that a prolific

latent cause is more likely to generate future events (Equation 4.1 top case), and

the total number of latent causes is unbounded and can grow with the number of

observations (Equation 4.1 bottom case).

After observing an event, the likelihood that the current event xt was generated

from latent cause k is estimated by marginalizing over all ”consequential regions

(Shepard, 1987)” h′ that encompass the past events {xi}k generated by cause k:

p(xt ∈ k|{xi}k) =
∑
h′∈H

p(xt ∈ k|{xi}k, h′)p(h′|{xi}k) (Equation 4.2)

The posterior probability p(h′|{xi}k) in the righthand side of Equation 4.2 is

calculated as:

p(h′|{xi}k) =
p({xi}k|h′)p(h′)∑
h∈H p({xi}k|h)p(h)

(Equation 4.3)

where the prior p(h′) follows an Erlang distribution (Shepard, 1987) with a size

prior set to the range of training sequence events, and the likelihood p({xi}k|h′) is

the product of the likelihood of events that are sampled from consequential region h.

Under the “strong sampling” (Tenenbaum and Griffiths, 2001) assumption that each

event is independently sampled from the cause,

p({xi}k|h′) =
∏

i:xi∈causek
p(xi|h′) (Equation 4.4)

Assuming uniform sampling from the consequential region, the likelihood that

event xi is sampled from consequential region h′ is inversely proportional to the width

of the region |h′| if the event is within the consequential region, and zero otherwise:
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p(xi|h′) =


1

|h′|
if xi ∈ h′

0 otherwise
(Equation 4.5)

This gives, for the likelihood of the current observation under latent cause k,

p(xt ∈ k|{xi}k) =

∑
h′:{xi}k,xt∈h′

1
|h′|nk

p(h′)∑
h:{xi}k,xt∈h

1
|h|nk

p(h)
(Equation 4.6)

The posterior probability of latent cause k is then updated using Bayes rule:

p(Z = k|xt) =
p(xt|Z = k)p(Z = k)

K∑
k′=1

p(xt|Z = k′)

(Equation 4.7)

Because the Bayesian inference process becomes intractable as the number of

observations grows, we approximated the process using a particle filter (Gershman

et al., 2010; Fearnhead, 2004) in which each particle maintains a single maximum

a posteriori estimate of the assignment of observations to latent causes, rather than

maintaining the full posterior distribution. We ran 8 simulations (four with α = 0.25

and four with alpha = 0.5) using 50 particles each. As the number of true clusters

was one for the training sequence and two for the test sequence, the concentration

parameters were chosen such that the prior would produce one (α = 0.25) or two

(alpha = 0.5) clusters after 40 trials.

After observing the sequence of donations and inferring the donors’ latent causes,

the model estimated the average donation by taking the mean of the average donation

of each latent cause weighted by the log-transformed number of donors that were

assigned to the cause, instead of the true mean of all the experienced donations. We

used the log-number of events rather than the true number to account for participants’

losing precision over counts as more events are experienced. This makes causes with

a smaller number of donors more impactful and causes with a larger number of events

59



less impactful than linear weights.

4.2.2 Results and Discussion
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Figure 4.2: (A) The average estimate shows a sparsity bias. A permutation test in
which condition labels were shuffled 2000 times (gray shaded) showed that the
observed difference between the normalized post-observation estimate in the sparse
“generous” and the “stingy” conditions in (black dot) was outside the null
distribution confidence interval (marked with horizontal lines within the violin plot).
(B) Comparison between simulation results and behavioral results. Each dot
represents the estimation bias predicted by a latent-cause model that experienced
the subject-specific sequence (x-axis) and the behavioral unnormalized
post-observation estimation bias (i.e., post-estimation minus the true mean) of that
subject (y-axis). Linear regression showed that estimate biases simulated by the
latent-cause inference model predicted the estimate biases observed in the
experiment (illustrated by the dashed line; see text). The inset shows the
post-observation estimation bias difference between the sparse “stingy” (orange) and
sparse “generous” (blue) conditions. Error bars indicate 95% confidence intervals.
**p < 0.01.

Effects of sparsity manipulation

We first investigated whether sparsity manipulates leads to biases in estimation. We

normalized the estimates at each stage by the given scale, such that biases could

range from -1 to 1. To account for individual differences in the prior beliefs, we
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normalized estimates by subtracting individual guesses prior to the test sequence

observation (Guess 2) from the post-observation estimate. The normalized estimate

was the main dependent variable of interest.

A two-tailed t-test on the normalized estimate difference between sparsity condi-

tions showed a significant difference (t(74) = −2.744, p = 0.008, Cohen’s d = −0.633,

95% CI = [−0.077,−0.012]), where the normalized estimate (i.e., the post-observation

estimate minus “Guess 2”) in the sparse “stingy” condition (M = −0.020) was sig-

nificantly below the sparse “generous” condition (M = 0.024). A permutation test

in which condition labels were shuffled 2000 times further showed that the observed

estimate difference between sparsity conditions was outside the null distribution con-

fidence interval (Figure 4.2A; estimated normalized difference = 0.044; 95% null dis-

tribution CI [−0.030, 0.033], p = 0.006).

Post-observation biases

We then tested if post-observation estimates show a sparsity bias (i.e., a positivity bias

in the sparse “generous” condition and vice versa) from the true mean in each sparsity

condition (4.2B inset). One-sample t-tests showed that there was a significant sparsity

bias in the sparse “generous” condition (M = 0.025; t(41) = 2.772, p = 0.008, Cohen’s

d = 0.428, 95% CI = [0.007, 0.044]), whereas we found no statistically significant effect

of negativity bias in the sparse “stingy”condition (M = −0.026; t(33) = −1.884,

p = 0.068, Cohen’s d = −0.323, 95% CI = [−0.055, 0.002]). These post-observation

estimate biases were significantly different across conditions (t(74) = −3.196, p =

0.002, Cohen’s d = −0.737, 95% CI = [−0.084,−0.019]), where the sparse “stingy”

condition was more negatively biased than the sparse “generous” condition.
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Pre-observation biases

To further ensure that the condition difference at the post-observation estimate was

attributable to the sequence manipulation, we tested for differences between con-

ditions in the initial, pre-observation guesses (Guess 2). As expected, there was

no evidence for a statistically significant difference in Guess 2 between conditions

(sparse “stingy” condition M = −0.006; sparse “generous” condition M = 0.001;

t(74) = −0.912, p = 0.365, Cohen’s d = −0.210, 95% CI = [−0.023, 0.009]).

Comparison with inference model prediction

The model showed the sparsity bias (mean condition difference= 0.12, t(74) = 43.622,

p < 0.001), as in the behavioral results. To take advantage of the property of Bayesian

approximation that can capture an order effect, whereby presentation order influences

groupings of the observed values (Austerweil and Griffiths, 2013), we provided the

donations values to the model in the same order that each participant observed them.

The model could thus make specific predictions about the estimation bias per each

individual participant. We tested whether the individual behavioral biases would

be predicted by the simulated biases. A linear regression analysis showed that the

estimate biases simulated by the latent-cause inference model predicted the estimate

biases behaviorally observed in the experiment (β = 0.028, p < 0.001, η2p = 0.145;

Figure 4.2B dashed line). This relationship was marginally significant even when

controlling for the sparsity condition (β = 0.080, p = 0.061, η2p = 0.047).

4.3 Experiment 1B

The core assumption of our latent-cause model is that the estimate of the average

donation is made by averaging over latent causes’ summary values. If participants

knew in advance that they would only need to keep track of one summary value—the
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mean of all observations, they might update a running average rather than grouping

donors into latent structures (Eyal et al., 2011). Therefore, in Experiment 1B (N

= 22), we interrupted the latent-cause inference process by asking participants to

report their average estimate on every trial (all other procedures were identical to

Experiment 1A). We predicted that, by requiring participants to keep track of the

overall mean, there would be no biases toward the sparse area.

4.3.1 Methods

Participants

Twenty-two participants (10 in the sparse “stingy” condition; 12 in the sparse “gen-

erous” condition) were recruited using Amazon Mechanical Turk (MTurk). Exclusion

criteria were identical to Experiment 1A.

Task and Procedure

We added an average estimation task upon each observation. After observing and

logging each donation, participants were asked to estimate the average thus far. All

other procedures and materials were identical to those used in Experiment 1A.
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4.3.2 Results and Discussion
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Figure 4.3: A) Recency biases in trial-by-trial estimates. Linear regression showed
a recency bias, where more recent observations contributed more strongly to the
current estimate (Orange lines: sparse “stingy” condition; blue lines: sparse
“generous” condition). (B) Recency bias and final post-observation average
estimate. The trial-by-trial estimate on the last trial (x-axis) was marginally
predictive of the post-observation (and post filler-task) estimate (y-axis). Each dot
represents one subject, grey shading: 95% confidence intervals.

Effects of sparsity manipulation

When subjects were required to estimate the mean donation after every donation, the

normalized estimates were no longer significantly different across conditions (sparse

“stingy” N = 10, M = 0.032; sparse “generous” N = 12, M = 0.012; t(20) = 0.984,

p = 0.337, Cohen’s d = 0.421, 95% CI = [−0.023, 0.063]), with the numerical differ-

ence in the direction opposite to the latent-cause model prediction. We tested if these

differences between the sparsity conditions interact with the tracking manipulation,

pooling data from Experiment 1A (end-of-sequence estimation) and Experiment 1B

(trial-by-trial estimation). A two-way ANOVA showed a significant interaction be-

tween the sparsity and tracking conditions (F (1, 94) = 4.056, p = 0.047, η2p = 0.04),

suggesting that the sparsity in the distribution induces biases only when the average

values are not tracked on a trial-by-trial basis.
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The relationship between trial-by-trial estimates and post-observation es-

timates

Further, we explored the relationship between observation, trial-by-trial estimates,

and final post-observation estimates in Experiment 1B. Linear regression showed that

more recent observations contributed more strongly to the current estimate (Figure

4.3A). The trial-by-trial estimate on the last trial was also marginally predictive of the

post-observation average estimate (Figure 4.3B; β = 5.362, p = 0.082, η2p = 0.158).

Together, the results suggest that the overall average estimate is derived via a different

strategy when there is a clear goal of tracking the average value, supporting our

hypothesis that latent-cause inference could be the mechanism by which sparse events

become overweighted in the overall estimate.

4.4 Experiment 2A

In Experiment 1, the sparsity manipulations induced biases in average estimation

when there is no explicit goal of tracking the average value. However, there are two

alternative explanations for the bias we observed. First, even if subjects did not infer

multiple causes for the sparse events but rather perfectly inferred that there are two

latent causes (“stingy” and “generous”), log-weighted average of the mean values of

these two causes would have resulted in an estimate that is biased toward the cause

that has fewer events. That is, the log-weighted means of the “stingy” and “gener-

ous” causes would show biases that are in line with the latent-cause inference model

prediction, as the fewer events in the sparse latent-cause gain more prominence. To

address this, in Experiment 2, we equated the frequency of events that are generated

by the “stingy” and “generous” causes and only manipulated the variance of the event

distributions (Figure 4.4A).

Second, Pearce and Hall (1980) suggest that more surprising events will update
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values of an entity to a greater degree. Because events in the sparse area elicits

higher prediction errors (surprises), they may have a greater impact on the learned

averages estimate (formally, these surprising events will have a higher learning rate).

To adjudicate between the latent-cause inference model and the Pearce-Hall dynamic-

learning-rate model, in Experiment 2, we chose a specific presentation order where

the distributions from which observed values are drawn quasi-alternated between the

dense and the sparse, and the end of sequence was predominantly populated with

values from the dense distribution (Figure 4.4A). Alternating between the dense and

the sparse distributions made the trials from both distributions similarly surprising

on average, eliciting similar levels of prediction error and therefore equating attention

to both distributions in the Pearce-Hall model. In addition, as values from the dense

distribution were observed just prior to average estimation, an error-driven learning

model would show a density bias due to the enhanced effect of recent experiences in

such models (Figure 4.5). Given these properties of the chosen presentation order,

the Pearce-Hall model with dynamic learning rates predicted a density bias, while

latent-cause inference still predicted a sparsity bias (Figure 4.4B).

To this end, Experiment 2A used fixed observation sequences that equated the

frequency of “stingy” and “generous” events, under a cover story that each observation

was how much a community member was willing to pay for a charity event.
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Figure 4.4: Sparsity biases when rarity was matched between the sparse and dense
causes. (A) Distributions and test sequence. In Experiment 2, the frequency of
“generous” (dark gray) and “stingy” (light gray) donations was matched (Left
panel). For each condition, we also chose a specific sequence such that “generous”
and “stingy” donations would elicit similar levels of prediction error (Right panel).
In this sequence, as the two distributions mostly alternated throughout the
sequence, making both donation amounts locally surprising. Finally, the sequence
ended with values drawn from the dense distribution (see text). (B) Model
predictions and empirical results. For the sequences in Experiment 2, the
Pearce-Hall model (left) and latent-cause model (right) predicted biases in opposite
directions. (C) The empirical results were in line with the latent-cause model
prediction, showing a sparsity bias. Error bars indicate 95% confidence intervals.
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Figure 4.5: Alternative model simulation results for Experiment 2. In addition to
a learning model that scales learning rates by surprise Pearce and Hall (1980), we
simulated a model that takes into account the observation’s variance, scaling
decision noise γ by the variance of the observation sequence (Navajas et al., 2017),
using the stimulus sequences from Experiment 2A. The stimulus sequences were
designed such that the values from the dense distribution were observed just prior
to average estimation, thereby leading a recency-weighted model to show a density
bias due to the enhanced effect of recent experiences, while leaving a latent-cause
inference model to show a sparsity bias. The simulation results showed a density
bias in both the sparse “stingy” (left) and “generous” (right) conditions for different
levels of recency-weights λ and decision noises γ and were opposite to our empirical
results that showed a sparsity bias.

4.4.1 Methods

Participants

The total of 626 participants were included in Experiment 2A (2A-1 N = 70, sparse

“stingy” N = 26, sparse “generous” N = 44; 2A-2 N = 67, sparse “stingy” N = 28,

sparse “generous”N = 39; 2A-3N = 260, sparse “stingy”N = 133, sparse “generous”

N = 127; 2A-4 N = 229, sparse “stingy” N = 118, sparse “generous” N = 127). For

Experiment 2A-3, sample size was chosen from power analysis based on Experiment

2A-1 and 2A-2. For Experiment 2A-4, we took a Bayesian approach and collected
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minimum of 50 usable participants in each condition and continued data collection

until we reached one of three criteria : (1) we obtain the Bayes Factor of 10 in favor of

H1 (normalized estimate in sparse “stingy” condition < normalized estimate in sparse

“generous” condition) and against H0 (no difference in normalized estimates between

sparsity conditions), (2) we obtain the Bayes Factor of 10 in favor of H0 and against

H1, or (3) we reached the maximum number of participants (500 usable participants

in each condition). This procedure was pre-registered.

Exclusion criteria were identical to Experiment 1A and Experiment 1B, except

that subjects who missed the 5-second response window for logging the amount were

excluded.

Task and Procedure

We used a different cover story to generalize our results. In Experiment 2A, partic-

ipants were told that they were selling coffee for charity events at community fairs

in different towns (“Lambtonville” and “Brookfield”) and taking coffee orders. The

customers could pay in tokens as they wish, and the participants’ task was to log the

payment amount for each customer. The customer names were shown in the prompts

(e.g., ”Brennan: 218 tokens for Cappuccino”). We instructed participants to pay

attention to both the names and the payment amount, as some pairs of name and

payment amount will be tested at the end. This was to orient them to pay attention

to the task (For Experiments 2A-1 and 2A-2, we asked participants to report the

payment amount for given customers at the end of the experiment. For Experiment

2A-3 and 2A-4, we did not test participants’ memory. In all cases, we did not analyze

these data, as they were outside the scope of our interest).

Tokens did not appear on the screen as visual cues, and the response was made

either by moving a slider ranging from 1 to 500 tokens (Experiment 2A-1, 2A-2; to

help participants make a response within the response window, the slider snapped to
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the correct number when the distance between the marker and the target was less

than 5 tokens) or by typing in the number (Experiment 2A-3, 2A-4), with a 5-second

time limit. Participants got a 50 cents bonus if they did not miss any orders.

Critically, the sparsity of “stingy” and “generous” was manipulated by variance

alone. In both conditions, the number of customers generated from stingy and gener-

ous causes were matched to 20. In the sparse stingy customer condition, the “stingy”

customers’ payment amounts were more variable than the “generous” donors (20

“stingy” donors M = 188, SD = 47.29; 20 “generous” donors M = 308, SD = 13.73),

and vice versa in the sparse generous customer condition (20 “generous” donors

M = 312, SD = 47.29; 20 “stingy” donors M = 192, SD = 13.73).

The order of payment values was chosen such that the latent-cause inference model

and the Pearce-Hall model predict the opposite biases.

Pearce-Hall model

For Pearce-Hall model simulations, donation amounts were normalized to the maxi-

mum potential amount (i.e., the maximum amount on the response slider bar) and

then introduced to the Pearce-Hall model (Pearce and Hall, 1980). The value estimate

v was updated according to:

vt+1 = vt + αt+1 × S × xt (Equation 4.8)

where α is the associability parameter, S denotes salience of the cue, and x repre-

sents the observed amount. The key component of the Pearce-Hall model is that the

associability α is updated according to the absolute prediction error (the difference

between the observed and expected values), with a learning rate η:

αt+1 = (1− η)× αt + η × |xt − vt| (Equation 4.9)
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This means that more surprising events have greater impact on the overall value

estimates. We ran simulations with salience parameter S ranging from 0.1 to 1, and

learning rate η ranging from 0.1 to 1. The evaluation of a group v was made using

each combination of the two parameters.

4.4.2 Results and Discussion

Effects of sparsity manipulation

In Experiment 2A-1 (N = 70), a two-sample t-test showed that the normalized es-

timate in the sparse “stingy” condition (M = −0.023, N = 26) was significantly

lower than in the sparse “generous” condition (M = 0.018, N = 44; t(68) = −2.511,

p = 0.014, Cohen’s d = −0.621, 95% CI = [−0.075,−0.009]). Further, a permuta-

tion test in which condition labels were shuffled 2000 times further supported that

the observed sparsity bias effect was above the null distribution confidence interval

(normalized condition difference = 0.044; 95% null distribution CI [−0.035, 0.033],

p < 0.05). Critically, these results were in the direction that the latent-cause infer-

ence model predicted and opposite to the predictions of the Pearce-Hall model.

To strengthen this finding, we ran three independent sets of replications (Ex-

periment 2A-2 N = 67; 2A-3 N = 260; 2A-4 N = 229, pre-registered). All three

experiments replicated the main finding that the sparse “stingy” condition’s normal-

ize estimates (Experiment 2A-2 N = 28, M = −0.014; 2A-3 N = 133, M = −0.009;

2A-4 N = 118, M = −0.005) were below the sparse “generous” condition’s normal-

ize estimates (Experiment 2A-2 N = 39, M = 0.017; 2A-3 N = 127, M = 0.013;

2A-4 N = 111, M = 0.021). The difference between conditions were significant

(Experiment 2A-2 t(65) = −2.137, p = 0.036, Cohen’s d = −0.529, 95% CI =

[−0.060,−0.002]; 2A-3 t(258) = −2.556, p = 0.011, Cohen’s d = −0.317, 95% CI

= [−0.039,−0.005]; 2A-4 t(198.54) = −3.098, p = 0.002, Cohen’s d = −0.407, 95%

CI = [−0.043,−0.010]). An additional meta-analysis across Experiment 2A (a, b, c,
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d) using Bayes Factor showed BF10 of 17732.306, indicating the data being 17732.3

times more likely under the hypothesis that the normalized estimates are different

across sparsity manipulations than the null hypothesis.

Post-observation biases

We then tested whether post-observation estimates in each condition show a spar-

sity bias from the true mean across these four replication data sets, using meta-

analytic Bayes Factor analyses on the two-tailed t-tests (Figure 4.6). Negativity

biases observed in the sparse “stingy” condition (Experiment 2A-1 M = −0.027;

2A-2 M = −0.023; 2A-3 M = −0.012; 2A-4 M = −0.017) were 636.6 times more

likely under the hypothesis there is a bias than a null hypothesis (BF10 = 636.584),

providing extremely strong evidence for a bias. In the sparse “generous” condition,

positivity biases (Experiment 2A-1 M = 0.006; 2A-2 M = 0.008; 2A-3 M = 0.006;

2A-4 M = 0.014) were 4.6 times more likely under the hypothesis there is a bias than

a null hypothesis (BF10 = 4.556), providing moderate evidence for a bias.
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Figure 4.6: Negativity biases in the sparse “stingy/below-average” condition was
marginally significant (Experiment 2A-1 M = −0.027, t(25) = −2.001, p = 0.056,
Cohen’s d = −0.392, 95% CI = [−0.056, 0.001]) or significant (Experiment 2A-2
M = −0.023, t(27) = −2.185, p = 0.038, Cohen’s d = −0.413, 95% CI =
[−0.045,−0.001]; Experiment 2A-3 M = −0.012, t(132) = −2.382, p = 0.019,
Cohen’s d = −0.207, 95% CI = [−0.022,−0.002]; Experiment 2A-4 M = −0.017,
t(117) = −2.532, p = 0.013, Cohen’s d = −0.233, 95% CI = [−0.030,−0.004]) in the
social domain. However, such biases was not significantin the non-social domain
(Experiment 2B M = 0.003, t(37) = 0.197, p = 0.845, Cohen’s d = 0.032, 95% CI =
[−0.023, 0.029]; Experiment 2C M = −0.020; t(50) = −1.605, p = 0.115, Cohen’s
d = −0.225, 95% CI = [−0.045, 0.005]). Positivity biases in the sparse “generous”
condition was not significant in three replications (Experiment 2A-1 M = 0.006,
t(43) = 0.731, p = 0.469, Cohen’s d = 0.110, 95% CI = [−0.011, 0.024]; Experiment
2A-2 M = 0.008, t(38) = 0.874, p = 0.388, Cohen’s d = 0.140, 95% CI =
[−0.011, 0.027]; Experiment 2A-3 M = 0.006, t(126) = 0.860, p = 0.391, Cohen’s
d = 0.076, 95% CI = [−0.008, 0.019]) while significant in one (Experiment 2A-4
M = 0.014, t(110) = 3.196, p = 0.002, Cohen’s d = 0.303, 95% CI = [0.005, 0.022]).
In the non-social domain, positivity bias was significant in both Experiment 2B
(M = 0.035, t(42) = 2.519, p = 0.016, Cohen’s d = 0.384, 95% CI = [0.007, 0.063])
and Experiment 2C (M = 0.018, t(49) = 2.134, p = 0.038, Cohen’s d = 0.302, 95%
CI = [0.001, 0.035]).
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4.5 Experiments 2B, 2C

We further sought to investigate whether the sparsity bias in the social domain

emerges from a domain-general inference process. If the process by which overall

estimation is made is different across domains, we would expect to observe an in-

teraction in the bias between the sparsity conditions and the domains (social and

non-social). Specifically, in the non-social domain, we would observe no difference

between the sparsity conditions or a difference in the opposite direction (i.e., the den-

sity bias), following the Pearce-Hall model’s prediction. However, if the bias arises

from a fundamental inference process, the sparsity in the observed values should lead

to biases regardless of domains. To this end, Experiment 2B and Experiment 2C used

non-social cover stories (the weight of coffee beans that customers buy from different

towns in Experiment 2B; the amount of slot machine earnings from different casinos

in Experiment 2C). All other procedures were identical to their social counterpart

(Experiment 2A), and the sparse “below-average” and “above-average” conditions

here respectively corresponded to the sparse “stingy” and “generous” conditions in

Experiment 2A.

4.5.1 Methods

Participants

The total of 182 subjects participated in Experiment 2B (N = 81, sparse “stingy”

N = 38, sparse “generous” N = 43) and Experiment 2C (N = 101, sparse “stingy”

N = 51, sparse “generous” N = 50). Exclusion criteria were identical to Experiment

2A.
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Task and Procedure

To investigate the sparsity bias in the non-social domain, we changed the cover story

such that participants were logging weights of coffee beans for customers in super-

markets in different towns (Experiment 2B) or logging slot machine earnings in differ-

ent casinos (Experiment 2C; participants’ compensation did not depend on observed

earnings to avoid those amounts from playing the role of personally-relevant rewards).

Critically, the stimuli sequences were the same as Experiment 2A, where the sparsity

was manipulated by variance. All procedure was identical to Experiment2A-3 and d,

where responses were made in a text box.

4.5.2 Results

Effects of sparsity manipulation

Experiment 2B (N = 81) and Experiment 2C (N = 101) showed that the sparse

“below-average” condition’s normalized estimates (Experiment 2B N = 38, M =

0.015; Experiment 2C N = 51, M = 0.001) were numerically below the sparse “above-

average” condition (Experiment 2B N = 43, M = 0.048; Experiment 2C N = 50,

M = 0.030), although they did not reach statistical significance from two-tailed two-

sample t-tests (Experiment 2B t(79) = −1.654, p = 0.102, Cohen’s d = −0.368, 95%

CI = [−0.071, 0.007]; Experiment 2C t(99) = −1.822, p = 0.071, Cohen’s d = −0.363,

95% CI = [−0.060, 0.003]).

Interaction between domains and sparsity manipulation

To test whether the conditional difference in the overall estimate interacted with

the domain, we ran a mixed-effects linear regression model predicting normalized

estimates with the sparsity and social (“social” or “non-social”) conditions as fixed

effects and experiments (Experiments 2A-1, 2A-2, 2A-3, 2A-4, 2B, 2C) as random
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effects, pooling data across Experiment 2 (N = 808). Tests of significance using

Satterthwaite’s approximation showed no significant interaction between the sparsity

and social conditions (β = 0.005, SE = 0.012, t(804) = 0.393, p = 0.695). Bayes

Factor analysis provided moderate evidence that there is no interaction between event

domain (social vs non-social) and the sparsity conditions (BF01 = 7.637).

Post-observation biases

We examined each condition’s sparsity bias in the non-social domain (Figure 4.6).

While there was a strong evidence for a positivity bias in the sparse “above-average”

condition (BF10 = 16.153; null hypothesis cohen’s d = 0), there was a moderate

evidence that there is no bias in the sparse “below-average” condition (BF01 =

4.902).

Pre-observation biases

The lack of negativity bias in the sparse “below-average” condition in the non-social

domain may be due to prior expectation. That is, if prior beliefs about the events

are skewed towards smaller values under the non-social domain, positive events with

larger values may weigh more heavily in overall estimation of observed events. To

this end, we ran a mixed-effects linear regression model predicting Guess 2 with

the social conditions as fixed effects and experiments as random effects. A test of

significance using Satterthwaite’s approximation showed that prior beliefs in the non-

social domain (M = −0.015) was significantly below priors in the social domain

(M = −0.007; β = 0.007, SE = 0.003, t(7.308) = 2.539, p = 0.037).
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4.6 Experiment 3

A potential mechanism for a general negativity bias is that each observation is per-

ceived on a logarithmic rather than linear scale. In this case, small numbers would

have greater relative significance than larger numbers, leading the overall estimation

to be biased to below the true (linear) mean. This would predict negativity biases

regardless of sparsity manipulations.

To test the logarithmic hypothesis directly, we ran a control experiment matching

the two conditions (sparse “stingy” and “generous”) for the arithmetic mean of log-

transformed donation values.

4.6.1 Methods

Participants

Thirty-nine subjects participated in Experiment 3 (sparse “stingy” N = 19, sparse

“generous” N = 20). Exclusion criteria were identical to Experiment 1A.

Task and Procedure

Here, we matched the two conditions (sparse “stingy” and “generous”) for the arith-

metic mean of log-transformed donation values at 100 (Figure 4.7 solid lines). The

means of log-transformed values were both lower than the true linear-scale mean (Fig-

ure 4.7 dotted lines; the sparse “stingy” condition mean = 108.65; the sparse “gener-

ous” condition mean = 111.65). Other procedures were identical to Experiment 1A,

and the values were normalized by the scale (300) for the following analyses.
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Figure 4.7: In Experiment 3, the distributions for sparse “stingy” (orange) and
sparse “generous” (blue) conditions were determined such that the arithmetic means
of log-transformed observed values (solid lines) were matched (rather than matching
the arithmetic means of the observed values themselves, as in all our other
experiments). The true means of linear-scale values (dotted lines) were higher than
the means of the log-transformed values in both conditions.

4.6.2 Results and Discussion

To test if estimation biases are driven by the logarithmic scale, we first compared the

post-observation estimates to the mean of the log-transformed values. The empirical

estimates were significantly different from the mean of the log-transformed values

(mean difference = 0.060, t(38) = 4.543, p < 0.001, Cohen’s d = 0.727, 95% CI

= [0.033, 0.086]). Specifically, the estimates were higher than the mean of the log-

transformed values in both the sparse “stingy” condition (N = 19; mean difference

= 0.034, t(18) = 2.203, p = 0.041, Cohen’s d = 0.505, 95% CI = [0.002, 0.067]) and

the sparse “generous” condition (N = 20; mean difference = 0.084; t(19) = 4.232,

p < 0.001, Cohen’s d = 0.946, 95% CI = [0.042, 0.126]).

A key prediction of the logarithmic hypothesis is that the estimated mean would be

lower than the true linear-scale mean, regardless of the sparsity manipulation. Both

our latent cause model and the logarithmic hypothesis predict a negative bias for the

sparse “stingy” condition. However, if estimation biases emerge as a result of latent-

cause inference, the sparse “generous” condition should show a positivity bias that
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the logarithmic hypothesis cannot predict. A two-tailed t-test showed that the post-

observation estimate was positively biased in the sparse “generous” condition (mean

bias = 0.044, t(19) = 2.210, p = 0.040, Cohen’s d = 0.494, 95% CI = [0.002, 0.085]),

supporting the latent cause inference hypothesis.

4.7 General Discussion

Together, these experiments demonstrated that overall estimation of a quantity is

biased toward the value of events that are rare and/or more variable. Comparing

human participants’ biases to simulated estimation biases from a semi-rational latent-

cause inference model suggested that the behavioral results can be attributed to a

process of inferring latent causes for observations and estimating the overall average

by averaging over these causes.

Our results are in line with empirical findings in social cognition research showing

that, given rarity (Fiske, 1980) and variability (Unkelbach et al., 2008; Alves et al.,

2017b) of negative events, negative information can have a higher impact in impres-

sion formation and updating (Rozin and Royzman, 2001). To test our hypothesis that

the distributional sparsity is driving such bias, we used donation events in a positive

monetary domain and manipulated sparsity of below-average (relatively negative) or

above-average (relatively positive) events. This was a strong test of our hypothesis,

as we avoided events in the negative domain altogether so as to not confound our

findings with subjective value differences for monetary wins and losses (i.e., the fact

that losses loom larger than gains of the same amount17). We expect that the effects

we observed would occur even more strongly when the valence of the stimuli varies

across the full spectrum of negativity and positivity, since there are features of nega-

tive events that make biased processing of negative stimuli adaptive. For instance, an

untrustworthy person can impose a risk on our well-being, and thus it would be wise
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to avoid such risk. If we choose to avoid a presumably bad person, we lose oppor-

tunities to update our impression and effectively make our samples of that person’s

behaviors sparse, leading to a negativity bias (Denrell, 2005). On the other hand, we

may update our impressions differently when we observe bad behaviors, leaving more

chance to forgive potentially bad targets (Siegel et al., 2018). Moreover, valence may

not change monotonically with magnitude for some behaviors; for example, talking

too much could be as negative as talking too little, while donating more money is

generally positive (Alves et al., 2017b). The different weighting of gain and loss is also

a potential source of asymmetry between the negative and positive-valenced domains.

Prospect theory suggests that the value function is steeper for losses than for gains,

meaning that a loss of $5 looms much larger than a gain of the same amount (Kah-

neman and Tversky, 1979). Future studies can explore potential interaction between

sparsity and the valence of events in social and non-social domains.

We explored whether the inference processes that give rise to the sparsity bias are

domain general or uniquely social, by using various social and non-social scenarios.

There was moderate evidence that the sparsity bias was not different across domains,

suggesting domain-general inference processes. However, our social and non-social

cover stories may diverge in other important ways, especially with regard to prior

beliefs. Although we presented participants with a training sequence to neutralize

their prior beliefs, the training may not be enough to adjust people’s expectations for

various situations, as these were built through a lifetime of experiences. This may be

the reason that there was a difference in “Guess 2” between the social and non-social

domains. In a donation scenario, the donation amounts observed during the first

training sequence may be a more informative ground for processing the next set of

observations, as they form a social norm for generosity that the members of the com-

munity should follow. This would make the prior beliefs sharper, and any donations

outside the normal range could be perceived as good or bad. On the other hand, our
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non-social scenarios (how many grams of coffee beans are purchased, or how much slot

machines return) may have evoked priors whose values are lower than the donation

scenario, and thus every win in a casino or sale of coffee beans, even if below average,

may have continued to be seen as a positive event, leading to a stronger positivity

bias. This would be a potential explanation for the absence of a negativity bias when

below-average events were sparse in the non-social scenarios. Future research should

investigate how prior beliefs differ across situations, and whether priors under social

situations have unique characteristics that alter the inference process or allow it more

flexibility. Quantifying individuals’ prior beliefs can also allow the model to predict

individual differences in negativity biases, which indeed tend to be stable within an

individual across time (Ito and Cacioppo, 2010). For instance, an individual who

has experienced largely negative life experiences may have a prior expectation that

positive events are sparse, and therefore will weigh positive events more heavily in

their overall estimation.

Our study also differs from previous impression-formation studies in that we as-

sessed the impression of a group rather than an individual. When forming impressions

about an individual, we tend to assume more unity and coherence in their behaviors

than we do about groups, drawing inferences about dispositional properties (Hamilton

and Sherman, 1996; Asch, 1946; Jones and Davis, 1965). Group impression formation

may rely on a different process from person impression formation (Fiske and Neu-

berg, 1990) , which involves representing multiple individual experiences, or exem-

plars (Smith and Zárate, 1992), depending on perceived entitativity (i.e., the degree

of having the properties of an entity; Campbell, 1958; Lickel et al., 2000) of a group.

The level of judgment, thus, can be intermediate between lumping all individuals into

one category and representing each individual as its own entity. This resembles the

tension between only representing prototypes of a category (prototype model Reed,

1972) and preserving all exemplars (exemplar model Nosofsky, 1986; for a review,
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see Hilton and von Hippel, 1996). The latent-cause inference model can be seen as

an intermediate between the two alternatives, achieving either end of the spectrum

by varying a single parameter that governs creating a new cluster (Sanborn et al.,

2010), and thus could be a good model for group impression formation. That is, the

model could provide a framework to further explore how entitativity influences group

impression formation. For example, In Experiment 2B and Experiment 2C where the

causal link between observed behavior and the groups was weak, the sparsity bias

predicted by the latent-cause inference model was less pronounced. A town might

not be a coherent entity to predict coffee sales as much as it is for predicting social

norms such as generosity. That is, when evaluating a heterogeneous social group

that we assume has a common latent causal property (such as intention) that gener-

ates individual observations, sparse experiences with the group can drive our overall

impression of the group. In any case, if these biases are the results of fundamental

inferential processes that partition our experiences into meaningful causal chunks, the

model should hold true in individual impression formation as well. Given that there

is a closer and more immediate causal link between an individual and their actions

than between a group and the group members’ actions, the sparsity bias effect would

potentially even be stronger for individual impressions.

Experiment 1 suggests a way to reduce the sparsity bias. We showed that being

required to think about the overall mean in every step of observation promotes un-

biased estimationm, as evidenced by the interaction between the task requirements

and the sparsity conditions. This suggests that we may be less affected by rare and

variable interactions if we try to track a particular quality of another person’s every

time we interact with them, rather than leaving the judgment until later. This could

be desirable in a situation where we want an unbiased evaluation, for instance during

a hiring process. Nevertheless, placing people on a positive-negative scale is usually

not the only goal in our rich day-to-day interactions, and we often need more flexible
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representation of our social counterparts.

Our model estimates the overall average by taking the log-weighted mean of la-

tent causes’ mean values. That is, the model assumes that the low frequency is

overestimated and high frequency is underestimated when the overall mean is esti-

mated based on the latent causes’ mean donation, as each cause is weighted by the

log-transformed number of donors that were assigned to the cause. This loss of pre-

cision is based on numerous studies showing that low frequency and/or probability

is overestimated while high frequency and/or probability is underestimated (Zhang

and Maloney, 2012). Although this type of precision loss assumed by our model is

repeatedly found in the literature (Merten and Nieder, 2008; Dehaene et al., 1998),

it is worth noting that the degree of sparsity bias depends on the degree to which

the latent causes’ frequency information is distorted. At the extreme end of the spec-

trum where latent cause frequency is perfectly kept, there will be neither a sparsity

nor a density bias. At the other end of the extreme where the frequency informa-

tion is completely lost such that a latent cause that generates only one observation

has the same impact on the overall mean as a cause that generates the rest of the

observations, there will be a much stronger sparsity bias. This could also be why

we observed a stronger sparsity bias in the social scenarios such as donations than

non-social situations, as we represent the groupings of people by relying on existing

schema we already have from previous experiences with other people, thereby further

losing precisions on frequency of encounters in this particular setting.

Another possibility is that the frequency is distorted in the inference process as

well as in the averaging of inferred causes. The CRP prior is a rich-gets-richer process

where a new event will be more likely to be assigned to a cause with a larger number of

events already assigned to it than to unpopular causes, which requires counting how

many events already belong to the cause. The aforementioned frequency distortion

can occur in this counting step. This does not change the direction of the bias
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although the degree of the bias decreases. Additionally, similar distortions can also

occur even when there is no inference involved. That is, if the frequency of the

same value gets lost, the dense distribution may contribute less to the overall mean,

due to the higher chance of showing the same value multiple times than the sparse

distribution. However, this type of frequency distortion cannot account for the biases

seen in Experiment 2A, as the exact values of donations were unique per trial, and

there was no repetition. Furthermore, in Experiment 1A where the same outcome was

repeated, if we counted only the first presentation, losing all following presentations,

the mean of unique donations in the sparse “stingy” condition would be above the

true mean and vice versa, which is the opposite direction to the sparsity bias observed

in the data.

Finally, logarithmic transformation can occur in representing the donation amount

as well. If the donation amount is perceived in a logarithmic scale, the final average

estimation would show negativity bias. Experiment 3 matching the log-transformed

mean, not the linear-scale mean of the “sparse stingy” and “sparse generous” condi-

tions showed that the estimation biases was positive in both conditions, which was

the opposite of the log-scale representation prediction.

Given the possible hypotheses about the precision loss when accounting for the

number of observation in each latent cause, the ideal approach would be to fit these

models to empirical data and compare which type of precision loss predicts our results

the best. This is not possible in the current study as we collect only one estimate

per participant. We chose the current design to prevent continuous reporting from

altering the cognitive processes by which the latent causes are inferred and the final

evaluation is made. Of course, this choice came at the expense of model-fitting; future

work can characterize the online inference process, for instance, by probing groupings

on a trial-by-trial basis.

In conclusion, we have shown that sparse experiences are segmented into a larger
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number of latent causes, which in turn bias the overall impression such that the rarer

and/or more variable experiences are overweighted. Here, we showed the sparsity bias

in a mildly social domain. We would expect that, in more realistic social scenarios that

involve evaluations of others with real stakes at hand, the biases may manifest even

more strongly. This cognitive bias could indeed be the core mechanism underlying

the negativity bias in social evaluations.
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Chapter 5

Conclusion

86



5.1 Summary

Latent causes are a normative way of organizing experiences such that they can be

retrieved and generalized where relevant. In this thesis, I first demonstrated that

memory retrieval is facilitated when the study and test environment share the struc-

ture that generates perceptual and cognitive features. However, experimentally ma-

nipulating such generative structures may not always lead subjects to infer distinct

generative structures, holding separate internal representations. To address how la-

tent causes structure memory, I offered a theoretical account for episodic memory

organization that relies on inference of latent causes. To characterize the effects

of clustering experiences through latent cause inference in decision-making, I used a

Bayesian inference model to predict empirical biases in evaluations in scenarios where

clusters/groups of observations are ambiguous, such as social evaluations.

5.2 Ongoing Work: quantifying latent-cause infer-

ence

The Bayesian Latent-cause inference model discussed in this thesis offers a frame-

work that can quantify the process by which we group our experiences for future use.

Quantification of the inference process could provide insights into individual differ-

ences in how people generalize from their past experiences to new ones. Specifically,

parameters corresponding to each component of the inference process can explain

different aspects of tendencies to over- or under- generalize across experiences. To

this end, I have developed a novel task that probes clustering trial-by-trial, allowing

for fitting parameters of the latent-cause inference model.
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Figure 5.1: Four galaxies generate different types of stars with varying lengths and
numbers of rays (middle panel). Subjects are asked to assign stars to an unknown
number of galaxies, based on their perceptual features. Subjects may
under-generalize, parsing the perceptual space more finely, assuming more galaxies
than the ground truth (left). On the other hand, some individuals may
over-generalize, failing to differentiate the galaxies (right).

In the inference task, subjects are told that they are classifying stars from dif-

ferent galaxies (latent causes). They are told that stars from a galaxy look similar

to each other and have similar numbers and lengths of rays coming out of them.

Their task is to classify the stars based on these perceptual features. Critically, to

investigate individual differences in generalization, subjects are not told a priori how

many galaxies they will encounter, and thus need to flexibly infer a new galaxy when

they think that a star does not belong to any of the previous galaxies. This allows

us to measure the probability that a new cluster is inferred, which corresponds to the

concentration parameter α in the prior over clusters.

Importantly, stars from the same galaxy also tend to be presented in temporal

proximity. Subjects may utilize these temporal statistics, decaying the influence of

past stars on inference of the galaxy of the current star as a function of time. As

a result, when seeing a star from a previous galaxy, subjects who have a high decay
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rate λ might fail to recognize the old galaxy, identifying a new galaxy instead. The

decay parameter λ therefore explains the temporal aspect of inferring clusters.

In assessing the similarities between stars, subjects may under-generalize, parsing

the perceptual space more finely than the ground truth, or over-generalize, lumping

stars that look dissimilar into the same galaxy (Figure 5.1). This segmentation be-

havior can be modeled with the prior µ subjects have about the size of perceptual

space generated by each latent cause, which determines how perceptually homoge-

neous the stars generated from the same latent cause can be. The parameter µ gives

a systematic measurement of spatial clustering.

I plan to map these three parameters onto behavioral characteristics, especially in

a clinical population whose symptoms show compromised generalization. I also plan

to conduct an functional magnetic resonance imaging (fMRI) study to investigate the

neural mechanisms of latent cause inference.

5.3 Future Directions: scaling up to social infer-

ence

Arguably the most complex part of our environment consists of other people, whose

key features such as current beliefs (Baker et al., 2017), mental states, and traits

(Tamir and Thornton, 2018) are rarely observable. We often infer these unobserv-

able states from observable actions, physical characteristics of the target person, and

situational factors to make accurate predictions about behaviors of the person. How

do we fathom the unfathomable mind?

The Bayesian Theory of Mind (BToM) model (Baker et al., 2017) suggests that

an observer infers the inherently hidden mind (e.g., beliefs, desires, etc.) from the ob-

servable variables (e.g., actions, environments), which then guides better predictions

about the target person’s behaviors.
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Beyond predicting other people’s actions, inferring other people’s hidden cognitive

states (e.g., intention, knowledge) is useful when we need to learn from feedback given

by other people. If we believe that someone is knowledgeable, we can make inferences

about the person’s knowledge from observed actions (Shafto et al., 2012). If we get

feedback from someone whose intention is to teach us, we can use their feedback to

infer the teacher’s policy to achieve their goal to transfer as much knowledge to us,

and in turn, to improve our policy (Ho et al., 2019). On top of knowledgeability

and intention to teach, people consider whether the teacher is trustworthy or has

bad intentions (Landrum et al., 2015). Children and adults take into account the

“niceness” and “honesty” as much as the “smartness” of a teacher when deciding

whom to ask for information, suggesting that we draw inferences upon traits, a deeper

layer of hidden states.

Trait inference is beneficial in that it provides a stable basis for generalizing be-

haviors across different situations. People spontaneously form mental representations

of other people’s traits, even when the immediate task does not require trait inference

and, in fact, could be performed better when ignoring such information. For instance,

Hackel et al. (2015) had participants make a series of decisions about a partner in

a game where the other player divided a pool of points between the two players.

Importantly, immediate rewards (i.e., how many points the target shared with the

participant on a trial) and generosity (i.e., the proportion shared from the pool) were

orthogonalized, and participants could maximize their share by just focusing on the

immediate rewards, ignoring the trait generosity. Supporting the idea that sponta-

neous trait inference guides decisions, participants used both the reward magnitude

and generosity information in making their decisions, with ventral striatum respond-

ing to both reward and trait prediction errors. These results suggest the importance

of having a mental model about other people and thereby building a basis that can

later guide our decisions. In addition to traits like generosity, people represent how
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powerful people around them are relative to themselves (Kumaran et al., 2016), and

the hippocampus represents information regarding other people’s power and affilia-

tion, drawing a social map that can help humans navigate the social world (Tavares

et al., 2015).

We also often build a model about social groups that encompass multiple people

– namely, stereotypes (Hilton and von Hippel, 1996). For example, people associate

gender with different professions, and even after learning counter-stereotypic infor-

mation (e.g., “Elizabeth is a doctor, and Jonathan is a nurse”), the stereotypic associ-

ation lingers and slows down responses that are counter-stereotypic (Cao and Banaji,

2016). Such associations emerge early in development, biasing inferences about social

groups such as racial group membership when given characteristics such as wealth

(Olson et al., 2012). It is worth noting that, as in non-social decision-making, what

is relevant in social decision-making can vary depending on the problem at hand.

It remains an open question how inferred stable characteristics of social groups can

inform state inference for stable traits and, in turn, the transient mental state of an

individual.

Studying how we build models of the highly rich and “partially observable” social

world is valuable not only because it would help understand social decision-making

but also because it would provide deeper insights into how we represent the world as

a whole. The field of social psychology has generated a wealth of research on topics

that parallel questions in latent cause inference, for instance, how memory about a

person and group-level representations interact with one another to guide predictions

about individual behavior (Brewer et al., 1995) and how attention is allocated to

information that fits our stereotypes (Plaks et al., 2001). It would be useful to draw

upon this existing body of research to further our understanding of inference processes

in a partially observable world.
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