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Abstract 

Taken at face value, the world is complicated and confusing. When 

operating in such complexity, we are greatly advantaged by our ability to infer 

the underlying structure of the world – that is, the relationships between our 

observations and the underlying latent causes that generate them. At any 

given time, inferring the latent causes that are currently active – i.e., the 

current situation – allows us to execute the most appropriate actions and 

cognitive processes. In theories of episodic memory, this definition of the 

current situation is related to the cognitive constructs of “schemas” and 

“context”. In reinforcement learning and decision-making, representations of 

the current situation are called the “state”. In this work, I begin to uncover the 

computations and neural mechanisms that underlie our inference of the 

causal structure of the world, including inferences of the current situation, and 

also how the inferred situation affects decision-making and memory. 

Throughout this work, the overlapping brain areas of ventromedial prefrontal 

cortex (vmPFC) and orbitofrontal cortex (OFC) play a prominent role in the 

neural circuits that perform this inference.  

In the first experiment, I show that overall levels of activity in the OFC 

are related to learning about one type of causal structure – transitions 

between states of the world. In the second experiment, I present evidence 

that the OFC represents a belief distribution (a posterior probability 

distribution) over the underlying situation. In the third experiment, I present 
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evidence that, in accordance with current theories of episodic memory and 

temporal context, memories seem to be organized according to information in 

the brain about the semantics of recent experience, which may serve as a 

heuristic proxy for the current situation.   
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1  Organization of the thesis 

This thesis presents the results of three empirical investigations into 

how we make inferences about the causal structure of the world, especially in 

relation to representations of the current situation, and how we use that 

information in memory and decision making. 

In Chapter 2, I will briefly introduce some background that will be 

useful for appreciating this work. This introduction includes existing ideas 

about how the brain represents the current situation and how it affects 

cognitive processes like memory and decision-making (specifically, I describe 

the ideas of “state”, “schemas”, and “context”, from theories of reinforcement 

learning and theories of episodic memory). The introduction also includes 

background about some of the primary experimental and analytical methods 

used in this work (relating to multivariate analysis of fMRI data).  

In Chapter 3, I present experimental findings showing the involvement 

of the orbitofrontal cortex in learning about one type of structure in the world – 

probabilities of transition between different states.  

In Chapter 4, I investigate inference and neural representations of the 

current situation, this time in an environment where the current situation is not 

directly observable; instead, the situation is probabilistically related to 

subjects’ observations. I show that humans use an inference strategy that 

approximates Bayesian inference of a posterior probability distribution over 
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the underlying situation, and that the orbitofrontal cortex represents this 

probability distribution over the underlying situation. 

In Chapter 5, I provide experimental evidence for a key, as yet 

untested, assertion in current theories of episodic memory – that memories 

are organized according to the semantics of recent experience. I show that 

memories are more likely to be recalled together if they were encoded at a 

time when the brain showed similar information about the semantics of recent 

experience. Since the semantics of recent experience can serve as a 

heuristic stand-in for the current situation, it makes sense for memories to be 

organized according to these semantics, so that memories from a given 

situation are retrieved when that situation is encountered again. 

In Chapter 6, I discuss the experimental results in relation to one 

another, and unanswered questions that remain in investigating cognitive and 

neural representations of the current situation, and their role in decision-

making and memory.  



 3 

2  Background 

2.1  Representations of the current situation – existing ideas 

and open questions 

This dissertation draws on existing ideas relating to how we represent 

and infer the current situation, both algorithmically and neurally. Below, I first 

introduce the ideas of “state” (from reinforcement learning), and “schemas” 

and “context” (from theories of memory). I also introduce some of the existing 

evidence that the orbitofrontal cortex (OFC) is involved in processing these 

signals. I also summarize the open questions that will be addressed by the 

experimental results presented in the later chapters of this thesis.  

2.1.1 State 

In reinforcement learning (e.g. Sutton and Barto, 1998), an agent 

learns to assign values to different environmental “states”, based on rewards 

and punishments received. The learned values estimate the total future 

reward that is expected after entering that state (including but not limited to 

the rewards received at that state). These values can be learned using error-

driven learning algorithms (e.g. Rescorla et al, 1972), which includes 

temporal-difference learning methods (e.g. Sutton 1988). Temporal difference 

learning algorithms compare predictions with new information about values, 

and update cached values based on the discrepancy (the “prediction error”). 

Once the value for each state is learned, the agent can use this information to 
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make decisions about what actions to take in what state in order to maximize 

total expected reward, by taking actions that lead to states with high value.1 

How should states be defined? If you are sitting in a restaurant, for 

example, you might define your state according to all the details of all your 

observations, including the color of the tablecloth, the position of your knife 

with respect to the plate, and so on. However, if you are trying to hold a 

conversation with your dinner partner, this information is not useful and does 

not need to be included in the state representation in order for you to perform 

well at the conversation. Instead, you might even require information that is 

not directly observable and which needs to be inferred from observations or 

held in memory, such as the current topic of conversation or the topics that 

have already been discussed. Thus, some state representations are more 

useful and natural than others, and they may include information that is not 

directly observable.  

The recursive nature of reinforcement learning algorithms requires 

states to be defined so that the dynamics of the task, at any given time, are 

completely determined by the current state (and do not require information 

about previous states). This is the Markov property. In some cases, as in the 

                                            

1 To be precise, there exist some policy-gradient algorithms for reinforcement 

learning that do not estimate values at all, though most do. These algorithms nonetheless 

learn a policy that is defined over states, so that proper definition of states is still key, 

including the Markovian property that we discuss below.  
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restaurant conversation example, the dynamics of the task are dependent on 

information that is not directly observable (a partially observable environment) 

– that is, the observations are not Markov with respect to the task, and the 

machinery of reinforcement learning cannot be applied to state 

representations that contain only the observations. However, it turns out that 

even in these types of tasks, reinforcement learning algorithms can be 

applied to a belief distribution over states (a “belief state”), which is Markov 

(Kaelbling et al 1998).  

There is by now a wealth of evidence that the brain implements some 

form of temporal-difference reinforcement learning. Prediction errors appear 

to be represented by dopamine neurons, while learned values are to be 

represented in the striatum (e.g. Montague et al, 1996; Schultz et al, 1997; 

O’Doherty et al, 2004; Lau and Glimcher, 2008). More recently, it has been 

suggested that the OFC is involved in representations of state (Wilson et al, 

2015). I test this hypothesis in Chapter 4, additionally showing that the 

representation in OFC takes the form of a belief distribution over possible 

states, as would be necessary for the common case of a partially observable 

environment. This result relates also to the implicated representation of 

schemas in OFC, discussed in the next section. 

In certain cases, expected values learned incrementally through trial-

and-error (so called “model-free” values) cannot support optimal decision-

making, for instance because the agent does not yet sufficient experience 

with the environment to estimate correct values. If, for example, the 
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environment has not been well explored or there is a change in the 

environment, it is often useful to simulate sequences of states and/or actions, 

so as to supplement the meager amount of actual experience. This type of 

decision-making is called “planning”, “goal-directed”, or “model-based” 

decision making, in contrast with “model-free” decision making. For example, 

when encountering a new type of food, we may try to mentally simulate the 

experience of eating it before making a decision on whether to eat it (model-

based); with very familiar types of food, we are more likely to have a pre-

computed approach or avoidance response (model-free). These two types of 

decision making appear to be implemented in neural circuits that are parallel 

but not completely overlapping (Daw et al, 2005). For model-based decision 

making, it is necessary to learn about the probability of transitions between 

states, sometimes called the “transition matrix” for the environment. The OFC 

has long been implicated in model-based decision making. In Chapter 3, I 

investigate the role of OFC in learning these transitions between states, in 

addition to its presumed role in representing the states themselves. 

2.1.2 Schemas and Context 

In theories of episodic memory, it is believed that we organize our 

memories according to an inferred “schema” that specifies the gist of a 

situation, and provides previously learned associations that a new memory 

can be incorporated into (Tse et al, 2007; Hupbach et al, 2008). Recent 

evidence has pointed to the medial prefrontal cortex in processing or 
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representing schemas (for reviews, see Schlichting and Preston, 2015; van 

Kesteren et al, 2012; Ranganath and Ritchey, 2012). For example, Tse et al 

(2011) showed evidence that activation of rat medial prefrontal cortex (mPFC) 

was highest immediately after memory encoding that should involve 

incorporation of new information into existing schemas, and also that transient 

inactivation of that area blocked retrieval of consolidated memories. In 

humans, Ezzyat and Davachi (2011) showed that greater activation of 

ventromedial PFC (vmPFC; a subregion of mPFC) in humans during memory 

encoding was correlated with how strongly those memories were associated 

with other memories in the same “event”, consistent with the idea that vmPFC 

is involved in schemas that are bound to memories. Note that vmPFC and 

OFC (implicated in state representations for reinforcement learning, as 

described in the previous section) have varying anatomical definitions, but are 

often construed to be overlapping.  

Even while the field has made gains in uncovering the neural basis of 

schema representation, it remains to be specified concretely what constitutes 

a schema. In Chapter 4, I investigate the hypothesis that schemas are 

inferred using Bayesian latent cause inference, and that they are represented 

in vmPFC/OFC as a probability distribution over the possible “latent causes”. 

Bayesian latent cause inference allows us to make inferences about what 

underlying causes are generating our observations at any given time, with the 

statistically optimal inference involving the computation of a posterior 

probability distribution over latent causes. Viewing the world as structured 
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according to latent causes may serve as a general organizing principle for our 

memories. Our results from Chapter 4 support previous ideas that 

vmPFC/OFC represents inferred situation, and, moreover, suggest that this 

representation does indeed take the form of a posterior probability 

distribution. 

A related idea in theories of episodic memory is the idea of “context”. It 

is believed that all memories are encoded with information about their 

context, which may include information about time, space, and emotional 

state. Context is thought to organize memories and to act as a retrieval cue, 

so that memories are activated when a similar context is reinstated. A key 

untested claim in current theories of episodic memory (e.g. Howard and 

Kahana, 2002; Polyn et al, 2009) is that memories are organized by the 

semantics of recent experience; i.e. memories are more likely to be reinstated 

when the experiences immediately preceding the memory are semantically 

similar to experiences that precede the current timepoint, and also memories 

preceded by semantically similar experiences tend to be recalled together. In 

Chapter 5, I test these predictions and provide evidence for this claim.  

 

2.2  Methods used for neural analyses – multivariate analyses 

and machine learning with fMRI 

In recent years, human fMRI studies have benefited greatly from the 

development of multivariate analyses and the application of machine learning 
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to fMRI data. These methods examine patterns of activity across voxels in the 

brain, without requiring specific predictions about what exactly those patterns 

of activity should look like. 

In the following work, I use two main classes of multivariate analysis: 

(1) the application of classification methods from machine learning (e.g. 

Norman et al, 2006; Lewis-Peacock and Norman, 2015), and (2) “pattern 

similarity” analysis, which examines the similarity structure of patterns of 

neural activity, and identifies brain regions where the similarity structure of 

neural patterns matches the similarity structure predicted by a particular 

cognitive model (e.g. Kriegeskorte et al, 2008). 

Classification analyses apply methods from machine learning to 

classify data according to given class labels. Common methods include 

logistic regression and support vector machines. If patterns of activity from an 

area of the brain can be successfully classified according to the desired class 

labels, that indicates encoding of class information in the brain area.3 I apply 

these methods in Chapters 3 and 5. 

Pattern similarity analyses can be performed when we have a model 

that makes predictions about the similarity structure of cognitive states – i.e., 

groups of time points in the experiment where we expect cognitive states to 

                                            

3 However, care should be taken not to overinterpret successful classification in a 

brain area; for example, it does not imply that the brain area itself processes a similar type of 

classification. 
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be more or less similar. For example, if we were trying to identify a brain area 

that represents colors, we could measure brain activity in response to several 

different colors, and try to identify an area whose patterns of activity look 

more similar when the colors are more similar. I apply pattern similarity 

analyses in Chapter 3. 

Without a specific a priori hypothesis about a region of interest in the 

brain, “searchlight” methods allow application of multivariate analyses to 

every part of the brain, applying the analysis iteratively to small 

neighborhoods of voxels across the brain, one neighborhood at a time. I 

employ searchlight analyses in Chapters 3 and 5. 

We now turn to the three empirical studies, in Chapters 3, 4, and 5.  
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3  Learning to predict state transit ions and the 
orbitofrontal cortex 

 

This work was undertaken in collaboration with Nicolas W. Schuck, Nina Lopatina, and Yael 

Niv. This work has previously presented at the following conferences: Society for 

Neuroeconomics, Miami, FL (2015); Workshop on the Neurobiology of Prediction and 

Surprise, New Brunswick, NJ (2014); Reinforcement Learning and Decision Making, 

Princeton, NJ (2013). It is currently in preparation for submission as a journal article. 

 

3.1  Introduction 

To flexibly plan for the future, we must be able to predict which states 

of the world lead to which (the “transition structure” of the world). For 

example, if we know that drinking coffee makes us perky but warm milk 

makes us sleepy, we can make plans about what beverage to drink at 

different times of the day. This type of planning has been termed “model-

based decision making” (Daw et al, 2005), for which the orbitofrontal cortex 

(OFC) has been shown to be particularly important (Baxter et al, 2000; 

Izquierdo et al, 2004; Valentin et al, 2007; De Wit et al, 2009; McDannald et 

al, 2011; Rudebeck et al, 2011; Wilson et al, 2014). However, previous 

research has concentrated on showing that OFC activity relates to the 

expected values of future rewards (Schoenbaum et al, 1998; Gottfried et al, 

2003; Padoa-Schioppa and Assad, 2006; Hampton et al, 2006; Fellows, 

2007; Hare et al, 2008; Wallis and Kennerley, 2011; Monosov and Hikosaka, 

2012), a role that does not explain why the OFC is critical specifically for 
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model-based planning. Recently, a study in rodents suggested a different or 

additional role for the OFC – learning about changes in transition structure 

(McDannald et al, 2011). Learning state transitions is critical to model-based 

planning, because one cannot mentally simulate the future result of current 

actions without an accurate model of how these transitions are likely to unfold 

in the future. We therefore set out to test whether the OFC might be involved 

in error-driven learning about state transitions.  

Specifically, we hypothesized that the OFC computes or represents a 

prediction error at the time of unexpected outcomes, which can be used to 

update an internal model of the transition structure of the world. A previous 

study implicated several brain areas in computing such “state prediction 

errors” (Gläscher et al, 2010), but not the OFC. However, the OFC is 

particularly difficult to image using fMRI due to drop-out and susceptibility 

artifacts, which lead to low signal-to-noise ratios (Deichmann et al, 2003). 

Effects in OFC might therefore be difficult to detect in whole brain studies that 

do not specifically target the OFC as an a priori region of interest. Here we 

performed a targeted investigation of the OFC, using imaging parameters that 

maximize signal in this area, and testing our hypotheses specifically in the 

area. We also tested for effects of OFC activity on behavioral measures of 

learning transition structure, on a trial by trial basis.  

State prediction-error signals should occur upon observing state 

transitions that are unexpected, and can be used to guide learning so that 

these transitions are better predicted in the future. These error signals are 
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analogous to – but distinct from – reward prediction errors that are used for 

learning to associate states with their reward values (e.g., Rescorla and 

Wagner, 1972; Montague et al, 1996). In particular, reward prediction errors 

occur upon observing unexpectedly large or small rewards, while state 

prediction errors should occur even when the reward value is just as 

expected, e.g. when transitioning to a state that was unexpected but just as 

valuable as the state that was expected. For example, if you discover that 

your beer bottle is in fact full of wine, you will experience a state prediction 

error, even if you dislike beer and wine equally. 

In our experiment, subjects performed a task designed to elicit state 

prediction errors in the absence of reward prediction errors. In this task, 

black-and-white image cues led probabilistically to different quantities and 

colors of M&M candies (outcomes). In the critical trials, the number of M&Ms 

was fully predictable, but their color was not – subjects should therefore 

experience a state prediction error even though the value of the outcomes 

was not surprising. Subjects were hungry and were rewarded with actual 

M&Ms at the end of the experiment. Using fMRI, we investigated activity in 

the OFC at the time of the outcomes.  

If the OFC processes prediction-error signals for learning about state 

transitions, then we expect that OFC activity should be different for large vs. 

small state prediction errors (i.e. when an observed state outcome is more vs. 

less surprising). Furthermore, we expect that greater OFC activity at the time 

of an outcome should correspond to greater learning about that outcome, and 
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hence greater expectations of that outcome in the future. We found that OFC 

did show a response at the time of outcomes, and that this response was 

indeed correlated with learning about the state transitions. Using multivariate 

pattern analysis (MVPA) on BOLD activity in the OFC at the times of the 

outcome, we also found that we could successfully decode representation of 

the outcome – a prerequisite for learning about the correct state transition. 

However, we found that we could not distinguish OFC responses for more vs. 

less surprising outcomes, and also OFC activity was correlated with learning, 

but not in the way we expected. These results suggest that the OFC does 

indeed contribute to learning, but not via the particular error-driven learning 

algorithm that we originally hypothesized. 

 

3.2  Methods 

Participants. 

Twenty-four volunteers from the Princeton University community 

participated in exchange for monetary compensation ($20 per hour + up to 

$10 performance-related bonus). All participants were right-handed (14 

female, age range 18-34 years) and stated that they liked M&Ms. Informed 

written consent was obtained from all participants, and the study protocol was 

approved by the Institutional Review Board for Human Subjects at Princeton 

University. 
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Experimental design 

Each trial began with 0.5 - 8 seconds of fixation (exponentially 

distributed, mean 2.4 s). Then one of four black-and-white image cues 

depicting outdoor scenes appeared for 1.2 s (see Fig 1a). On 75% of the 

trials, this was followed by the opening of a box around the image (0.2 s). 

Then, a set of M&Ms appeared below the image and fell into a bowl, over the 

course of 0.9 s. As the M&Ms fell into the bowl, one clinking sound was 

emitted for each M&M in the set. A tally at the bottom of the screen indicated 

the total number of M&Ms received in the experiment so far, for each of the 

four possible colors (not shown in Fig 1a). 

Each of the four image cues was associated with different numbers 

and colors of M&Ms according to a predetermined schedule of reinforcement 

(Fig 1b). Image A and Image B were designed to elicit state prediction errors 

throughout the experiment due to a probabilistic schedule of M&M color, but 

not reward prediction errors, because they always dropped exactly 2 M&Ms. 

Image C, in contrast, was associated with 2 M&Ms of a fixed color, thus 

eliciting no prediction errors once the contingencies had been learned. 

Finally, Image D was designed to elicit reward prediction errors—it was 

associated with a fixed color of either 1 or 4 M&Ms on different trials (as with 

the other image cues, Image D led to 2 M&Ms on average). For each subject, 

the images and M&M colors were assigned randomly from a pool of 20 

images and 5 M&M colors. 
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Figure 1. (a) Experimental design. Trials began with fixation. Then, one of four image cues 
(“start states”) appeared. On most trials, the box around the image opened, and a number of 
colored M&Ms (“end states”) dropped from the image, clinking as they fell into a bowl. On the 
randomly interspersed “guess” trials, the image cue was instead followed by a prompt to 
guess (within 1.5 seconds) either the color or number of M&Ms that would have fallen on that 
trial. (b) Cue-outcome contingencies for each of the four images (transition matrix for 
the experiment). Numbers in table indicate probability of each end state (M&M outcome) 
given each start state (image cue). PE = prediction error. Larger state prediction errors are 
expected for rarer outcomes (smaller transition probabilities). Images and M&M colors were 
assigned randomly for each subject. Our analyses focused on Image A and Image B trials, 
which were designed to elicit state prediction errors in the absence of reward prediction 
errors. 
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Subjects earned 1 real M&M of a given color for every 17 “virtual” 

M&Ms that they received in the task. Subjects were requested to refrain from 

eating or drinking (except water) for at least 3 hours prior to the experiment, 

so that the M&Ms would be especially rewarding. Non-standard M&M colors 

were chosen to circumvent pre-existing preferences for specific M&M colors, 

and to achieve perceptually distinct outcomes that are of equal value. (Note 

also that our analyses of state prediction error always combined Image A and 

Image B trials, so that any potential value differences between the two colors 

would cancel out.)  In a post-experiment questionnaire, subjects rated the 

appeal of the M&Ms on a scale from 1 (not appealing at all) to 5 (very 

appealing). The mean rating was 3.8 ± 0.2. 

On “guess trials” (25% of all trials, pseudorandomly distributed), the 

appearance of the black-and-white image cue was followed by a prompt 

reading “Guess: COLOR” or “Guess: NUMBER”. At the appearance of the 

prompt, the image cue disappeared. Subjects were given 1.5 s to guess what 

color/number of M&Ms would have fallen on that trial. Subjects received 10¢ 

for every question correctly answered. The purpose of the guess trials was to 

encourage subjects to pay attention to the image cue and to actively make a 

prediction of the upcoming M&M outcome on every trial – because the 

allowed response time was so short, subjects had to prepare an answer upon 

viewing the image cue in case a guess prompt followed.  

Subjects performed 72 training trials outside of the scanner, to 

familiarize themselves with the task and to learn the stimulus-outcome 
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contingencies. During training, subjects received and ate the M&Ms they 

earned (approximately 7 M&M candies). They were then informed that future 

M&Ms they earned would be given to them after the ensuing scanning 

session, and they performed another 420 trials in the MRI scanner. At the end 

of the experiment, subjects received all M&Ms earned while in the scanner. 

The 420 trials were evenly distributed between the four image cues, with trial 

order pseudorandomized so that the total number of M&Ms collected 

increased at the same rate for every color. The experiment was divided into 5 

scan sessions of approximately 10 minutes each. 

 

Behavioral measures 

We evaluated three types of behavioral measures, computed 

separately for each subject and for each prediction trial type (image cue type 

x number/color prediction): (1) overall performance over the course of the 

experiment; (2) change in performance over the course of the experiment (3) 

sensitivity to the most recent outcome (a proxy for learning rate).  

For (1), we computed the fraction of responses that were optimal (i.e. 

for which the subject selected the common outcome). We excluded the 

training session for this measure (only including responses from the scan 

sessions), although the results are very similar when we also include the 

training session.  
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For (2), we computed the difference in performance from the beginning 

to the end of the experiment, given as (fraction of optimal responses in the 

last scan session) – (fraction of optimal responses in the training session).  

For (3), we computed the probability of predicting the common 

outcome after observing the common outcome on the previous trial with the 

same image cue, and compared with the probability of predicting the common 

outcome after observing the uncommon outcome on the previous trial with the 

same image cue. The difference between these two quantities serves as a 

proxy for learning rate – subjects with high learning rate would be more 

sensitive to the most recent outcome, and would show a larger difference 

between the two quantities. 

 

fMRI acquisition 

Functional brain images were acquired using a 3T MRI scanner 

(Skyra; Siemens Erlangen, Germany), and were preprocessed using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/). An echoplanar imaging sequence was used to 

acquire 40 slices of 2mm thickness with a 1-mm gap (repetition time (TR) = 

2.4s, echo time (TE) = 27ms, flip angle = 71°, field of view = 196 mm, phase 

encoding direction = anterior to posterior). We optimized our fMRI sequence 

for OFC signal acquisition by including a gap between slices, using shimming 

and fieldmap unwarping, and tilting the slices by approximately 30° from the 

axial plane towards a coronal orientation (Deichmann et al, 2003). Fieldmaps 

consisted of forty 3-mm slices, centered at the centers of the echoplanar 
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slices, with TR = 500ms, TE1 = 3.99 ms, TE2 = 6.45ms, field of view = 

196mm. At the end of the 5 functional scanning sessions, an MPRAGE 

anatomical scan was acquired, consisting of 176 1-mm axial slices, TR = 

2.3s, TE = 3.08 ms, flip angle = 9°, and field of view = 256mm. 

 

Preprocessing  

All functional images were preprocessed using low pass filtering (filter 

at 1/100 Hz), motion correction (six-parameter rigid body transformation), 

correction for B0 magnetic inhomogeneities (fieldmap unwarping), spatial 

smoothing (Gaussian kernel with full width at half maximum of 5mm), and co-

registration of functional and structural scans. For GLM results, we 

additionally performed spatial normalization of subject-level results to match a 

template in MNI space (12-parameter affine transformation). 

 

Functional parcellation of orbitofrontal cortex 

Regions of interest for the orbital frontal cortex were obtained from 

Kahnt et al, who used k-means clustering of functional connectivity patterns to 

parcellate OFC into subregions (Kahnt et al, 2012). We used the parcellation 

of OFC into two clusters, which corresponded with medial-lateral subdivisions 

of OFC found in studies of cytoarchitectonic structure and of intra-regional 

anatomical connectivity (Carmichael and Price, 1996; Ongür and Price, 

2000). 
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Obtaining mean percent signal change at M&M outcomes 

Using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/), we performed a 

GLM with the following regressors: one regressor for the onsets of each type 

of image cue (A, B, C, D); one regressor for the onsets of the M&M outcomes 

for Image C; one regressor each for the onsets of the uncommon outcomes of 

Images A, B, and D; one regressor each for the onsets of the common 

outcomes of image cues A, B, and D; and one parametric regressor for the 

clinks of the M&Ms into the bowl (1, 2, or 4 clinks). These regressors were 

convolved with a standard hemodynamic response function, and combined 

with 6 motion regressors.  

Regressor weights for each voxel and each scan session were 

converted to percent signal change by multiplying by the appropriate scale 

factor for events of length 0.1 sec convolved with the standard double-gamma 

hemodynamic response function, and then dividing by the mean of the voxel’s 

timecourse for that scan session. These per-scan numbers were averaged 

across scans for each participant. To obtain the percent signal change for a 

region of interest, the percent signal change was averaged across all voxels 

in the region of interest. 

 

Obtaining trial-by-trial estimates of percent signal change at M&M 

outcomes 

To obtain trial-by-trial estimates of percent signal change (PSC) in an 

ROI at each M&M outcome, we fit a separate GLM for each trial. This GLM 
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was identical to the one used for estimating mean PSC (above), except that 

the regressor for the condition of the trial of interest was split into one 

regressor modeling the onset just for the trial of interest, and a second 

regressor modeling the onsets of all other trials in that condition (Mumford et 

al, 2012). These GLMs were fitted on data that was preprocessed in FSL, but 

(for computational reasons) the GLMs themselves were fitted in MATLAB. 

 

MVPA classification 

The purpose of our MVPA analyses was to see whether activity in OFC 

at the time of the M&M outcomes contained information about the start state 

and end state (stimulus and outcome) for each transition.  

Given our rapid event-related design, we first used a GLM to 

deconvolve neighboring events, regress out motion artifacts, and to de-noise 

examples through averaging (Mumford et al, 2012). The GLM included, for 

each half of each scan session, regressors modeling the appearance of the 

M&Ms for each of four trial types (Image A followed by M&M Color 1, Image A 

followed by M&M Color 2, Image B followed by M&M Color 1, Image B 

followed by M&M Color 2), comprising of 8 regressors per run. These were 

convolved with a canonical hemodynamic response function. In addition, for 

each scan session we modeled head motion using six motion regressors and 

the mean activity using an intercept regressor. We estimated this GLM on 

each subject’s smoothed, motion-corrected fMRI data using the FSL toolbox 

(http://fsl.fmrib.ox.ac.uk/fsl/). 
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We used the resulting patterns of voxel-wise regressor weights for the 

four trial types (two regressor weights per run and trial type; z-scored) as 

training and testing examples for a support vector machine (SVM) 

classification algorithm with a linear kernel (nu-SVM, as implemented in 

LIBSVM, Chang and Lin, 2011), under a leave-one-session-out cross 

validation scheme using the Princeton MVPA Toolbox 

(https://code.google.com/p/princeton-mvpa-toolbox). We used a standard cost 

(nu) parameter of 1 for the SVM (the results did not vary much with this 

parameter). 

To classify start state, we classified training and testing examples 

according to the image cue (Image A or Image B). To classify end state, we 

classified training and testing examples according to the M&M color (Color 1 

or Color 2). 

 

3.3  Results 

Overall behavioral performance on prediction task 

For the prediction task, the optimal strategy was to predict the most 

common outcome on every trial. Overall, subjects predicted the most 

common outcome 77 ± 2% of the time. The 23% non-optimal guesses may 

have resulted from a combination of probability matching (for probabilistic 

transitions, Vulkan, 2000; Erev and Barron, 2000), imperfect knowledge of 

transition probabilities, and noise. Fig 2a shows subject performance on each 
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trial type. For the probabilistic trial types, participants were, on average, close 

to true probability matching, for which we would expect 67% optimal 

responses. Performance on color prediction for Image A was significantly 

greater than for Image B (p = 0.005), likely because Image A was presented 

first during training. 

 

 

 

Figure 2. Overall behavioral performance, for each image cue and prediction 
trial type. Hatched bars indicate that the outcomes were probabilistic for that cue 
and dimension (i.e. Cue D for number, and Cues A and B for color). Error bars 
indicate standard error of the mean. (a) Mean performance across the 
experiment. Probability of choosing the more common outcome (the optimal 
prediction), for number prediction trials and color prediction trials. Dashed line 
indicates chance performance. (b) Learning across the experiment. Change in 
probability of choosing the more common outcome (computed as the difference 
between the last session and the training session), for number prediction trials and 
color prediction trials. *p < 0.05, **p < 0.01 ***p < 0.0001 
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In terms of learning across the experiment, the subjects tended to 

become more optimal in their predictions, as measured by the difference 

between performance on the last scan session compared to performance 

during the training session (before entering the scanner) (Fig 2b). The only 

exception was in predicting the number of M&Ms for Image D, possibly 

because of the high salience of the 4 M&M outcome. Improvement in color 

and number prediction was not significantly different for Image A and 

Image B. 

For all prediction trial types, there was significant variance across 

subjects in both average performance and in learning, and so we wished to 

see if activity in OFC could predict that variance. 

 

Learning from recent outcomes during scan sessions 

We evaluated each subject’s sensitivity to the most recent outcome, as 

a behavioral proxy for learning rate – a subject with high learning rates should 

be relatively more likely to expect an outcome that she recently experienced, 

while a subject with low learning rates should be relatively unaffected by 

recent experience. To evaluate a subject’s sensitivity to the most recent 

outcome, we evaluated the subjects’ tendency to choose the same outcome 

on the next trial with the same image cue. That is, we computed the 

probability of the subject predicting the common outcome after most recently 

experiencing the common outcome, compared with after most recently 

experiencing the uncommon outcome. Subjects with stronger sensitivity to the  
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Figure 3. Learning from recent outcomes. (a) Behavioral evidence of learning 
from recent outcomes during scan sessions. Probability of predicting the 
common outcome, depending on whether previous outcome (for the most recent trial 
with the same image cue) was the common or uncommon outcome, for (left) color 
prediction on cue A and B trials, and (right) number prediction on cue D trials. Means 
± SEM. (b) Correlation between learning measures. Correlations between 
sensitivity to recent outcomes (computed as P(prediction=common) after a common 
outcome – after an uncommon outcome) and improvement across the experiment 
(computed as the difference between P(prediction=common) for the last session and 
the training session). 
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likely to choose an outcome if they recently saw it, showing that subjects were 

using their experience during the scan sessions to learn about Cue A and B 

outcomes (Fig 3a). On average, subjects did not show this pattern of learning 

during the scan sessions for the Cue D number trials. 

Note that higher sensitivity to recent outcomes does not imply greater 

improvement across the experiment, because high learning rates can in fact 

lead to behavior that is more random. In fact, sensitivity to recent outcomes 

was uncorrelated (across subjects) with improvement across the experiment 

for Cue A and B color prediction, and negatively correlated for Cue D number 

prediction (Fig 3b). 

 

Representation of outcomes in OFC, but not image cues 

To determine representation of the state transition itself, we used 

multivoxel classification methods to classify the start state (image cue) and 

end state (M&M outcome), at the time of the M&M outcome. Cross-validated 

classifier performance was significantly above chance (50%) for M&M 

outcome, indicating reliable representations of end state (Fig 3b). We did not 

find above-chance classifier performance for the start state (image cue). Note 

that, on each trial, the image cue was still on screen at the time that the M&M 

outcome appeared (and in fact occupied a much larger area of the screen 

than the M&Ms), indicating that representations in OFC were not a simple 

reflection of perceptual input. 
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Figure 4. Basic neural results in OFC. (a) Subregions of OFC, displayed on the orbital 
surface of the brain. These regions of interest were obtained on a different dataset by Kahnt 
et al (2012), who parcellated the OFC using k-means clustering of functional connectivity. (b) 
Classifiability of M&M outcome in OFC. Cross-validated classification performance for start 
state (image cue) and end state (M&M color) for Image A and B trials, using multivariate 
linear classifiers on OFC activity. Mean across subjects. Error bars indicate SEM. *p < 0.05  
(c-d) Univariate responses of OFC. Percent signal change in subregions of OFC at the time 
of the common outcomes and the uncommon outcomes. ***p < 0.005 
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Average activity in OFC is correlated across-subjects with learning, but 

not performance 

We found that OFC activity at the time of the outcomes for Images A 

and B was correlated with learning across the scan sessions for color 

prediction, although not in the manner we hypothesized. We had 

hypothesized that greater OFC responses at the time of an outcome should 

lead to greater change in behavior towards expecting that particular outcome. 

Instead, subjects with larger average negative BOLD responses in OFC 

during the scan sessions at the time of any outcome (both common and 

uncommon) showed a greater change in behavior towards choosing the 

common outcome for Image A and B trials, when comparing subjects’ 

predictions before the first scan session to their predictions on the last scan 

session. We found this to be true for both subregions of OFC (lateral and 

medial+) (Fig 5a). Lateral OFC further showed a negative correlation across 

subjects between learning and the difference in mean activity at the time of 

the uncommon vs. common outcomes. 

Interestingly, we did not find any relationship when comparing average 

activity in OFC with subjects’ overall performance (Fig 5b). That is, OFC 

activity only showed a relationship with change in performance, indicating a 

specific role for OFC in learning. 
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Figure 5. Across-subject correlations of OFC activity with improvement and overall 
performance. Each point indicates one subject. (a) Across-subject correlations of OFC 
activity with improvement across the experiment, measured as the change in probability 
of making the optimal prediction (the most common option), computed as the difference in 
performance between the last session and the training session. These correlations are 
performed for mean % signal change in OFC subregions at the uncommon outcomes and 
common outcomes, and also for the difference between two. (b) Across-subject 
correlations of OFC activity with overall performance, measured as the probability of 
making the optimal prediction (the most common option), across all sessions. 

 

We also did not find any across-subject correlations between OFC 

activity and improvement for the number prediction trials (for Cues A and B, 

where number was held constant) or for the Cue D trials (neither number 

prediction or color prediction). 

b

p(
pr

ed
ic

tio
n 

=
 c

om
m

on
)

% signal change

-0.4 -0.2 0 0.2 0.4

p = 0.44

-0.4 -0.2 0 0.2 0.4

p = 0.83

0.4

0.6

0.8

1

0.4

0.6

0.8

1

uncommon outcome common outcome

OFC
lateral

OFC
medial+

uncommon outcome common outcome

im
pr

ov
em

en
t i

n 
p(

pr
ed

ic
tio

n 
=

 c
om

m
on

)

% signal change

0-0.2-0.4-0.6 0.2 0.4

0-0.2-0.4 0.2 0.4 0-0.2-0.4 0.2 0.4

0-0.1-0.2 0.1 0.2 0.3

0

-0.5

0.5

1

0

-0.5

0.5

1

0

-0.5

0.5

1

0

-0.5

0.5

1

* p = 0.016***** p = 0.00047

* p = 0.015** p = 0.0093

OFC
lateral

OFC
medial+

a

p = 0.18

* p = 0.048

0-0.5-1 0.5 1

0

-0.5

0.5

1

0-0.5-1 0.5 1

0

-0.5

0.5

1

uncommon - common

uncommon - common

−1 -0.5 0 0.5 1
0.4

0.6

0.8

1

−1 -0.5 0 0.5 1
0.4

0.6

0.8

1
p = 0.96

p = 0.87

-0.2 -0.1 0 0.1 0.2 0.3
0.4

0.6

0.8

1 p = 0.30

-0.6 -0.4 -0.2 0 0.2 0.4

p = 0.99

0.4

0.6

0.8

1



 33 

 

Trial-by-trial correlations of OFC activity with learning from the most 

recent outcome 

Given that subjects demonstrated learning from the most recent 

outcome for Cues A and B during the scan sessions (Fig 3a, described 

above), we evaluated whether OFC activity affected this learning, on a trial-

by-trial basis. We performed logistic regression, within subjects, of OFC 

activity at the time of an outcome against the probability of predicting the 

same outcome on the next trial with the same image cue.  

Again, the results indicated an involvement of OFC in learning about 

transitions, but not in the way we originally hypothesized. We expected that, 

for Cues A and B, the fitted slope terms for the logistic regression should be 

positive—greater OFC activity at the time of an outcome should lead to a 

greater probability of the subject predicting the same outcome on the next 

trial. Instead, we found that the fitted slope terms were positive for trials 

where the most recent outcome was the common outcome, and negative for 

trials where the most recent outcome was the uncommon outcome. In other 

words, no matter the outcome, greater BOLD activity in OFC at the time of an 

outcome was correlated with greater probability of predicting the common 

outcome on the next trial with the same cue (Fig 6). 
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Figure 6. Within-subject, trial-by-trial correlations of OFC activity with learning from 
recent outcomes, for Cue A and B trials. Mean slope term from logistic regression of % 
signal change in OFC subregion at previous outcome (for the most recent trial with the same 
image cue) vs. probability of predicting the same outcome, fitted for each subject separately, 
and also separately for trials where the previous outcome was the common outcome or 
where the previous outcome was the uncommon outcome. Bars indicate mean slope terms 
across subjects ± SEM. 
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measures of learning about state transitions, both within and across subjects. 

Across subjects, average OFC activity at the time of outcomes was negatively 

correlated with an improvement in optimally predicting state transitions. OFC 

activity was not correlated with mean performance, indicating a specific role 

for learning. Within subjects, on a trial-by-trial basis, OFC activity at the time 

of an outcome was positively correlated with a greater likelihood of optimally 

predicting the outcome on the next trial with the same image cue. 

We can conclude that the state-transition learning in our experiment 

was distinct from value-based learning like that implemented in the 

dopaminergic system, since the number of M&Ms was always the same for 

the trials of interest. Also, in our analyses, we always combined conditions in 

which the identities (M&M colors) of the common and uncommon outcomes 

were reversed, so that any potential differences in value for the different 

colors would cancel out. Note, however, that we did find what appeared to be 

value sensitivity in lateral OFC for a task condition (not considered in our 

main analyses) in which outcomes varied in the number of M&Ms, consistent 

with previous work demonstrating that OFC activity encodes the value of 

rewards (Schoenbaum et al, 1998; Gottfried et al, 2003; Padoa-Schioppa and 

Assad, 2006; Hampton et al, 2006; Fellows, 2007; Hare et al, 2008; Wallis 

and Kennerley, 2011; Monosov and Hikosaka, 2012). 

Using previously determined functional connectivity-based parcellation 

of OFC (Kahnt et al, 2012), we separately inspected medial and lateral OFC 

in all our analyses, given that previous work implicating OFC in learning about 
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transition structure (McDannald et al, 2010) was only performed in the lateral 

OFC of rats (although the homology of OFC between rodents and humans is 

currently unclear, and also OFC subdivisions are particularly complex given 

observed considerable anatomical variability within individuals; Wallis et al, 

2011; Chiavaras and Petrides, 2000). In our study, medial and lateral OFC 

showed very similar results across all our analyses. Of course, this does not 

rule out the possibility that there may exist a different parcellation of OFC that 

would lead to differing results across subregions.  

Note that the BOLD signal we measured might reflect inputs to OFC, 

local processing within the OFC, its projections to other areas, or a 

combination thereof; our hypothesis does not distinguish between these 

interpretations. We should also take special care in interpreting the negative 

BOLD response to outcomes in OFC, which has been previously observed 

(e.g. Boorman et al, 2009) but which is not yet fully understood. 

What algorithm might underlie the observed relationships between 

OFC and learning about state transitions? Previous work has proposed a 

“state prediction error” algorithm for learning state transitions, analogous to 

the reward prediction errors observed in dopaminergic neurons. This state 

prediction error should signal surprise at the time of an outcome, and would 

be used to adjust internal estimates of transition probabilities towards greater 

prediction of the observed outcome. Gläscher et al 2010 implicated some 

brain areas in this function (dorsolateral prefrontal cortex and intraparietal 

sulcus), via univariate correlation with an inferred state prediction error signal. 



 37 

Our results do not uphold the idea that the OFC supports learning 

about state transitions via such a state prediction error signal; at the least, this 

signal does not seem to be encoded in the OFC’s univariate response to 

outcomes, given that we did not observe univariate differences in OFC activity 

for common vs. uncommon outcomes (we would expect greater state 

prediction errors for the uncommon outcomes), and also the fact that OFC 

activity at the time of an outcome was not correlated with greater expectations 

of that particular outcome. Instead, OFC activity was related to greater 

expectations of the more common outcome, no matter whether the OFC 

activity occurred at a common or uncommon outcome. It is also not obvious 

why we should find opposite directionality in the relationship between OFC 

activity and learning for across-subject vs. within-subject analyses, although 

this result may eventually serve as a key to understanding the role of OFC. 

Another key to understanding may be that we observed representation in 

OFC of the identity of the outcomes, a result that has been previously 

observed (Izquierdo et al, 2004; Knutson et al, 2005; Padoa-Schioppa and 

Assad, 2006; Young and Shapiro, 2011; Klein-Flügge et al, 2013; Wilson et 

al, 2014).  

In any case, however, it remains that we did observe relationships 

between OFC activity and learning about state transitions, both in across-

subject analyses and on a trial-by-trial basis, and these observations are 

consistent with a previous demonstration that rats with OFC lesions were 

unable to learn about changes in state transitions (McDannald et al, 2011). 
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Although further work will be required to elucidate any learning algorithms that 

may underlie these relationships between OFC and learning about state 

transitions, the current results provides some hints for beginning to 

understand the involvement of OFC in this learning ability, and in model-

based decision making in general. 
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4  Orbitofrontal cortex represents a belief 
distr ibution over latent causes 

 

This work was performed in collaboration with Yael Niv and Kenneth A. Norman. This work 

has previously presented at the following conferences: Reinforcement Learning and Decision 

Making, Edmonton, AB, Canada (2015); Computational and Systems Neuroscience, Salt 

Lake City, UT (2015); Society for Neuroscience, Washington, DC (2014). It is currently in 

submission as a journal article. 

 

4.1  Introduction 

In recent years, cognitive neuroscientists studying reinforcement 

learning have recognized the importance of specifying representations of 

environmental “state” that capture the structure of the world in a predictive 

way (Gershman and Niv, 2010; Courville et al, 2006). At the same time, there 

has been renewed interest among cognitive neuroscientists in how memory 

encoding and retrieval are shaped by situation-specific prior knowledge 

(“schemas”, e.g. Tse et al, 2007). As work in this area progresses, it is 

important to clarify exactly what constitutes a schema and how schemas are 

formed.  

Whether inferring the current “state” or the currently relevant “schema”, 

agents are making inferences about the hidden variables that underlie and 

generate our observations in the world. This inference can be concretely 

formulated in terms of Bayesian latent cause models (e.g., Gershman, Blei, 



 44 

and Niv, 2010). According to this framework, states and schemas can be 

viewed as hidden (latent) causes that give rise to observable events. For 

example, if you arrive late to a lecture, the situation (whether this is indeed the 

department colloquium or you have accidentally walked in on an 

undergraduate class) affects your observations about the average age of the 

audience, the proportion of audience members that are taking notes, the type 

of information being presented, and so on. To decide whether you are in the 

right place, you can use Bayesian inference to infer a belief distribution over 

the possible situations that might have generated the current observations, 

i.e. a posterior probability distribution over latent causes, p(latent cause | 

observations) (Figure 1A). 

We hypothesized, based on the similarity of the underlying 

computations, that the inference related to these two cognitive constructs 

(states and schemas) might be implemented using the same neural hardware. 

Indeed, there is one area of the brain that has separately been implicated in 

representing states (Wilson et al, 2014) and also schemas (Schlichting and 

Preston, 2015; Richards et al, 2014; Ghosh and Gilboa, 2014; Ranganath and 

Ritchey, 2012; van Kesteren et al, 2012; Tse et al, 2011) – the orbitofrontal 

cortex (OFC). Furthermore, previous univariate analyses in fMRI have 

implicated this region in encoding various summary statistical measures that 

are related to or are components of the posterior distribution, e.g. the 

posterior mean, likelihood of the current stimulus, and prior uncertainty (Ting 
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et al, 2015; d’Acremont et al 2013; Vilares et al, 2012). However, these 

studies have not investigated representations of a full probability distribution. 

Here, we used fMRI to investigate representation in OFC of posterior 

probability distributions over latent causes. In our experiment, we created a 

probabilistic environment in which participants were required to make 

inferences about the hidden causes that generated their observations. 

Participants viewed sequences of animal photographs, taken in one of four 

“sectors” in an animal reserve. They were tasked with judging the probability 

with which each sector generated the animal photographs, based on their 

previous experience observing animals in each sector. Using multivariate 

pattern similarity analyses of fMRI activity, we found that BOLD activity in the 

OFC was better explained by the posterior distribution over sectors (latent 

causes) than by a wide range of related signals, including the current 

stimulus, the most probable sector (the maximum a posteriori latent cause), or 

the uncertainty over latent causes (operationalized as the entropy of the 

posterior distribution). The present result advances our understanding of the 

function of the orbitofrontal cortex. It also unifies results from two different 

fields of cognitive neuroscience, inviting further investigation into the 

relationship between probabilistic inference, states, and schemas. 
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4.2  Methods 

Participants 
 

32 participants (aged 18-34 years, 22 female) from the Princeton 

University community participated in exchange for monetary compensation 

($20 per hour + up to $15 performance-related bonus). All participants were 

right-handed. Participants provided informed written consent. The study was 

approved by the Princeton University Institutional Review Board. 

 

Experimental design  

The safari 

Participants were told that they were going on a safari, visiting an 

animal reserve that was divided into 4 different sectors. Each sector was 

associated with a different color, background image, background music, and 

location on a 2 by 2 map (randomized across participants). 

There were 5 different kinds of animals in the animal reserve. Every 

animal appeared in every sector, but with different likelihoods P(animal | 

sector). The likelihoods (not shown directly to the participants) were chosen 

so that none of the sectors were strongly identified with a single animal, and 

so that none of the animals were strongly identified with a single sector 

(Figure 1B; colors and animals were randomly assigned across participants).  
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Procedure Overview 

The experiment consisted of two parts. In the first part, participants 

“toured” through the animal reserve, in order to learn (through experience) the 

likelihoods P(animal | sector) for each animal and each sector. In the second 

part of the experiment, participants were shown sequences of “photographs” 

of animals that were taken in an unknown sector, and were asked to infer the 

posterior probabilities of different sectors given the animals shown in each 

sequence, P(sector | animals shown). For each participant, the experiment 

took place across two consecutive days (see Table 1). 

 

   

Day 1   

“Tours” task 40 trials each tour 2 tours through each sector,  
going clockwise around the map 

“Tours” task 20 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

Day 2   

“Tours” task 30 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

“Tours” task 10 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

“Photographs” task 2 sessions x 20 trials each outside of the MRI scanner 

“Photographs” task 4 sessions x 30 trials each inside of the MRI scanner 

 
Table 1. Tasks performed by participants on Day 1 and Day 2. 
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Figure 1 – Task. A. Schematic showing the relationship between latent causes and 
observations in the world. Inference about the posterior probability over latent causes 
involves inverting the generative model. B. Animal likelihood distributions P(animal | sector) 
(not shown directly to participants). Colors and animals were randomized across participants. 
C. An example of the first few trials of a tour through sector YELLOW. Each tour began with 
an image of the safari map, indicating the current sector and its location, and lasted 30-40 
trials. Each trial began with a prompt asking the participant to guess which animal would 
appear next, followed by the appearance of an animal. A fixation cross was presented for 0.2-
0.8 secs before each question and each animal presentation. The animals were 
pseudorandomly drawn from the likelihood distributions for the current sector. The sector’s 
music played in the background, until the start of the next tour. D. An example of a trial in the 
“photographs” task. Each trial began with an image of the safari map with a question mark at 
its center, indicating that the current sector was unknown. Next, a sequence of 1-6 animals 
appeared (pseudorandomly drawn from a single sector). Finally, participants were prompted 
to guess which of two sectors (randomly chosen) was more (or, on half the trials, less) 
probable. Participants received feedback on their responses. A fixation cross was presented 
for the last 0.5 secs of each animal presentation. [Thanks to sciencewithme.com for the 
animal illustrations.] 
 

 

“Tours” task 

In the “tours” task (Figure 1C), participants were instructed that they 

would “tour” through the animal reserve, one sector at a time, in order to learn 

the animal frequencies in each sector (the animal likelihoods). One animal 
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appeared on each trial, pseudorandomly chosen according to the likelihoods 

for that sector. Before each animal appeared, participants were shown a 

prompt, asking them to make a prediction about which of two animals (one 

correct and one randomly chosen) would appear next. The alternate 

(incorrect) option was chosen with uniform probability from the four other 

animals. To distinguish between the animals in the question prompt (which 

were not representative of the sector’s likelihood distribution) and the animals 

that were actually drawn from the sector’s likelihood distribution, the question 

prompts were shown as text while the animals drawn from the safari sector 

were shown as pictures.  

In order for the sectors to form rich contexts, each sector was 

associated with a different color, background image, background music, and 

location on a 2 by 2 map (randomized across participants). Before the first 

trial of a tour through a sector, participants were shown the sector’s location 

on the map. Also, for the duration of a tour through a sector, animals were 

displayed on the sector’s color-matched backdrop image, and the music 

associated with that sector was played in the background. 

 

“Photographs” task 

On each trial of the “photographs” task (Figure 1D), participants were 

shown a sequence of animal “photographs”, without being told which sector 

the photographs were taken from. At the end of the sequence, participants 

were prompted to indicate which of two sectors (randomly chosen) was more 
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(or less) probable. The two sector options for each question were chosen 

uniformly from the four sectors of the safari (and did not necessarily include 

the most or least likely sector). So, to perform well on the task, participants 

had to maintain a full posterior distribution over all four sectors (as opposed to 

estimating only the most probable sector, for instance). 

Participants received 10 cents for every correctly answered question, 

and they received feedback on every trial. So that more probable sectors 

were not consistently associated with higher monetary value, we asked which 

of the two sectors was more probable on half of the trials, and which was less 

probable on the other half of the trials. To eliminate confounds with motor 

plan, the positions of the two response options were pseudorandomly 

assigned between left and right. 

To encourage participants to update their inference of the sector 

probabilities after every animal presentation (as opposed to waiting until the 

time of the question to integrate over the animals observed), we varied the 

length of the sequences between 1 and 6 animals (so that the appearance of 

the question prompt was unpredictable), and participants were only allowed 

2.5 seconds to give a response after the appearance of the question. 

The posterior probability of each sector P(sector | animals seen) can 

be straightforwardly computed from the animal likelihoods, using Bayes rule 

(all sectors were equally likely a priori): 

𝑃 sector 𝑖  animals seen)  ∝ 𝑃 animals seen  sector 𝑖 )  ∗  𝑃(sector 𝑖 ) 
∝ 𝑃 animal 1  sector 𝑖 )  ∗ 𝑃 animal 2  sector 𝑖 )  ∗ …           

(Eq. 1) 
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Feedback for the responses was generated based on these posterior 

probabilities. Due to a bug in the code that was undetected during data 

collection, the feedback was incorrectly generated for some of the trials 

containing only one animal presentation (this affected approximately 10% of 

the trials). In our fMRI analyses, to account for learning from the incorrect 

feedback, we used each participant’s estimates of the likelihoods (collected at 

the end of the experiment) instead of the real likelihoods, and we also 

performed trial-by-trial behavioral model-fitting to model learning from 

feedback (see next section). 

Participants first performed 2 sessions (20 trials each) of the 

“photographs” task outside the MR scanner, to familiarize themselves with the 

task. They then performed 4 sessions (30 trials, approximately 11 minutes per 

session) inside the scanner. 

 
Behavioral model-fitting  
 

To model participants’ posterior inference on the “photographs” task, 

as well as any learning from feedback, we performed trial-by-trial model-fitting 

of participants’ responses. We tested several classes of models: 

 
Bayesian_nolearning – This model assumed that participants were 

correctly computing the posterior distribution over sectors P(sector | 

animals seen) using Bayesian inference (as in Eq. 1). To obtain the 

model-derived likelihood of each behavioral response (and to capture 

stochasticity in participants’ behavior), we used a softmax on the 
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posterior probabilities of the two options in each question prompt.  

𝑃 response = option 1 =
!

!!exp[!∗ ! sector = option 1  animals seen !! sector = option 2  animals seen))]
      

 (Eq. 2) 
 

where β is an inverse temperature parameter (β = 0 implies equal 

likelihood for both options). 

 

additive – In this model, instead of correctly multiplying the animal 

likelihoods together to obtain the posterior distribution over sectors (as in 

Eq. 1), we assumed that participants added the likelihoods together to 

obtain an “additive posterior” (normalized to sum to 1).  

"Additive posterior"  ∝   𝑃 animal 1  sector) + 𝑃 animal 2  sector) +⋯            
(Eq. 3) 

While statistically suboptimal, we might expect this from a simple 

associative mechanism that brings the sectors to mind in proportion to 

their association strength with the animals seen. Again, to determine 

response probabilities, we applied a softmax operator to the additive 

“posterior” probabilities for the two options in each question prompt. 

most/least voter – These models assumed that participants were only 

paying attention to the most common (and/or least common) animals in 

each sector, a similar strategy having been previously observed in a 

similar task (Gluck et al, 2002). During the trials, each animal 

appearance "voted" for (or against) the sectors in which it was the most 
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common (or least common). To obtain the model-derived likelihood of 

each behavioral response, we used a softmax on the final tally at the 

end of each sequence. 

We tested several variants of this model, e.g. tallying only the positive 

votes, and/or allowing an animal to “vote” for (or against) a sector if it 

was one of the two most (or least) common animals in that sector. The 

magnitude of the positive and negative votes were either allowed to be 

two separate free parameters, or constrained to be equal to each other. 

Because the magnitude of the vote already served as a scaling 

parameter for the input to the softmax operator, the inverse temperature 

of the softmax was kept constant at 1. 

Bayesian_feedbackRL – These models were designed to account for 

learning from feedback during the “Photographs” task (including the 

incorrectly generated feedback). Here we assumed a reinforcement 

learning process, in which participants adjusted their internal estimates 

of the animal likelihoods after feedback about the two sectors in the 

question. These likelihoods were then used to compute the posterior 

distribution over sectors via Bayes rule.  
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Figure 2 – FeedbackRL model. An illustration of learning from feedback in 
the Bayesian_feedbackRL model, for a single trial (not real data). In this 
example trial, the participant saw a lion and an elephant, and was asked 
about sector BLUE and sector GREEN. The feedback indicated that sector 
BLUE was more probable. As a result, the likelihoods P(BLUE | elephant) and 
P(BLUE | lion) are adjusted towards 1 with learning rate αpos, and the 
likelihoods P(GREEN | elephant) and P(GREEN | lion) are adjusted towards 0 
with learning rate αneg.  

 

For the sector that feedback indicated to be more probable, likelihoods 

were adjusted upwards for all animals that were seen on that trial. For 

the sector that was indicated to be less probable, likelihoods were 

adjusted downwards for all animals seen on the trial (see Figure 2 for an 

example). 

𝑃 animal  more probable sector )new = 𝑃( animal | more probable sector )old     
+ 𝛼pos(1 − 𝑃( animal | more probable sector )old)  

𝑃 animal  less probable sector)new = 1 − 𝛼neg 𝑃 animal  less probable sector)old 
(Eq. 4) 
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Estimates of the likelihoods were renormalized after each adjustment. 

The learning rates αpos and αneg were either allowed to be two separate 

free parameters, or they were constrained to be equal. 

For the initialization of the likelihoods, we tested two versions of the 

model: initialization at the true animal likelihoods, or initialization 

according to the participants’ subjective estimates of the likelihoods 

(collected at the end of the experiment, see below). 

Finally, the likelihoods were used to compute the posterior distribution 

over sectors via Bayes rule. Thus, posterior inference in the 

FeedbackRL model also used Bayes rule – the only difference from the 

“Bayesian_nolearning” model above is that the likelihoods (which enter 

into the posterior inference computation from Eq. 1) were adjusted on 

each trial according to feedback. 

We tested several additional variants of this model. In one variant, 

participants only adjusted their likelihoods in response to “You are 

incorrect” feedback (instead of in response to all feedback). In another 

variant of the model, we scaled the learning rates separately for each 

animal according to how much that animal contributed to the final 

posterior distribution: 

𝛼eff, animal X = 𝛼 ∙ 𝑎𝑏𝑠  𝑃 more probable sector  appearances of animal X )
−  𝑃 less probable sector  appearances of animal X )  

(Eq. 5) 
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In this variant, animals appearing multiple times in a trial would have 

higher effective learning rates, having contributed more to the final 

decision. 

 

In a post-experiment questionnaire, we asked participants to provide 

their estimates for the animal likelihoods in each sector. For each of the 

models above, we tested versions using (a) the actual animal likelihoods, and 

(b) subjective estimates of the animal likelihoods. For the few participants 

who provided likelihood estimates that did not sum to 1, we normalized the 

estimates. To avoid taking logarithms of 0, we converted estimated 

likelihoods of 0 to 0.01 (and renormalized).  

For each of the models, we also tested versions in which the earlier 

and/or later animals in each sequence were given extra weight. To model 

these primacy/recency effects, we fit a power law function for each participant 

to give more weight to the earlier and/or later animals in each sequence (e.g. 

1w, 2w, … for animal 1, animal 2, …). The likelihoods were exponentiated by 

this weighting and renormalized. If modeling both recency and primacy, the 

weightings for each were summed. We tested versions in which the recency 

and primacy free parameters w were either allowed to be two free 

parameters, or they were constrained to be equal. 

Free parameters for each model were fit to each participant’s 

behavioral data separately, using Matlab’s “fmincon” function, with at least ten 



 57 

random initializations for each model and each participant. The best-fitting 

parameters (the maximum likelihood estimates) were used to evaluate, for 

each participant and each model, the (geometric) mean likelihood per trial 

(i.e., the exponentiated log likelihood per trial, without any penalization for 

number of parameters), the Akaike information criterion (AIC), and the 

Bayesian Information Criterion (BIC), in order to compare the models and 

determine which best accounted for participants’ behavior. 

  
 
Model Free parameters Mean ± SE Range 

Bayesian_nolearning β - softmax inverse temperature 4.04 ± 2.22 [0, ∞] 

additive β - softmax inverse temperature 7.04 ± 3.46 [0, ∞] 

mostleast_voter 
(voting for or against the 
sectors in which an animal 
was the most or least 
common) 

v_pos - size of positive vote 
v_neg - size of negative vote 

1.69 ± 3.39 
0.754 ± 1.39 

[0, ∞] 
[0, ∞] 

Bayesian_feedbackRL 
(learning from all feedback, 
no scaling of learning rates, 
and αpos  = αneg) 

α - learning rate  
β - softmax inverse temperature 

0.0515 ± 0.161 
4.82 ± 2.52 

[0, 1] 
[0, ∞] 

 
Table 2. Free parameters and parameter fits, for the best-fitting model for each class. 
The best-fitting models for all classes did not model recency or primacy biases, and used 
each participant’s subjective estimates of the animal likelihoods rather than the actual 
likelihoods. For model classes that had additional variants, the best-fitting settings are 
described in parentheses. 
 
 
 
fMRI acquisition and pre-processing 
 

Functional brain images were acquired using a 3T MRI scanner 

(Siemens, Skyra) and preprocessed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/). 

An echoplanar imaging sequence was used to acquire 36 slices (3mm 
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thickness with 1mm gap, repetition time (TR) = 2s, echo time (TE) = 27ms, 

flip angle = 71º). To increase signal in the OFC, slices were angled 

approximately 30 degrees from the axial plane towards a coronal orientation 

(Deichmann et al, 2003). For each participant, there were 4 scanning runs in 

total (approximately 11 minutes each). The functional images were spatially 

filtered using a Gaussian kernel (full width at half maximum of 5mm), and 

temporally filtered using a low-pass cutoff of 0.0077Hz. We performed motion 

correction using a six-parameter rigid body transformation to co-register 

functional scans, and then registered the functional scans to an anatomical 

scan using a 6-parameter affine transformation. 

The motion regressors (and their derivatives) were residualized out 

from the functional images, as were the mean timecourses for cerebrospinal 

fluid and white matter (segmentation was performed using FSL’s “FAST” 

function), and also the mean timecourse for blood vessels (estimated by 

taking voxels with the top 1% in standard deviation across time). Then, the 

functional images were z-scored over time. All analyses were performed for 

each participant in participant space, and then spatially normalized by 

warping each participant’s anatomical image to MNI space using a 12-

parameter affine transformation. 

 
Region of interest – Suborbital sulcus 
 

Our region of interest (ROI) was determined as the intersection of two 

sets of brain areas. The first set of areas, the orbitofrontal cortex, has been 
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postulated to be involved in the representation of “state”, due to evidence 

from studies of human and animal reinforcement learning (Wilson et al, 2014). 

The second set of areas, sometimes referred to as the “posterior medial 

network”, has been postulated to be involved in the computation and 

representation of “schemas” or “context” (Ranganath and Ritchey, 2012), as 

the set of areas with high connectivity with parahippocampal cortex (PHC). 

The intersection of these sets of areas is the suborbital sulcus, a medial 

subregion of the orbitofrontal cortex (Figure 6A). Using Freesurfer (Destrieux 

et al, 2010), the ROI was drawn as the anatomically parcellated cortical 

region centered on the voxel with maximal resting-state functional 

connectivity to PHC (Libby et al, 2012). 

 

Representational similarity analysis 
 

If the suborbital region of interest (ROI) contains a multivariate 

representation of the posterior distribution over latent causes, then patterns of 

neural activity in this area should be more similar for pairs of timepoints at 

which the posterior distribution was similar, and they should be dissimilar for 

pairs of timepoints at which the posterior distribution was dissimilar. 

Therefore, to test whether multivariate patterns of activity in the ROI might be 

representing the posterior distribution over sectors, we performed a 

representational similarity analysis (RSA; Kriegeskorte et al, 2008).  

We first computed the similarity of the posterior distribution over 

sectors for every pair of timepoints during which we expected the posterior 
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distribution to be updated (i.e. at the times of the animal appearances). This 

provided us with the similarity matrix for the posterior. We also computed the 

similarity of the neural pattern in the ROI for every pair of timepoints—the 

similarity matrix for the ROI. Then we computed the Spearman rank 

correlation of these two matrices (taking only the upper triangle and excluding 

the diagonal). We denote this Spearman correlation as the similarity match 

between the posterior and the ROI (Figure 3). We expected the similarity 

match to be positive, i.e. that the neural patterns in the ROI should be more 

similar for pairs of timepoints at which the posterior distribution over sectors 

was more similar.  

We also computed the similarity match for the ROI with other signals, 

to compare with the similarity match between the ROI and the posterior 

distribution over latent causes. This is important because the similarity 

structure for the ROI could potentially be correlated with the similarity 

structure of the posterior distributions for reasons other than the fact that the 

posterior distribution is represented in this area. For example, the posterior 

distribution is, on average, more similar for pairs of timepoints at which the 

same animal is presented—if the suborbital ROI represents the animal 

currently presented, we would also find a positive similarity match between 

the ROI and the posterior distribution. We therefore compared the similarity 

match between the ROI and each alternate model, to determine the model 

that best explained the similarity structure of the neural data.  
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The set of alternate models used for this comparison included the log-

transformed posterior distribution (since many signals in the brain are known 

to be represented in log space; e.g. Yang and Shadlen, 2010; Gibbon, 1977; 

Longo and Lourenco, 2007), the current stimulus, the maximum a posteriori 

(MAP) sector (most probable sector), the entropy of the posterior distribution 

 

 
Figure 3 – Representational similarity analysis. An illustration of the representational 
similarity analysis (not real data). We first computed the similarity structure for the posterior 
distribution (or any alternative model; see Table 3) by computing the normalized correlation of 
the posterior at every timepoint with every other timepoint. We also computed the neural 
similarity structure for our region of interest (or for each searchlight in the whole-brain 
analysis), by computing the normalized correlation between patterns of activity at every 
timepoint with every other timepoint. To evaluate the representational similarity match 
between the neural data and the model, we then computed the Spearman correlation 
between the two matrices (using only the upper triangle of each matrix, excluding the 
diagonal). 
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Model Description Similarity measure  
for two timepoints 

posterior 
Vector [4x1] containing the posterior 
probability of each sector  
P(sector | animals seen so far) 

normalized correlation* 

log posterior  

Vector [4x1] containing the natural 
logarithm of the posterior probability 
for each sector  
log[P(sector | animals seen so far)] 

normalized correlation* 

current animal An integer ∈ {1,2,3,4,5} indicating 
which animal is currently on screen 

1 if the same animal 
0 otherwise 

entropy A scalar indicating the entropy of the 
posterior distribution over sectors –abs[entropy(t1) – entropy(t2)] 

maximum a posteriori  
(MAP) 

An integer ∈ 1,2,3,4  indicating 
which sector has the highest 
posterior probability 

1 if the same sector 
0 otherwise 

p(MAP) A scalar indicating the probability of 
the maximum a posteriori sector –abs[p(MAP(t1)) – p(MAP(t2))] 

posterior_MAPonly 

The posterior [4x1], zeroed for all 
sectors except the maximum a 
posteriori sector (i.e. a signal that 
contains both MAP and p(MAP) 
information)  

normalized correlation* 

time A scalar indicating the seconds 
passed since the start of the session –abs[time1 – time2] 

posterior – 
feedbackRL 

Vector [4x1] indicating the posterior 
distribution over sectors, computed 
using the likelihoods updated on 
each trial using the best-fitting 
feedbackRL model (free parameters 
fitted for each participant) 

normalized correlation* 

MAP – feedbackRL 

An integer ∈ 1,2,3,4  indicating the 
most probable sector according to 
the best-fitting feedbackRL model 
(free parameters fitted to each 
participant) 

1 if the same sector 
0 otherwise 

 
Table 3. Models used in the representational similarity analysis, and the similarity 
measure used to derive the similarity matrix. *The normalized correlation of vectors x and 
y is x � y/(||x|| * ||y||), and is equivalent to the cosine of the angle between the two vectors. It 
behaves differently than the more commonly used Pearson correlation; for example, the 
posterior distributions [0.24 0.25 0.25 0.26] and [0.26 0.25 0.25 0.24] have Pearson 
correlation of -1 but normalized correlation of 0.9994. We used normalized correlation 
because this measure accords better with intuition regarding the similarity of posterior 
distributions and quantities derived from posterior distributions; however, similar results were 
observed when using Pearson correlations instead. 
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 (a proxy for overall uncertainty), the probability of the maximum a posteriori 

sector (a proxy for confidence, acting approximately as the converse of the 

entropy), and temporal distance between measurements (because fMRI 

pattern similarity is known to vary as a function of the temporal distance 

between measurements). We also included models of the posterior and MAP 

that were instead derived using the Bayesian_feedbackRL model (given that 

this was the best inference model after Bayesian_nolearning, as determined 

from behavioral model-fitting, described above). See Table 3 for a full list of 

models tested. 

To investigate the specificity of the result to our region of interest, we 

also performed a whole-brain “searchlight” analysis, using 25-voxel spherical 

searchlights. As with the region of interest, we computed the similarity of the 

neural patterns in each searchlight, to obtain the neural similarity matrix for 

the searchlight. We then computed the Spearman correlation of the similarity 

matrix for each searchlight with each of our models. The analysis was 

repeated for a searchlight centered on every voxel in the brain. 

For both the ROI and searchlight analyses, the neural pattern for each 

animal appearance was averaged over the two TRs during which the animal 

appeared on the screen (after correcting for the hemodynamic lag with a 4 

second shift). Similarity for neural patterns was computed using normalized 

correlation, to accord with the similarity measure used for the posterior-based 

models (similar results are obtained when using Pearson correlation instead). 
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Searchlight results are displayed on an inflated brain, using the AFNI SUMA 

surface mapper (http://afni.nimh.nih.gov/afni/suma).  

 

Statistics and confidence intervals 
 

Unless stated otherwise, all statistics were computed using random-

effects bootstrap distributions on the mean by resampling participants with 

replacement (Efron & Tibshirani, 1986). All confidence intervals in the text are 

given as standard error of the mean. 

To test the reliability of searchlight results across participants, we used 

the “randomise” function in FSL (http://fsl.fmrib.ox.ac. uk/fsl/fslwiki/randomise) 

to perform permutation tests and generate a null distribution of cluster 

masses for multiple comparisons correction (using FSL’s “threshold-free 

cluster enhancement”, P < 0.05 two tailed).  

 

 

4.3  Results 

Participants learned the animal likelihoods in the “Tours” 

We evaluated participants’ final learning of the likelihood of each 

animal in each sector using performance from the last set of tours on the last 

day. In those tours, the participants chose the more likely animal 73 ± 3% of 

the time. Note that even if participants had perfect knowledge of the animal 

likelihoods, we would not expect participants to choose the more likely animal 

100% of the time, due to probability matching, the well-documented behavior 
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in which humans and animals match their choice probabilities to the 

probability of each option being correct, rather than choosing the most likely 

option every time (e.g. Vulkan, 2000; Erev and Barron, 2000). With perfect 

knowledge of the animal likelihoods and a probability matching policy, 

participants would be expected to choose the more likely animal only 69% of 

the time. 

In a post-experiment questionnaire, we asked participants to estimate 

the animal likelihoods P(animal | sector) for every animal and every sector. 

These estimates were close to the true likelihoods, on average (Figure 4A). 

The mean KL-divergence of the estimated likelihoods from the real likelihoods 

was 0.13 ± 0.015. As discussed below, we used these participant-estimated 

likelihoods in our neural analyses, in lieu of the correct likelihoods. 

 

Performance on “Photographs” task suggested maintenance of 

posterior distributions over sectors 

During the fMRI scan sessions, participants correctly chose the more 

(or less) probable sector 67 ± 1% of the time, which is significantly above 

chance (t-test p < 1e-12). Moreover, logistic regression on participants’ 

responses showed that, the larger the difference in posterior probability 

between the correct and incorrect options, the more likely participants were to 

choose the  
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Figure 4 – Behavioral performance. A. Participants’ subjective estimates of the animal 
likelihoods P(animal | sector), for each animal and each sector, collected in a post-experiment 
questionnaire. Gray bars indicate the true likelihoods, black intervals indicate the mean 
estimates ± SEM. B. Logistic regression on participants’ responses during the fMRI scan 
sessions suggests that participants learned and utilized the full posterior distributions (each 
line shows logistic regression for one participant). The x-axis indicates the difference in 
posterior probability between the first and second options in the question. The y-axis 
indicates the probability that a participant would indicate that the first option has higher 
posterior probability than the second option. Mean regression parameters across participants: 
slope = 1.8 ± 0.040, intercept = -0.04 ± 0.15. 

 

 

correct answer (Figure 4B). Again, as in the Tours task, we expected 

stochasticity in participants’ behavior due to probability matching. With perfect 

probability matching and perfect inference of the sector posteriors, we would 

expect participants to choose the correct option 73% of the time. 

Note that the two sector options in each question were chosen at 

random, and therefore required participants to discriminate between posterior 

probabilities for any possible pair of sectors. Interestingly, participants 

performed similarly well whether or not questions included the maximum a 
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significantly different). This result further indicates that participants were 

tracking the full posterior distribution, and not just the MAP sector. 

 

Trial-by-trial behavioral model-fitting suggested that participants were 

approximately Bayesian 

The relative performance of the behavioral models is shown in Figure 

5, and the mean parameter fits are shown in Table 2. For model comparison, 

we used the best-performing version from each class of models (these 

settings described in Table 2). 

The two Bayesian models (with and without feedbackRL) performed 

best, explaining the data about equally well. Overall, the model with 

feedbackRL was the best model according to AIC, but the Bayesian model 

without learning was the best model according to BIC, which penalizes more 

strongly for extra parameters. 

The additive model performed worse than the Bayesian models, 

indicating that participants were accumulating evidence multiplicatively, in 

accordance with the optimal strategy (Eq. 1). None of the heuristic inference 

models that we tested (the most-least voter class of models) could 

successfully outperform the Bayesian models. Nor did we identify any 

significant effect of recency or primacy (any small improvements in the model 

likelihoods were not justified by the increased number of parameters). We 

therefore concluded that participants were Bayesian or near-Bayesian in their 

inference. 
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Figure 5 – Behavioral model-fitting. Akaike information criterion (AIC), Bayes information 
criterion (BIC), and (geometric) mean likelihood per trial (i.e. the exponentiated mean log 
likelihood per trial, without penalization for number of parameters) for the best-fitting model in 
each class (mean ± SEM across participants) suggest that the Bayesian models explained 
the behavioral data best. Note that better model fits are indicated by low AIC and BIC scores, 
but high mean likelihood. Results are shown for model fits using the participant estimates of 
the likelihoods or using the actual (true) likelihoods. 
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As shown in Figure 5, using the participants’ subjective estimates of the 

animal likelihoods (from the post-experiment questionnaire) provided a better 

fit for all models, as compared to using the real animal likelihoods. This may 

be surprising for the feedbackRL model, given that the participant estimates 

were elicited at the end of the experiment, but were used in the model to 

initialize estimates of the likelihoods. However, the low learning rates (see 

Table 2 for average fit learning rates; also, 19% of participants had fitted 

learning rates of 0) suggest that changes in the likelihoods throughout the 

experiment were small relative to the differences between the real and 

estimated likelihoods. The low learning rates also explain why the 

feedbackRL model fit the data similarly well to a Bayesian model that did not 

allow for changes of the likelihood during the task – the models are nested 

(identical for learning rates of zero) and similar for low learning rates. 

 

Representational similarity analysis suggests that suborbital sulcus 

contains a representation of the (log) posterior distribution over latent 

causes 

Figure 6B shows the representational similarity match of the suborbital 

sulcus with each of the models, relative to the representational similarity 

match with the best model – the logposterior. For all of the alternative models 

tested, 95% or more of our bootstrap samples showed better representational 

similarity match for the logposterior than for the alternative model.  



 70 

 

Figure 6 – Representational similarity match for each model in the ROI. A. Region of 
interest – the suborbital cortex, a medial subregion of the orbitofrontal cortex (OFC). See 
Methods for a description of how the region was defined. B. Representational similarity match 
for each of the models tested (Table 3), relative to the best model for the data (the 
logposterior), ordered by mean representational similarity match. The logposterior model 
showed the highest mean representational similarity match. The plots show bootstrap 
distributions on the within-participant differences, for each of the models compared with the 
logposterior. For all of the alternative models tested, 95% or more of our bootstrap samples 
showed a better match for the logposterior than for the alternative model. 
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Because the posterior distribution tends to be more similar for neighboring 

timepoints compared with more distant timepoints, and that might also be the 

case for neural patterns, we took special care to verify that the logposterior 

model was superior to the alternative (control) time model. This was indeed 

the case. Moreover, we found that the temporal model displayed negative 

representational similarity match with the neural patterns, because BOLD 

patterns for neighboring timepoints tended to be anti-correlated. This result 

was not dependent on our linear model for temporal distances—because we 

used Spearman’s rank correlation to compute representational similarity 

match, the negative similarity match result would be observed for any other 

model of temporal distance that falls off monotonically (e.g. an exponential 

model). Therefore, since the posterior distribution showed positive similarity 

match while the temporal model showed negative similarity match, we can 

conclude that any positive correlations between the similarity matrices for the 

posterior distribution and time cannot be responsible for the representational 

similarity result for the posterior distribution. 

Searchlight results for the representational similarity analysis are 

shown in Figure 7. The orbitofrontal and ventromedial prefrontal cortex 

showed significantly greater representational similarity match for the 

logposterior model compared to every other model (p < 0.05 corrected, for 

every comparison), except for the entropy and the posterior models. It also 

showed greater representational similarity match for the logposterior than 

entropy using a more liberal threshold of p < 0.05 uncorrected. 



 72 

Figure 7 – Wholebrain searchlight result.  
Brain areas that passed both of the following 
criteria: (1) significantly higher representational 
similarity match with the logposterior model as 
compared with every other model from Table 3 
except the posterior, the posterior from the 
feedbackRL model, and the entropy, at p < 0.05 
with whole-brain correction for every 
comparison; (2) higher representational similarity 
match with the logposterior compared to the 
entropy, at p < 0.05 uncorrected. The map is 
displayed on the orbital/ventral surface of an 
inflated brain. 

 

 

 

 

4.4  Discussion 

Because the underlying structure of the world is often not directly 

observable, we must make inferences about the underlying situations or 

“latent causes” that generate our observations. The statistically optimal way to 

do this is to use Bayes rule to infer the posterior distribution over latent 

causes. Based on previous studies implicating the orbitofrontal cortex (OFC) 

in the representation of the current context or situation (related to the ideas of 

“state” in studies of reinforcement learning, and “schemas” in studies of 

episodic memory), we hypothesized that the OFC might represent a posterior 

probability distribution over latent causes, computed using approximately 

Bayesian inference. To test this, we asked participants to make inferences 

about the probability of possible situations, in an environment where the 

situation probabilistically generated their observations. 
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Using representational similarity analysis of fMRI activity during the 

inference task, we found that patterns of activity in the suborbital sulcus within 

the OFC were indeed best explained as representing a posterior distribution 

over latent causes. Searchlight analyses implicated OFC more generally in 

this representation. Furthermore, participants’ behavioral performance 

showed that they had access to a full posterior distribution over the latent 

causes for their choices; using trial-by-trial model fitting, we showed that 

participants’ behavior was best explained as using Bayesian inference.  

Our study provides evidence that the OFC represents a full posterior 

distribution over situations, as opposed to the best guess of the situation (the 

maximum a posteriori; MAP) or other summary measures of the distribution 

such as the overall uncertainty. We operationalized uncertainty as the entropy 

of the distribution—the highest entropy occurs when the distribution is 

completely flat (i.e., the participant is maximally uncertain about which latent 

cause generated the observations), and the lowest entropy occurs when the 

distribution is fully loaded on one latent cause (i.e., the participant is 

absolutely certain about which latent cause generated the observations). Our 

similarity analyses showed the entropy to have widespread positive similarity 

match in many areas of cortex, which we might expect because entropy 

should be correlated with the difficulty of the task, and so entropy might 

therefore be correlated with greater overall activity in many regions of the 

brain. Nonetheless, in greater than 95% of our bootstrap samples, activity in 



 74 

the OFC was better explained by the posterior distribution than by the 

entropy. Furthermore, searchlight analyses showed the specificity of this 

result. 

Our results, using multivariate analysis, build on previous fMRI studies 

that have used univariate analyses in OFC to investigate a range of summary 

statistical quantities that are related to the posterior distribution, but which do 

not capture the full distribution. These studies have shown that univariate 

activation of the ventromedial PFC (which includes or is similar to our ROI) is 

correlated with a variety of summary statistics, e.g. expected reward (Ting et 

al, 2015), reward uncertainty (Tobler et al, 2007; Critchley et al, 2001), 

variance of the prior distribution in a sensory task (Vilares et al, 2012), and 

marginal likelihood of the current stimulus (d’Acremont et al 2013). Our 

experiment employed several key features — (a) multivariate neural analysis 

(b) four different latent causes, and (c) dissociation of latent cause from both 

reward and motor plan — that allowed us to identify orbitofrontal 

representation of a full posterior distribution over latent causes that was 

separate from value, and which explained neural activity in the area better 

than any single summary statistic that we tried. Our result may therefore 

explain why evidence for different summary statistics was found in different 

studies—these are all components of the full posterior distribution, or 

correlates of it. 
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Our study also builds on previous work in the fields of reinforcement 

learning and episodic memory that has implicated the OFC in representations 

of the current situation or context. In reinforcement learning, a belief 

distribution over states is necessary for optimal decision-making when the 

state of the world is not directly observable (partially observable Markov 

decision processes; Kaelbling et al, 1998). The OFC has long been implicated 

in reinforcement learning and decision-making in a wide range of settings; a 

recent review provides a unifying explanation for these results by postulating 

that the OFC represents inferred states in partially observable situations 

(Wilson et al, 2014). In theories of episodic memory, it is believed that we 

organize our memories according to an inferred “schema” that specifies the 

situation and stores previously learned relationships that a new memory can 

be incorporated into (Tse et al, 2007; Hupbach et al, 2008). These schemas 

seem to be represented or processed in the ventromedial prefrontal cortex 

(vmPFC, an area of the brain that is similar to our ROI; for reviews, see 

Schlichting and Preston, 2015; van Kesteren et al, 2012; Ranganath and 

Ritchey, 2012). For example, Tse et al (2011) showed evidence that 

activation of rat mPFC is highest immediately after memory encoding that 

should involve incorporating new information into existing schemas. Ezzyat 

and Davachi (2011) showed that greater activation of ventromedial PFC in 

humans during memory encoding is correlated with how strongly those 

memories are associated with other memories in the same “event”, consistent 

with the idea that vmPFC is involved in schemas that are bound to memories. 
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Our results confirm the involvement of OFC in representations of the current 

situation, and additionally show that this representation in OFC takes the form 

of a distribution over possible situations. 

Finally, our work also builds on previous studies investigating neural 

circuits involved in the “weather prediction” task, very similar to ours, in which 

one of two “weather” outcomes is probabilistically predicted by sequences of 

cards. Knowlton et al (1996) implicated the striatum in the learning of these 

probabilistic associations. In our task, participants learned the animal 

likelihoods outside the MR scanner, and thus we could not assess the brain 

areas involved in the learning phase. However, our results are compatible 

with Knowlton et al’s insofar as the OFC may use associations learned by the 

striatum (in our experiment, the animal likelihoods) to make inferences when 

presented with new observations (in our experiment, the “photographs” task). 

More recently, Yang and Shadlen (2007) used the weather-prediction task to 

show representation of a decision variable in parietal cortex that took the form 

of the log likelihood ratio between two options. In our experiment, we 

decorrelated the posterior probability from both decision variables and 

stimulus-reward associations, and we also investigated representations of the 

posterior probability over latent causes before the decision period. We 

conjecture that the OFC contains representations of the current state or 

situation in terms of a posterior distribution over the possible states, a 
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representation that is likely used by downstream areas, e.g. parietal cortex, 

for decision making. 

Previous work on the weather-prediction task also showed that most 

individuals employed heuristic strategies in inferring the weather (Gluck et al, 

2002). In our experiment, we explored several heuristic models of 

participants’ inference, but were not able to find any that predicted 

participants’ behavior better than the optimal Bayesian models. There are 

several reasons why our task may have discouraged the use of heuristics. 

First, the animal likelihoods in our experiment were designed to avoid one-to-

one mappings between observations and latent causes. Second, the task 

environment had four possible latent causes (instead of two), and the task 

itself required rank-ordering all four latent causes rather than just estimating 

the maximum a posteriori, thus increasing complexity and leading to the 

inadequacy of simple heuristics. Finally, we provided participants with a large 

amount of training on the probabilistic model of the world, so that heuristics 

may have been less necessary. 

The posterior distribution we found in the OFC was best modeled as 

being represented in log space. Representation in log space may be 

advantageous because addition can then replace the multiplicative operation 

required to accumulate evidence in non-log space (e.g. across animal 

presentations, in our experiment); the ability of neurons to add is well-

characterized, while it is less clear to what extent neurons can multiply (Yuste 
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and Tank, 1996; Peña and Konishi, 2001; Gabbiani et al, 2002). Indeed, 

neural representation in log space is common in many domains, e.g. decision 

variables (Yang and Shadlen, 2010), time (Gibbon, 1977) and numbers 

(Longo and Lourenco, 2007). 

To summarize, we designed a task in which participants’ observations 

were probabilistically generated by unobserved “situations” or “latent causes”, 

and found evidence that OFC represents a probability distribution over 

possible latent causes. A representation of the log posterior distribution 

explained OFC activity better than alternatives such as the best guess of the 

current situation, or overall uncertainty in the current situation. This finding 

was further supported by behavioral evidence that participants had access to 

the full probability distribution for decision-making, and used Bayesian 

inference to compute the probability distribution. Our results may explain why 

previous studies of OFC have found evidence for representation of various 

summary statistical quantities in OFC (these are in fact components of the full 

posterior probability distribution). Our results may also unify findings from 

disparate literatures on reinforcement learning and episodic memory, which 

separately implicate the OFC in representations of the current situation. 
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5  Slow time scales of meaning influence recall  
organization 

 
 

This work was performed in collaboration with Marissa A. Applegate and Kenneth A. Norman. 

This work has previously presented at the following conferences: Context and Episodic 

Memory Symposium, Philadelphia, PA (2014); Society for Neuroscience, San Diego, CA 

(2013); Context and Episodic Memory Symposium, Philadelphia, PA (2013); Cognitive 

Neurosceince Society Annual Meeting, San Francisco, CA (2013). It is currently in 

preparation as a journal article. 

 

5.1  Introduction 

We have an immense number of memories stored in our brains. Why 

do we retrieve certain memories at certain times? How are memories 

organized in the brain and how does this affect recall? These questions have 

been studied using memory tests such as free recall, in which participants 

recall items in whatever order they choose. Existing research has uncovered 

two main organizational phenomena: semantic contiguity effects (a 

tendency for items with similar meanings to be recalled together; Bousfield & 

Sedgewick, 1944; Jenkins & Russell, 1952; Romney, Brewer, & Batchelder, 

1993) and temporal contiguity effects (a tendency for items studied close in 

time to be recalled together; Kahana, 1996; Kahana, Howard, & Polyn, 2008). 

Semantic contiguity effects can be explained in terms of participants 

using features of a just-recalled item as a cue for recalling other items (e.g., if 

you recall a fruit, you can use retrieved fruit features as a cue to recall 
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another fruit). Temporal contiguity effects require a more complex 

explanation. Modern temporal context theories (e.g., Howard & Kahana, 

2002) posit that temporal contiguity arises because, at encoding, item 

representations are linked to a slowly changing “context” representation. 

When an item is recalled, it retrieves the context representation that it was 

linked to at study, which in turn cues retrieval of items that were studied in 

similar contextual states. Because (by hypothesis) context changes slowly 

over time, retrieved context preferentially cues items that were studied close 

in time to the just-retrieved item. 

Some theories are agnostic about what information is contained in this 

context representation and what causes it to drift (e.g., Estes, 1955 and 

Mensink & Raaijmakers, 1988 both posit random drift). However, more 

recently, theories like the Temporal Context Model (TCM; Howard & Kahana, 

2002) and the Context Maintenance and Retrieval model (CMR; Polyn, 

Norman, & Kahana, 2009) have set forth a more specific account. According 

to this account, context is composed (at least in part) of lingering information 

about recently studied items, which are linked to the memory representation 

of the currently studied item. For example, if you switch from talking about 

football to politics, then these theories posit that (for some period of time) the 

“fading embers” of your football thoughts will persist in your mind and become 

linked to your memory for the politics discussion. This view converges with 

recent neuroscientific data showing that information is represented at multiple 

time scales in the brain, such that some areas only represent the current 
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focus of attention, whereas other areas integrate over longer time scales 

(Hasson, Yang, Vallines, Heeger, & Rubin, 2008); it also converges with 

neurophysiological data on “time cells”, showing that different populations of 

neurons are involved in representing a stimulus, as a function of how long 

ago the stimulus was presented (e.g., Macdonald, Lepage, Eden, & 

Eichenbaum, 2011; Howard & Eichenbaum, 2013). In essence, models like 

TCM and CMR posit that neural populations that represent preceding 

stimulus information get linked to the neural populations that represent 

current stimulus information, thereby contextualizing that information. 

The signature prediction of this theory is that, if the lingering thoughts 

active during an experience X are similar to the lingering thoughts active 

during an experience Y, then the memories of X and Y should show an 

elevated probability of being recalled together, because they will have been 

linked to similar (lingering) information. Remarkably, despite this prediction’s 

centrality, it has not yet (to our knowledge) been tested. In this experiment, 

we sought to test this prediction by using multi-voxel pattern analysis (MVPA) 

of fMRI data (Lewis-Peacock & Norman, 2014; Norman, Polyn, Detre, & 

Haxby, 2006) to track evidence, at the time of an item’s encoding, for neural 

representation of the preceding item’s category. 



 85 

We collected two datasets (n=17 and n=24), following the same data 

collection procedures for both.4 Using a multi-voxel classifier of fMRI data that 

was designed to pick up on lingering traces of the preceding-category, we 

show that “lingering thoughts” about preceding stimuli influenced the 

organization of recalls, as predicted by theories of temporal context like TCM 

– that is, memories encoded with similar “lingering thoughts” about the 

category of preceding items were more likely to later be recalled close 

together in time. 

 

5.2  Methods 

Participants 

For the first dataset, we recruited 17 participants (aged 18-33 years, 11 

female) from the Princeton University community. This number of participants 

was determined a priori. Prior studies using similar paradigms have used on 

the order of 16 participants (e.g., Polyn et al., 2005, ran 14 participants). We 

scheduled 17 participants with the goal of getting usable data from 16 

participants; it turned out that all 17 participants provided usable data. For the 

second dataset, we recruited 24 participants (aged 18-29 years, 18 female). 

                                            

4 The second dataset was originally collected to replicate a result found in the first 
dataset. After collection of both datasets, we discovered an error in our original analysis, and 
here use a corrected analysis to analyze both datasets (the original and corrected analyses 
are described in “Validating the preceding-category classifier” of the Methods). In this 
chapter, all results are shown for the individual datasets as well as for the combined data. 
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All participants provided informed written consent. The study was approved 

by the Princeton University Institutional Review Board. 

 

Task 

While undergoing functional magnetic resonance imaging (fMRI), 

participants studied items from different categories. They then performed a 

recall-by-category task, where participants recalled items from a category that 

we specified. We used a category structure that allowed us to test how 

lingering thoughts about preceding items at study affected recall organization 

at test. 

 

 

Figure 1. Trial structure for the recall-by-category task. Each trial begins with a 
study list. 18 items were shown one at a time, every 4 seconds. Each study list was 
composed of items from three different categories (labeled A, B, and M), and the lists 
were structured as shown. After the study list, participants performed 20 seconds of 
a distractor task, followed by recall of the items in the M-category (in this example: 
celebrities), followed next by recall of items in the A and B categories. Transitions at 
recall between M-items that were studied with the same preceding category are 
called Evel Knievel (EK) transitions, because they “jump over” temporally nearer M-
items (EK transitions may be of length 2 or 4, and may be backwards or forwards). 
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The structure of the task is shown in Figure 1. At the start of each 

study-test block, participants were presented with a list of 18 items, one at a 

time. The items belonged to one of three categories: we schematically refer to 

them as A, B, and M (where M stands for “main”, because these were the 

main items of interest; the A- and B-items served to contextualize the M-

items, as described below). In any given list, the roles of A, B, and M were 

mapped one-to-one onto the following three categories of pictures: celebrities, 

landmarks, and objects. For example, in one list, the A-items might be 

landmarks, the B-items might be objects, and the M-items might be 

celebrities. The assignment of categories (celebrity, landmark, object) to roles 

(A, B, M) was counterbalanced such that — across lists — each category 

served equally often in the A, B, and M roles.  

A new item appeared every 4 seconds, coinciding with the onset of an 

fMRI image acquisition (each item was shown for 3400 ms, with 600 ms of 

fixation after each item). Each stimulus presentation was composed of a 

photograph of a celebrity face, a famous landmark, or a common object, and 

also the item’s name (e.g., “Eiffel Tower”) presented in text below the 

photograph; the stimuli were adapted from those used in Morton et al. (2013). 

To encourage encoding of the items, participants were required to make a 

category-specific judgment of each item on a 4-point scale. For celebrities, 

participants were asked to judge, “How much do you love or hate this 

person?”; for landmarks, they were asked to judge, “How much would you like 
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to visit this place?”; for objects, they were asked to judge, “How often do you 

come across this object in your daily life?” (Polyn et al., 2005).  

After the presentation of the 18 list items, participants performed 20 

seconds of a distractor task (self-paced arithmetic problems – summing three 

random digits, multiple-choice with four choices). 

After the distractor task, participants were asked to verbally recall as 

many items from the list as possible, one category at a time; within a 

category, participants were allowed to recall freely (i.e., in any order). 

Participants were first asked to recall M-items (“main items”), and then the A- 

and B-items; participants were given 40 seconds to recall each category. We 

analyzed only the recall data from the M-items, but we asked participants to 

recall the A- and B-items as well, to ensure that they paid attention to those 

items during study. 

There were 12 study-test blocks in total. The experiment task was 

coded using Psychtoolbox 3 (http://psychtoolbox.org). The verbal recalls for 

the M-items were annotated using Penn TotalRecall 

(http://memory.psych.upenn.edu/TotalRecall). 

The primary dependent measure of interest was data on the order in 

which M-items were recalled, as manifested in patterns of recall transitions. 

We say a “transition” has occurred from item X to item Y when participants 

recall items X and then Y in immediate succession (i.e., without recalling any 

intervening items).  
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The key to our study-list structure was that the M-items were preceded 

by “context items” that alternated in category (A then B then A then B…). 

According to temporal context theories like TCM, the M-items should be 

linked to lingering thoughts about the preceding category (either A or B), and 

this linking to the preceding category should influence the organization of 

recall. In the absence of this influence, temporal contiguity effects should 

dominate the patterns of recall, favoring recall transitions between 

neighboring M-items, as has been previously observed for free recall 

experiments using study-lists without the same type of alternating semantic 

structure (e.g., Kahana, 1996; Polyn, Erlikhman, & Kahana, 2011). However, 

if lingering category information is indeed “contextualizing” M-items in our 

study-lists, there should be a boost in transition probability between M-items 

that were preceded by the same category. Because the A and B context 

items alternated in category, these transitions between M-items with matching 

“preceding-category context” involve “leaping over” a temporally nearer M-

item in favor of a farther M-item; accordingly, we call these transitions “Evel 

Knievels” (or EK transitions), after the daredevil stuntman famous for his 

motorcycle jumps across canyons, piled cars, and other obstacles. EK 

transitions could be of length 2 or 4 (jumping over 1 or 3 M-items), in the 

forwards or backwards directions. 
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Overview of fMRI analysis 

As noted above, our main hypothesis was that lingering thoughts 

relating to preceding items would become linked to M-items at study, thereby 

resulting in an elevated probability of transitions between M-items that were 

preceded by the same “context” category (i.e., EK transitions). Importantly, 

we also expected there to be moment-to-moment variability in the extent to 

which preceding-category information was represented in participants’ brains; 

we only expected to see a boost in EK transitions for the subset of trials 

where preceding-category information actually persisted in participants’ 

brains. To test this prediction, we used fMRI pattern classifiers to track 

participants’ thoughts about the preceding category (Lewis-Peacock & 

Norman, 2014; Rissman & Wagner, 2012). By estimating the level of lingering 

category information associated with particular M-items, we could make 

predictions about the order in which these M-items would later be recalled. 

Specifically, we predicted that — for a pair of M-items X and Y that were 

preceded by the same context category and thus could later be recalled 

together as an EK transition — preceding-category information for X and Y 

(as measured by the classifier) would be more similar when participants 

actually made the EK transition, compared to when they made a non-EK 

transition from one of those M-items. 

As a control analysis, we used the same logic to address whether the 

properties of the M-items themselves affected recall order, in our data. 

Previous work suggests that, on the recall-by-category task, participants 
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might also use information about the semantic category of the items 

themselves (in addition to retrieved context information) to cue memory recall. 

If so, the use of current-category cues would lead to clustering-together of M-

items that registered neurally as belonging to the same category (Morton et 

al, 2013). Therefore, we also investigated whether current-category 

information affected recalls in this way, in our data, in order to isolate our 

main effect of interest. To measure this potential second effect on recall 

organization, we used fMRI pattern classifiers to also measure the amount of 

M-category information elicited by each M-item (we call this current-category 

information, to distinguish it from preceding-category information). Following 

the same logic as our main analysis, we investigated whether — for the same 

pair of M-items X and Y that could later be recalled together as an EK 

transition — levels of current-category similarity for X and Y were higher when 

participants actually made the EK transition vs. when they did not. 

To show that effects of preceding-category information are distinct 

from any potential effects of current-category information, we performed a 

correlation analysis to investigate any correlations between current-category 

similarity and preceding-category similarity for pairs of items. 
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Figure 2. Labeling of brain images for MVPA classifiers. We trained and tested 
MVPA classifiers in two different ways: (1) training and testing on the current 
semantic category; (2) training and testing on the preceding semantic category. The 
figure illustrates how brain images (indicated by dots) were labeled for the two 
classifier types. Brain images were collected every two seconds; stimuli were 
presented every four seconds (stimulus onset was timed to coincide with the start of 
an image acquisition). See text for additional differences between our preceding-
category classifiers and standard current-category classifiers. 
 

 

fMRI acquisition and pre-processing 

 

Functional brain images were acquired using a 3T MRI scanner 

(Siemens, Skyra) and were preprocessed using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/). An echoplanar imaging sequence was used to  

acquire 40 slices (3mm iso, repetition time (TR) = 2s, echo time (TE) = 30ms, 

flip angle = 71º). We collected 3 study-test blocks in each scanning run; there 

were 4 scanning runs in total. The functional images were spatially filtered 
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using a Gaussian kernel (full width at half maximum of 5mm), and then they 

were temporally filtered using a low-pass cutoff of 0.0077Hz. We performed 

motion correction using a six-parameter rigid body transformation to co-

register functional scans, and then registered the functional scans to an 

anatomical scan using a 6-parameter affine transformation. Data were 

spatially normalized by warping each participant’s anatomical image to MNI 

space using a 12-parameter affine transformation. To prepare the data for 

pattern classification, the activity for each voxel was z-scored within each 

study-test block. 

 

MVPA classifier training and testing 

 

Multi-voxel pattern analysis (MVPA) was performed using the 

Princeton MVPA Toolbox (https://code.google.com/p/princeton-mvpa-

toolbox/). We trained two distinct pattern classifiers. First, we trained a 

classifier to decode information about the category of the current stimulus. 

Second, we trained a classifier to decode lingering information about the 

category of the preceding stimuli, based on neural activity from the time of the 

current stimulus. We trained two distinct classifiers (instead of using just one 

classifier to decode both current and preceding stimulus identity) because of 

recent evidence (mentioned above: Hasson et al., 2008; Howard & 

Eichenbaum, 2013) suggesting that different neural populations may be 

responsible for coding the current stimulus vs. lingering information about 
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preceding stimuli. The training methods for these two distinct classifier types 

are described below. 

To create training and testing examples for the classifier designed to 

detect the category of the current stimulus, we labeled each brain image with 

the category of the stimulus presented at that time. Because brain images 

were acquired every 2 seconds and stimuli were presented every 4 seconds, 

each stimulus was linked to two brain images. Then we shifted these labels 4 

seconds forward in time; this shift accounts for lag in the hemodynamic 

response measured by fMRI. For example, if the participant studied a 

celebrity for 4 seconds, then the two images acquired starting 4 seconds and 

6 seconds after the onset of the celebrity were labeled as being “celebrity” 

brain patterns (see Figure 2, top).  

To create training and testing examples for the classifier designed to 

detect the category of the preceding stimulus, we took the brain images for 

which we would expect the peak response to each M-item (the same brain 

images that we used to train a classifier on the current category, acquired 4 

and 6 seconds after the onset of the M-item), and — instead of labeling those 

images with the category of the M-item (as we did above) — we labeled those 

images with the category that preceded that M-item (e.g., if the M-item was a 

celebrity that was preceded by landmarks, we would label those images as 

being “landmark” brain patterns; see Figure 2, bottom). All other (unlabeled) 

images were left out of classifier training and testing.  
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For each participant, we trained three separate preceding-category 

classifiers – one classifier for the lists where the M-category was celebrities, 

one for the lists where the M-category was landmarks, and one for the lists 

where the M-category was objects. In this way, the classifiers could not use 

current-category information to aid in classifying the preceding category, 

since the current category was held constant for all training (and testing) 

examples. To further aid the classifier in focusing on preceding-category 

information, we used feature selection that selected against voxels that varied 

significantly with the current category (ANOVA-based feature selection with a 

threshold of p = 0.05). The next section describes in more detail the rationale 

for the design of the preceding-category classifier. 

For both current-category and preceding-category classifiers, we used 

logistic regression with L2 regularization (using a regularization penalty of 1; 

classifier performance was not very sensitive to this parameter). Specifically, 

we trained a logistic regression classifier for each category to respond with a 

“1” when an image was labeled with that category and with a “0” when an 

image was not labeled with that category. Once trained and presented with 

new input data, these category-specific classifiers output a real value from 

zero to 1, indicating the degree of neural evidence for the category that it was 

trained to detect. Classifiers were always trained and tested in a leave-one-

block-out fashion — e.g., to apply the classifier to a time point from study-test 

block 1, the classifier was trained on blocks 2 through 12. 
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Validating the preceding-category classifier 

Our initial procedure for training a preceding-category classifier 

(originally applied to the first dataset) produced classifiers that in fact 

opportunistically used current-category to aid in that classification. Here, we 

describe the corrected procedure we used to create an improved preceding-

category classifier, and we show why it is superior to the more straightforward 

approach that we originally used. 

A standard current-category classifier would be trained by labeling 

each timepoint (TR) with the category of the current item, after accounting for 

hemodynamic lag. The most straightforward labeling procedure for a 

preceding-category classifier would be to label the timepoints of interest with 

the category of the preceding category instead (see Figure 2, bottom). 

However, we initially did not take any measures to hold the current category 

constant across lists, so that classifiers trained on these labels could in fact 

opportunistically use current-category information to aid in the classification of 

the preceding-category -- information about the current category informs the 

classifier about what the preceding category is not. This negative weighting 

against the current classifier is visible when we applied the classifier in 

timecourses of classifier output (Figure 3b). It is especially apparent in the 

first few timepoints of the study list – these timepoints are not preceded by 

any A, B, or M items, and so we should expect a true preceding-category 

classifier to be at chance. However, the classifier knows that the preceding-

category can’t be A, and shows a clear negative bias against A. 
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Figure 3. Timecourses of output for the MVPA logistic regression classifiers, 
averaged across lists and participants. Colored letters above each plot indicate the 
training labels. Colored letters below each plot indicate the category of the current 
stimulus (after correcting for hemodynamic lag). (a) Outputs for classifiers trained to 
identify the current category. (b) Outputs for classifiers trained on M-timepoints to identify 
the preceding category (applied to all timepoints of the list). This version is trained on all 
lists together.  These classifiers show bias against the current-category (black arrows 
indicate a few examples of negative activation of the current category). (c) Outputs for 
classifiers trained on M-timepoints to identify the preceding category (applied to all 
timepoints of the list). (caption continued on next page) 
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(caption continued from last page) This version is trained separately for lists with the M-
category as celebrity, landmarks, and objects (so that the current category is held 
constant for all training examples), and used feature selection against voxels with strong 
current-category information.  These classifiers no longer show a consistent bias against 
the current-category. They also show a gradual buildup of the A and B categories that 
peaks at the first TR of each M-item. 
  

To remedy this problem, we made three changes to the classifier. 

Firstly, we trained three separate classifiers for each participant: one classifier 

for the lists where the M-category was celebrities, one where the M-category 

was landmarks, and one where the M-category was objects. In this way, 

information about the current category was not available to the classifier,  

since the current-category was held constant for all training (and testing) 

examples for each classifier (remember that we only used the M-timepoints 

for preceding-category classification). Secondly, we used a whole-brain mask 

instead of a temporal-occipital mask, to give the classifier the opportunity to 

draw from more anterior parts of the brain, if persistent information about 

recent stimuli is represented there (previous research has shown that this 

does appear to be the case, e.g. Hasson et al, 2008). Lastly, we implemented 

feature selection that selected against voxels that varied significantly with the 

current category (we removed these voxels from consideration, using 

ANOVA-based feature selection with a threshold of p = 0.05). 

This classifier training procedure is disadvantaged in that it only has 3 

lists for each cross-validated training iteration (rather than 11), and may suffer 

from having less data. However, as can be seen in Figure 3c, this new 

version of the classifier has a very different profile from the one in Figure 3b, 
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and no longer shows the same bias against the current category. In fact, as 

we would expect, these classifiers generally show outputs that slowly ramp up 

through each block of A- or B-items, peaking at the 1st TR for each M-item.  

 

Using classifier evidence to compute current-category and preceding-

category similarity for pairs of items 

We predicted that, if two M-items were studied with similar profiles of 

“preceding category information”, participants would be more likely to 

transition directly between these items at recall (this directly tests the 

hypothesis that preceding-category information contextualizes the M-items).  

To evaluate this prediction, we computed the “preceding category 

similarity” for each pair of M-items that could potentially form an EK transition 

at recall (i.e., any pair of M-items preceded by the same “category context”). 

The preceding-category similarity (PCS) measured how much the two M-

items registered as being preceded by the same category context.  

Preceding-category similarity (PCS) for a potential EK pair was 

computed as:  

( [A]1 - [B]1 )  x  ( [A]2 - [B]2 ) 

where [A]1 is the level of A-category evidence at the time of studying the 1st 

M-item in the pair, [A]2 is the level of A-category evidence at the time of 

studying the 2nd M-item in the pair, and so on. Importantly, A-category and B-

category evidence in this score was read out using classifiers trained to 

detect the preceding category, described above. The subtractions [A]1 - [B]1 
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Figure 4. Procedure for computing preceding-category and current-category 
similarity scores. Caption on next page. 
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Figure 4. Procedure for computing preceding-category and current-category 
similarity scores. A) MVPA analysis to compute “preceding-category similarity 
score” (PCS score) for potential EK transitions. Classifiers were trained to identify the 
preceding category. Classifier outputs were interpreted as levels of evidence for 
each category. For a given pair of M-items, outputs from these classifiers were 
combined to form the PCS score, which was designed to measure similarity in 
lingering levels of the preceding category. B) MVPA analysis to compute “current-
category similarity score” (CCS score) for potential EK transitions. Classifiers were 
trained to identify the current category. For a given pair of M-items, these classifier 
outputs were multiplied to obtain the CCS similarity score, which was designed to 
measure similarity in levels of the current category. 
 
 

and [A]2 - [B]2 measure the “balance” of lingering category evidence (in favor 

of A vs. B) for the 1st and 2nd M-items. If both M-items strongly favor the 

same preceding category (both favor A or both favor B, i.e. [A] - [B] for both 

M-items is strongly positive or strongly negative), then this similarity score is 

strongly positive (close to +1). In such cases, we would expect a high 

probability of recall transition between the two M-items, because the MVPA 

decoders indicate that the M-items were encoded with similar preceding-

category contexts. If the M-items strongly favor opposite categories (one 

favors A and one favors B), then this similarity score is strongly negative 

(close to -1). In such cases, we would expect a low probability of recall 

transition between the two M-items (Figure 4a).  

As a control analysis, we also performed a parallel analysis to evaluate 

the degree to which participants were more likely to recall items together if 

those items triggered similar neural activity corresponding to the current 

category (i.e., basic semantic clustering). Current-category similarity (CCS) 

for a potential EK pair was computed as: 
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[M]1  x  [M]2 

where [M]1 is the level of M-category evidence associated with the 1st item in 

the pair, and [M]2 is the level of M-category evidence associated with the 2nd 

item in the pair. Importantly, M-category evidence in this score was read out 

using classifiers trained to detect the current category. Previous work 

suggests that the more strongly both M-items favor the (correct) M-category, 

the greater the “current-category similarity” and the higher the probability that 

participants should transition between these items (Figure 4b). 

 

Relating classifier evidence to recall order  

To test our predictions about how recall order depends on preceding-

category similarity, we looked at recall of M-items, and separated the 

observed recall transitions into EK and non-EK transitions. Our goal was to 

assess whether there were reliable differences in preceding-category 

similarity (PCS) for potential EK pairs when participants “jumped over” a 

nearer M-item to make the EK transition, vs. when they made a non-EK 

transition to the just-nearer M-item. We predicted that PCS (for a pair of M-

items that formed a potential EK transition) would be relatively higher when 

participants actually made the EK transition during recall (vs. when they 

instead made a non-EK transition to the just-nearer M-item).  

We also performed a parallel analysis using current-category similarity 

(CCS) instead of preceding-category similarity (PCS), to evaluate any effects 

of current-category similarity on recall organization. 
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To ensure that we carried out a fair comparison between EK and non-

EK transitions (Figure 5), we only analyzed EK transitions where it was 

actually possible for participants to instead have made a non-EK transition in 

the same direction, to the just-nearer M-item (i.e., the just-nearer M-item had 

not already been recalled). Likewise, we only analyzed non-EK transitions 

where it was actually possible for participants to instead have made an EK 

transition in the same direction, to the just-farther M-item — we excluded non-

EK transitions where the just-farther M-item had already been recalled, and 

we also excluded non-EK transitions where participants transitioned 

backward to the first M-item or forward to the last M-item on the list (in these 

cases, there was no just-farther M-item). Because of this extra exclusion 

condition for non-EK transitions, we ended up excluding more non-EK 

transitions than EK transitions: on average, we excluded 17% of EK 

transitions (95% CI: 13-22%) and 46% of non-EK transitions (95% CI: 41- 

51%). 

In order to capture the relative strength in preceding- (or current-) 

category similarity for a potential EK pair, compared to its just-nearer potential 

nonEK pair, we computed PCS (or CCS) for both pairs of items and took the 

difference between the two scores. 

 

Statistics and confidence intervals 

For all of our analyses looking (separately) at behavioral data or neural 

data, we computed random-effects bootstrap confidence intervals on the 

mean by resampling participants with replacement (Efron & Tibshirani, 1986).  
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Figure 5. Procedure for aggregating valid EK and non-EK transitions, to ensure 
fair comparison between the two transition types. Caption on next page. 

 

{ recall i,  recall i +1 }

What kind of transition?

EK

Non-EK

Was the just-nearer non-EK
a possible transition?
(Did it correspond to a
not-yet-recalled item?)

Was the just-farther EK  
a possible transition?
(Did it correspond to a
not-yet-recalled item?)

no

no

Ignore this transition

Iterate  i = i+1
(Evaluate the next transition)

yes

yes
Compute the PCS and CCS

scores for this EK transition  
add to the EK bin 

Compute the PCS and CCS scores 
for the just-farther EK transition 

add to the Non-EK bin 

PROCEDURE

EXAMPLE Subject recalled:  M6 => M2 => M3 => M1

A   A  B   B A   A B   B A   A B   BM 1 2M 4M 5M 6M 3M 

M6 => M2 transition:
EK

Just-nearer non-EK was a possible transition.

Compute PCS and CCS scores for the M6 => M2 EK transition; 
add to the EK bin 

A   A  B   B A   A B   B A   A B   BM 1 2M 4M 5M 6M 3M 

M2 => M3 transition:
Non-EK

Just-farther EK was a possible transition.

Compute PCS and CCS scores for the just-farther M2 => M4 EK transition; 
add to the non-EK bin 

A   A  B   B A   A B   B A   A B   BM 1 2M 4M 5M 6M 3M 

M3 => M1 transition:

EK

M2 was already recalled. 
Just-nearer non-EK was NOT a possible transition.

Exclude this transition from analysis.

✔

✔

✘
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Figure 5. Procedure for aggregating valid EK and non-EK transitions, to ensure 
fair comparison between the two transition types. In our main analysis, we only 
included EK transitions where a non-EK transition to the just-nearer M-item would 
also have been possible (i.e., the just-nearer M-item had not already been recalled), 
and we only included non-EK transitions where an EK transition to the just-farther M-
item would also have been possible. If transitions to the just-nearer M-item (for an 
EK transition) or the just-farther M-item (for a non-EK transition) were not possible, 
then we ignored this transition and continued to the next. Otherwise, we considered it 
a valid transition and included it in our analysis. For EK transitions, we computed the 
similarity score for the EK transition; for non-EK transitions, we computed the 
similarity score for the just-farther EK transition. The figure shows an example recall 
sequence (M6, M2, M3, M1) for a particular list; for this sequence, we would include 
M6=>M2 as a valid EK transition, include M2=>M3 as a valid non-EK transition, and 
exclude M3=>M1 as an invalid EK transition. 
 
 
When assessing differences between conditions, we computed bootstrap 

confidence intervals on the difference between the means. In the text, these 

are reported as 95% confidence intervals. In the results figures, these 

bootstrap distributions and confidence intervals are displayed using cat’s eye 

plots. 

 

5.3  Results 

Behavioral results 

On average, participants correctly recalled 54.8% of the M-items that 

they studied (95% CI: 51.5–58.1%). Broken down by category, participants 

recalled 63.4% of celebrity M-items (95% CI: 60.0–66.8%), 60.5% of 

landmark M-items (95% CI: 55.6% to–65.2%), and 40.4% of object M-items 

(95% CI: 36.1–44.6%). Participants complied with our instructions not to 

repeat themselves during free recall (i.e., they never recalled the same M-

item twice during a single recall period). Participants occasionally made 
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intrusions (i.e., recalled items not on the current study list); transitions 

involving intrusions were not included in our EK analysis (e.g., if a participant 

recalled item M2, an intrusion next, and finally item M4 after that, then neither 

the M2=>intrusion nor the intrusion=>M4 transitions were included in our 

analysis). On average, each participant made 0.13 intrusions per list (95% CI: 

0.092–0.18). Of these intrusions, 26% on average were the names of items 

studied on previous lists (95% CI: 14–42%); the other intrusions were names 

that had not appeared anywhere in the experiment. On average, each subject 

made 10.4 valid EK transitions (95% CI: 9.0–11.8) and 16.6 valid non-EK 

transitions (95% CI: 15.0–18.6), where “valid” is as defined above and in 

Figure 5. These behavioral results are reported in Table 1 for each dataset 

individually. 

 

 Dataset 1 (n=17) Dataset 2 (n=24) 

% of M-items correctly recalled 

% of celebrity M-items correctly recalled 

% of landmark M-items correctly recalled 

% of object M-items correctly recalled 

55.7% (51.9 - 59.6%) 

64.2% (59.6 - 69.1%) 

62.0% (55.8 - 68.0%) 

40.9% (36.57 - 45.3%) 

54.2% (49.2 - 59.2%) 

62.8% (58.0 - 67.5%) 

59.4% (52.6 - 66.3%) 

40.0% (33.4 - 46.6%) 

mean number of intrusions per list 

% of intrusions that were prior-list items 

0.132 (0.078 - 0.196) 

29.6% (11.1 - 66.7%) 

0.132 (0.083 - 0.212) 

23.7% (10.5 - 47.4%) 

mean # of valid EK transitions 

mean # of valid non-EK transitions 

10.6 (9.0 - 12.6) 

17.1 (15.1 - 18.9) 

10.3 (8.5 - 12.1) 

16.3 (14.0 - 19.4) 

Table 1. Behavioral results for each dataset individually (95% confidence 
intervals in parentheses). 

 

 

 



 107 

Basic classifier results 

Before relating the classifier output to recall behavior, we first wanted 

to establish that the preceding-category classifier was decoding category 

identities at above-chance levels. 

For the classifiers trained to decode the preceding category, we 

computed accuracy for each fMRI image based on whether classifier 

evidence for the correct context category (A or B: whichever one actually 

preceded this particular M-item) was greater than classifier evidence for the 

incorrect context category. For this 2-way classification, chance is 50%. The 

observed level of accuracy was 57% for lists with celebrities as the M-

category (95% CI: 54-60%), 57% for lists with landmarks as the M-category 

(95% CI: 53-61%), and 58% for lists with objects as the M-category (95% 

CI: 54-61%). (These classifier results are reported in Table 2 for the individual 

datasets.) Importantly, these accuracy percentages only denote the 

percentage of outputs that matched the preceding-category labels that we 

provided to the classifier—not the match to the participants’ actual neural 

content. We believe that the output of the classifier in fact reflects a noisy 

estimate of meaningful fluctuations in the extent to which preceding-category 

information lingered in participants’ brains. In our main analysis, this variability 

in the classifier output is what allows us to make predictions about when 

participants will make EK transitions. 
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M category Dataset 1 (n=17) Dataset 2 (n=24) 

celebrities 

landmarks 

objects 

57% (54 - 59%) 

58% (55 - 62%) 

57% (54 - 60%) 

57% (54 - 60%) 

56% (53 - 59%) 

58% (55 - 60%) 

Table 2. Basic classifier results for each dataset individually. Reported are mean 
classifier accuracies (and 95% confidence intervals) for the three different classifiers. 

 
 

Relating classifier evidence to recall order 

As predicted, levels of preceding-category similarity (i.e., PCS scores) 

were higher for a pair of M-items when participants made the EK transition 

between them, vs. when they instead made a non-EK transition to the just-

nearer M-item (Figure 6a, top). That is, participants were more likely to recall 

two M-items together if the M-items were encoded with similar lingering 

information about preceding items. This result provides direct support for the 

idea that lingering thoughts relating to preceding items serve to contextualize 

memories and organize subsequent recall. The result was also observed for 

the individual datasets, although the result was not significant for the first 

dataset on its own, which showed a smaller effect overall (Figure 6a, middle 

and bottom). 

We did not find a corresponding effect of current-category similarity on 

recall order in the combined dataset – that is, we did not find that levels of 

current-category similarity (i.e., CCS scores) were significantly higher for a 

pair of M-items when participants made the EK transition between them vs. 
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when they instead made a non-EK transition to the just-nearer M-item (Figure 

6b, top). When analyzing individual datasets, we did find a current-category 

effect in the 1st dataset, but not in the 2nd dataset. In fact, in the 2nd dataset, 

the effect fell marginally in the opposite direction (Figure 6b, middle and 

bottom). The lack of a robust effect of current-category similarity on suggests 

that the preceding-category results were distinct from any potential effects of 

current-category similarity. 

However, although current-category similarity in the full dataset did not 

differ significantly between EK vs non-EK transitions made, it was numerically 

higher for EK transitions made. Thus, to ensure that our preceding-category 

results were not driven by any effects of current-category similarity, we 

computed the correlation between current-category similarity and preceding-

category similarity. There was no significant correlation (mean correlation for 

each participant 0.016; 95% CI: -0.011–0.044). 

Effect sizes are reported in Table 3, for effects of preceding-category 

similarity and current-category similarity on EK transitions. 

 

 Combined data 
(n=41) 

Dataset 1 
(n=17) 

Dataset 2 
(n=24) 

Difference in PCS scores  
for EK vs. nonEK transitions made 0.64 0.32 0.92 

Difference in CCS scores  
for EK vs. nonEK transitions made 0.33 0.75 -0.04 

Table 3. Effect sizes (reported as Cohen’s d) for effect of preceding-category 
similarity (PCS) scores and current-category similarity (CCS) scores on recall 
transitions. 
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Figure 6. Main results. For EK transitions that actually occurred vs. EK transitions 
that did not occur (because a non-EK transition occurred instead): (a) preceding-
category similarity (PCS) scores, (b) current-category similarity (CCS) scores. Cat’s-
eye plots show bootstrap distributions for the difference in PCS/CCS scores between 
EK transitions that did occur vs. those that did not. Results are shown for the 
combined data, and for the individual datasets. Black shaded areas of cat’s-eye plots 
indicate 95% confidence intervals. 
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5.4  Discussion 

 

In this study, we used fMRI pattern classification to track lingering 

traces of preceding thoughts, and we showed that memories encoded with 

similar “lingering thoughts” (about the category of preceding items) were more 

likely to later be recalled together. The idea that items are contextualized by 

the “fading embers” of recently studied items is a central assertion of extant 

models of temporal context and memory (e.g., Howard and Kahana 2002). 

Our results provide the most direct evidence to date in support of this view.  

These effects of “lingering thoughts” on recall order are distinct from 

previously documented effects by information about current stimuli. These 

previous studies include Morton et al. (2013), who found that the degree of 

category-specific activity elicited by a studied item predicted category 

clustering on a free recall test (see also Kuhl et al, 2012, who found that 

category-specific activity at encoding predicted cued recall success at test). In 

our combined dataset, we did not find that information about the current 

item’s category predicted which items would later be recalled close together 

in time. Furthermore, we did not find any correlation between measures of 

preceding-category similarity and current-category similarity. This indicates 

that information about the preceding item’s category exerted influences that 

were not driven by, and were distinct from, any potential influences of the 

current item’s category.  
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Our results, taken together with previous experiments, point to a 

synthesis whereby multiple time scales of representation influence recall 

organization, in distinct ways. Although we did not robustly observe this effect 

in our data, previous studies have shown that information about what is 

currently happening gets encoded into the memory trace, leading to semantic 

clustering effects — two events that have similar content activate overlapping 

populations of neurons, such that thinking of one event automatically cues the 

other (similar) event (e.g. Morton et al, 2013). Newly, our results show that 

information about what was recently happening is also encoded into the 

memory trace. Under normal circumstances, this can lead to temporal 

clustering (if participants see events A, B, C in sequence, lingering 

information about A gets encoded along with both B and C, leading to 

enhanced transitions between B and C). In our study, however, we 

deliberately structured study lists so that encoding of preceding-category 

information worked against temporal clustering — to the extent that 

participants were integrating preceding-category information into their 

memory traces, they should make “Evel Knievel” recall transitions that jump 

over nearer items, which is exactly what we saw. 

One limitation of our study is that we only tracked thoughts relating to 

the immediately preceding category. As such, our results do not, on their own, 

discriminate between dual-store memory models (which posit that recently 

studied items linger in a short-term memory store, so that adjacent items are 

directly associated with each other during study; Atkinson & Shiffrin, 1968; 
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Raiijmakers & Shiffrin, 1980) and memory models like TCM (which posit that 

items are contextualized by linking them to a running average of recently 

presented items). It is worth emphasizing that both of these accounts (dual-

store models and models like TCM) posit that activity relating to preceding 

items persists in some form, and is linked to the current item. Thus, the effect 

of lingering information on recall organization is a key prediction of a wide set 

of prominent theories of memory, for which our experiment is the most direct 

test to date.  
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6  General Discussion: Relating “state”, “context”,  
and “schemas” 

 

The concepts of states, context, and schemas are central to many 

active areas of research. In recent years, researchers are starting to 

recognize the importance of more concretely describing their contents and 

construction (as implemented by humans and animals, as well as on a more 

abstract theoretical basis), and also elucidating their neural implementation. A 

primary goal of this thesis was to begin filling in these gaps in our 

understanding – what kind of information is used to construct a representation 

of the current situation? How is the inference performed, and how is it 

realized neurally? 

Until now, state, context, and schemas have been, for the most part, 

considered as three separate ideas. A second goal of this thesis work was to 

bring together these three ideas, both theoretically and in terms of their neural 

underpinnings. 

 

6.1  Similarit ies in the theoretical and neural representations 

of states and schemas 

In this work, I have focused on representations of the current situation 

for two cognitive processes – decision-making and episodic memory. 

Normatively, the inference procedure and contents of the representation for 

the two cognitive processes should be strongly related, though not 
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necessarily identical. For decision-making, a representation of the current 

situation (the “state”) should include information that is relevant for taking the 

right actions at the current time. In other words, the representation should 

capture the contingencies between actions and outcomes. In contrast, the 

purpose of episodic memory is to store information that could be useful for 

action and decision-making at a future time, and it is optimal to label that 

information in such a way that the relevant information will be retrieved at that 

future time. Due to the associative nature of memory, this is accomplished by 

labeling the memories with concepts that are likely to be reactivated when the 

same action-outcome contingencies are encountered again (because those 

concepts will in turn activate the relevant memories). This can be 

accomplished in a straightforward way by directly labeling a memory with 

one’s inference about the current situation – in other words, this label would 

consist of a representation of state that is similar to the representation useful 

for decision making at the current time. 

Given the similarity of the desired representations and inference 

procedure of situation for memory and decision-making, one parsimonious 

solution is for the two cognitive processes to draw on the same neural circuits 

for processing the current situation. Previous research (see Section 2.1) has 

indeed suggested a similar locus of representation within the brain for states 

and schemas – the overlapping areas of ventromedial prefrontal cortex 

(vmPFC) and orbitofrontal cortex (OFC). In Chapter 4, I showed that, when 

the underlying situation is not directly observable, representations in this 
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vmPFC/OFC region seem to take the form of a probability distribution over 

possible situations (as opposed to, say, the best guess of the situation). 

For the common case of decision-making under uncertainty about the 

current state, it is well established that this probability distribution over 

possible states (the belief state) can serve as a stand-in Markov 

representation whose values can be updated from experience, using the 

standard machinery of reinforcement learning (Kaelbling et al, 1998). Thus, it 

makes sense that a brain area implicated in the representation of task state 

would in fact contain representations of a probability distribution over states. 

Further studies are required to reinforce the evidence presented here that 

vmPFC/OFC represents belief states used for reinforcement learning. For 

example, it is not clear what the relationships are between posterior-

probability-related activity patterns in vmPFC/OFC and those in areas known 

to be involved further downstream in decision making, such as parietal cortex. 

 

6.2  Organization of memory by situation representations 

In contrast to belief states in reinforcement learning, it is a new idea 

that the schemas used to organize memory might also take the form of a 

probability distribution over the possible underlying situations. On the one 

hand, it may make sense for memory labels to take this form; that is, 

memories may be associated with different situation labels in accordance with 

how likely that situation underlies the current events (which are being entered 
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into memory) – then, in the future, memories can be reactivated in 

accordance with how strongly they are linked to a representation of the 

situation encountered at the future time.5 At the same time, it is also possible 

that a probability distribution in vmPFC/OFC serves as an intermediate 

computation in the inference of schemas, and that memories are not 

organized or incorporated into the representations of the probability 

distributions themselves. This remains an open question.  

Our results in Chapter 5 may appear to support the idea of an alternate 

organizing principle for our memories, by supporting existing theories that 

suggest that memories are labeled with the semantics of recent experience. 

In addition, previous work has indicated that memories are also frequently 

organized according to spatial information, time, and emotional state. 

However, what these types of information (usually called “context”) have in 

common is that they tend to be very diagnostic of the current situation, and so 

can serve as useful heuristic proxies for the underlying situation.  

There remain a few important open questions that might be addressed 

in the near term. The work presented in this thesis has shown evidence that 

an area implicated in the representation of schemas also shows 

                                            

5 Analogous to belief states for decision-making, a possibly equivalent formulation of 
this is to state that memories should be labeled with a single situation label that is in fact a 
probability distribution over situations, and should be reactivated in accordance with the 
similarity of the label with the current probability distribution. For example, memory X is 
labeled with 100% certainty of situation A, memory Y is labeled with 50% situation A and 50% 
situation B, and memory Z is labeled with 100% certainty of situation B. If, at the current time, 
we infer that we are in situation A with 90% probability, then (according to this idea) we would 
be most likely to reactivate memory X and least likely to reactivate memory Z.  
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representation of a posterior probability distribution over the latent causes that 

underlie our observations. It has not shown that this posterior probability 

distribution actually organizes and affects memories in the way that schemas 

are expected to do. Even if this posterior probability distribution is shown to 

act as a schema or like context for memories, it may not be the only 

organizing signal for memories. Although certain streams of information 

known to organize memories (e.g. information about space, time, emotional 

state, or preceding stimuli, as we showed in Chapter 5) tend to be very 

diagnostic of the underlying situation, they may not actually be processed 

through an inference of the situation before being used to organize memories. 

To answer whether they are or not, we may wish to show whether or not 

these other streams of information affect the organization of memory even 

when they are not particularly diagnostic of the underlying situation, and also 

to see whether or not their use tends to activate parts of the brain that we find 

to be involved in inference or representation of the current situation. 

 

6.3  Conclusion 

There remain many open and important questions regarding the 

inference and representation of situation, and the way these representations 

are used by other cognitive processes. We have only begun to map out the 

neural circuits involved in the representation of situation, and research 

investigating the inference of situation (including neural implementations) is 
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similarly in its infancy, but shows a lot of promise for progress in coming 

years. 

 

 


