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Abstract

In this dissertation, I characterize the role or reward prediction errors (RPEs) in shaping episodic
memory across three series of behavioral experiments and computational modeling of learning and
memory behavior. In Chapter 1, I show that large unsigned RPEs increase learning for those outcomes
(i.e., learning rate) as well as memory for those outcome events. However, I do not find these effects
to be correlated, suggesting distinct underlying mechanisms. In Chapter 2, I further test whether de-
pressive symptoms modulate unsigned-RPE effects on learning and memory. I do not find depres-
sive symptoms to lead to overall differences in learning and memory. Instead, I find that symptom
group predicts opposite biases in the unsigned-RPEmodulation of memory: in depressive partici-
pants, unsigned RPEs increased memory more for negative- versus positive-RPE events, whereas in
non-depressive participants, unsigned RPEs increased memory more for positive- versus negative-RPE
events. In Chapter 3, I dissociate the effects of RPEs experienced at reward cue from those at outcome
on learning and memory for those events. I show, in line with classic associative models of attention,
that signed RPEs at reward cue and unsigned RPEs at reward outcome modulate a dynamic learning
rate in reinforcement learning models fit to behavior. When characterizing RPE effects on memory, I
replicate previous results and find that unsigned RPEs at outcome enhance memory throughout learn-
ing, especially for outcome events. In addition to this, memory for cue events increases as a function
of learning wherein a signed RPE at cue boosts memory for events associated with more valued re-
ward categories. Finally, in Chapter 4, I investigate the computational mechanism supporting better
memory for large unsigned-RPE events by testing whether they create event boundaries in memory.
Large-RPE events are more strongly encoded and show intact associative links with their predecessors;
nevertheless, they consistently disrupt the integration of events that occur across them, thereby creating
event boundaries in memory. I capture these effects in a computational model of memory modified to
incorporate RPEs into the encoding process. To conclude, I link my findings to interactions between
reinforcement learning and memory systems, offering targets for future neuroscientific research.
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0
Introduction

Memories help guide future behavior, but which experiences from the past are prioritized in

memory? In reinforcement learning, the value of a rewarding source is computed as a weighted aver-

age over all experienced outcomes, suggesting we integrate across multiple memories when making a

decision. In contrast, episodic memories represent single events that allow for rapid, one-shot learn-

ing of relations between stimuli and outcomes. These two systems have been thought to engage sepa-

rate underlying mechanisms, with the dopaminergic midbrain and striatum supporting reinforcement

learning (for a review, see Schultz, 2015), and the hippocampus supporting episodic memory (for a re-

view, see Moscovitch, Cabeza, Winocur, & Nadel, 2016). However, a large and growing literature has

blurred this division, showing that learning and memory systems overlap and interact while predicting

decision-making in a variety of behavioral and neural paradigms (Bornstein &Norman, 2017; Gersh-

man &Daw, 2017; Shohamy &Daw, 2015; Wimmer, Daw, & Shohamy, 2012). For example, both the

expected value of an option and a distinct memory of a previously experienced outcome influence a

decision (Biele, Erev, & Ert, 2009; Duncan & Shohamy, 2016). Moreover, recent sampling models of

decision-making posit that previous outcomes are drawn frommemory to form the internal value of

an option (Lieder, Griffiths, &Hsu, 2018; Shadlen & Shohamy, 2016; Bakkour et al., 2019; Bornstein

&Norman, 2017; Bornstein, Khaw, Shohamy, & Daw, 2017). It is nevertheless unclear which experi-

ences may be more or less available in memory. Here, I investigate how reward prediction errors – rapid

and transient reinforcement signals that track the difference between actual and expected outcomes –

shape our memory for rewarding events.

Reward prediction errors play a well-established role in updating stored information about the
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values of different choices, and are known to modulate dopamine release. When a reward is better than

expected, there is an increase in the firing of dopamine neurons, and conversely, when the reward is

worse than expected, there is a dip in dopaminergic firing below the baseline firing rate (Barto, 1995;

Montague, Dayan, & Sejnowski, 1996). Dopamine, in turn, modulates plasticity in the hippocampus, a

key structure for episodic memory (Lisman &Grace, 2005; Shohamy & Adcock, 2010). This dopamin-

ergic link therefore provides a potential neurobiological mechanism for reward prediction errors to

affect episodic memory. However, there are several ways by which reward prediction errors could po-

tentially influence episodic memory.

First, if memory formation is affected by this signed reward prediction error, then we would ex-

pect an asymmetric effect on memory, such that a positive prediction error (leading to an increase in

dopaminergic firing) would improve memory whereas a negative prediction error (leading to a decrease

in dopaminergic firing) would worsen it (Jang, Nassar, Dillon, & Frank, 2019; Davidow, Foerde, Gal-

van, & Shohamy, 2016).

A second possibility is that the magnitude of the prediction error could influence episodic mem-

ory regardless of the sign of the error, enhancing memory for events that are either much better or

much worse than expected. Such effects of unsigned prediction errors are thought to be mediated by

the locus-coeruleus-norepinephrine (LC-NE) system, which demonstrates a transient response to un-

expected changes in stimulus-reinforcement contingencies in both reward and fear learning (that is,

regardless of sign; for a review, see Sara, 2009). Importantly, this LC-NE signal is thought to increase

learning rate, i.e. the extent to which a learner updates their values, following large unsigned predic-

tion errors (Behrens, Woolrich, Walton, & Rushworth, 2007; McGuire, Nassar, Gold, & Kable, 2014;

Nassar et al., 2012; Pearce &Hall, 1980). Importantly, recent evidence also indicates that the locus

coeruleus co-releases dopamine with norepinephrine, giving rise to dopamine-dependent plasticity in

the hippocampus (Kempadoo, Mosharov, Choi, Sulzer, & Kandel, 2016; Takeuchi et al., 2016; Wagat-

suma et al., 2017). This work highlights a new source of dopamine other than the VTA and substantia

nigra pars compacta (where the signed reward prediction error originates), which leads to new hypothe-

ses of how events that modulate LC activity, such as unsigned reward prediction errors, might boost
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hippocampal memories (Duszkiewicz, Mcnamara, Takeuchi, & Genzel, 2018; Hauser, Eldar, Purg,

Moutoussis, & Dolan, 2019; Clewett &Murty, 2019; Clewett, Huang, Velasco, Lee, &Mather, 2018).

InChapter 1, I first answer the question of whether and how reward prediction errors (hence-

forth RPEs) modulate learning and memory (Rouhani, Norman, &Niv, 2018). To do this, in three

experiments, we investigated whether learning in a context characterized by high-outcome variance

(‘high-risk’) with frequent, large RPEs, gives rise to higher fidelity memory traces than learning in a

‘low-risk context’. In each experiment, we showed that large unsigned RPEs increased learning rate for

outcomes and enhanced memory for those events. Nevertheless, we did not find a relationship between

learning rate for reward and memory for items. In fact, on average, the high- versus low-risk context

led to lower learning rates but better memory; that is to say, learning rates scaled to the outcome vari-

ance whereas memory did not. These results show that unsigned RPEs boost both incremental reward

learning and episodic memory, but the two effects are likely mediated by distinct neural systems.

InChapter 2, I re-analyze data from Chapter 1 to determine whether self-reported symptoms

of depression modulate the effects of unsigned RPEs on learning and memory (Rouhani &Niv, 2019).

We did not find overall differences in reward learning between subjects with depressive symptoms ver-

sus those without, but, within subjects that did report depressive symptoms, depression severity pre-

dicted worse learning. There were also no overall differences in memory performance across the groups;

however, we found distinct biases for the unsigned-RPE enhancement of memory. In participants with

depressive symptoms, large negative RPEs boosted memory more so than did large positive RPEs, and

vice versa for non-depressive participants who showed more an effect of large positive (versus negative)

RPEs in improving memory. In other words, individuals with depressive symptoms were more likely to

remember surprising negative events, whereas those without depressive symptoms were more likely to

remember surprising positive events.

InChapter 3, I dissociate the effects of signed and unsigned RPEs experienced at reward cue

versus outcome on memory for events presented at reward cue and outcome. In line with classic asso-

ciative models of attention (Pearce &Mackintosh, 2010), we studied how learning dynamics influence

memory for cue and outcome events. Here, we expected that an unsigned RPE signal at reward out-
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come would boost memory throughout learning for surprising events (as in Chapter 1, and Pearce &

Hall’s (1980) model of attention), whereas a signed RPE signal at the reward-predictive cue would in-

crease memory once the values of different categories have been learned (as in Mackintosh’s (1975)

model of attention).

Across two experiments, participants learned the values of categories and, critically, saw two

trial-unique images on every trial, one serving as the cue event and the other alongside the reward as

the outcome event. We tested reinforcement learning models that included attentional components –

an unsigned RPE at outcome (Pearce-Hall) and a signed RPE at cue (Mackintosh) – as modulators of

trial-by-trial learning rates, and found these models to fit learning behavior better than models without

those components. When characterizing RPE effects on memory, we replicated previous results (Chap-

ter 1) and found that unsigned RPEs at outcome enhanced memory throughout learning, especially

for events experienced at reward outcome. In addition to this, we found that memory for cue events

increased as a function of learning wherein a signed RPE at cue boosted memory for events associated

with more valued reward categories. Last, in a final choice test, we found that participants preferred

both cue and outcome events linked to higher rewards and more valued reward categories. Interest-

ingly, however, when choosing between a cue and an outcome event that belonged to the same trial

(same reward and value; there should be no preference for either event), the signed RPE at outcome,

which did not predict memory, increased preference for the outcome event, pointing to a hedonic in-

fluence of the signed RPE in modulating choice. In summary, we show here that signed and unsigned

RPEs separately and dynamically influence learning and memory for rewarding events.

InChapter 4, I investigate the computational mechanism supporting better memory for events

accompanied by large unsigned RPEs (Rouhani, Norman, Niv, & Bornstein, 2020). Specifically, we

tested whether this signal simply strengthens the encoding of events or whether it acts as an event bound-

ary in memory, thereby improving memory by separating events that came after it from those that

came before it in memory, thus reducing interference from those past events. Across four experiments,

participants learned to predict rewards in distinct contexts. Within each context, high-magnitude RPEs

(‘high RPEs’) indicated a shift in the underlying distribution of rewards. We used recognition priming
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and temporal-order memory to assess whether high RPEs create event boundaries by interrupting the

temporal integration of events in memory.

When testing sequential items that did or did not contain a high-RPE event, we found recogni-

tion priming for both pair types; however, this effect was diminished when testing pairs across a high

RPE. We also found and replicated intact sequence memory for sequential pairs that included a high-

RPE event, but again found worse sequence memory for events across a high-RPE event, mirroring

our recognition priming results. Moreover, greater distance between events at encoding led to better

sequence memory for events that spanned a low-RPE event, but not a high-RPE event, suggesting sepa-

rate mechanisms for the temporal ordering of events within versus across a latent reward context. Alto-

gether, these findings demonstrate that high-RPE events are both more strongly encoded, show intact

links with their predecessor, and yet act as event boundaries that disrupt the integration of sequential

events in memory. We captured these effects in a variant of the Context Maintenance and Retrieval

model (Polyn, Norman, & Kahana, 2009), modified to incorporate RPEs into the encoding process.

Finally, in theConclusion, I bridge across the results of each study by offering putative neural

mechanisms supporting our findings, and discuss some open and new questions.
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1
Dissociable Effects of Unsigned Reward Prediction Errors

on Learning andMemory*

We first tested whether signed or unsigned prediction errors influence learning rate and episodic

memory, and whether these two effects are correlated. Correlated effects on learning of values and

memory for events would suggest a commonmechanism underlying both effects, whereas two uncorre-

lated effects are consistent with separate underlying mechanisms.

We also measured the effect of risk context (i.e., whether unsigned prediction errors were large

or small, on average, in a particular environment) on episodic memory. Previous work on the effects

of risk context show that dopamine signals scale to the reward variance of the learning environment

(Tobler, Fiorillo, & Schultz, 2005), allowing for greater sensitivity to prediction errors in lower variance

contexts. Moreover, behavioral learning rate and BOLD responses in the dopaminergic midbrain and

striatum reflect this adaptation, with higher learning rates and increased striatal response to prediction

errors when the reward variance is lower (Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016).

We therefore expected higher learning rates in a low-risk context, but it was unclear whether this effect

would interact with episodic memory. If anything, for memory we expected opposite effects, such that

a high-risk context would induce better episodic memory, as salient feedback (like experiencing high

magnitude prediction errors) is thought to increase autonomic arousal and encoding of those events

(Clewett, Schoeke, &Mather, 2014). The mnemonic effects of higher magnitude prediction errors may

also “spill over” to surrounding items, boosting memory for those items as well, again predicting better

memory for events experienced in the high-risk context (Duncan, Sadanand, & Davachi, 2012; Mather,

*The content of this chapter was published in Rouhani, Norman &Niv, 2018.

6



Clewett, Sakaki, & Harley, 2015).

To investigate the effect of reward prediction errors and risk context on the structure of mem-

ory, we asked participants to learn by trial and error which of two types of images, indoor or outdoor

scenes, leads to larger rewards. Trial-unique indoor and outdoor images were presented in two different

contexts or ‘rooms,’ with each room associated with a different degree of outcome variance. The aver-

age values of the scene categories in the two rooms were matched. Participants were instructed to learn

the average (expected) value of each type of image (indoor or outdoor scenes), given the variable indi-

vidual outcomes experienced for each scene, as is typically done in reinforcement learning tasks (e.g.,

O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003).

Specifically, we asked participants to explicitly estimate, on each trial, the average value of the

category of the current scene. The deviation between this estimate and the outcome on that trial de-

fined the trial-specific subjective prediction error. These prediction errors were then used to calculate

trial-by-trial learning rates for the average values of the categories, as well as to predict future memory

for the specific scenes presented on each trial. At a later stage, memory for the individual scenes was

assessed through recognition memory (‘item’ memory), identification of the room the item belonged

to (‘source’ or context memory; Exp. 2-3), and the ordering of a pair of items (‘sequence’ memory).

Given that both category-value learning and individual scene memory were hypothesized to depend on

the same prediction errors, we also characterized the relationship between learning about the average

rewards in the task and episodic memory for the individual rewarding events.

1.1 Experiment 1

In Experiment 1, we assessed whether reward prediction errors interact with episodic memory

for rewarding episodes. Participants learned the average reward values of images from two categories

(indoor or outdoor scenes) in two learning contexts (‘rooms’). The two learning contexts had the same

mean reward, but different degrees of reward variance (‘risk’) such that the rewards associated with

scenes in the ‘high-risk room’ gave rise to higher absolute prediction errors than in the ‘low-risk room’.

We then assessed participants’ recognition for the different scenes in a surprise memory test, to test how
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prediction errors due to the reward associated with each episode affected memory for that scene.

Method

Participants

Two hundred participants initiated an online task using AmazonMechanical Turk (MTurk),

and 174 completed the task. We obtained informed consent online, and participants had to correctly

answer questions checking for their understanding of the instructions before proceeding; procedures

were approved by Princeton University’s Institutional Review Board. Participants were excluded if they

(1) had a memory score (A’: Sensitivity index in signal detection, Pollack &Norman, 1964) of less than

0.5 based on their hit rate and false alarm rate for item recognition memory, or (2) missed more than

three trials. These criteria led to the exclusion of ten participants, leading to a final sample of 164 par-

ticipants. Although we do not have demographic information for the mTurk workers who completed

these experiments, an online demographic tracker reports that during the time we collected data, the

samples were approximately 55% female; 40% were born before 1980, 40% were born between 1980

and 1990, and 20% were born between 1990-1999 (Difallah, Catasta, Demartini, Ipeirotis, & Cudré-

Mauroux, 2015; Ipeirotis, 2010).

Procedure

Participants learned by trial and error the average value of images from two categories (indoor or

outdoor scenes) in two rooms defined by different background colors (see Figure 1.1). In each room,

one type of scene was worth 40¢ on average (low-value category) and the other worth 60¢ (high-value

category). The average values of the categories were matched across rooms, but the reward variance

of the high-risk room was more than double that of the low-risk room (high-risk σ = 34.25, low-risk σ

= 15.49). The order of the rooms (high-risk and low-risk) was randomized across participants. In an

instruction phase, participants were explicitly told (through written instructions; see supplementary

material) that in each room one scene category is worth more than the other (a ‘winning’ category) and

were asked to indicate the winner after viewing all images in a room. They were not told the reward

distributions of the rooms, nor that the rooms would have different levels of variance. In addition, to
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motivate participants to pay attention to individual scenes and their outcomes, participants were told

that later in the experiment they would have the opportunity to choose between these same scenes and

receive the rewards associated with them as per their choices.

After the two learning blocks (one high-risk and one low-risk), participants completed a risk

attitude questionnaire (DOSPERT;Weber, Blais, & Betz, 2002) that served to create a 5-10 minute

delay between learning and memory tests. Participants then completed a surprise item-recognition task

(i.e., participants were never told that their memory for scenes would be tested, apart from instructions

about the choice task as detailed above), as well as a sequence memory task. After the memory tests,

participants made choices between previously seen images.

Learning: On each trial, participants were shown a trial-unique image (either an indoor or outdoor

scene) for 2 seconds. Participants then had up to 5 seconds to estimate howmuch that type of scene is

worth on average in that room (from 1 to 100 cents). In other words, participants were asked to pro-

vide their estimate of the average, or expected value, of the scene category based on the previous (vari-

able) outcomes they had experienced from that scene category within the room. The scene was then

presented again for 3 seconds along with its associated reward (see Figure 1.1A). In the instructions,

participants had been told that although trial-unique images can take on different rewards, each scene

category had a stable mean reward, and on average one scene category was worth more than the other.

Note that participants were not asked to estimate the exact outcome they would receive on that trial,

but instead were estimating the average expected reward from that scene category. Accordingly, par-

ticipants had also been told that their payment was not contingent on how accurate their guesses were

relative to the reward on that trial. Instead, their payment was solely determined by the rewards they

received, to ensure that rewards were meaningful for the participant. This task structure was chosen to

ensure that participants would continue to experience prediction errors on each trial (i.e., for individ-

ual scenes) even after correctly estimating the expected values of the categories, as is commonly done in

reinforcement learning tasks (e.g., Niv, Edlund, Dayan, & O’Doherty, 2012).

There were 16 trials in each room (8 outdoor and 8 indoor). Rewards were 20¢, 40¢, 80¢, 100¢

(twice each) for the high-risk–high-value category, 0¢, 20¢, 60¢, 80¢ for the high-risk–low-value cate-
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gory, 45¢, 55¢, 65¢, 75¢ for the low-risk–high-value category and 25¢, 35¢, 45¢, 55¢ for the low-risk–

low-value category. All participants experienced the same sequence of rewards within each room, with

the order of the rooms randomized.

Memory: After completing the risk questionnaire, participants were presented with a surprise recogni-

tion memory test in which they were asked whether different scenes were old or new (see Figure 1.1B)

as well as their confidence for that judgment (from 1 ‘guessing’ to 4 ‘completely certain’). There were

32 test trials, including 16 old images (8 from each room) and 16 foils. Participants were then asked to

sequence 8 pairs of previously seen scenes (which were not included in the recognition memory test) by

answering ‘which did you see first?’ and by estimating howmany trials apart the images had been from

each other. Each pair belonged to either the low (4 pairs) or high-risk room (4 pairs).

Choice: In the last phase of the experiment, to verify that participants had encoded and remembered

the individual outcomes associated with different scenes, participants were asked to choose between

pairs of previously seen scenes for a chance to receive their associated reward again (see Figure 1.1C).

The pairs varied in either belonging to the same room or different rooms and some were matched for

reward and/or average scene value in order to test for the effects of factors such as risk context on choice

preference. The choices were presented without feedback.

Statistical analysis: Analyses were conducted using paired t-tests, repeated measures ANOVAs, and

generalized linear mixed-effects models (lme4 package in R; Bates et al., 2015). All results reported be-

low (t-tests and ANOVAs) were confirmed using linear or generalized mixed-effects models treating

participant as a random effect (for both the intercept and slope of the fixed effect in question). We note

that in all experiments, our results held when controlling for the between-subjects variable of room or-

der (for brevity, we only explicitly report these results in Experiment 1, see below).
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LEARNING
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DELAY 
(risk questionnaire)

Figure 1.1: Task Design. A: Example learning trial. On each trial, parঞcipants were shown an image (‘cue’), and were asked to esঞmate
how much on average that type of scene (indoor or outdoor) was worth (‘esঞmate’). They then saw the image again with a monetary
outcome (‘reward’). Each image appeared on one trial only. B: Memory tests. Parঞcipants completed item recogniঞon, source (Exp.
2,3) and sequence memory tasks. C: Choice task. Parঞcipants chose between previously seen images that were matched for reward
outcome, risk context, and/or scene category value.

cue

2 s

estimate
please estimate
the value of this 

type of scene 
(indoor or outdoor) 

from 1 to 100 ¢

Submit

max 5 s

reward
100 ¢ 
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cue
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(Vt+1)

Prediction Error  
PEt = Rt — Vt
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αt =  Vt+1 — Vt

       PEt 

“reward outcome”
(Rt)

Figure 1.2: Schemaঞc of predicঞon error (PE) and learning rate (α) calculaঞon for two consecuঞve trials that involve the same scene
category, in the learning phase of the experiment. Based on the learning equaঞonVt+1 = Vt + αt ∗ PEt, we calculated the trial-
by-trial learning rate as (Vt+1 − Vt)/PEt. Note that all components of this equaঞon are measured explicitly: Vt andVt+1 are two
consecuঞve esঞmates of the value of a scene from a single category (e.g., outdoor scenes), and the predicঞon error on trial t is the
difference between the reward given on that trial, and the parঞcipants’ esঞmate of the value of scene on the same trial. We assume
here that separate values are learned and updated for each of the scene categories.
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Results

Learning

Participants learned the average values of the high- and low-value categories better in the low-risk

than in the high-risk room, as assessed by the deviation of their value estimates from the true averages

of the scene categories (t(163) = 14.52, p < 0.001; Figure 1.3A). We then calculated, for every scene, the

prediction error (PEt) associated with that scene by subtracting participants’ value estimates (Vt) from

the reward outcome they observed (Rt; see Figure 1.2). This showed that, as we had planned, there were

more high-magnitude prediction errors in the high-risk room as compared to the low-risk room (t(163)

= 36.77, p < 0.001, within-subject comparison of average absolute prediction errors between the two

rooms; Figure 1.3B).

Moreover, there was an interaction between risk and scene category such that participants over-

estimated the value of low-value scene category (resulting in negative prediction errors, on average) and

underestimated the value of high-value scene category (resulting in positive prediction errors, on aver-

age) to a greater extent in the high-risk room than in the low-risk room (F (1,163) = 141.2, p < 0.001 for

a within-subject interaction of the effects of room and scene category on the average signed prediction

error; Figure 1.3C). This demonstrates more difficulty in separating the values of the categories in the

high-risk room, consistent with previous findings showing that when people estimate the means of two

largely overlapping distributions, they tend to average across the two distributions, thereby grouping

them into one category instead of separating them into two (Gershman &Niv, 2013). Despite greater

difficulty in separating the values of the high and low value categories within the high-risk room, most

participants correctly guessed the ‘winner’, or the high-value scene category, within both the high-risk

(88%) and the low-risk (89%) rooms.
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Figure 1.3: Experiment 1, learning results. A: Average esঞmates for the high and low-value categories as a funcঞon of trial number for
the high and low-risk rooms. Parঞcipants learned be�er in the low-risk room, indicated by the proximity of their guesses to the true
values of the scenes (dashed horizontal lines). Cent values represent the outcome parঞcipants received on that trial (a[er entering their
value esঞmate). B: Density plot of predicঞon errors (PEt) in each room. There were more high-magnitude predicঞon errors in the high-
risk in comparison to the low-risk room. C: There was an interacঞon for posiঞve and negaঞve predicঞon errors between risk context
and category value, such that parঞcipants overesঞmated the value of the low-value category and underesঞmated the value of the high-
value category to a greater extent in the high-risk room. Error bars represent standard error of the mean.

Memory by risk and prediction error

We found that items within the high-risk room were recognized better than items within the

low-risk room (z = 2.37, p = 0.02, β = 0.31; Figure 1.4A). To test the effect of reward prediction errors

on item-recognition memory, we ran two separate mixed-effects logistic regression models of memory

accuracy, one testing for the effect of signed and the other the effect of unsigned (absolute) prediction

errors on recognition memory. Both models also included a risk-level regressor to test for the effects of

risk and prediction error separately, and treated participants as a random effect. We did not find signed

prediction errors to influence recognition memory beyond the effect of risk (signed prediction error

(PEt): z = 0.71, p = n.s., β = 0.04; risk: z = 2.29, p = 0.02, β = 0.30). Instead, we found that larger pre-

diction errors enhanced memory regardless of the sign of the prediction error, which also explained the
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modulation of memory by risk (absolute prediction error (|PEt|): z = 3.36, p < 0.001, β = 0.23; risk: z =

0.9, p = n.s., β = 0.10; Figure 1.4B).

We ran two subsequent models testing for confounds, one including the effect of value estimates

and the other the actual reward outcomes associated with the items, along with the effect of absolute

prediction errors. Absolute prediction error had a significant effect on recognition memory when con-

trolling for reward outcome (|PEt|: z = 3.94, p < 0.001, β = 0.26;Rt: z = 0.45, p = n.s., β = 0.02) and

value estimates (|PEt|: z = 3.93, p < 0.001, β = 0.26;Vt: z = -0.09, p = n.s., β = -0.005). This effect also

held when modeling recognition memory for items in the high and low-risk rooms separately (high-

risk: z = 1.90, p = 0.05, β = 0.18; low-risk: z = 2.17, p = 0.03, β = 0.24), and in a model of the effects of

absolute prediction errors on recognition memory that controlled for room order (|PEt|: z = 3.90, p <

0.001, β = 0.25; room order: z = 1.95, p = 0.05, β = 0.33). Although room order itself did affect recog-

nition memory (participants who experienced the low-risk room first showed better memory accuracy

overall), all of our main findings (including learning rate) held when controlling for this effect.

Reward prediction errors therefore affected recognition memory, such that larger deviations

from one’s predictions, in any direction, enhanced memory for items. Finally, we tested for the effect

of risk on sequence memory (the correct ordering of two images seen during learning) and found no

difference in sequence memory between pairs of images seen in the high and low-risk rooms (z = 0.11, p

= n.s., β = 0.02).

A B

Figure 1.4: Experiment 1, recogniঞon memory results. A: Recogniঞon memory was be�er for items within the high-risk room. B: There
was be�er recogniঞon memory for items associated with a higher absolute predicঞon error. Item memory was binned by the quar-
ঞle values of predicঞon errors within each risk room. Each dot represents the average value within that quarঞle. Error bars represent
standard error of the mean.
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Learning rate by risk and prediction error

We also examined the effects of risk and prediction errors on the reward learning process itself.

For this we calculated a trial-by-trial learning rate αt as the proportion of the current prediction error,

PEt = Rt − Vt, that was applied to update the value for the next encounter of the same type of scene,

Vt+1 (see Figure 1.2 for schematic representing learning rate calculation). That is, we derived the trial-

specific learning rate directly from the standard reinforcement-learning update equationVt+1 = Vt +

αt(Rt − Vt), as:

αt =
Vt+1 − Vt

Rt − Vt
.

In agreement with recent findings (Diederen et al., 2016), we found that average learning rate

was higher in the low-risk room than in the high-risk room (t(163) = 3.37, p < 0.001 within-subjects

test; Figure 1.5A). Moreover, higher absolute prediction errors increased trial-by-trial learning rates (αt)

above and beyond the effect of risk (mixed-effects linear model, effect of absolute prediction error: t =

3.30, p = 0.001, β = 0.07; risk: t = 4.67, p < 0.001, β = 0.16; Figure 1.5B). We did not find participant

room order to influence learning rate (t = 0.31, p = n.s., β = -0.03). These results show that larger ab-

solute prediction errors enhance value updating, and further, that learning rates adapt to the reward

variance such that there is greater sensitivity to prediction errors in a lower-risk environment.

We next ran a mixed-effects regression model to test whether trial-by-trial learning rates predicted

recognition memory for scenes at test. Controlling for absolute prediction error, we did not find that

learning rate on trial t predicted memory on that same trial (αt: z = 0.85, p = n.s., β = 0.08; |PEt|: z =

3.42, p < 0.001, β = 0.20), nor on the subsequent trial, (effect of αt−1) on recognition memory for the

scene on trial t: z = 0.56, p = n.s., β = 0.05; |PEt|: z = 3.06, p = 0.002, β = 0.19, where t enumerates over

trials within a room). This demonstrates that increases in learning rate were not correlated with better

(or worse) memory, even though both learning rate and recognition memory were enhanced by larger

prediction errors.
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Figure 1.5: Experiment 1, learning rate results. A: Learning rate was higher in the low-risk context. Average learning rate plo�ed by
risk context and category value. B: Both absolute predicঞon errors and a low-risk context increased learning rate. Learning rates were
binned by predicঞon errors that occurred on the same trial (each dot represents the average predicঞon error within the binned range).
Error bars represent standard error of the mean.

Choice by reward and value difference

Finally, in a manipulation test, participants were asked to make choices between pairs of previously-

seen scenes. Choices between scenes with different reward outcomes served to test whether participants

encoded the rewards associated with the images. Participants chose the image associated with the larger

outcome more often (mixed-effects logistic regression model predicting choice based on outcome: z =

6.40, p < 0.001, β = 0.54), suggesting that they did indeed encode and remember the rewards associated

with the scenes.

Some choices were between items that were associated with the same outcome feedback. Here

we sought to test whether features of the environment such as the risk context biased participants away

from indifference. We did not find risk level, whether the scene was from the low rewarding or high

rewarding category, or the difference in absolute prediction error between the images, to additionally

influence choice preference. We instead found that participants were more likely to choose the scene

that they had initially guessed a higher value for (z = 3.74, p < 0.001, β = 0.01). We additionally found

that even when the two options had led to different reward outcomes, the difference in initial value

estimates for the scene was a significant predictor of choice, above and beyond the difference in actual

reward outcome (value estimate difference: z = 2.27, p = 0.02, β = 0.16; reward difference: z = 7.25,

p < 0.001, β = 0.52). This suggests that participants remembered not only the outcomes for different
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scenes, but also their initial estimates.

Discussion

In Experiment 1, we showed that the greater the magnitude of the prediction error experienced

during value learning, the more likely participants were to recognize items associated with those pre-

diction errors. We also demonstrated that both risk context and absolute prediction errors influenced

the extent to which people updated values for the scene categories, i.e. their item-by-item learning rate

fluctuated according to prediction errors and was influenced by context. In particular, learning rate was

higher in the low-risk environment, suggesting greater sensitivity to prediction errors when the variance

of the environment was lower. Further, in both contexts, higher absolute prediction errors increased

learning rate. Although absolute prediction errors enhanced both recognition memory and learning

rate, we did not find learning rate to predict recognition memory, suggesting that absolute prediction

errors affect learning and memory through distinct mechanisms.

1.2 Experiment 2

In Experiment 2, we allowed for more learning in both rooms, which posed stronger mem-

ory demands. We also tested for other types of episodic memory. Notably, different from standard

reinforcement-learning paradigms, Experiment 1 involved only 16 trials of learning in each context, 8

for each category. The initial phase of learning, which we were effectively testing, is characterized by in-

creased prediction errors and uncertainty relative to later learning, which might affect the relationship

between prediction errors and episodic memory. Additionally, participants in Experiment 1 all expe-

rienced the same reward sequence, which inadvertently introduced regularities in the learning curves

that could have also influenced initial learning and memory results. Finally, in this relatively short ex-

periment, average recognition memory performance was near ceiling (A’ = 0.90). In Experiment 2,

we therefore sought to replicate the results of Experiment 1 while increasing the number of learning

and memory trials and randomizing reward sequence. With more trials, we were also able to test for

sequence memory for items that were presented further apart in time, and we included a measure of
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source memory (i.e., which room the item belonged to)—a marker of episodic memory—for the con-

text of the probed item.

Method

Participants

Two hundred participants initiated an online task run on AmazonMechanical Turk, and 148

completed the task. Following the same protocol as in Experiment 1, twelve participants were excluded

from the analysis leading to a final sample of 136 participants.

Procedure

The procedure was the same as in Experiment 1 but with some changes to learning, memory and

choice. As in Experiment 1, rewards had a mean of 60¢ for the high-value category and 40¢ for the low-

value category (high-risk–high-value scenes: 20¢, 40¢, 60¢, 80¢, 100¢; high-risk–low-value scenes: 0¢,

20¢, 40¢, 60¢, 80¢; low-risk–high-value scenes: 40¢, 50¢, 60¢, 70¢, 80¢; low-risk–low-value scenes: 20¢,

30¢, 40¢, 50¢, 60¢). However, we increased the number of learning trials from 16 to 30 trials per room,

and we pseudo-randomized the reward sequence such that the rewards were drawn at random and were

sampled three times without replacement.

During the itemmemory test, we also asked participants to indicate whether items identified

as ‘old’ belonged to the first or second room (see Figure 1.1B), to measure source memory. Addition-

ally, given that sequence memory improves with greater distance between events (DuBrow&Davachi,

2013), here we asked participants to order items that were as far as 13-14 trials apart, in contrast to the

maximum of 8 trials apart in Experiment 1. Finally, satisfied by the manipulation check in the choice

tasks in Experiment 1, we asked participants to choose only between pairs of scenes matched for reward

outcome.

Results

Learning

As in Experiment 1, participants learned better in the low-risk than in the high-risk room (as-

sessed by the average deviation of participants’ value estimates from the true means of the category
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values; t(135) = 13.11, p < 0.001; Figure 1.6A). They experienced larger absolute prediction errors in

the high-risk room (t(135) = 39.65, p < 0.001; Figure 1.6B), and there was again an interaction between

risk and scene category value such that in the high-risk room, participants overestimated the value of

the low-value scene category and underestimated the value of the high-value scene category to a greater

extent than in the low-risk room (F (1,135) = 77.5, p < 0.001; interaction of the effects of room and cat-

egory on average prediction error experienced; Figure 1.6C). Again, participants guessed the high-value

scene category at the end of each room equally well in the high-risk (90%) and low-risk (89%) rooms.

B

A

category value

category value

low risk high risk

C

Figure 1.6: Experiment 2, learning results. A: Average esঞmates for the high and low-value categories as a funcঞon of trial number
for the high and low-risk rooms. Parঞcipants learned be�er in the low-risk room, indicated by the proximity of their guesses to the
true values of the scenes (dashed horizontal lines). B: Density plot of predicঞon errors (PEt) in each room. There were more high-
magnitude predicঞon errors in the high-risk in comparison to the low-risk room. C: There was an interacঞon for posiঞve and negaঞve
predicঞon errors between risk context and category value, such that parঞcipants overesঞmated the value of the low-value category and
underesঞmated the value of the high-value category to a greater extent in the high-risk room. Error bars represent standard error of the
mean.

Memory by risk and prediction error

By increasing the number of learning and memory trials, we significantly reduced average recog-
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nition memory performance from Experiment 1 (A’ = 0.86, t(275.23) = 3.04, p = 0.003 when compar-

ing overall memory performance between Experiment 1 and 2). We nevertheless replicated the main

results of Experiment 1: items from the high-risk room were better recognized than items from the

low-risk room (z = 2.51, p = 0.01, β = 0.19 when testing for the effect of risk on item-recognition mem-

ory; Figure 1.7A). In a separate model, higher absolute prediction errors enhanced recognition memory

for scenes, while again explaining the effect of risk (|PEt|: z = 3.44, p < 0.001, β = 0.16; risk: z = 1.76, p

= 0.08, β = 0.14, Figure 1.7B). Like in Experiment 1, in subsequent models testing for potential con-

founds, this effect was significant when controlling for the outcomes associated with the items (|PEt|: z

= 4.14, p < 0.001, β = 0.18; outcomeRt: z = -1.71, p = n.s., β = -0.06) as well as for the value estimate for

the scene category (|PEt|: z = 4.15, p < 0.001, β = 0.19; estimateVt: z = -1.16, p = n.s., β = -0.04).

In addition, for the scenes correctly identified as old, we found better source memory for scenes

from the high-risk room (z = 2.05, p = 0.04, β = 0.25 in a mixed-effects logistic regression model testing

for the effect of risk on source memory; Figure 1.7C). This effect was not modulated by absolute pre-

diction error. Rather, it was a context effect: the source of a recognized image was better remembered if

that item was seen in the high-risk room (absolute prediction errors: z = -0.60, p = n.s., β = -0.03; risk:

z = 2.17, p = 0.03, β = 0.27). To verify that participants were not simply attributing remembered items

to the high-risk context, we looked at the proportion of high-risk source judgments for recognition

hits and false alarms separately. We did not find a greater proportion of high-risk source judgments for

false alarms, indicating that participants were not biased to report that remembered items belonged to a

high-risk context (for high-risk hits: mean = 0.57, standard error = 0.02; for false alarms: mean = 0.49,

standard error = 0.04; chance response is 0.50).

Participants also exhibited better sequence memory for pairs from the high-risk room (z = 2.70,

p = 0.007, β = 0.56 in a mixed-effects logistic regression model testing for the effect of risk on sequence

memory; Figure 1.7D). Although we did not see this effect in Experiment 1, the longer training in Ex-

periment 2 allowed us to test pairs that were more distant from each other (the most distant items were

13 and 14 trials apart). Indeed, in a model additionally testing for the effect of distance between tested

pairs, greater distance predicted better sequence memory, controlling for risk (distance: z = 1.92, p =

20



0.05, β = 0.39; risk: z = 2.70, p = 0.006, β = 0.56). We therefore replicated our original results and fur-

ther showed that other forms of episodic memory—source and sequence memory—were also enhanced

in a high-risk context.

A B

C D

Figure 1.7: Experiment 2, memory results. A: Recogniঞon memory was be�er for items within the high-risk context. B: Absolute pre-
dicঞon errors enhanced recogniঞon memory for the scenes. Item memory was binned by the quarঞle values of predicঞon errors within
each risk room, each dot represents the average value within that quarঞle. C: For correctly remembered items, source memory was bet-
ter for items within the high-risk context. D: A high-risk context and distance between items (number of trials between pairs) increased
sequence memory. Error bars represent the standard error of the mean.

Learning rate by risk and prediction error

We replicated the results of Experiment 1 with respect to learning rates as well: participants had

higher learning rates for the low-risk relative to the high-risk room, and higher absolute prediction er-

rors additionally increased learning rates in a mixed-effects regression model testing for the effect of risk

and absolute prediction error on learning rate (absolute prediction error: t = 5.12, p < 0.001, β = 0.09;

risk: t = 7.01, p < 0.001, β = 0.18; Figure 1.8A-B). Controlling for absolute prediction error, we again

did not find learning rate to predict recognition memory on the current trial (αt: z = -0.29, p = n.s., β

= -0.01; |PEt|: z = 4.44, p < 0.001, β = 0.20), nor the subsequent trial (αt−1: z = 0.68, p = n.s., β = 0.03;
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|PEt|: z = 3.53, p < 0.001, β = 0.17).

A B

category value

Figure 1.8: Experiment 2, learning rate results. A: Learning rate was higher in the low-risk context. Average learning rate plo�ed by
risk context and category value. B: Both absolute predicঞon errors and a low-risk context increased learning rate. Learning rates were
binned by predicঞon errors that occurred on the same trial (each dot represents the average predicঞon error within the binned range).
Error bars represent standard error of the mean.

Choice by reward and value difference

In this experiment, all choices were between images with matched reward outcomes. We repli-

cated the results of Experiment 1 such that choice was predicted by the difference in participants’ initial

value estimates for the scenes (z = 2.78, p = 0.005, β = 0.18). In particular, even in this better-powered

test (12 choice trials as compared to 4 with matched outcomes in Experiment 1), there was no evidence

for preference for images from one risk context versus the other (z = -1.56, p = n.s., β = -0.08).

Discussion

In Experiment 2, we doubled the number of training trials and replicated the results of Experi-

ment 1, showing that large prediction errors increase learning rate and improve recognition memory,

but that higher learning rates do not predict better item recognition. In fact, like in Experiment 1,

learning rates were higher in the low-risk room, but item recognition was better in the high-risk room.

Moreover, in this experiment, we demonstrated additional risk-context effects on episodic memory by

showing better sequence and source memory for items that were encountered in the high-risk learning

context. These results were separate from the effect of absolute prediction errors, but perhaps point to

general memory enhancement for events occurring in a putatively more arousing environment.
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1.3 Experiment 3

A possible confound of the effects of risk on memory and learning in Experiments 1 and 2 is that

there was higher overlap between the outcomes for the two categories in the high-risk context as com-

pared to the low-risk context. The distributions of outcomes for the indoor and outdoor scenes shared

values from 20¢ to 80¢ (Exp. 1 & 2) in the high-risk room, but only 45¢ to 55¢ (Exp. 1) and 40¢ to 60¢

(Exp. 2) in the low-risk room. This greater overlap in the high-risk context could have made learning

more difficult in comparison to the low-risk room, and therefore influenced the effects of absolute pre-

diction error on subsequent memory. To test for this possibility, in Experiment 3 we made the learning

conditions in the two rooms more similar by eliminating any overlap between the outcomes of the two

scene categories.

Method

Participants

We conducted a simulation-based power analysis of the effect of absolute prediction errors on

item-recognition memory. This revealed that we would have sufficient power (80% probability) to

replicate the results of Experiments 1 and 2 with as few as 55 participants. As a result, we had 100 par-

ticipants initiate the study, of which 86 completed the task. Three participants were excluded based on

our exclusion criteria (see Experiment 1) leaving a final sample of 83 participants.

Procedure

We followed the same procedure as in Experiment 2 but changed the rewards such that they had

a mean of 80¢ for the high-value category and 20¢ for the low-value category, and there was no overlap

between the outcomes for scenes from the two categories (high-risk–high-value scenes: 60¢, 70¢, 80¢,

90¢, 100¢; high-risk–low-value scenes: 0¢, 10¢, 20¢, 30¢, 40¢; low-risk–high-value scenes: 70¢, 75¢,

80¢, 85¢, 90¢; low-risk–low-value scenes: 10¢, 15¢, 20¢, 25¢, 30¢).

23



Results

Learning

As in Experiment 1 and 2, participants learned better in the low-risk than in the high-risk room

(t(82) = 6.28, p < 0.001 in a paired t test comparing the average deviation of estimates from the true

means of the categories across rooms; Figure 1.9A). However, learning in the two rooms was more

similar here than in Experiment 2, as assessed by first computing the difference in learning (average

deviation of estimates from the true means of the scene categories) between the high and low-risk

rooms for each participant, and then comparing this value between participants in Experiments 2 and

3 (t(148.98) = 1.84, p = 0.03). The range of prediction errors in the two rooms was also more similar in

comparison to Experiment 1 and 2 (Figure 1.9B), allowing us to better assess the effects of risk context

on learning and memory, when controlling for prediction errors (see below). As in previous experi-

ments, there was an interaction between risk and scene category such that participants overestimated

the low-value category and underestimated the high-value category more in the high-risk than in the

low-risk room, (F (1,82) = 23.02, p < 0.001; Figure 1.9C). Nonetheless, participants correctly guessed

the high-value category equally well (and at a higher proportion than in Experiment 1 and 2) in the

high-risk (95%) and low-risk (96%) rooms.

24



B

A

C

category value

category value

low risk high risk

Figure 1.9: Experiment 3, learning results. A: Average esঞmates for the high and low-value categories as a funcঞon of trial number,
separately for the high-risk and low-risk rooms. Parঞcipants learned be�er in the low-risk room (although the difference in learning
between risk rooms was smaller than in Exp. 1 & 2). B: Density plot of experienced predicঞon errors (PEt) in each room. Compared
to Exp 1 & 2, there were higher-magnitude predicঞon errors in the low-risk room, making the range of predicঞon errors more similar
between rooms. C: Predicঞon errors show an interacঞon between risk context and category value, such that parঞcipants overesঞmated
the value of the low-value category and underesঞmated the value of the high-value category to a greater extent in the high-risk room.
Error bars represent the standard error of the mean.

Memory by risk and prediction error

We replicated the results of Experiments 1 and 2, and further found separate effects of context

and unsigned prediction error on recognition memory. A high-risk context and larger absolute predic-

tion errors enhanced recognition memory for scenes, even with both predictors in the same model, in-

dicating independent effects (|PEt|: z = 2.24, p = 0.02, β = 0.12; risk: z = 2.58, p = 0.009, β = 0.24, Fig-

ure 1.10A-B). This effect was again significant when controlling for reward outcome (|PEt|: z = 2.72,

p = 0.007, β = 0.15;Rt: z = -0.38, p = n.s., β = -0.02) and value estimates (|PEt|: z = 2.70, p = 0.007, β =

0.15;Vt: z = -0.74, p = n.s., β = -0.03). Similar to Experiment 2, we again found better sequence mem-

ory for items within the high-risk context, while controlling for the effect of distance (risk: z = 2.47, p =

0.01, β = 0.57; distance: z = 2.36, p = 0.02, β = 0.55). For source memory, we did not have the power to
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detect the effect in Experiment 2, and this difference was not statistically significant although it was in

the same direction.

It is worth noting here that there was a stronger effect of context in modulating recognition

memory than in Experiments 1 and 2 (the context effect remained when controlling for absolute pre-

diction errors, unlike in Experiments 1 and 2). That is, when learning was more similar in the two

rooms, an independent effect of risk in increasing recognition memory became apparent. One pos-

sible explanation for this finding is that memory-boosting effects of reward prediction errors might

“spill over” to adjacent trials, enhancing memory for those items as well. To test for these “spill over”

effects in the high-risk context, we measured whether immediately previous and subsequent absolute

prediction errors proactively or retroactively strengthened recognition memory for a scene, while con-

trolling for the absolute prediction error experienced for that particular scene. We ran two mixed-effects

logistic-regression models testing for the effect of adjacent absolute prediction errors (one for previ-

ous and one for subsequent prediction error) on recognition memory. We did not find any effect of

adjacent prediction errors (|PEt−1|: z = -1.71, p = n.s., β = -0.13; |PEt+1|: z = -0.93, p = n.s., β = -0.08),

suggesting that the memory-enhancing effect of the high-risk context may be due to general enhanced

memory for items experienced in a high-risk, and potentially more arousing, environment.

A B

Figure 1.10: Experiment 3, recogniঞon memory results. A: Recogniঞon memory was be�er for scenes that were encountered in the
high-risk context. B: Both absolute predicঞon errors and a high-risk context independently enhanced recogniঞon memory for scenes.
Item memory was binned by the quarঞle values of predicঞon errors within each risk room. Each dot represents the average value within
that quarঞle. Error bars represent the standard error of the mean.
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Learning rate by risk and prediction error

As in Experiments 1 and 2, absolute prediction errors increased learning rates in both rooms,

and there was a trend for higher learning rates in the low-risk room (|PEt|: t = 3.33, p < 0.001, β = 0.06;

risk: t = 1.84, p = 0.06, β = 0.06; Figure 1.11A-B). We again did not find learning rate for values to pre-

dict recognition memory for the scene on the current trial (z = -0.26, p = n.s., β = -0.01), nor the subse-

quent trial (z = -1.22, p = n.s., β = -0.08), while controlling for the effect of absolute prediction error on

the current trial.

BA

category value

Figure 1.11: Experiment 3, learning rate results. A: There was a trend for higher average learning rates in the low-risk context. B: Abso-
lute predicঞon errors increased learning rate. Learning rates were binned by predicঞon errors on the same trial (each dot represents the
average predicঞon error within the binned range). Error bars represent standard error of the mean.

Choice by reward and value difference

As in Experiment 2, all choices (12 trials) were between scenes that had matched reward out-

comes. Here too we replicated previous results, such that participants were more likely to choose the

scene that they had initially guessed a higher value for (z = 3.98, p < 0.001, β = 0.29).

Discussion

In Experiment 3, we eliminated all overlap between the reward outcomes of the high and low-

value categories in both rooms—a potential confound in Experiment 1 and 2—and replicated our

previous results. Additionally, given the more similar range of prediction errors in the high and low-

risk contexts, we were able to detect an independent effect of risk context on recognition memory.

Improved recognition memory in the high-risk room, like the better source and sequence memory
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observed for high-risk events in Experiment 2, points to general memory enhancement for events ex-

perienced in an environment with greater reward variance.

1.4 General Discussion

Our aim was to determine how reward prediction errors influence episodic memory, above and

beyond their known influence on learning. In Experiment 1, we demonstrated that unsigned, or ab-

solute prediction errors enhanced recognition memory for a rewarding episode. That is, trial-unique

scenes that were accompanied by a large reward prediction error, whether positive (receiving much

more reward than expected) or negative (receiving much less reward than expected) were better recog-

nized in a subsequent surprise recognition test. We additionally found that risk context and absolute

prediction errors modulated the trial-by-trial learning rate by which participants used the rewards to

update their estimate of the general worth of that category of scenes. In particular, learning rate was

higher in a low-risk environment, and there was more learning from rewards that generated larger pre-

diction errors. Notably, although large prediction errors increased learning from rewards on that spe-

cific trial, and enhanced memory for the scene in the trial, we did not find a trial-by-trial relationship

between learning rate and memory accuracy. In fact, the high-risk context led to lower learning rates

but better recognition memory on average, suggesting separate mechanisms underlying these two ef-

fects of prediction errors.

In Experiment 2, we increased the number of trials therefore allowing for more learning in each

context, and placing more demands on memory. We replicated all the effects from Experiment 1, and

further showed that source and sequence-memory were better for images encountered in the high-risk

context. In Experiment 3, we eliminated a potential confound by equating learning difficulty in the

high-risk and low-risk contexts, again reproducing the original results. This manipulation also resulted

in a more similar range of prediction errors in both risk contexts, which uncovered a separate effect of

risk on episodic memory, above and beyond that of absolute prediction errors.

Previous work has shown both a collaboration between learning and memory systems, such as

boosting of memory for items experienced during reward anticipation (Adcock, Thangavel, Whitfield-
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Gabrieli, Knutson, & Gabrieli, 2006) including oddball events (Murty & Adcock, 2014), as well as a

competition between the systems, where the successful encoding of items experienced prior to reward

outcome is thought to interfere with neural prediction errors (Wimmer, Braun, Daw, & Shohamy,

2014). Here, in all three experiments, we showed that incremental learning and episodic memory sys-

tems collaborate, as learning signals. Specifically, large reward prediction errors both increase learning

rate for the value of the rewarding source and enhance memory for the scene that led to the prediction

error. However, the fact that the effects of prediction errors on learning rate and episodic memory were

uncorrelated suggests that these effects are mediated by somewhat separate neural mechanisms.

Although we only tested behavior, the impetus for our experiments were neurobiological ac-

counts adjudicating between the effects of signed and unsigned reward prediction errors on memory.

Neurally, reward prediction error modulation of dopamine signaling provides a strong putative link

between trial-and-error learning and dopamine-induced plasticity in the hippocampus. Such an effect

of (signed) dopaminergic prediction errors from the ventral tegmental area (VTA) to the hippocam-

pus would have predicted an asymmetric effect on memory, such that memories benefit from a posi-

tive prediction error (signaled by an increase in dopaminergic firing from the VTA), but not a negative

prediction error (signaled by decreased dopaminergic firing). Instead, we found that the absolute mag-

nitude of reward prediction errors, regardless of the sign, enhanced memory. This mechanism perhaps

explains the finding that extreme outcomes are recalled first, are perceived as having occurred more fre-

quently, and increase preference for a risky option (Ludvig, Madan, & Spetch, 2014; Madan, Ludvig,

& Spetch, 2014).

In our task, each outcome was sampled with equal probability (uniform distributions), meaning

that extreme outcomes were not rare. However, the mnemonic effects that we identified could poten-

tially also contribute to the well-demonstrated phenomenon of nonlinear responses to reward proba-

bility in choice and in the brain, characterized by the overweighting of low-probability events and the

underweighting of high-probability ones (Hsu, Krajbich, Zhao, & Camerer, 2009; Kahneman & Tver-

sky, 1979). In particular, large prediction errors due to the occurrence of rare events would mean that

these events affect learning and memory disproportionately strongly. Similarly, the underweighting of
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very common events could arise from the rare cases in which the common event does not occur, giving

rise to large and influential prediction errors. Our results suggest that these distortions of weighting

would be especially prominent when episodic memory is used in performing the task.

The influence of unsigned reward prediction errors on recognition memory is also reminis-

cent of work demonstrating better memory for surprising feedback outside of reinforcement learning,

such as a recent study showing improved encoding of unexpected paired associates (Greve, Cooper,

Kaula, Anderson, &Henson, 2017). Another potentially related paradigm is the hypercorrection ef-

fect (Butterfield &Metcalfe, 2001), where high-confidence errors and low-confidence correct feedback

(both potentially generating large prediction errors) lead to greater attentional capture and improved

memory (Butterfield &Metcalfe, 2006).

Neuroscientific work has linked surprising feedback to increases in arousal and the noradrenergic

locus coeruleus (LC; Clewett et al., 2014; Mather et al., 2015; Miendlarzewska, Bavelier, & Schwartz,

2016). Our finding that absolute prediction errors influenced subsequent memory is in line with a

mechanism (also described in the Introduction) whereby the LC-norepinephrine system responds to

salient (surprising) events, and dopamine co-released with norepinephrine from LC neurons strength-

ens hippocampal memories (Kempadoo et al., 2016; Takeuchi et al., 2016). This proposed mechanism

would seem to imply that increases in learning rate (previously linked to norepinephrine release) and

enhanced episodic memory (linked to dopamine release) should be correlated across trials, given the

hypothesized common cause of LC activation. However, we found that increases in learning rate were

uncorrelated with enhanced memory, suggesting that the actual mechanismmay involve additional (or

different) steps from the one described above.

In our task, learning rate not only increased with the magnitude of prediction error, but also

changed with the riskiness of the environment. In line with our results, recent work shows that learn-

ing rate scales inversely with reward variance, with higher learning rates in lower variance contexts

(Diederen & Schultz, 2015; Diederen et al., 2016). Greater sensitivity to the same magnitude predic-

tion errors in a low versus a high-variance environment demonstrates adaptation to reward statistics,

where in a low-risk context, even small prediction errors are more relevant to learning than they would
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be when there is greater reward variance. This heightened sensitivity to unexpected rewards in the

low-risk environment, however, was not associated with improved episodic memory in any of our ex-

periments. In fact, in Experiment 3, we found that memory was better for items experienced in the

high-risk context, even when controlling for the magnitude of trial-by-trial reward prediction errors.

The opposing effects of risk on learning rate and episodic memory again suggest distinct underlying

mechanisms, in agreement with work characterizing learning and memory systems as separate and even

antagonistic (Foerde, Braun, & Shohamy, 2012; Wimmer et al., 2014).

To explain the beneficial effect of high-risk environments on episodic memory, we hypothe-

sized that better memory for large-prediction-error events could potentially “spill over” to surrounding

items, in line with work showing that inducing an “encoding” state (such as through the presentation

of novel items) introduces a lingering bias to encode subsequent items (Duncan & Shohamy, 2016;

Duncan et al., 2012). These effects, however, did not explain how risk context modulated memory in

our task, as we did not find prediction error events to additionally improve memory for adjacent items.

Instead, we speculate that this context effect is due to improved encoding when in a putatively more

aroused state, although future studies should more directly characterize the link between arousal and

enhanced memory in risky environments.

Finally, we did not find effects of absolute prediction error or risk context on preferences in a

later choice test. It remains, however, to be determined whether memories enhanced by large predic-

tion errors may still bias decisions by prioritizing which experiences are sampled or reinstated during

decision making.

In conclusion, we show that surprisingly large or small rewards and high-risk contexts improve

memory, revealing that prediction errors and risk modulate episodic memory. We further demon-

strated that absolute prediction errors have dissociable effects on learning rate and memory, pointing

to separate influences on incremental learning and episodic memory processes.

31



2
Depressive Symptoms Bias the Prediction-Error

Enhancement of Memory towards Negative Events in
Reinforcement Learning*

In Chapter 1, we investigated the interaction between reward prediction errors and episodic

memory and found that unsigned (absolute) prediction errors increase memory for a rewarding event,

thereby prioritizing both more surprising positive and negative events in memory (Rouhani et al.,

2018). It is unclear, however, how disorders marked by blunted positive and excessive negative affect,

such as depression, may bias these effects on memory. To this end, we collected depression scores from

all participants in our original sample, and tested for effects of depressive symptoms on reward learning,

recognition memory, and the modulation of memory by prediction-errors.

Prior work characterizing reinforcement learning inMajor Depressive Disorder (MDD) has

demonstrated decreased sensitivity to rewards (Huys, Pizzagalli, Bogdan, & Dayan, 2013) as well as

hypoactivation of reward-related responses in the striatum (for reviews, see Admon & Pizzagalli, 2015;

Pizzagalli, 2014). Accordingly, attenuated reward prediction-error signals are reported inMDD (Gradin

et al., 2011; Kumar et al., 2018); although these signals were intact in a task that did not require learn-

ing (Rutledge et al., 2017). Moreover, behavioral differences in reinforcement learning inMDD have

been mixed. Many studies have shown similar learning performance betweenMDD patients and con-

trols (Ubl et al., 2015) with differences modulated by individual levels of anhedonia (the inability to

feel pleasure) independent of depression severity (Admon et al., 2015; Chase et al., 2010). In our non-

*The content of this chapter was published in Rouhani &Niv, 2019.
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clinical sample, we therefore did not expect to see large differences in reward learning between those

experiencing depressive symptoms and those that do not.

In addition to blunted reward processing, sustained negative affect in depression has led to work

showing an asymmetry in processing negative over positive events. Namely, MDD patients show an

attentional bias for negative stimuli, displaying difficulty in disengaging from and ignoring negative

distractors (for reviews, see Gotlib & Joormann, 2010; Joormann &Quinn, 2014). In reinforcement

learning, neuroimaging studies bolster evidence for this asymmetry by showing hyperactivation of

cortico-striatal learning networks for punishment versus reward (Admon et al., 2015; Kumar et al.,

2018; Ubl et al., 2015), including stronger prediction error signals for punishment (Kumar et al., 2018;

Ubl et al., 2015). Of note, in depression, connectivity between the striatum and anterior cingulate

cortex, a region associated with unsigned prediction errors (Roesch, Esber, Li, Daw, & Schoenbaum,

2012), is blunted in reward learning (Whitton et al., 2016), and enhanced in punishment learning

(Admon et al., 2015).

These results suggest that in depressed individuals, high-magnitude negative prediction errors

may have greater influence on learning and memory than do positive prediction errors. In line with

this, depressed individuals exhibit a bias for negative versus positive memories (Gaddy & Ingram, 2014;

Matt, Vázquez, & Campbell, 1992). This better memory for negative events in depression is thought

to be modulated by the amygdala—a region associated with emotional memories as well as surprising

events—and its functional connectivity with the hippocampus (Dillon, Dobbins, & Pizzagalli, 2014;

Leal, Tighe, Jones, & Yassa, 2014; Sacchet et al., 2017; Young et al., 2017). Healthy individuals, on the

other hand, exhibit a bias for positive versus negative memories, whereas depressed individuals addi-

tionally demonstrate an attenuated memory for positive events (Burt, Zembar, & Niederehe, 1995),

which is linked to reduced activation in the dopaminergic midbrain and medial temporal lobes (Dillon

et al., 2014). The literature therefore offers two mechanisms by which depressed individuals’ memory

may be biased compared to healthy individuals – better memory for negative events and worse memory

for positive events. What remains to be elucidated is whether reward prediction error signals modulate

this asymmetry in memory in depressed individuals.
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To test this, we re-analyzed our previous results (see Chapter 1), and compared individuals re-

porting symptoms of depression (the “depressive” group) with those that reported no such symptoms

(“non-depressive” group) on our measures of interest: their learning of the average values of the two

scene categories, their trial-by-trial prediction errors and learning rates, and their recognition memory

for those rewarding events.

2.1 Method

Across three experiments run on AmazonMechanical Turk, 500 participants initiated the study

(Exp 1: 200, Exp 2: 200, Exp 3: 100), 408 completed the study (Exp 1: 174, Exp 2: 148, Exp 3: 86),

and after exclusions (see below), 383 participants are represented in our sample (Exp 1: 164, Exp 2:

136, Exp 3: 83). For details on the procedure, see Chapter 1. Importantly, at the end of each exper-

iment, participants completed the Inventory of Depressive Symptomatology (IDS; Rush, Gullion,

Basco, Jarrett, & Trivedi, 1996).

Statistical analysis

We investigated whether depression modulated learning and memory performance across all

experiments. To do this, we compared participants who scored frommoderate to very severe on the

IDS (score: 26-84, which we refer to as “depressive”, N = 101) to participants who reported low or no

depressive symptoms (score: 0-13, which we refer to as “non-depressive”, N = 184). Participants with

an intermediate “mild” IDS score (14-25, N = 98) were excluded from the analysis (for categorization

of scores, see www.ids-qids.org).

All comparisons were conducted using linear or generalized mixed-effects models (R lme4 pack-

age; Bates et al., 2015), with experiment as a random effect and subject as a nested random effect within

experiment (for both intercept and slope), and trial-unique scene image as a random effect (for inter-

cept). We used depression category (depressive or not) as a fixed or interacting effect to predict the be-

low learning and memory measures. We additionally tested whether depression severity predicted the

effects under question within the depressive group.
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If depression was a significant predictor, to confirm group differences, we ran a simplified regres-

sion model (not including depression as an effect) separately within each experiment and depression

group, and extracted subject-level intercepts and slopes. We then ran an ANOVA on the average differ-

ence in intercept and slope estimates between the “depressive” and “non-depressive” participants across

all experiments. Finally, we corrected for multiple comparisons using Bonferroni correction.

Learning: As a measure of learning, we took the absolute deviation of participants’ trial-by-trial

estimates from the true average values of the scene categories (40¢ or 60¢ in Exp 1-2; 20¢ or 80¢ in Exp

3). This deviation should decrease as participants learn the average values of the scene categories. In

other words, with every trial, the learner should be estimating closer to the true mean of that scene cate-

gory, and so a significant effect of trial number in decreasing this measure reflects learning. We ran two

models testing (1) whether depression predicted overall deviation from the true means and (2) whether

depression interacted with trial number, indicating that depressed participants learned differently than

non-depressed participants.

Prediction errors: Trial-by-trial prediction errors were calculated by subtracting participants’

value estimates from the reward outcome experienced on that trial. We ran two models testing (1)

whether depression predicted the average prediction error experienced during learning and (2) whether

depression interacted with our previously reported finding that prediction errors are modulated by an

interaction between risk context and scene-category value, leading to greater underestimation of the

high-value category and greater overestimation of the low-value category in the high-risk room.

Learning rates: We calculated trial-by-trial learning rates as the proportion of the prediction error

experienced on one trial that was then applied to update the value estimate on the next trial involving

the same scene category. We ran four models testing (1) whether depression modulated the average

learning rate applied during learning, (2) whether depression interacted with our previous findings that

unsigned prediction errors increase learning rate, (3) whether depression interacted with our previous

finding that a lower risk context leads to higher learning rates, and finally, (4) whether depression more

specifically modulated an interaction between learning rate, unsigned prediction error and the valence

of the prediction error (positive or negative) in a 3-way interaction; for example, surprising negative
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(versus positive) events could lead to higher learning rates (i.e., more value updating) in participants

with depression.

Memory: We evaluated whether depression influenced item recognition by running the follow-

ing mixed-effects logistic regressions predicting a “hit” or a “miss” during the memory test. We tested

(1) whether depression affected overall memory, (2) whether depression interacted with the valence of

the prediction error to influence memory; for example, by promoting negative prediction error mem-

ories over positive ones, (3) whether depression interacted with our previously reported finding that

unsigned prediction errors increase memory, and (4) whether depression more specifically modulated

an interaction between memory, the valence of the prediction error and absolute prediction error; for

example, by selectively enhancing surprising negative events in memory over surprising positive ones.

2.2 Results

Sample: Across all experiments, 184 participants scored within the “non-depressive” category

(Exp 1: 69, Exp 2: 68, Exp 3: 47), and 101 participants scored within the “depressive” category (Exp 1:

51, Exp 2: 32, Exp 3: 18).

Learning: The absolute deviation of participants’ estimates from the true averages of the two

scene categories decreased as a function of trial number, indicating learning of the values of the two

scene categories within each room (model 1: β = -0.05, t = -2.93, p = 0.004). Depression did not pre-

dict participant estimates on average (model 1: β = -0.05, t = -1.04, p = 0.30), nor did it interact with

learning (model 2: β = -0.02, t = -0.61, p = 0.54); see Figure 2.1A-C. However, depression severity did

predict an overall increase in estimation error within the depressive group (model 1: β = 0.01, t = 3.44,

p < 0.001; Figure 2.1D).
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Figure 2.1: A-C: Learning. Average value esঞmates for high and low-value scene categories as a funcঞon of trial number, within high
and low-risk rooms, divided between depressive and non-depressive groups, across all three experiments. We did not find any signifi-
cant differences in value learning between the depressive and non-depressive groups. Note that “Trial 0” represents parঞcipant esঞma-
ঞon at the beginning of each room and without having received any feedback. Error bars represent SEM. D. Average esঞmaঞon error
during learning as a funcঞon of IDS score in the depressive group. Depression severity predicted greater average error during learning.
Each dot represents a parঞcipant, shaded regions represent 95% confidence intervals.

Prediction errors: Depression did not predict participant prediction errors (model 1: β = -0.00063,

t = -0.033, p = 0.97), nor did it interact with the effect of risk and scene category value on prediction er-

rors (model 2: β = -0.0062, t = -0.35, p = 0.73); see Figure 2.2.
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Figure 2.2: Predicঞon errors. Experienced predicঞon errors for high and low-value scene categories within high and low-risk rooms,
divided between depressive and non-depressive groups, across all three experiments. There is an overall interacঞon between risk and
category value, such that parঞcipants are more likely to overesঞmate the low-value category and underesঞmate the high-value category
in the high-risk room. There were no differences between the depressive and non-depressive groups. Error bars represent SEM.

Learning rates: Trial-by-trial learning rates were similarly not predicted by depression (model

1: β = -0.046, t = -1.53, p = 0.13); depression did not interact with the increase in learning rate with

unsigned prediction error (model 2: β = 0.034, t = 1.053, p = 0.29), nor did it interact with the effect

of risk context on learning rate (model 3: β = -0.020, t = -0.92, p = 0.36). Finally, there was no effect

of depression in an interaction between the unsigned value and the valence of the prediction error on

learning rate (model 4: β = 0.034, t = 1.053, p = 0.29); see Figure 2.3.
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Figure 2.3: Learning rates. Average learning rates for outcomes as a funcঞon of predicঞon error in high and low-risk rooms, divided
between depressive and non-depressive groups, across all three experiments. High magnitude predicঞon errors increase learning rate
across all experiments and groups. We did not find any differences between the depressive and non-depressive groups. Error bars
represent SEM.

Memory: Depression did not affect average recognition memory (model 1: β = -0.019, z = -0.14,

p = 0.89). It did not interact with an effect of prediction error valence on memory in general (model 2:

β = 0.07, z = 0.53, p = 0.60), nor with the effect of unsigned prediction error on memory (model 3: β

= 0.07, z = 1.02, p = 0.31). However, we did find that depression modulated the interaction between

the unsigned value and the valence of the prediction error on memory. In particular, “non-depressive”

participants were more likely to remember more surprising positive events, while “depressive” partici-

pants were more likely to remember more surprising negative events, as predicted (model 4: β = 0.31, z

= 2.05, p = 0.040; Figure 2.4).
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Figure 2.4: Memory. Binned item recogniঞon memory as a funcঞon of predicঞon error in high and low-risk rooms, divided between
depressive and non-depressive groups, across all three experiments. Item memory was binned by the quarঞle values of predicঞon errors
within each room to illustrate the effects of predicঞon errors on memory; each dot represents the average value within that quarঞle.
Note that no staঞsঞcs were run on the binned values, and they are plo�ed only to illustrate the mixed-effects regression modeling.
High magnitude predicঞon errors increased item recogniঞon memory across all experiments and groups. There were no overall differ-
ences in memory between depression groups. However, there was a three-way interacঞon between the unsigned predicঞon error, the
valence of the predicঞon error, and depression group, such that depressive parঞcipants are more likely to remember high-magnitude,
negaঞve predicঞon error items, whereas non-depressive parঞcipants are more likely to remember high-magnitude, posiঞve predicঞon
error items. Error bars represent SEM.

To confirm and further illustrate this effect (see “Statistical analyses” above for details), we found

that an interaction between prediction error valence and depression group predicted the slope of the

effect of unsigned prediction errors on memory (F (1,283) = 16.95, p < 0.0001). This interaction passed

Bonferroni adjusted levels of p = 0.004 (alpha = 0.05/14 comparisons). Following up on this inter-

action, we tested for across and within-group differences. We found that depressive participants had

higher slopes for negative prediction error events than non-depressive participants, t(274.35) = 2.79,
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p = 0.0057, whereas non-depressive participants had higher slopes for positive prediction error events

than depressive participants, t(139.66) = -4.46, p < 0.001. Within the depressive group, there were sig-

nificantly higher slopes for the negative prediction error events than positive ones, t(100) = -4.04, p <

0.001, and within the non-depressive group, the opposite was true, t(183) = 2.04, p = 0.043. We did

not find the interaction to predict the intercept of this model (F (1,283) = 1.25, p = 0.26); Figure 2.5.

prediction error valence

depressive
non-depressive

Figure 2.5: Intercept and slope values for the unsigned predicঞon error effect on memory. Mixed-effects logisঞc regression models
were run separately for posiঞve and negaঞve predicঞon error outcomes in the depressive and non-depressive groups. Bar plots rep-
resent average intercept value (le[) and slope value (right) as a funcঞon of the valence of the predicঞon error and depression group.
There were no differences in the intercept value, but we found an interacঞon in the slope of this effect (represenঞng the degree to
which unsigned predicঞon errors are improving item memory), such that unsigned predicঞon errors are boosঞng memory more so for
negaঞve events in depressive individuals, and for posiঞve events in non-depressive individuals. Error bars represent SEM.

2.3 Discussion

Depressive symptoms include a diminished ability to feel pleasure (anhedonia) as well as exces-

sive negative affect, thereby suggesting abnormalities in learning from rewards as well as their effect

on memory. In a non-clinical sample, we tested for differences in reward learning and memory perfor-

mance in individuals with and without depressive symptoms. We did not find gross differences in learn-

ing performance between the two groups: subjects did not differ in how they learned the average values

of two scene categories, as measured by their trial-by-trial estimates, prediction errors and learning rates

throughout the task. However, we did find that depression severity predicted greater estimation er-
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ror (i.e., difference between the estimated value and the true mean value of the scene categories) in the

depressive group, which suggests impaired reinforcement learning in individuals with more severe de-

pression. Nevertheless, we found that both groups increased their learning rates after high magnitude

prediction errors, and neither group showed a bias towards updating expectations more after a positive

or negative prediction error event. Together, these results suggest that dopaminergic prediction error

signaling was relatively intact throughout our non-clinical sample.

We also did not find overall differences in memory performance, nor in memory for positive

versus negative prediction error events, on average. Instead, we found that the modulation of mem-

ory by reward prediction errors was differently biased in the two groups such that in individuals with

depressive symptoms, large negative prediction errors enhanced memory to a greater extent than did

large positive prediction errors, and more so than they did in the non-depressive group. The opposite

was true for non-depressive individuals: here, large positive prediction errors enhanced memories more

than large negative prediction errors, and more so than they did in the depressive group.

Relatively intact learning in the depressive group is in line with several studies that have not

found strong behavioral differences betweenMDD patients and healthy controls in reward learning

(Chase et al., 2010; Knutson, Bhanji, Cooney, Atlas, & Gotlib, 2008; Smoski et al., 2009; Ubl et al.,

2015). In our sample, however, the positive relationship between depression severity and task error sug-

gests that reinforcement learning is affected in depression, but only in more severe cases, which may

in part explain the heterogeneity of results in the literature. Moreover, we implemented a Pavlovian

reward-learning paradigm that did not involve choices between differently rewarding options. This

leaves open the possibility that depression is a greater modulator of instrumental learning than it is of

prediction learning. Finally, given the striatal hypoactivity commonly reported in depression (for a

review (Admon & Pizzagalli, 2015)), it is possible that depressive individuals are not as affectively in-

fluenced by reward, meaning they may not feel its associated pleasure or impact, even if they are unim-

paired in following explicit task goals by using rewards to update the values of their experiences.

On the other hand, the surprise recognition memory test provides a measure unrelated to ex-

plicit task goals potentially capturing affect-driven cognitive biases in depression. Here, we did not find
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a general difference in memory for events associated with positive versus negative prediction errors be-

tween the depressive and non-depressive groups. We instead found a bias in the unsigned prediction

error modulation of memory. This signal, which increases memory for surprising outcomes (Rouhani

et al., 2018), more significantly modulated memory for negative prediction error events in the depres-

sive group and positive prediction error events in the non-depressive group. In other words, depressive

individuals were more likely to remember surprising negative events, whereas healthy individuals were

more likely to remember positive ones. Such a bias in memory is in line with the tendency to ruminate

on negative events in depression, and provides evidence that surprising negative (versus surprising posi-

tive) events are indeed prioritized in memory.

There are several mechanisms that could contribute to the better encoding of surprising negative

events in depressive individuals. Unsigned prediction errors are known to increase arousal and deploy

the LC-norepinephrine system (Nassar et al., 2012), which co-releases dopamine signals that induce

hippocampal plasticity (Kempadoo et al., 2016; Takeuchi et al., 2016) and enhance episodic memory

(Clewett et al., 2018). Our results therefore suggest that LC activity is modulated more by surprising

negative events in depressive individuals and by surprising positive events in healthy individuals. Given

projections between the LC and regions within the salience network, such as the anterior cingulate cor-

tex and amygdala, previous work lends support to this hypothesis: depressive individuals show greater

striatal-cingulate functional connectivity (Admon & Pizzagalli, 2015) and more amygdala-modulated

memory for negative versus positive events, whereas the opposite pattern is true for healthy controls

(Leal et al., 2014; Young, Siegle, Bodurka, & Drevets, 2016; Young et al., 2017).

Interestingly, in another line of work, the lateral habenula, which is associated with the process-

ing of negative prediction errors (Matsumoto &Hikosaka, 2007), has been strongly implicated in mod-

ulating symptoms of depression (Yang et al., 2018). This link suggests that greater activity of the lat-

eral habenula in depressive individuals may support the mnemonic bias towards negative prediction

error events. Future neuroimaging work should characterize how unsigned prediction errors differen-

tially modulate memory for negative versus positive prediction error events in depression. An alterna-

tive explanation is that an attentional bias for negative events (Gotlib & Joormann, 2010; Joormann &
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Quinn, 2014) leads depressive participants to spend more time looking at scenes associated with strong

negative prediction errors (and thereby encoding them in memory). Future studies could test this by

using eye-tracking as a measure of attention.

Our study has several limitations. First, our depressive group was not a clinical sample, and our

findings need to be tested specifically in patients suffering fromMDD.Moreover, given the hetero-

geneity of symptoms inMDD, future studies should take additional measures to allow testing for the

modulation of the interaction between learning and memory by the severity of symptoms such as an-

hedonia, rumination, and anxiety. In particular, anhedonia has been shown to impair reward learning

performance regardless of depression severity (Admon & Pizzagalli, 2015; Chase et al., 2010; Gradin

et al., 2011), and can similarly desensitize individuals to negative outcomes, whereas anxiety increases

sensitivity to negative outcomes (Mueller, Pechtel, Cohen, Douglas, & Pizzagalli, 2015). Individual

measures of depressive symptoms along with co-morbid symptoms of anxiety could provide a better

picture of which aspects of the disorder are giving rise to the biases in memory. We additionally did not

collect medication information so could not test for the potential effects of neuroactive substances on

learning and memory performance.

Nevertheless, it is notable that 26% of our AmazonMechanical Turk (mTurk) sample scored

moderately to severely depressed. This is in line with a recent finding that depression is two to three

times higher in mTurk workers (under 50 years old) than matched national samples (Walters, Chris-

takis, &Wright, 2018). This further suggests that researchers can characterize or, alternatively, need to

control for the effects of depression in their mTurk experiments.

In conclusion, our findings, in a heterogenous, online, non-clinical population are fully in line

with previous literature, suggesting that our task, and the interactions we found between learning and

memory, may prove useful in clinical settings as well.
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3
Two Reward Prediction Error Signals Dynamically

Modulate Memory during Distinct Phases of
Reinforcement Learning

Here, we turn to classic associative models of learning to characterize an attentional mecha-

nism supporting the reward prediction error (RPE) enhancement of learning and memory reported in

Chapter 1. These associative models of learning explain how attention to cues change as a function of

experience (Pearce &Mackintosh, 2010), but it is less clear how such a mechanismmay influence mem-

ory. We draw on two well-known associative models of attention, the Mackintosh model (Mackintosh,

1975) and the Pearce-Hall model (Pearce &Hall, 1980), and test whether they predict learning and

subsequent memory for events experienced during reinforcement learning. Quizzically, these two mod-

els make opposite predictions for behavior. In the Mackintosh model, attention increases for cues with

strong associative strengths (i.e., cues that reliably predict reward), whereas in the Pearce-Hall model,

attention is enhanced for cues that are accompanied by surprise, that is, those that co-occur with large

unsigned prediction errors (i.e., cues that unreliably predict reward). Albeit paradoxical, both theories

are justified by decades of evidence and are thought to represent two distinct attentional mechanisms

differentially deployed given the demands of learning (for a review, see Pearce &Mackintosh, 2010).

We treat signed and unsigned RPEs as drivers of these two attentional signals, and dissociate their ef-

fects on memory during different phases of reward learning. We thus provide an answer to the open

question (Ergo, De Loof, & Verguts, 2020) of whether and how both signed and unsigned RPEs mod-

ulate memory during reinforcement learning.

In these models, a dynamic learning rate, termed “associability”, represents attentional fluc-
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tuations during learning which, in turn, govern the value updating of conditioned stimuli. In the

Pearce-Hall model, associability increases in proportion to unsigned prediction errors (i.e., the degree

of surprise), so that unreliable cues are attended to while learning resources are not directed to cues

that reliably predict outcomes (Pearce &Hall, 1980). In the Mackintosh model, on the other hand,

the stronger the predictive strength, the higher the associability and attention to the cue (Mackintosh,

1975). It is theoretically possible that greater cue-outcome ‘surprise’ and predictability both modulate

attention throughout learning (Le Pelley, 2004; Beesley, Nguyen, Pearson, & Le Pelley, 2015).

We used reinforcement learning models to test for the influence of each of these attentional com-

ponents on dynamic (trial-by-trial) learning rates. We treated the unsigned RPE at reward outcome

as a ‘Pearce-Hall’ signal, as it reflects how unpredictable the reward was. We treated the learned value

difference between two reward-predictive cues as a ‘Mackintosh’ signal, where greater predictiveness is

equated with higher learned values for one cue versus the other. We refer to this value signal as a signed

RPE experienced at cue, as when there are several possible cues, the onset of a cue resolves the predic-

tion for the current trial, and is accompanied by an RPE that reflects the difference between the current

predicted reward, and the average reward predicted before cue onset (Niv & Schoenbaum, 2008).

We were furthermore interested in how these RPEs, one evoked by cue and the other by re-

ward outcome, influence memory for events experienced at cue and outcome. In our previous study

(Chapter 1; Rouhani et al., 2018), we found that unsigned RPEs at outcome boost memory, in line

with Pearce-Hall and putatively signaled by noradrenaline from the locus coeruleus (LC, co-releasing

dopamine; Takeuchi et al., 2016; Kempadoo et al., 2016; Wagatsuma et al., 2017). We did not find

signed RPEs at outcome, canonically associated with phasic dopaminergic signals (Barto, 1995; Mon-

tague et al., 1996), to influence memory.

Nevertheless, there is evidence supporting signed-RPE effects on memory during reinforcement

learning (Davidow et al., 2016), including a recent study where the higher (i.e., more positive) the RPE,

the greater the memory enhancement (Jang et al., 2019). Interestingly, however, this positive RPE oc-

curred during the reward-predictive cue, at the point when participants realized their likelihood of re-

ceiving reward but prior to experiencing the actual outcome, likening this effect to work showing mem-
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ory benefits during periods of high-reward anticipation (Adcock et al., 2006; Murty & Adcock, 2014;

Stanek, Dickerson, Chiew, Clement, & Adcock, 2019; Wittmann et al., 2005). Of course, high reward

expectations depend on having learned the values of the predictive cues. Accordingly, this memory en-

hancement is thought to be initiated by the signed RPE signal, which transfers from reward outcome

to cue with more learning (Schultz, Dayan, &Montague, 1997), supporting the Mackintosh signal de-

scribed above. Our previous study included the same event at cue and outcome, potentially obscuring

signed-RPE effects at cue (Rouhani et al., 2018).

In the following experiments, we therefore included two trial-unique events on every learning

trial, one at reward cue and one at outcome, to dissociate the effects of two RPEs, one experienced at

reward cue and one at outcome, on memory for these distinct reward-learning events (Figure 3.1).

Overview of experiments

We characterized the effects of a cue and outcome RPE on learning and memory in two exper-

iments that each prioritized the influence of one of these RPE signals. In Experiment 1, participants

learned the value of a single reward category and experienced large unsigned RPEs brought on by pe-

riods of high outcome variance (‘high’ versus ‘low variance’ contexts) and reward value change-points

(changes to the mean of the underlying reward distribution). We expected these large unsigned RPEs,

experienced at reward outcome, to modulate learning rate (as in Pearce-Hall models; Pearce &Hall,

1980) and to boost memory for events throughout learning.

In Experiment 2, on the other hand, participants learned the values of two reward categories,

eliciting RPEs at cue as well as at reward outcome. Here, the underlying reward distribution associ-

ated with each category did not change, allowing for RPEs at cue (i.e., a relative value signal) to increase

in magnitude with more experience with each reward category. We moreover included two learning

conditions that varied in learning difficulty due to different degrees of overlap between the reward dis-

tributions of the two categories. In Condition 1, the means of the two reward categories were close

together (40¢ and 60¢) with considerable overlap in their reward distributions. In Condition 2, on the

other hand, the two means were further apart (20¢ and 80¢) and there was no overlap between the two
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reward distributions. We predicted that cue RPEs would increase in size as a marker of learning in both

conditions; however, in Condition 2, the greater separation of the two reward distributions should lead

participants to experience larger and earlier cue RPEs than in Condition 1. Regardless of condition,

we expected signed RPEs at cue to influence learning rate (as in the Mackintosh model; Mackintosh,

1975), in addition to unsigned RPEs at outcome (as in the Pearce-Hall model; Pearce &Hall, 1980).

We also expected this signed cue RPE to boost memory for the more valued reward category with more

learning, reflecting the mnemonic effects of stronger reward expectations and anticipation.

In sum, we hypothesized that an unsigned RPE at outcome (as in a ‘Pearce-Hall’ signal of atten-

tion) as well as a signed RPE at cue (as in a ‘Mackintosh’ signal of attention) would enhance learning

and memory for both more surprising and more valued events (Figure 3.1). We additionally charac-

terized the effects of a signed RPE at outcome – the learning signal putatively giving rise to the signed

RPE we test at reward cue – as well as an unsigned RPE at cue, on memory. In fact, in our paradigm,

an unsigned RPE at cue could also be thought of as a Mackintosh signal, as larger RPE magnitudes at

cue indicate greater learned separation between the values of two reward categories, reflecting stronger

associative strengths for each cue. Given our previous results (Rouhani et al., 2018), we did not expect

a signed RPE at outcome to influence memory. However, we did expect that as participants learn to

separate the values of different reward categories, represented by larger unsigned RPEs at cue, this in-

creased predictiveness (‘Mackintosh’ signal) would lead to better memory for those cue events.
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Figure 3.1: Reward predicঞon error (RPE) signals in a learning trial. A. Each trial was iniঞated by a reward cue represented by a trial-
unique event, parঞcipants were then asked to indicate how much ‘on average’ that reward category was worth, a[er which they saw
the reward outcome (a proporঞon of which they received) along with a different trial-unique event. In Experiment 1, all cue and out-
come events were objects (single reward category), whereas in Experiment 2 (as pictured), each trial included either two indoor or two
outdoor scene events (two reward categories). B-C. Theoreঞcal RPE signals during a learning trial (B) and their calculaঞon (C). Dur-
ing learning, the signed, dopaminergic, RPE signal moves from reward outcome to the cue predicঞng the outcome (phasic response in
red, journey from outcome to cue in do�ed line). We calculated this signal at cue by subtracঞng the value of the current reward cat-
egory (outdoor scenes) from the other category (indoor scenes); note that this value can be negaঞve (do�ed triangle). We expected
this signed signal (in red) to boost memory for more valued events. We tested the effects of this cue RPE in Experiment 2, as a cue RPE
requires learning of more than one reward category. We also calculated an unsigned, putaঞvely noradrenergic, RPE at outcome (in blue)
by taking the difference between the value for that reward cue and its subsequent outcome. We expected this unsigned signal (in blue)
to enhance memory for more surprising outcomes, which we tested in both Experiments 1 and 2.

3.1 Reinforcement learning and memory models

To determine how unsigned RPEs at reward outcome (‘outcome RPE’) and signed RPEs at re-

ward cue (‘cue RPE’) influence learning, we modeled participants’ trial-by-trial value estimates testing a

series of reinforcement learning models. We used a simple Rescorla-Wagner model (Rescorla &Wagner,

1972) as our baseline model (model: ‘RW’):
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Vt+1 = Vt + α(Rt − Vt), (3.1)

where a static learning rate (α) governs the extent to which the signed RPE at outcome (computed by

subtracting the current model value,Vt, from the reward received on that trial,Rt) updates the value of

the next trial (Vt+1).

Following attentional models of learning (Pearce &Mackintosh, 2010), we investigated whether

a dynamic trial-specific learning rate (αt) would better fit learning. We tested three distinct modulators

of a trial-by-trial learning rate, separately and in combination with each other. To constrain αt to be

in the range of [0-1], for each model, we passed the learning rate through a sigmoid function before

updating value (Eq. 3.1).

First, in line with Pearce &Hall (Pearce &Hall, 1980), we used the unsigned (absolute) outcome

RPE to modulate learning rate (model: ‘RW-PH’):

αt = η+ κ(|Rt − VEt|). (3.2)

Here, the unsigned outcome RPE is calculated as the difference between the reward received and the

participant value estimate (VEt). The learning rate is set as a baseline learning rate, η, plus the unsigned

RPE scaled by κ. For positive values of κ, more surprising outcomes therefore lead to higher learning

rates, as per the Pearce-Hall model.

Second, followingMackintosh (Mackintosh, 1975), we modeled the effect of a cue RPE on

learning rate (model: ‘RW-M’). Note that we could only test this effect in Experiment 2 since cue RPEs

exist only when there is more than one reward category. The cue RPE is the value of the present reward

category (e.g., an indoor scene;VEc) relative to the value of the other reward category (e.g., an outdoor

scene;VEn). The learning rate in this model is then the scaled cue RPE plus a baseline learning rate η:

αt = η+ γ(VEc − VEn), (3.3)

Therefore, for positive γ, the more one scene category is valued over the other, the higher αt for trials
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with the more valued scene category and the lower αt for trials with the less valued scene category*.

Third, given that participants should update their values less (i.e., lower their αt) once they’ve

learned the average values of the reward categories, we tested a model with exponential decay of the

learning rate over time (Sutton & Barto, 1998; model: ‘RW-D’):

αt = η+Ne−λtc , (3.4)

whereN is the initial value, λ is the decay constant, and tc is the trial number for that reward category

(i.e., in Experiment 2 where there were two scene categories, trial number was counted separately for

each scene category).

We further tested models that included each combination of the above three learning-rate mod-

ulators. Here, we used a single baseline (η) and added each effect in the learning rate for all of the fol-

lowing models: A model that combines the unsigned outcome RPE and signed cue RPE effects on

learning rate (model: ‘RW-PH-M’):

αt = η+ κ(|Rt − VEt|) + γ(VEc − VEn), (3.5)

A model that combines the unsigned outcome RPE and decay effects on learning rate (model: ‘RW-

PH-D’):
αt = η+ κ(|Rt − VEt|) +Ne−λtc , (3.6)

A model that combines the signed cue RPE and decay effects on learning rate (model: ‘RW-M-D’):

αt = η+ γ(VEc − VEn) +Ne−λtc , (3.7)

And finally, a model that combines all three effects (model: ‘RW-PH-M-D’):

αt = η+ κ(|Rt − VEt|) + γ(VEc − VEn) +Ne−λtc . (3.8)

*Since each scene category was sampled an equal number of times (without any runs exceeding two trials), we did not
scale the cue RPE by the probability of either scene category occurring.
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Model fitting and comparison

All models were fit to each participant’s value estimates by finding parameters that maximize the

log likelihood of the participant value estimates. The likelihood was calculated assuming a Gaussian

distribution around the model value, with variance equal to the empirical variance between model val-

ues and participant estimates (σ2). This is equivalent to linear regression of the value estimates on the

model values, giving a log likelihood:

LL = −ndata
[
ln
(√

2πσ2
)
+ 0.5

]
, (3.9)

where n is the number of trials fit. To maximize log likelihood we usedMATLAB’s fmincon function.

We constrained parameter values within the following ranges: α ∈ [0,1], η ∈ [-10,10], κ ∈ [-20,20],

γ ∈ [-20,20],N ∈ [-15,15], λ ∈ [-20,20]. Note, however, that the trial-by-trial learning rate was always

passed through a sigmoid function, and was therefore between 0 and 1. Values were initialized to 50¢,

and in Experiment 1, were re-initialized at the beginning of each reward context. Each fit was run 30

times with different random initial parameter values.

Since all our models were nested (with additional parameters further modulating the RW-learning

rate), we compared models using the likelihood-ratio test (Pickles, 1985). We also compared models us-

ing the more conservative Bayesian information criterion (BIC; Schwarz, 1978). Both tests were con-

ducted across subjects.

Hierarchical model of memory

We ran a hierarchical regression model to better characterize the effects of unsigned and signed

RPES, as well as their relative influence, on memory for cue and outcome events. This model per-

formed full Bayesian inference over the effects of interest with HamiltonianMonte Carlo sampling,

simultaneously estimating subject and group-level posterior distributions (Stan; Carpenter et al., 2017).

We included all putative RPE signals of interest in predicting memory score: signed RPE signal at out-

come, unsigned RPE signal at outcome, as well as an intercept and a nuisance variable that captured

overall differences in memory for cue versus outcome events. We also included signed and unsigned
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RPE signals at cue for Experiment 2. Subject-level parameter distributions were drawn from group-

level, standard normal distributions, and scaled by a gamma distribution (1,0.5). The response variable

(memory score) was modeled with a normal distribution and fit with a single Gaussian noise param-

eter across all participants. All RPE regressors were centered and standardized. We report the median

(M) of the posterior parameter distributions as a measure of centrality, and the highest density in-

terval (HDI) as a measure of uncertainty around the parameter estimate; by default, HDI returns the

89% credible interval (which is further recommended as a more stable interval for sample sizes less than

10,000; Kruschke, 2014; Makowski, Ben-Shachar, & Lüdecke, 2019).

3.2 Experiment 1

Method

Participants

One-hundred participants were recruited from AmazonMechanical Turk (MTurk). The sam-

ple size was chosen (1) based on a simulation-based power analysis revealing that at least 55 partici-

pants would give sufficient power (80% probability) to detect the effect of unsigned RPEs on mem-

ory (Rouhani et al., 2018), and (2) taking into account that 20% of participants typically meet one of

the following exclusion criteria. Participants were excluded if they (1) had a memory score of less than

0.5 (A’: Sensitivity index in signal detection; Pollack &Norman, 1964), or (2) missed more than three

trials. This led to a final sample of 81 participants. We obtained informed consent online, and partic-

ipants had to correctly answer questions checking for their understanding of the instructions before

proceeding; procedures were approved by Princeton University’s Institutional Review Board.

Task design

Participants each completed (1) a reward learning task, (2) a recognition-memory task, and (3)

a choice task. They were additionally asked to complete a risk questionnaire (DOSPERT;Weber et al.,

2002) between reward learning and memory to create a 5-10 minute delay between item encoding and

recognition.
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Reward learning: Participants learned the average value of objects in two different reward contexts,

defined by background images of different cities (‘Paris’ and ‘London’). They experienced each reward

context in interleaved blocks (8 blocks total). Each block was comprised of 6 or 9 trials (60 trials total),

each trial involving two trial-unique objects (120 objects in total). On each trial, participants were first

shown an object (‘reward cue’: 3 seconds), and then had up to 5 seconds to estimate the “resale value of

objects in that city at that time”, i.e., the average value of objects in that context. After submitting their

answer, they saw a different trial-unique object (‘reward outcome’: 3 seconds) along with the reward

value associated with both objects on that trial. Participants were paid 10% of the rewards they received

on every trial regardless of their estimates, in line with a Pavlovian conditioning environment.

The individual rewards associated with the object pairs fluctuated around a fixed mean (the

means ranged from 10¢ to 90¢). Once or twice within each reward block, the underlying mean changed,

generating large RPEs. These ‘change points’ occurred once in the 6-trial blocks, twice in the 9 trial

blocks, and were at least 3 trials apart. The reward variance associated with each context provided a sec-

ond source of RPEs. The variance in the high-variance context (σ-high-variance = 7¢) was twice that of

the low-variance context (σ-low-variance = 3.5¢), leading participants to experience larger RPEs within

the high-variance context. Participants were told that the average resale value of the “found” objects

could change within each city, but that the inherent variability in reward outcome associated with each

city remained constant. Participants were encouraged to remember the rewards associated with the ob-

jects, as they were told they would be choosing between objects, and re-earning their associated rewards,

later in the task.

Recognition memory: After completing the risk questionnaire, participants were tested for their mem-

ory of the trial-unique objects. They were presented with objects and asked to indicate whether they

were ‘old’ or ‘new’ as well as their confidence level for each memory judgment (from 1 ‘guessing’ to 4

‘completely certain’). The test included 72 trials: 48 old (24 from each context) and 24 new images.

Choice: In the final phase, participants were asked to choose the more valuable object between two pre-

viously seen objects (14 trials total). Unbeknownst to the participants, objects within each pair were
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either (1) close in their associated reward but belonged to different variance contexts (6 trials), or (2)

belonged to the same pair and were therefore associated with the exact same reward (8 trials). Any con-

sistent biases in preference between reward events (as represented by the objects) could therefore not be

attributable to explicit reward differences in the task. Choice results are reported in Section 3.4.

Statistical analysis

We analyzed learning, memory and choice data using complementary approaches. We tested

putative effects of signed cue RPEs and unsigned outcome RPEs on learning by generating and com-

paring computational models of learning (specifically modeling trial-by-trial value estimates). We tested

these effects on memory performance through mixed-effects modeling (also used to analyze choices

lme4 package; Bates et al., 2015) and Bayesian hierarchical modeling in Stan (Carpenter et al., 2017).

Trial-by-trial memory scores were calculated by combining memory performance (hit versus miss) with

confidence rating (from 1= ‘guessing’ to 4= ‘completely certain’) on old items; the score thus ranged

from a ‘completely certain’ miss (1) to a ‘completely certain’ hit (8).

Reinforcement learning results

We fit learning behavior using four models: ‘RW’, ‘RW-PH’, ‘RW-D’, and ‘RW-PH-D’. Note,

we did not test any model that included a cue RPE since there is a single reward category in this ex-

periment. We found that a model that included a Pearce-Hall component, and therefore modulated

learning rate by the unsigned RPE at outcome, fit better than a model without that component (paired

t-test on BIC score differences for RW-PH versus RW, t(80) = 3.43, p < 0.001; Table 3.1, Figure 3.2B).

The BIC score was marginally better for the less complex RW-PHmodel relative to the RW-PH-D

model (t = 1.76, p = 0.08). However, the RW-PH-Dmodel fit the data significantly better than the

RW-PHmodel as per the likelihood ratio test (χ2(162) = 212.87, p = 0.005). We therefore cannot adju-

dicate between these two models; however, we can conclude that a model including the modulation of

learning rate by unsigned RPE at reward outcome, in line with Pearce and Hall (Pearce &Hall, 1980),

better explained learning behavior in our task.
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Figure 3.2: Experiment 1 learning behavior and modeling results. A. Experiment 1 average parঞcipant value esঞmates as a funcঞon of
trial number (red and blue lines; stars indicate a change-point trial; shading indicates 95% confidence intervals), and average model value
predicঞons of the RW-PH-D model with SEM bars in black. True rewards on each trial are indicated by x’s. B. Total BIC scores across
subjects for models tested in Experiment 1. Lower scores indicate be�er fit; insets show negaঞve log-likelihoods for the two best fiমng
models, as tested in the likelihood-raঞo test. In Experiment 1, we cannot adjudicate between the two best models, as BIC scores are
be�er for the RW-PH model but the likelihood-raঞo test prefers the RW-PH-D model; nevertheless, we can conclude that models that
included a PH component outperformed models that did not.

Memory results

Memory by learning condition

We first tested the effects of our task conditions on memory, namely how reward variance mod-

ulated memory for cue and outcome events. In line with our previous study (Rouhani et al., 2018),
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we expected that the larger unsigned RPEs in a high-variance context would improve memory for es-

pecially those outcome events. Moreover, given that we only included a single reward category in this

experiment and therefore did not elicit RPEs at cue, we did not expect memory for cue to substantially

change through learning. We, however, did suspect overall better memory for cue relative to outcome

events, since the additional monetary outcome that accompanies the outcome event may, in general,

interfere with its encoding; we control for this nuisance effect in all of our analyses.

Accordingly, we found consistent better memory for cue versus outcome events throughout

learning (mixed effects linear regression: β = -0.84, t = -10.23, p < 0.001; Figure 3.3A). We also found an

interaction of cue versus outcome memory by variance condition, such that in the high-variance con-

dition, there was a lower average memory score for cue events, and a higher average memory score for

outcome events, compared to the low-variance condition (μ-high-cue = 6.44, μ-low-cue = 6.57, μ-high-

outcome = 5.79, μ-low-outcome = 5.54; β = -0.37, t = -2.78, p = 0.005). Within the interaction, there

was a significant difference in memory for outcome events (β = -0.25, t = -2.09, p = 0.04) but not for

cue events (β = 0.12, t = 1.41, p = 0.16). This suggests a role for the high-variance context, character-

ized by larger unsigned RPEs, in boosting memory for outcome events. See below, ‘Memory by RPE

signals’, for a direct test of the effect of RPEs on memory for outcome events.

Memory by RPE signals

Replicating our previous findings (Rouhani et al., 2018, 2020), we found that unsigned, but not

signed, outcome RPEs increased memory for associated events (mixed-effects logistic regression, |out-

come RPE|: β = 0.15, t = 4.13, p < 0.001; outcome RPE: β = -0.03, t = -0.76, p = 0.45; model controlled

for differences in memory for cue and outcome events). This effect was significant in both variance

conditions, and larger in the high-variance condition, which was characterized by larger outcome RPEs

(high variance: β = 0.20, t = 3.85, p < 0.001; low variance: β = 0.10, t = 2.01, p = 0.04).

When using the hierarchical model to characterize the effects of RPE signals on memory for cue

and outcome events in Experiment 1, we found that unsigned outcome RPEs enhanced memory for

both events, but boosted memory for outcome events more so with a median parameter estimate al-
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most twice the size of that for cue memory (outcome memory as a function of |outcome RPE|: M =

0.14, HDI [0.06, 0.23], β = 0.19, t = 3.51, p < 0.001; cue memory as a function of |outcome RPE|: M

= 0.08, HDI [-0.01, 0.16], β = 0.10, t = 2.29, p = 0.02; Figure 3.3B). As expected, we did not find that

signed outcome RPE influenced memory for cue or outcome events (outcome memory as a function of

outcome RPE: M = -0.0007, HDI [-0.09, 0.08], β = -0.004, t = -0.07, p = 0.95, Figure 3.3C; cue mem-

ory as a function of outcome RPE: M = -0.02, HDI [-0.11, 0.06], β = -0.05, t = -1.04, p = 0.30).

Finally, since unsigned outcome RPEs in this experiment were modulated by both reward vari-

ance as well as change-points to the underlying distribution of the mean, we checked for the individual

effects of reward variance and change-points on outcome memory. We found separate effects of each in

increasing memory for outcome items (outcome memory as a function of |outcome-RPE|: β = 0.14, t

= 2.38, p = 0.02; outcome memory as a function of change-point: β = 0.24, t = 2.08, p = 0.04), showing

that this effect cannot be fully explained by change-point events, and instead, also relies on the magni-

tude of the outcome RPE.
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Experiment 1: (B) Unsigned outcome RPEs effect on cue and outcome memory. Unsigned outcome RPEs enhanced both cue and out-
come memory, and this effect was stronger for outcome memory; (C) RPE effects on outcome memory. Signed outcome RPEs did not
influence memory (unsigned RPE plot idenঞcal to panel B, repeated for comparison with signed RPE).

Memory by learning rate

In Chapter 1 (Rouhani et al., 2018), we found that although unsigned RPEs at outcome en-

hanced both learning rate and memory, learning rate did not predict subsequent memory for those

events, suggesting distinct underlying mechanisms. Here, we further tested this dissociation by asking

whether an empirical trial-by-trial learning rate (calculated using the same approach as Chapter 1; see

Figure 1.2) modulated memory for the outcome event that produced the RPE, or whether learning rate

influenced memory for the subsequent cue event where the value update was applied. We did not find
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learning rates to predict memory for the outcome events that generated them (β = 0.05, t = 0.98, p =

0.33), nor did we find them to predict memory for the subsequent cue events where the value update

occurred (β = -0.05, t = -1.31, p = 0.20). This was even true for change-point events that led to the high-

est learning rates (analyzed separately, outcome memory as a function of the learning rate generated by

that trial: (β = -0.04, t = -0.53, p = 0.60); cue memory as a function of the learning rate applied to that

trial: (β = -0.08, t = -1.35, p = 0.18).

3.3 Experiment 2

Method

Participants

We recruited 200 participants for each condition onMTurk. We followed the same procedure

and exclusion criteria as Experiment 1, leading to a sample of 163 participants in Condition 1, and 168

participants in Condition 2 (331 participants in total).

Task design

The experiment followed the same procedure as Experiment 1, with differences listed below.

Instead of learning the value of a single category (objects) within two reward contexts (Exp. 1), par-

ticipants learned the value of two categories (indoor and outdoor scenes) within one reward context,

thereby eliciting RPEs at cue as well as at outcome. The average value of one of the scene categories

was higher than the other, and average values, as well the variance of values (same for both scene cat-

egories; σ = 15.81), remained constant throughout the experiment. In order to test a range of RPEs

experienced at cue, participants learned in a reward environment where either (1) the average means of

the two scene categories were close to each other (μ-high-variance = 60¢, μ-low-variance = 40¢; ‘Condi-

tion 1’), or (2) further apart (μ-high-variance = 80¢, μ-low-variance = 20¢; ‘Condition 2’).

Reward Learning: As before, participants saw two different trial-unique events at reward cue and out-

come with the cue and the outcome scenes belonging to the same scene category. Participants com-

pleted 30 trials during learning (15 trials for each scene category; 60 trial-unique scenes).
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Recognition memory: The memory test included 64 trials (32 old and 32 new images).

Choice: As before, participants chose between scenes that belonged to the same reward pair (8 trials).

They also chose between two cue scenes or two outcome scenes that were associated with different re-

ward outcomes (6 trials). This was done to check whether the rewards experienced on each trial led to a

consistent preference for the more rewarding scene for both cue and outcome events. Choice results are

reported in Section 3.4.

Reinforcement learning results

In this experiment, we compared all described models as participants experienced RPEs at both

cue and outcome. We found that the model including all three tested modulators of learning rate—an

unsigned RPE at outcome (Pearce-Hall component), a signed RPE at cue (Mackintosh component),

and an exponential decay—fit participant value estimates best (Figure 3.4C, Table 3.1). This model had

a significantly better (e.g., lower) BIC score than the next best fitting model (RW-PH-D; t(330) = -5.94,

p < 0.001). The likelihood-ratio test comparing these two models further confirmed a significantly bet-

ter fit for the full model (χ2(331) = 808.60, p < 0.001).
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model parameters -LL BIC

RW α
20911.33 

38957.07

20983.26 

39201.04

RW-PH η, κ
20733.54 (d = -177.79) 

38489.88 (d = -467.20)

20877.41 (d = -105.86) 

38977.82 (d = -223.23)

RW-M η, γ 38650.04 (d = -307.04) 39137.98 (d = -63.07)

RW-D η, N, λ
20754.96 (d = -156.37) 

37957.44 (d = -999.63)

20970.76 (d = -12.50) 

38689.35 (d = -511.69)

RW-PH-M η, κ, γ 38208.66 (d = -748.41) 38940.57 (d = -260.47)

RW-PH-D η, κ, N, λ
20627.11 (d = -284.22) 

37598.08 (d = -1358.99)

20914.84 (d = -68.42) 

38573.96 (d = -627.08)

RW-M-D η, γ, N, λ 37655.84 (d = -1301.23) 38631.72 (d = -569.32)

RW-PH-M-D η, κ, γ, N, λ 37193.78 (d = -1763.29) 38413.63 (d = -787.41)

Table 3.1: Model parameters and fit results. ‘RW’: Rescorla-Wagner, ‘PH’: Pearce-Hall, ‘M’: Mackintosh, ‘D’: Decay. Negaঞve log-
likelihood and BIC scores across parঞcipants for Experiment 1 (gray background) and Experiment 2; ”d” refers to the difference in score
between the tested model and the baseline model (‘RW’). Lower scores indicate be�er fit. In Experiment 1, models that include a PH
modulaঞon of learning rate performed be�er, and in Experiment 2, the model that includes all three tested components of learning rate
(PH, M, D) performed the best.

Memory results

Memory by learning condition

Here, we hypothesized that increased learning for two reward categories (eliciting RPEs at cue),

should lead to attentional enhancement and improved encoding of cue events. This is in contrast to Ex-

periment 1 where, in the absence of cue RPEs, we did not observe learning to modulate cue memory.

First, we again found better memory for cue events in both conditions of the experiment (Condition
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1: β = -0.53, t = -7.34, p < 0.001; Condition 2: β = -0.66, t = -8.11, p < 0.001; Figure 3.5A-B). However,

unlike Experiment 1, memory for cue events increased as a function of trial number, relative to mem-

ory for outcome events, in both conditions (Condition 1: cue-outcome memory interaction β = -0.25,

t = -3.89, p < 0.001; Condition 2: cue-outcome memory interaction β = -0.20, t = -3.29, p < 0.001).

In fact, at the beginning of learning, memory for cue events was not better than memory for outcome

events, and the difference emerged as a function of learning. The two conditions varied in learning dif-

ficulty, due to the larger overlap between the values of the two scene categories in Condition 1.

Accordingly, in Condition 2, better memory for cue events was already evident at the beginning

of learning, leading to a less steep increase in memory for cue events than in Condition 1, as assessed

by a difference in the slope of this effect (μ-cond1-slope = 0.25, μ-cond2-slope= 0.17, t(328.89) = 5.68,

p < 0.001). These results suggest that larger differences between reward expectations for the two scene

categories enhanced memory for cue events, as evidenced by an increase in cue memory over learning,

which furthermore occurred earlier in an easier learning environment. See below, ‘Memory by RPE

signals’, for a direct test of whether reward expectations, as represented by a cue RPE (i.e., a relative

value signal), influenced memory for cue events.

Memory by RPE signals

In this experiment, we tested both outcome (as in Exp. 1) and cue RPEs on memory. When

testing the effect of signed and unsigned RPE signals on memory for scenes, we found that signed cue

RPEs enhanced memory for both cue and outcome scenes (mixed-effects linear regression β = 0.08, t =

3.43, p < 0.001; model controlled for differences in memory for cue and outcome events), meaning that

memory for more valued scenes was boosted relative to less valued scenes. Furthermore, we found a

separate effect of unsigned cue RPE on memory, such that the more participants had separated the val-

ues of the two scene categories (i.e., the more they had learned), the better their memory for either scene

category (β = 0.07, t = 2.49, p = 0.01). Here, we did not find an overall effect of unsigned or signed out-

come RPEs on memory (|outcome RPE|: β = 0.04, t = 1.50, p = 0.14; outcome RPE: β = -0.04, t =

-1.61, p = 0.11). However, when testing for the interaction of unsigned outcome RPEs on cue versus
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outcome memory in this model, we did find a significant effect (β = 0.09, t = 2.06, p = 0.04), showing

that unsigned outcome RPEs modulated memory, as in Experiment 1, but only for outcome events.

We further characterize this effect below.

When we separately modeled the effects of cue and outcome RPE signals on cue and outcome

memory, we found that signed cue RPEs boosted memory for both cue and outcome events, and espe-

cially for cue events (cue memory as a function of cue RPE: M = 0.08, HDI [0.01, 0.15], β = 0.08, t =

2.64, p = 0.008, outcome memory as a function of cue RPE: M = 0.07, HDI [-0.01, 0.12], β = 0.07, t

= 2.26, p = 0.03; Figure 3.5C). The unsigned cue RPE further modulated cue memory, while this ef-

fect was trending for outcome memory (cue memory as a function of |cue RPE|: M = 0.09, HDI [0.01,

0.16], β = 0.07, t = 2.00, p = 0.05, outcome memory as a function of |cue RPE|: M = 0.06, HDI [-0.01,

0.13], β = 0.07, t = 1.82, p = 0.07; Figure 3.5D).

On the other hand, unsigned outcome RPEs only enhanced memory for outcome events (out-

come memory as a function of |outcome RPE|: M = 0.14, HDI [0.05, 0.23], β = 0.09, t = 2.59, p =

0.009; cue memory as a function of |outcome RPE|: M = -0.02, HDI [-0.11, 0.06], β = -0.01, t = -

0.46, p = 0.64; Figure 3.5E). We again did not find any effect of signed outcome RPEs on memory for

either cue or outcome events (outcome memory as a function of outcome RPE: M = -0.03, HDI [-

0.10, 0.03], β = -0.05, t = -1.46, p = 0.15, Figure 3.5F; cue memory as a function of outcome RPE: M =

0.002, HDI [-0.07, 0.07], β = -0.02, t = -0.66, p = 0.51).
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Memory by learning rate

As in Experiment 1, we did not find learning rates to influence memory for the outcome events

that generated them (β = 0.01, t = 0.34, p = 0.73), nor did we find learning rates to affect memory for

the cue events where the value update was applied (β = 0.05, t = 1.42, p = 0.16). Echoing our findings

in Chapter 1, we did not find an association between learning rate for values and memory for those

events, suggesting separate mechanisms.

3.4 Choice results

In both experiments, at the end of the experiment, we asked participants to choose between

previously-encountered items that had (1) belonged to different learning trials and were either both

cue or outcome events, or (2) belonged to the same trial (i.e., the cue and the outcome event for that

trial), and were thus associated with the same value estimate and the same reward. In this phase, no new

outcomes were presented.

(1) Choices across trials: In Experiment 1, we investigated whether participants were biased to

prefer cues or outcomes that were from different variance contexts (i.e., were associated with differ-

ent levels of outcome RPEs), but linked to similar reward outcomes. We did not find variance context,

nor unsigned outcome RPE, to modulate preference (variance: β = 0.29, z = 1.57, p = 0.10; |outcome

RPE|: β = 0.05, z = 0.49, p = 0.62). In Experiment 2, participants chose between cue and outcome pairs

that were associated with different reward outcomes. Participants chose both cues and outcomes that

were associated with higher rewards, confirming that they had associated the reward outcome with

both cue and outcome events (condition 1: β = 1.00, z = 8.50, p < 0.001; condition 2: β = 2.79, z =

10.96, p < 0.001; Figure 3.6A). Controlling for this effect of reward outcome, we also found that partic-

ipants chose both cue and outcome events associated with larger cue RPEs, i.e., the more participants

had valued the scene category at the time of encoding, the more likely they were to choose those cue

and outcome events at the choice test (condition 1, cue RPE: β = 1.04, z = 5.94, p < 0.001, reward: β =

0.39, z = 3.28, p = 0.001; condition 2, cue RPE: β = 0.83, z = 3.88, p < 0.001, reward: β = 1.38, z = 6.53,

p < 0.001; Figure 3.6B).
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(2) Choices within trial: The above results show that participants associated both cue and out-

come events with reward outcome as well as their value for that scene category during encoding. Nev-

ertheless, we also asked participants to choose between cue and outcome events from the same trial,

which had the same associated value and reward outcome. The only putative learning component that

differentiated these two events was therefore the RPE that participants experienced at outcome. Here,

we found (Exp. 1), and replicated (Exp. 2), an effect whereby the greater the (signed) RPE experienced

on that trial at outcome, the more likely participants were to prefer the outcome event over the cue

event (Exp. 1: β = 0.27, z = 3.27, p = 0.001, Figure 3.6C; Exp. 2: condition 1: β = 0.28, z = 4.18, p <

0.001, condition 2: β = 0.21, z = 3.67, p < 0.001, Figure 3.6D).
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Figure 3.6: Choice results. A. Experiment 2: Choice probability as a funcঞon of the difference in reward outcomes between two cue
or two outcome events. Parঞcipants were more likely to choose cue and outcome events that had been associated with higher reward
outcomes. B. Experiment 2: Choice probability as a funcঞon of the difference in cue RPE between two cue or two outcome events.
Parঞcipants were more likely to choose cue and outcome events that they had associated with a more valuable scene category (relaঞve
to the other scene category) at the ঞme of encoding. C-D. Choice between a cue and an outcome event from the same trial (same
associated reward outcome and cue RPE) in Experiment 1 (C) and 2 (D). Parঞcipants were more likely to prefer the outcome event if
it had been associated with a higher (signed) outcome RPE. Size of the points reflects the size of that sample. Choice was fit using a
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3.5 Discussion

In two experiments, we found that distinct reward prediction error (RPE) signals, one occurring

at cue and one at outcome, dynamically influenced learning and memory for those events. Drawing on

classic associative models of attention (Pearce &Mackintosh, 2010), we found that an unsigned RPE

at reward outcome, consistent with a Pearce-Hall model of learning (Pearce &Hall, 1980), and a signed

RPE at reward cue, consistent with a Mackintosh model of learning (Mackintosh, 1975), modulated

a dynamic learning rate in reinforcement learning models that predicted behavior better than models

without those attentional components.

RPE signals at cue and outcome also enhanced memory for associated events. In Experiment

1, participants learned the value of a single reward category while experiencing large unsigned RPEs

at outcome due to high (versus low) levels of outcome variance and unexpected changes in the mean

of the underlying reward distribution (‘change-points’). Here, unsigned RPEs at reward outcome in-

creased memory for scenes accompanying both the cue and outcome, and in particular the latter. In

Experiment 2, participants learned the value of two reward categories (designated by indoor and out-

door scenes), which meant that they experienced RPEs both at the time of the cue (as they could not

predict which category would be offered on any given trial) and at the time of the reward outcome. Un-

like Experiment 1 where memory for the cue event remained relatively stable throughout learning, in

Experiment 2, memory for the cue event (but not the outcome event) increased throughout learning.

This increase was supported by the gradual buildup of a signed RPE at cue, which enhanced memory

for more valued reward cues (and to a lesser extent, their outcome events), as well as an unsigned RPE

at cue that benefited memory for both reward cues the more participants had separated the values of

the two reward categories (i.e., the more the participants had learned). We again found unsigned RPEs

at reward outcome to boost memory for outcome events, but here we did not find them to influence

memory for cue events.

We therefore found signed and unsigned RPEs to modulate a dynamic learning rate and enhance

memory for those events, effects which we argue here to be both, at least, initiated by the same atten-

tional mechanisms associated with those RPEs. Nevertheless, we did not find learning rate to predict
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memory for either the outcome event where the update was signalled nor for the cue event where the

update was applied. Consistent with our Chapter 1 results, we maintain that although RPEs influence

both learning rate for values and memory of those events, they, in part, rely on separate mechanisms.

For a fuller discussion of this point, see ‘Distinct unsigned-RPE effects on learning and memory’ in the

Conclusion (Chapter 5).

Last, in a final choice test, participants preferred both cue and outcome scenes that had been

associated with higher reward outcomes and more valued scene categories; however, when choosing

between the cue and outcome scenes of a single trial (i.e., two scenes with the same associated reward

and value), higher signed RPEs at outcome, which we did not find to modulate memory, led to greater

‘irrational’ preference for the outcome event.

Reward prediction errors modulate a dynamic learning rate

We compared different reinforcement learning models that included the contribution of atten-

tional components in modulating a dynamic learning rate. Note that our experiments depart from clas-

sic paradigms that investigate the role of selective attention in learning, because we did not investigate

the relative allocation of attention (or learning resources) between competing stimuli presented simul-

taneously. Instead, we presented one stimulus at a time. Nevertheless, our data allowed us to model

and test the amount of learning for each stimulus, and investigate its relationship to RPEs. We tested

the influence of a Pearce-Hall attention component (Pearce &Hall, 1980), where the unsigned RPE at

reward outcome enhances attention, as modeled by an increase in learning rate. We found that allowing

this signal to update the trial-by-trial learning rate led to better predictions of learning behavior.

We also tested the influence of a Mackintosh attention component (Mackintosh, 1975), which

contrary to the Pearce-Hall model, predicts an increase in attention (and learning rate) for more valu-

able and predictive cues. We modeled the Mackintosh signal as the (signed) difference in learned value

between the reward-predicting cues, which we referred to as a signed RPE at cue. In other words, the

more one cue was valued over the other, the stronger (and more positive) the associative strength. It

may be worth mentioning that an unsigned RPE at cue could similarly reflect a Mackintosh signal as
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larger distances between values indicate greater learned predictiveness. Nevertheless, we found that

modulating learning rate according to a signed-RPE signal at cue also predicted behavior better than a

model that did not include this component. This was in addition to the separate contribution of the

Pearce-Hall signal to learning rate.

Signed and unsigned reward prediction errors enhance memory

RPEs modulated not only learning rate, but also memory for trial-unique items associated with

cues and outcomes. In particular, we replicated previous results showing better memory for items

that were accompanied by high-magnitude RPEs at reward outcome, either due to outcome variance

(Chapter 1; Rouhani et al., 2018) or reward change-points (Chapter 4; Rouhani et al., 2020). Further-

more, we found this mnemonic benefit to be particularly strong for events experienced at outcome.

Although unsigned outcome RPEs did enhance memory for cue events in Experiment 1, this effect was

weaker than that for outcome events. Moreover, in Experiment 2, where RPEs were additionally expe-

rienced at cue, we no longer saw any influence of the unsigned outcome RPE signal on cue memory.

We therefore hypothesize that increased attention brought on by large unsigned RPEs during reward

outcome engages the locus coeruleus (LC), which co-releases norepinephrine and dopamine to modu-

late hippocampal plasticity (Kempadoo et al., 2016; Takeuchi et al., 2016; Wagatsuma et al., 2017).

As in prior work (Rouhani et al., 2018, 2020), we did not find signed RPEs at reward outcome

to modulate memory for any event, but we note that such an effect has been demonstrated in paradigms

outside of reinforcement learning (Marvin & Shohamy, 2016; Ergo, De Loof, Janssens, & Verguts,

2019; De Loof et al., 2018) and for adolescents, but not adults, in reinforcement learning (Davidow

et al., 2016). Instead, we found that the signed RPE at cue enhanced memory for both cue and out-

come events. That is, as learning progressed, cues that were more valuable (and therefore elicited a

larger signed RPE at cue) were associated with better memory for both cue and outcome scenes. This

effect was stronger in enhancing cue memory, consistent with previous work showing better memory

for cues associated with higher rewards, prior to receiving the actual outcome (Stanek et al., 2019; Jang

et al., 2019). We speculate this signed RPE effect on memory to be supported by the (signed) dopamin-
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ergic RPE moving from reward outcome to the cue predicting reward during learning (Barto, 1995;

Montague et al., 1996; Schultz et al., 1997).

In Experiment 2, we in fact saw an incremental increase in memory for cue events throughout

learning, but not for outcome events. This increase, along with the signed cue RPE described above,

was supported by an unsigned RPE at cue, improving memory for both high-value cues and low-value

cues as participants learned to separate the values of the two reward categories. Although we con-

sider the signed RPE at cue to reflect a Mackintosh-type (Mackintosh, 1975) attention signal, in our

paradigm, larger unsigned RPEs at cue also demonstrated stronger learned associative strengths for each

reward category, further bolstering an account whereby greater reward predictiveness leads to putative

attentional enhancement that strengthens encoding of those cue events. Furthermore, both conditions

of Experiment 2 showed this improvement in cue memory with more learning; however, in the easier

learning condition, better memory for cue events appeared earlier, and the slope of memory improve-

ment over time was less steep than the more difficult learning condition, again reflecting that learning is

modulating cue memory.

In Experiment 1, however, where there were no RPEs experienced at cue, cue memory was

higher than outcome memory throughout learning. This consistent better memory for cue versus out-

come items is perhaps unsurprising given that during outcome events, the monetary outcome itself

may distract from encoding the outcome event. Nevertheless, these results suggest that learning about

more than one reward category (thereby creating cue RPEs) may be important in generating learning-

driven changes to cue memory.

Interactions between reinforcement learning and memory systems

Although we did not measure neural activity in this study, distinguishing the mnemonic effects

of signed and unsigned RPEs in the brain may be fruitful in characterizing two distinct memory mech-

anisms. As noted above, signed RPEs increase dopaminergic firing from the midbrain (Barto, 1995;

Montague et al., 1996; Schultz et al., 1997), whereas unsigned RPEs increase noradrenergic (as well

as dopaminergic) firing from the LC (Takeuchi et al., 2016; Kempadoo et al., 2016; Wagatsuma et al.,

72



2017). Recent work makes predictions about how these distinct mechanisms may differentially in-

fluence memory (Duszkiewicz et al., 2018; Clewett &Murty, 2019; Hauser et al., 2019). Midbrain

dopamine is thought to initiate ‘behavioral activation’ (Clewett &Murty, 2019), such as increased

vigor during periods of reward anticipation, which promotes the integration of higher-order repre-

sentations, like value formation, giving rise to semantic memories (Duszkiewicz et al., 2018). The LC-

norepinephrine system, on the other hand, promotes selectivity for salient events such as surprising

outcomes, giving rise to distinctive, episodic memories (Duszkiewicz et al., 2018). How these RPE sig-

nals may act on different kinds of memory is an important avenue for future research.

In this paradigm, we did not dissociate the effects of cue RPE versus reward anticipation on

memory (for an experiment that does this, see Stanek et al., 2019). However, we predict that phasic

signed RPEs at cue would initiate and enhance a more sustained, and potentially ramping, period of

reward anticipation, leading to memory benefits regardless of the exact timepoint following the cue. In

fact, Iigaya et al. recently offered a computational model whereby RPEs amplify anticipatory value (i.e.,

the ‘pleasure of savoring’; Iigaya et al., 2019). They further characterize a neural circuit whereby the

hippocampus – tracking unsigned RPEs at outcome – enhances the functional coupling between the

dopaminergic midbrain (encoding the signed RPE at outcome) and the ventromedial prefrontal cortex

(encoding anticipatory value) to boost reward anticipation. The authors speculate that the cognitive

imagining of future rewards may drive hippocampal orchestration of reward anticipation. It is, how-

ever, unclear whether hippocampal activation here reflects greater engagement in retrieval processes

(supporting the simulation of future rewards) or in encoding processes, consistent with previous work

showing better memory for events experienced during reward anticipation (Stanek et al., 2019; Murty

& Adcock, 2014; Wittmann et al., 2005). Future work should identify the dynamics of hippocampal

encoding and retrieval states (Hasselmo, Bodelón, &Wyble, 2002; Duncan et al., 2012) over the period

of reward anticipation.

In our experiments, we found a collaborative interaction between reinforcement learning and

episodic memory systems: more rewarding cues and more surprising outcomes were prioritized in

memory, thereby promoting adaptive behavior. Nonetheless, in other paradigms, these two systems
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have been shown to compete for processing resources: compromised feedback-based learning has been

associated with enhanced episodic memory, both behaviorally and neurally (Foerde et al., 2012; Wim-

mer et al., 2014). In fact, Wimmer et al. showed that better memory for reward-predicting cues was

associated with weaker striatal RPEs at reward outcome. In our experiments, we did not find any ef-

fects of signed RPEs at reward outcome on memory (Wimmer et al., 2014). However, there are several

notable differences between this prior task and ours: we tested Pavlovian learning, not instrumental

learning; we presented one cue at a time, rather than two cues on every trial; and we tested for memory

immediately after learning, rather than 24 hours later (our test did not reflect consolidation effects).

Future studies should investigate which learning conditions (e.g. Pavlovian versus instrumental) en-

gage more collaborative versus competitive interactions between reinforcement learning and episodic

memory systems.

Positive reward prediction errors bias preference

At the end of our experiments, we investigated how RPE signals influence subsequent choice.

Participants chose both cue and outcome events that had been associated with higher reward outcomes

as well as higher (relative) value of a scene category. This confirmed that participants were following in-

structions: they were associating both the cue and outcome scenes with the value of that scene category

as well as with the specific reward outcome on that trial. Interestingly, when asked to choose between a

cue and an outcome item from the same trial (i.e., where there should be no preference for either item),

we found and replicated an effect (in both Experiments 1 and 2) whereby the higher the signed RPE

at outcome, the more participants preferred the outcome event. Therefore, although signed RPEs at

outcome did not modulate memory, they did predict subsequent choice, pointing to a hedonic compo-

nent of the signed RPE in shaping preferences. This finding is consistent with work maintaining that

RPEs drive changes in emotional or affective states (Villano, Otto, Chiemeka, Gillis, & Heller, 2020;

Eldar &Niv, 2015; Eldar, Rutledge, Dolan, &Niv, 2016; Rutledge, Skandali, Dayan, & Dolan, 2014),

and we propose that this putative change in affect biased preference for the associated outcome event.
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To conclude, in two experiments, we showed that reward prediction errors (RPEs) generated by

a reward-predicting cue and a reward outcome modulated learning rate during reinforcement learning,

in line with classic attentional models of learning. These signals further enhanced memory for events

associated with larger unsigned RPEs experienced at outcome and larger signed RPEs experienced at

cue. Moreover, although a signed RPE at outcome did not predict memory, it did ‘irrationally’ bias

preference for that outcome event. Our findings highlight the interaction of prediction errors, poten-

tially signaled by midbrain dopamine and locus-coeruleus norepinephrine, with mnemonic processes.

75



4
Reward Prediction Errors Create Event Boundaries in

Memory*

In previous chapters, we showed that larger positive or negative RPEs experienced during reward

learning lead to improved memory for those surprising events (Rouhani et al., 2018). However, the

mechanism behind this enhanced memory is unclear. For example, imagine you watch a new episode of

what had long been your favorite television show, only to find that you strongly dislike it. Worse, this

bad episode indicates a decrease in the show’s quality (e.g. brought on by a change in writers). Is the

episode where the quality of the show changed better remembered because it is more strongly stamped

in memory? Or is it better remembered because it predicts a meaningful change in the state of the

show, thereby separating the pleasant episodes that came before it from the unpleasant episodes that

followed, creating separate clusters in memory? In other words, do high RPEs lead to better memory

because they bind events more strongly to the context in which the event occurred leading to greater

accessibility of that memory when cued with context, or because they lead to the creation of a new con-

text, thereby reducing interference frommemories that came before?

If high RPEs create a new latent state or context, then we predicted they would act as event

boundaries in memory. In fact, prediction errors (outside of the reward domain) are thought to cre-

ate event boundaries by segmenting the continuous stream of experience into separate memory traces

(DuBrow, Rouhani, Niv, & Norman, 2017; Gershman, Radulescu, Norman, &Niv, 2014; Zacks,

*The content of this chapter is in press in Rouhani, Norman, Niv, & Bornstein, 2020.
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Speer, Swallow, Braver, & Reynolds, 2007). It is, however, unknown whether changes in the distri-

bution of rewards, signaled by high RPEs, act as event boundaries in memory. Events boundaries struc-

ture the temporal organization of memories by interrupting the integration of events across them. This

leads to worse memory for the order of events (‘sequence memory’) and greater perceived distance for

events across rather than within contexts (DuBrow&Davachi, 2013; Horner, Bisby, Wang, Bogus,

& Burgess, 2016). This is further predicted by greater representational dissimilarity of those events in

the hippocampus (DuBrow&Davachi, 2014; Ezzyat & Davachi, 2014). Interestingly, like high-RPE

memories, memory for the event boundary itself is enhanced (Heusser, Ezzyat, Shiff, & Davachi, 2018;

Swallow, Zacks, & Abrams, 2009). However, temporal memory for the events across the boundary is

worse, suggesting a trade-off between memory for the boundary event and the mnemonic integration

of events across the boundary event (Heusser et al., 2018).

In four experiments, we investigated whether latent shifts in the reward distribution of a Pavlo-

vian reinforcement task (which generate high RPEs) create such event boundaries in memory. In all ex-

periments, participants first completed a passive, sequential reward task that included several high RPEs

indicating changes in the underlying distribution of rewards. We then investigated the degree to which

high RPEs affected the temporal organization of memories through recognition priming as well as se-

quence and distance memory measures. We reasoned that if high-RPE events are more strongly bound

to the context they were encoded in, then events around the high RPE would be more accessible to one

another, resulting in improved priming and better sequence memory. On the other hand, if high-RPE

events create new contexts in memory, then events that occurred on either side of a high RPE would be

less accessible to one another, leading to less effective priming and sequence memory relative to other

pairs of events at the same presentation distance.

We further asked, if high RPEs do create event boundaries, where does this boundary occur?

In other words, is the high-RPE event the last of the old context or the first of the new one? The la-

tent cause model would predict that, because the RPE event is predictive of the rewards to follow, it

should be the first event of a new context (Gershman et al., 2014). However, recent work suggests that

event boundaries lead to the neural reinstatement of events that preceded the boundaries (Baldassano
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et al., 2017; Ben-Yakov &Dudai, 2011; Ben-Yakov, Eshel, & Dudai, 2013; Sols, DuBrow, Davachi, &

Fuentemilla, 2017), which could bind the high-RPE event to its predecessors. Here, we characterized

where the event boundary occurs by testing for each one of these possibilities. We first tested the as-

sociative links between a high-RPE event and its direct predecessor in Experiments 1 and 2, as well as

one of the conditions of Experiment 4. However, given the possibility that the high-RPE event is still

bound to its predecessor, we next tested whether an event boundary occurs across the high-RPE event,

i.e., between the high-RPE event’s predecessor and successor, in Experiments 3 and 4.

We used recognition priming (Experiments 1-3) and sequence and distance memory tasks (Ex-

periment 4) to compare associative and temporal memory for high and low-RPE events. We addition-

ally developed a computational model (a variant of the Context Maintenance and Retrieval model

(Polyn et al., 2009)), where high RPEs induce mnemonic separation between rewarding events, and

used this model to simulate performance on our experiments and test whether it captured our main

behavioral results.

Overview of Experiments

Recognition Priming

In Experiments 1-3, we used a recognition priming task to probe whether RPEs influence the

degree to which two sequential events are bound in memory. In recognition priming, recognition

for an event is better and faster if it is preceded by the event that occurred before it during encoding

(Schwartz, Howard, Jing, & Kahana, 2005; Zwaan, 1996). The idea is that retrieval of an item also re-

activates items that were associated with it during encoding, either directly, or indirectly via context,

facilitating subsequent recognition of those items. This is strongest for the forward sequence (i.e.,

each cue will reactivate the subsequent one (Howard & Kahana, 2002). Given this, we reasoned that

if a high RPE creates an event boundary that separates the high-RPE event from its predecessor, high-

RPE events would become less accessible when primed during retrieval, demonstrating less recognition

priming. If, instead, high-RPE events are more strongly bound to the previous event, we would expect

the RPE event to be more accessible when primed by the preceding event, leading to enhanced recogni-
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tion priming. Since evidence of recognition priming is more consistently reported in response latencies

rather than memory accuracy (DuBrow&Davachi, 2014; Zwaan, 1996), we used and simulated recog-

nition latency as our measure of recognition priming, but additionally report memory accuracy results.

Sequence and distance memory

In Experiment 4 (and its replication), we further tested whether high-RPE events disrupt the

integration of events by probing the temporal ordering and perceived distance between them. Contex-

tual changes (both external and internal to an observer) are thought to increase change in one’s internal

context, leading to greater perceived time between events (Sahakyan & Smith, 2014). Performance on

these measures of temporal memory is modulated by representations in the hippocampus, thought to

support the temporal structuring of events in memory (Davachi & Dubrow, 2015): Previous studies

have found that greater hippocampal dissimilarity between two events across an event boundary pre-

dicts worse sequence memory and larger subjective distances between them (DuBrow&Davachi, 2014,

2016; Ezzyat & Davachi, 2014). For sequence memory, we asked participants to indicate which of two

items came first, and for distance memory, we asked participants to indicate how far apart the events

had been during encoding. If a high RPE signals an event boundary, we would expect worse sequence

memory and greater estimated distances for pairs that include or are interrupted by a high-RPE event.

On the other hand, if high-RPE events are more bound to the events around them, thereby activat-

ing and compressing the sequence of events in memory, we could expect better sequence memory and

shorter estimated distances.

4.1 Experiment 1

Method

Participants

Participants were recruited from Amazon’s Mechanical Turk (MTurk), and 35 participants ini-

tiated the task (age: 27-67, median = 34; 15 female, 20 male). The sample size chosen was a standard

number of pilot subjects to recruit for anMTurk study in our lab. We first obtained informed consent
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online, and prior to accessing the task, participants had to correctly answer questions that checked for

their understanding of the instructions. All procedures were approved by Princeton University’s Insti-

tutional Review Board. We excluded participants if they (a) missed more than 20 memory trials, or (b)

had a memory score of less than 0.5 (memory score was determined by A’; Pollack &Norman, 1964).

Using these criteria, we excluded 8 participants, which led to a sample of 27 participants.

Task design

Participants completed 6 blocks, each consisting of learning (36 trials in each block), choice (4

trials in each block), and recognition memory phases (42 trials in each block). In the instructions, par-

ticipants were told they would be exploring six different ‘rooms’ (i.e. blocks), defined by distinct color

backgrounds, where they would ‘find’ different photographs and earn 10% of the reward value associ-

ated with each photograph. We used a Pavlovian (passive) learning design in order to isolate the effects

of changes in reward alone, unconfounded by shifts in responding. In the learning phase, participants

passively viewed a sequence of trial-unique images of scenes that were associated with different reward

values (Figure 4.1A). On each trial, participants saw the scene image for 1 second, then were shown the

image with its associated value for 2 seconds. The individual values of the scenes fluctuated around a

fixed mean (means ranged from 10¢ to 90¢ in steps of 10¢). Participants were encouraged to remem-

ber the individual values of the photographs as they would be choosing between them later (after each

room), and earning the reward value of the chosen image.

In each room, the mean value of the photographs shifted either four or five times. Participants

were told that a shift in the mean value of the photographs indicated they had found a new ‘collection’

of photographs that were more or less valuable than their previous collection. Critically, as a result of

these reward shifts, participants experienced high positive or negative reward prediction errors whose

magnitude ranged from 20¢ to 80¢ (and every 10¢ increment in between; these magnitudes reflect a

one-trial difference between current and previous reward). Each participant experienced each magni-

tude of prediction error 1-2 times, and the number of positive and negative reward shifts was balanced

(13 positive and 13 negative high-RPE events across the entire experiment). Within each latent reward

state, participants experienced at least 5 and at most 9 trials (average = 6.75 trials) where the individual
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values of the scene images fluctuated around the same mean value (individual reward values never de-

viated more than 5¢ from the mean value). After learning, within each block, participants completed

4 choice trials that were intended to ensure they paid attention to the values in the passively viewed se-

quence. On each choice trial, two previously-seen images were presented and the participant chose one,

anticipating that the reward value of that image would be added to their payment for participating in

the experiment. The 8 images used in the choice test were not used in any other memory test.
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Figure 4.1: Experimental paradigm. A. In all experiments, in each of six blocks, parঞcipants first completed a passive reward learning
task (the encoding task) where sequences of scenes, each with an associated reward value, were presented. The reward values of the
images were conঞngent on the mean value of the reward state, which shi[ed 4-5 ঞmes each block. B. In Exp. 1-3, a[er reward learning,
parঞcipants completed a recogniঞon test where they indicated whether a scene was ‘old’ or ‘new.’ We tested for recogniঞon priming of
high and low-RPE events, relying on a mechanism by which recogniঞon of an old item (the prime), either directly or indirectly, acঞvates
the items that had followed it during encoding (the target), leading to be�er and faster recogniঞon of target items. Most of the old
scenes were presented in pairs that belonged to three different condiঞons (example sঞmuli refer to the reward sequence in A): (1)
‘low RPE’: a pair that was studied consecuঞvely; both items belonged to the same reward state, (2) ‘high RPE’: a pair that was studied
consecuঞvely, however the items belonged to different reward states, (3) ‘out of sequence’ (baseline): the second item in the test pair
actually preceded the first item during encoding (i.e., out of order); the items belonged to different reward states. Recogniঞon priming
for low and high-RPE pairs was compared to the out-of sequence pairs. In Exp. 1-2, the low and high-RPE pairs comprised items that
were directly one a[er the other during encoding, whereas in Exp. 3, the pairs were separated by another scene during encoding (‘+1’),
and so the high-RPE+1 pair did not include the high-RPE event itself. C. In Exp. 4, a[er reward learning, we tested for the temporal
memory of two scenes that either belonged to the same reward state (low RPE) or a different reward state (high RPE), and were either
0 (back-to-back), 1 or 3 trials apart. We first asked parঞcipants to indicate which of two images came first during encoding (sequence
memory), and then for the number of images that occurred between them (distance judgment, scale 0-5). Example pairs (bo�om) refer
to the reward sequence in A, although unlike the pairs of sঞmuli presented here, no scene was repeated during tesঞng.

82



Recognition priming

Following the choice test, we tested for recognition priming of pairs that had either been experi-

enced sequentially during encoding or not (Figure 4.1B). On each recognition trial, participants were

asked to indicate ‘old’ or ‘new’ for the presented image (by pressing ‘o’ or ‘n’ respectively), and to indi-

cate their recognition judgement as quickly as possible. We use ‘prime’ to refer to the first item and ‘tar-

get’ to refer to the second item in any pair tested during recognition priming. Importantly, the image

stayed on screen for 3 seconds regardless of the response time, ensuring that each prime was experienced

for the same amount of time.

Recognition trials were comprised of (1) an old scene image (‘low- or high-RPE−1’), followed

by either (a) an old scene image that had followed the prime during learning and belonged to the same

reward state (‘low RPE’; 4 ‘priming pairs’ within each recognition block, 24 pairs in total), (b) an old

scene image that had followed the prime during learning but belonged to a different reward state (‘high

RPE’; 4 priming pairs within each recognition block, 24 pairs in total); (c) an old scene image that had

come before the prime (‘out of sequence’; 4 pairs within each recognition block, 24 pairs total); (2) new

scene images, representing one-third of the images seen during recognition (‘new’; 14 images within

each recognition block; 84 images total); (3) ‘single’ old scene images - half of these items were pre-

sented following a new image and the other half after an old image (that had been studied at least 3 tri-

als apart from the tested item) so that participants would not learn to expect old items to always appear

in pairs (‘single’; 4 images within each recognition block; 24 images total). Note that this pair structure

was not disclosed to participants, and all test items were presented as part of one single sequence. The

order of the conditions at test was predetermined to minimize unintentional spill-over memory effects

during recognition from other old items that appeared close to a test item during learning (although

the images themselves were randomized).

Recognition priming can be evidenced by better memory and faster reaction times in recogniz-

ing a target item after correctly retrieving the prime, compared to when the target was preceded by an

old item that had not preceded it during encoding. Although we report differences in both memory

accuracy (hit-rate) and response latencies for target items, recognition priming is more consistently
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observed in response latencies rather than hit-rates (DuBrow&Davachi, 2014; Zwaan, 1996), and so

we focused on characterizing (and modeling) recognition latencies within the above four conditions.

We were primarily interested in whether recognition priming was enhanced or interrupted for events

that had been associated with a high RPE in comparison to the baseline, which was recognition latency

for out-of-sequence targets. The out-of-sequence targets served as the primary baseline for recognition

priming since, like the primed high and low-RPE pairs, the first item in the pair is ‘old’, accounting for

any recognition priming effects that would arise from recognizing any old item (Duncan et al., 2012).

The single (non-primed) images, where half of the images were preceded by new items, served as an

additional baseline (see below, ‘Statistical analysis’).

If a high-RPE event is bound to the event that occurred immediately before it, we would expect

faster recognition of the target than the out-of-sequence target. On the other hand, if high-RPE events

create a boundary in memory between the high-RPE event and its predecessor, we would expect sim-

ilar reaction times in recognizing the high-RPE target and the out-of-sequence target. Together with

the RPE condition (high or low), we tested whether the sign of the RPE additionally influenced or

interacted with the RPE condition to influence recognition latency. We further examined how well a

continuous versus a categorical measure of RPE (high or low) predicted our results.

Statistical analysis

All statistical comparisons were conducted using linear or generalized linear mixed-effects models

(using lme4 package in R; Bates et al., 2015), treating participant as a random effect for both the inter-

cept and the slope of the tested fixed effect. To test for differences in memory (i.e., hit-rate) between the

primed pairs, we analyzed trials where the prime had been correctly remembered; we did this because

of prior research indicating that recognition priming only occurs when the prime is itself remembered

(Schwartz et al., 2005). This led to the inclusion of the following number of tested trials in analyzing

recognition memory: Experiment 1: mean = 50 (out of 72) trials per participant (range = 36-68 trials),

Experiment 2: mean = 47 (out of 66) trials per participant (range = 28-65 trials), Experiment 3: mean

= 53 (out of 72) trials per participant (range = 34-71 trials). When testing for recognition priming in

reaction time, we analyzed trials where both the prime and the target were correctly remembered. As
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discussed earlier (‘Recognition priming’), this was because we only expected recognition priming to oc-

cur for latencies when the prime and the target were correctly remembered. This led to the inclusion of

the following number of tested trials in analyzing reaction time: Experiment 1: mean = 37 (out of 72)

trials per participant (range = 17-60 trials), Experiment 2: mean = 34 (out of 66) trials per participant

(range = 11-60 trials), Experiment 3: mean = 41 (out of 72) trials per participant (range = 14-68 trials).

Reaction times were log-transformed and z-scored within participant.

The primary baseline used to assess recognition priming was the out-of-sequence pairs, although

the single (non-primed) items can be used as an alternative baseline. The difference between the two

conditions was that during the recognition tests, the single items were sometimes preceded by new

items and sometimes preceded by old ones (that were not necessarily out of sequence from the item);

however, we did not find reliable differences between single items preceded by new versus those pre-

ceded by old items within and across all recognition priming experiments. In line with this, the single

items were not statistically different than the out-of-sequence targets in recognition latency; we report

results for these items as an additional baseline in the following experiments.

Results

Recognition memory

We found that the primed targets were better remembered than the out-of-sequence targets,

regardless of the RPE condition (β = 0.35, z = 2.91, p = 0.004, μ-out-of-sequence = 0.68; low RPE: β

= 0.38, z = 2.75, p = 0.006, μ = 0.74; high RPE: β = 0.32, z = 2.18, p = 0.03, μ = 0.73; Figure 4.2A). We

did not find a difference in memory between the primed high-RPE and low-RPE images (β = -0.04, z =

-0.30, p = 0.76) nor between images in the two non-primed conditions (i.e. the out-of-sequence vs. the

‘single low RPE’ items: β = -0.01, z = -0.05, p = 0.96, μ-single = 0.68).

Recognition latency

The primed targets were more quickly recognized than the out-of-sequence targets (β = -0.15,

t = -2.82, p = 0.005, μ-out-of-sequence = -0.05; Figure 4.2B), providing evidence of recognition prim-

ing. This was significant for high-RPE targets (β = -0.19, t = -3.11, p = 0.002, μ = -0.24), and trending

85



for low-RPE targets (β = -0.11, t = -1.83, p = 0.06, μ = -0.17). Latencies were moreover no different

between the two primed conditions (β = -0.08, t = -1.16, p = 0.25). Additionally, the latencies for cor-

rectly recognizing the non-primed targets were not significantly different across conditions (β = 0.02,

t = 0.31, p = 0.76, μ-single = -0.04). We did not find an effect of positive versus negative RPE targets

(β = 0.04, t = 1.01, p = 0.32), nor did this interact with RPE condition (β = -0.06, t = -0.82, p = 0.41)

to influence reaction times. We furthermore did not find that a continuous measure of RPE predicted

latencies across RPE conditions (β = -0.0004, t = -0.36, p = 0.72).

Discussion

We found better and faster recognition of items that had been primed, including items that were

associated with a high RPE. These results suggested that a high-RPE event is bound to its predeces-

sor. However, given that high-RPE items are generally better remembered (Rouhani et al., 2018), it is

possible that the generally stronger memory trace is driving the recognition memory results, and not

a stronger association with the previous item. We therefore tested in Experiment 2 whether there are

differences in the recognition of primed versus non-primed high-RPE items. Specifically, if a high-RPE

event is more bound to the preceding event in memory, then we would expect faster latencies for high-

RPE items that are primed versus those that are not primed.

4.2 Experiment 2

Method

Participants

One-hundred participants fromMTurk (age: 22-71, median = 35; 46 female, 54 male) were re-

cruited onMTurk. The sample size was chosen because it was the approximate number of subjects

needed to detect a medium-sized correlation at 80% power (Hulley, 2007). Following the same exclu-

sion criteria stated in Exp. 1, we excluded 17 participants, leaving a final sample of 83 participants.

Task design

Experiment 2 was identical to Experiment 1 except that during the recognition test we addi-
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tionally included ‘single’ (i.e., not primed) scene images associated with high RPEs. We did this to de-

termine whether high-RPE events lead to better and faster recognition because they are more strongly

bound to the previous item (and thus showmore recognition priming) or because they are more strongly

encoded (i.e., a recognition effect not affected by priming). This led to one fewer high-RPE pair within

each recognition block, and 41 trials within each recognition block. Across the experiment, for each

participant we tested 18 high-RPE priming pairs, 24 low-RPE priming pairs, 24 out-of-sequence pairs,

16 low-RPE single images, and 8 high-RPE single images.

Results

Recognition memory

We again found that the high-RPE primed items were better remembered than the out-of-sequence

items (β = 0.24, z = 2.34, p = 0.02, μ-high-RPE-primed = 0.76, μ-out-of-sequence = 0.71; Figure 4.2C);

however, we did not find them to be better remembered than high-RPE images that were not primed

(β = 0.05, z = 0.37, p = 0.71, μ-high-RPE-single = 0.78). Therefore, we could not conclude that better

recognition memory for the high-RPE images was necessarily a result of recognition priming, further

supporting the use of recognition latency, instead of accuracy, as our measure of recognition priming.

Additionally, and consistent with previous research (Rouhani et al., 2018), we found high-RPE (single)

items were better remembered than low-RPE (single) items (β = 0.39, z = 3.40, p < 0.001, μ-low-RPE-

single = 0.70).

Recognition latency

We replicated our previous observation of faster reaction times in recognizing the primed high-

RPE items than the out-of-sequence ones (β = -0.08, t = -2.11, p = 0.03, μ-high-RPE-primed = -0.19,

μ-out-of-sequence = -0.10; Figure 4.2D). Importantly, primed high-RPE images were also recognized

more rapidly than the non-primed (single) high-RPE images (β = -0.13, t = -2.84, p = 0.005, μ-high-

RPE-single = -0.06). The faster recognition of the primed high-RPE items thus reflected intact recog-

nition priming. The primed low-RPE targets were not retrieved significantly faster than the out-of-

sequence targets (β = -0.05, t = 1.32, p = 0.19, μ-low-RPE-primed = -0.15), but were retrieved faster
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than the non-primed (single) low-RPE images (β = -0.08, t = -2.13, p = 0.03, μ-low-RPE-single = -0.08).

When testing for a difference between high and low-RPE targets that were primed versus those that

were not primed, we did not find an interaction (β = -0.05, t = -0.76, p = 0.45). Thus, we observed sim-

ilar levels of recognition priming between high and low-RPE pairs. Again, we did not find an effect of

RPE sign (β = 0.02, t = 0.85, p = 0.40), nor did this interact with RPE condition (β = -0.00006, t = -

0.001, p = 0.99) to predict reaction times. We similarly did not find that a continuous measure of RPE

predicted these latencies across RPE conditions (β = -0.0003, t = -0.48, p = 0.63; for discussion of these

results see ‘General Discussion’).

Discussion

We found that high-RPE items were both better remembered overall, and were also primed (at

least with regard to reaction time) by recognition cues. From this, we concluded that high-RPE items

were, in fact, linked with the items that had occurred before them during encoding, providing no ev-

idence of an event boundary between a high-RPE event and its predecessor. However, it remained

possible that the boundary occurs across rather than during the high-RPE event. To investigate this

possibility, we next tested for priming between pairs that had one item in between them during encod-

ing. In other words, we tested for a boundary between the event before and the event after a high RPE.

This allowed us to exclude the high-RPE item itself and determine whether we see diminished priming

for events across a high-RPE versus those across a low-RPE event.

4.3 Experiment 3

Method

Participants

We again recruited 100 participants onMTurk (age: 20-66, median = 33.5; 39 female, 61 male),

and following the exclusion criteria stated in Experiment 1, we excluded 15 participants, leading to a

final sample of 85 participants. The sample size was chosen because it was the approximate number of

subjects needed to detect a medium-sized correlation at 80% power (Hulley, 2007).
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Task design

The task structure was the same as in Experiments 1 & 2. During recognition, however, in-

stead of testing pairs that had been presented directly one after the other during learning, we tested

recognition priming for pairs that had one item in between them during learning. In other words,

the high-RPE priming pair never included the high-RPE event itself, allowing us to test whether the

events around a high RPE provide evidence of an event boundary. As before, the image immediately

preceding the high-RPE event was the prime, but the target was now the image after the high-RPE

image (‘high RPE+1’). The low-RPE priming pairs had also been one trial apart during learning (‘low-

RPE+1’), and were selected from the same reward state. All primed targets were therefore associated

with low RPEs. We tested 24 high-RPE+1 priming pairs, 24 low-RPE+1 priming pairs, 24 out-of-

sequence pairs, 12 single low-RPE images, and 12 single high-RPE images along with 84 new images,

across all 6 blocks of the experiment (42 trials within each recognition block).

Results

Recognition memory

Memory was not significantly better for the primed targets in comparison to the out-of-sequence

items (β = 0.13, z = 1.57, p = 0.12, μ-out-of-sequence = 0.75), and we did not find a difference between

primed high-RPE versus low-RPE events (β = -0.001, z = -0.01, p = 0.99, μ-high-RPE-primed = 0.77,

μ-low-RPE-primed = 0.77; Figure 4.2E). We again found better memory for high RPE (single) items

relative to low-RPE (single) items (β = 0.41, z = 3.44, p < 0.001, μ-high-RPE-single = 0.79, μ-low-RPE-

single = 0.72).

Recognition latency

When excluding the high-RPE item itself, we no longer observed a recognition priming effect

for pairs that spanned a high-RPE event (compared to out-of-sequence, β = -0.02, t = -0.53, p = 0.60, μ-

high-RPE-primed = -0.15, μ-out-of-sequence = -0.13; Figure 4.2F). We nevertheless did see recognition

priming for pairs that spanned a low-RPE event (compared to out-of-sequence, β = -0.08, t = -2.42,

p = 0.02, μ-low-RPE-primed = -0.21). Moreover, there was now a difference between the latencies of
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the high- and low- RPE pairs where the high-RPE+1 targets were more slowly recognized than the low-

RPE+1 targets (β = 0.06, t = 1.89, p = 0.05). We did not find a signed effect of RPE (β = 0.002, t = 0.13,

p = 0.91), nor did this interact with RPE condition (β = -0.02, t = -0.50, p = 0.62) to influence reaction

times. Lastly, we did not find that a continuous measure of RPE predicted latencies across conditions

(β = -0.0003, t = -0.05, p = 0.96); for discussion of these results, see ‘General Discussion’).

Discussion

The recognition latency results of Experiment 3 provided evidence that high RPEs serve as an

event boundary, and more specifically, that this boundary can be observed for events across a high-

RPE event (i.e., between the event before and after a high-RPE) rather than directly between the high-

RPE event and its predecessor. The slower latencies in recognizing the item that followed the high-RPE

prime, which were now similar to the out-of-sequence pairs and significantly slower than the low-RPE

pairs, indicated decreased recognition priming. With this initial evidence of an event boundary, we next

tested whether events around a high RPE demonstrate other behavioral markers of event boundaries.

For this, we asked whether high-RPE events disrupt the temporal organization of events in memory,

leading to worse sequence memory and larger perceived distances between item-pairs that included a

high-RPE event versus those that did not.
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Figure 4.2: Recogniঞon priming results. For paired targets (‘low RPE’, ‘high RPE’ and ‘out of sequence’), memory is condiঞoned on cor-
rect recogniঞon of the first item in the pair, and response latency is addiঞonally condiঞoned on correct recogniঞon of the target (i.e.,
latency is only for ‘hits’ in all condiঞons). A. Exp. 1: Recogniঞon memory as a funcঞon of item condiঞon. Memory for the sequenঞally
primed targets (low and high RPE) was be�er than the out-of-sequence and (unpaired) ‘single low RPE’ targets. B. Exp. 1: Response
latencies for correct recogniঞon as a funcঞon of item condiঞon. Sequenঞally primed targets were retrieved faster than items that were
not sequenঞally primed. C. Exp. 2: Recogniঞon memory as a funcঞon of item condiঞon. Memory for the primed high-RPE target was
no different than the ‘single high RPE’ target that had not been primed. Thus, memory accuracy did not provide evidence for recogni-
ঞon priming of high-RPE events. D. Exp. 2: Response latencies for correct recogniঞon as a funcঞon of item condiঞon. Primed high-RPE
targets were retrieved faster than the non-primed high-RPE targets and out-of-sequence targets, thereby demonstraঞng recogniঞon
priming for high-RPE events. E. Exp. 3: Recogniঞon memory as a funcঞon of item condiঞon. Primed targets (where the prime was the
item presented two trials before the target during encoding) were not remembered be�er than the out-of-sequence targets. F. Exp. 3:
Response latencies for correct recogniঞon as a funcঞon of item condiঞon. The high-RPE+1 target was no longer retrieved faster than
the out-of-sequence target, whereas the low-RPE+1 target was sঞll retrieved faster, demonstraঞng intact recogniঞon priming. More-
over, latencies for the high-RPE+1 target were significantly slower than the low-RPE+1 target. Error bars represent standard error of
the mean (SEM).
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4.4 Experiment 4

Method

Participants

For the first set of this experiment, we recruited 50 participants onMTurk (age: 24-61, median

= 38; 26 female, 24 male). We excluded participants if they missed more than 15 trials, which led to

the exclusion of 1 participant and a final sample of 49 participants. The sample size chosen was slightly

larger than the standard number of pilot subjects given that sequence memory is generally more diffi-

cult and noisier than recognition memory.

Subsequently, we ran an additional sample of 80 participants as a pre-registered replication of

this experiment (for pre-registration, see Rouhani, 2018). The replication sample size was chosen on

the basis of a simulation-based power analysis of the effect seen in the initial sample, which indicated

we would have sufficient power (80% probability) of replicating the results with 50 participants. Fol-

lowing common practice of testing around 1.5x the indicated sample size for replication studies, we

thus recruited 80 participants onMTurk (age: 24-68, median = 38, 38 female, 42 male), and excluded 3

participants who missed more than 15 trials, leaving a final sample of 77 participants.

Task design

The task structure was the same as in Experiments 1-3; however, instead of testing for recogni-

tion memory, here we tested participants’ sequence memory and distance judgements for images seen

during learning. Worse sequence memory and larger estimated distance between items are considered

as evidence of an event boundary in memory (Davachi & Dubrow, 2015). We instructed participants

to pay attention to the sequence of images during learning as they would later be asked to order them.

After the learning and choice sections in each block, participants were presented with two old scene im-

ages on the screen (left/right order counterbalanced), and were asked to indicate which image came first

(‘sequence memory’) and then to estimate howmany other images were found between the two (from

0-5; ‘distance judgment’; Figure 4.1C). Within each block, participants completed 12 sequence and dis-

tance judgment trials. The two scene images either spanned (or even included) a high-RPE event (‘high
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RPE’; 48 total), or were from the same reward state (‘low RPE’: 48 total). Additionally, the high/low-

RPEmanipulation was crossed with a distance manipulation: the pairs had either been presented di-

rectly one after the other (‘0 between’: high-RPE−1 and high-RPE events, 24 total), had one item in

between them (‘1 between’: high-RPE−1 and high-RPE+1 events, 24 total), or had three items in be-

tween them (‘3 between’: high-RPE -2 and high-RPE+2 events, 24 total) during learning. Note that the

‘0 between’ high-RPE pairs included the high RPE event and the event that immediately preceded it.

The ‘1 between’ high-RPE pairs included the events immediately preceding and following a high-RPE

event, and the ‘3 between’ high-RPE pairs included the second event before and the second event after

the high-RPE event.

Results

Sequence memory

We found better sequence memory for pairs within the same reward state than across a high RPE

(β = 0.25, z = 3.46, p = 0.0005; Figure 4.3A), and replicated this main effect in the second sample (β =

0.17, z = 2.97, p = 0.003; Figure 4.3B). Interestingly, for the pair that included the high-RPE event it-

self and its predecessor (‘0 between’: high RPE−1 and high RPE), there was no difference in sequence

memory between the pair types (first set: β = -0.03, z = -0.26, p = 0.79, μ-high-RPE = 0.52, μ-low-RPE

= 0.53; replication set: β = -0.05, z = -0.52, p = 0.61, μ-high-RPE = 0.53, μ-low-RPE = 0.54). The dif-

ference in sequence memory was instead carried by pairs that were across the high-RPE event, i.e. the

pairs that had 1 item in between them (high RPE−1 and high RPE+1; first set: β = -0.35, z = -2.79, p =

0.005, μ-high-RPE = 0.48, μ-low-RPE = 0.56; replication set: β = -0.19, z = -1.87, p = 0.06, μ-high-RPE

= 0.50, μ-low-RPE = 0.54), and 3 items between them (high RPE−2 and high RPE+2; first set: β = -

0.36, z = -2.95, p = 0.003, μ-high-RPE = 0.51, μ-low-RPE = 0.59; replication set: β = -0.27, z = -2.88, p

= 0.004, μ-high-RPE = 0.52, μ-low-RPE = 0.59).

We also found that for low-RPE pairs, greater distance between items predicted better sequence

memory (first set: β = 0.09, z = 2.31, p = 0.02; replication set: β = 0.07, z = 2.32, p = 0.02), whereas this

was not true for high-RPE pairs (first set: β = -0.005, z = -0.15, p = 0.88; replication set: β = 0.002, z

= 0.06, p = 0.95). Although the interaction between distance and high/low RPE was not significant
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when analyzing each set alone (first set: β = -0.10, z = -1.71, p = 0.09; replication set: β = -0.07, z = -

1.63, p = 0.10), it was when analyzing the sets together (β = -0.08, z = -2.32, p = 0.02), suggesting we

had been underpowered to detect this effect.

There was no effect of RPE sign on sequence memory (first set: β = -0.03, z = -0.42, p = 0.68;

replication set: β = -0.03, z = -0.46, p = 0.65). We next tested for an interaction between RPE sign and

condition to determine whether positive and negative RPEs differentially modulate sequence mem-

ory when the RPE indicates a change in reward state versus when it doesn’t (i.e., high-versus-low RPE

events). We did not find an interaction in either set (first set: β = -0.25, z = -1.80, p = 0.07; replication

set: β = -0.12, z = -1.01, p = 0.31). We moreover did not find that a continuous measure of RPE pre-

dicted sequence memory (first set: β = 0.003, z = 1.14, p = 0.25; replication set: β = 0.003, z = 1.69, p =

0.09). For a discussion of these results, see ‘General Discussion’.

Distance memory

We did not find that high RPEs influenced distance judgments in the first dataset (β = -0.01, t =

-0.52, p = 0.61; Figure 4.3C). To further assess whether the magnitude of the RPE influenced perceived

distance, we correlated distance judgments with the reward difference between the pair of items within

a pair (which is a proxy for the magnitude of any intervening RPE event, since item values were roughly

stable on each side of a high-RPE event). We did not find this measure to predict perceived distance

either (β = 0.03, t = 0.89, p = 0.38; Figure 4.3E).

In the larger replication dataset, however, we did find two main effects and an interaction be-

tween RPE event and presentation distance in modulating distance judgments (Figure 4.3D). Here,

perceived distance was higher when the pair included/spanned a high (vs. low) RPE event (RPE: β =

0.11, t = 3.12, p = 0.002). These two effects interacted such that the high-RPE effect was strongest for

items that were closer together (β = -0.04, t = -2.05, p = 0.04), and in particular for pairs that included

the high-RPE item itself (‘0 between’: high RPE−1 and high RPE; β = 0.12, t = 2.91, p = 0.004, μ-high-

RPE = 3.07, μ-low-RPE = 2.90). We also found that the greater the reward difference between the two

images, the greater the perceived distance (β = 0.04, t = 2.83, p = 0.005; Figure 4.3F). This effect was

again largely driven by the pair that included the high RPE event (0 between: β = 0.07, t = 2.45, p =
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0.01; 1 between: β = 0.05, t = 1.85, p = 0.06; 3 between: β = 0.01, t = 0.56, p = 0.58).

We did not find that RPE sign predicted distance judgement in the first set (β = 0.05, t = 1.30, p

= 0.20), while we did find that positive RPEs were associated with increasing perceived distance in the

replication set (β = 0.06, t = 1.95, p = 0.05). Lastly, we did not find that RPE sign differentially modu-

lated perceived distance for high- versus low-RPE events in either set (first set: β = -0.06, t = -0.77, p =

0.45; replication set: β = -0.08, t = 1.26, p = 0.21).

Discussion

In Experiment 4 and its replication, we again found that high-RPE events act as event bound-

aries by interrupting the sequential integration of events into memory, leading to worse sequence mem-

ory for events across a high RPE event. Interestingly, and in line with our recognition priming results,

there were no differences in sequence memory for the pair that included the high-RPE item itself (i.e.,

the pair testing the association between the high-RPE−1 and high-RPE event), again suggesting that the

high-RPE event is associated with its predecessor. Moreover, and in line with a widely reported find-

ing in temporal memory (Yntema & Trask, 1963; Fortin, Agster, & Eichenbaum, 2002; Kesner, Hun-

saker, & Ziegler, 2010; Rouhani et al., 2018), we found that greater distance between items improved

sequence memory. However this pattern was only present for the low-RPE pairs, providing further

evidence that high-RPE events disrupt temporal memory.

Our distance judgement measure yielded mixed results. We only found an effect of high RPEs

on perceived distance in the replication dataset: High RPEs led to greater perceived distance, and (relat-

edly) greater differences in reward value between the two items were associated with greater perceived

distance; importantly, these effects were most reliably present for the ‘0 between’ condition, where

the pair included the high-RPE event itself. Here, the effects of high RPEs on sequence memory (and

recognition latency) showed the opposite pattern from perceived distance: when testing temporal as-

sociations between the high-RPE event and its predecessor, evidence of an event boundary is strongest

in distance judgment but absent in sequence memory (as well as in recognition memory: Exp. 1 and

2). This qualitative difference suggests a potential dissociation between the mechanisms supporting

sequence and distance judgments (Clewett, Gasser, & Davachi, 2019). In this replication set, we also
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found that positive RPEs led to greater perceived distance, although this effect was not contingent on

whether the RPE signaled a change in reward state or not (i.e., high versus low RPE). Nevertheless, as

we did not find these distance effects in the first dataset, they require replication.
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Figure 4.3: Sequence and distance memory results. A-B. Sequence memory in Exp. 4 (A) and its replicaঞon (B) as a funcঞon of RPE
event and presentaঞon distance (number of trials) within scene pairs. Sequence memory for pairs that spanned a high-RPE event was
worse; this was driven by pairs that did not include the high-RPE event itself (i.e., pairs that were 1 or 3 trials apart). C-D. Distance
judgement in Exp. 4 (C) and its replicaঞon (D) as a funcঞon of RPE event and presentaঞon distance (number of trials) within scene
pairs. High-RPE events were perceived as more distant from each other only in the replicaঞon experiment, a result driven by pairs that
included the high-RPE event itself (i.e., 0 trials apart). E-F. Distance judgement as a funcঞon of the reward difference between scenes
in Exp. 4 (E) and its replicaঞon (F). In the replicaঞon experiment, we found that greater reward difference between scenes, which was
a proxy for the magnitude of the RPE event that had occurred between them, led to greater perceived distance. Note that no staঞsঞcs
were run on these averaged values, and they are plo�ed here for illustraঞon only. Size of the dots reflects the size of that sample.
Shaded regions reflect 95% confidence intervals. Error bars represent SEM.
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4.5 ComputationalModel

Overview

To explore potential mechanisms for our findings, we developed a variant of the Context Main-

tenance and Retrieval model (CMR: Polyn et al., 2009; for other variants, see CMR2: Lohnas, Polyn,

& Kahana, 2015, eCMR: Talmi, Lohnas, & Daw, 2019), and tested whether our behavioral results

can be explained by a model in which high RPEs induce mnemonic separation between events. In our

model, experienced events are temporally linked through a slowly drifting internal ‘context’, where fea-

tures of the experienced items update the context representation (Howard & Kahana, 2002). We posit

that high RPEs temporarily increase the context drift rate (i.e., the extent to which the high-RPE event

updates context), thereby creating a large shift between the context representation of events experi-

enced prior to the high RPE and those after it. We show that this discontinuity can explain our findings

of reduced recognition priming.

We used the model to simulate both recognition priming and sequence memory. To simulate

recognition priming, we first presented a recognition prime to the model, which triggered an update to

the model’s context representation. Next, the recognition target was presented to the model. Impor-

tantly, activation was allowed to spread back from the context representation (which had been updated

by the prime) to the representation of the target; this spreading activation affected the latency with

which the target was recognized (for details, see ‘Recognition priming’ below). For sequence memory,

we used a mechanism whereby primacy judgments (“which came first?”) were based on which item’s

context was more distant from the retrieved context (for details, see ‘Sequence memory’ below).

Representational structure

The model includes two layers, a feature layer (F ) and an internal, temporal context layer (C),

both of which contain the same number of units. External events (happening at time i) activate a single

localist feature in F (fi), and these activations spread up from F to C (the context layer at time i is de-

noted as ci) via a feature-to-context matrix (MFC) that updates context during both the initial encoding

phase and the test phase. During retrieval, activations spread back down from C to F via a context-

98



to-feature matrix (MCF ) that guides memory search (Figure 4.4). We represent different events as or-

thogonal unit vectors (‘one-hot’). Although the CMR uses an additional ‘source layer’ to tag explicit

contextual shifts (such as different encoding tasks), in our model we did not use this layer to tag differ-

ent reward states. This is because changes in the reward distribution were latent to the participant (and

thus also to the model).

Each associative matrix was made up of an episodic and a semantic component, meaning that

MCF comprised a weighted average of episodic (EMCF) and semantic (SMCF) weight matrices, and like-

wiseMFC comprised a weighted average of EMFC and SMFC (we modeled the weights of each matrix

separately). As in TCM and CMR, the episodic matrices are updated during encoding to store associa-

tions between active feature representations in F and context representations in C. The semantic matri-

ces contain one-to-one connections between a unit in F to its corresponding unit in C (concretely, they

are identity matrices).
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Figure 4.4: Model structure. The model has two layers: a feature layer (F) and a temporal context layer (C) that interact through two
associaঞve matrices: a feature-to-context matrix (MFC) that updates context and a context-to-feature matrix (MCF) that guides search.
Each matrix is a composite of an episodic (EMCF, EMFC) and semanঞc matrix (SMCF, SMFC). The episodic matrices represent the
episodic associaঞons formed between F and C during encoding, whereas the semanঞc matrices contain one-to-one connecঞons be-
tween features in F and the corresponding units in C. When an event is “experienced” (during encoding) or “remembered” (during re-
trieval), its corresponding unit fi is acঞvated in F, and acঞvaঞon spreads up to C viaMFC. Specifically, EMFC updates C with contexts
that were previously (episodically) linked to fi (‘mental ঞme travel’), and SMFC updates C by acঞvaঞng the unit in the context layer
that directly corresponds to fi (e.g., if fi is the third unit in the feature layer, SMFC acঞvates the third unit in the context layer). Dur-
ing retrieval, acঞvaঞon spreads down from C to F viaMCF. Specifically, EMCF acঞvates units in F that were previously (episodically)
linked to contexts that match the current state of C (‘episodic retrieval’), and SMCF acঞvates units in F proporঞonally to how acঞve the
corresponding units are in C (‘direct readout’). Units in F then compete for retrieval. The figure depicts the state of the model at ঞme
point i= 4: The first three items (from le[ to right) were presented successively on previous trials, and are therefore acঞve in context
(more recently experienced items are more acঞve in C, as reflected here by the size of the circles); the fourth item (outlined in red) is
being presented in the feature layer. This feature-layer representaঞon of the fourth item will be episodically associated with the context
shown here; on the next ঞme step it will be used to update the state of C (viaMFC) and the cycle will begin again.

Updating temporal context and associative matrices during reward learning

Prior to the reward learning phase, C and the episodic associative matrices (EMCF and EMFC)

are initialized to zero. When an item is activated in F during the reward learning phase, the activation

spreads up from F to C viaMFC where the input to C is calculated as follows:

cIN = MFCfi. (4.1)

100



The vector cIN is then normalized to be of unit length, and then context is updated as follows (as in

TCM and CMR):

ci = ρici−1 + βcIN, (4.2)

ρi =
√

1+ β2[(ci−1 · cIN)2 − 1]− β(ci−1 · cIN). (4.3)

Here, β defines the degree to which the active feature causes the context to ‘drift’ – the larger the value

of β, the more the active feature will be inserted into the context, crowding out other active events in C.

We allowed for two distinct drift values, β, the standard drift (implemented for low-RPE events), and

d, a higher level of drift for high-RPE events. This approach (i.e., increased drift in response to high-

RPE events) is in line with how contextual disruptions due to salient changes have been previously

modeled (Horner et al., 2016; Polyn et al., 2009; Siefke, Smith, & Sederberg, 2019). We moreover use

d for the first item presented to the network as a way of capturing classic primacy effects in memory

(i.e., the higher probability of retrieving the first item in a sequence; see ‘Model calibration’ for further

discussion of how primacy is modeled here, compared to how it is usually modeled in CMR).

The two episodic associative matrices are updated through Hebbian outer-product associative

learning. α represents the learning rate for that update:

ΔEMFC = αFCci fi T, (4.4)

ΔEMCF = αCFfi ci T. (4.5)

Importantly, in our version of the model, on each time step, the following order-of-operations applies:

First, the feature vector is updated based on the current event; next, the episodic matrices are updated;

and finally the context vector is updated. The consequence of this order-of-operations is each event is

inserted into the following event’s episodic context (but not its own episodic context). For example,

at the end of the fourth time step, the fourth item will be inserted into the context layer; at the start

of time step 5, the fifth item’s feature-layer representation will be activated, at which point it will be

episodically associated with the current state of the context layer (where the fourth item’s context-layer

representation is active). Next, the fifth item’s context-layer representation is activated, and the cycle
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begins again. We also simulated our results with a version of the model where context is updated before

the episodic matrices (like CMR), and were not able to capture our effects (Figure 4.5).

current model:  
(1) learning, (2) context update 

original model:  
(1) context update, (2) learningDATA

low  
RPE

high  
RPE

out of  
sequence

single 
low RPE

single 
high RPE

low  
RPE

high  
RPE

out of  
sequence

single 
low RPE

single 
high RPE

low  
RPE

high  
RPE

out of  
sequence

single 
low RPE

single 
high RPE

A B C

fa
st

er
  

(m
or

e 
re

co
gn

iti
on

 p
rim

in
g)

Figure 4.5: Behavioral results (A), simulaঞon results with the order of operaঞons from the current model (B), and simulaঞon results with
the order of operaঞons from the original Polyn et al. (2009) model (C). Note that we use the same model parameters (chosen based on
our order of operaঞons) in both cases. The shaded blue areas emphasize the criঞcal difference in the predicঞons of the two models:
The original order of operaঞons (C) creates a representaঞonal disconঞnuity between the high-RPE event and its predecessor, because
the high-RPE event dri[s into its own context during encoding; this has the effect of disrupঞng recogniঞon priming for the high-RPE
event when primed by its predecessor. By contrast, our model (and the actual data) show intact recogniঞon priming in this condiঞon.

Simulating free recall

Although we did not collect our own free recall data, we calibrated the model by running free-

recall simulations, using the following procedure. First, after the learning trials, we simulated the in-

tervening time period before the memory test by presenting 15 randomly-generated ‘distractor’ events.

This allowed active features in C to substantially drift from the encoding period, thereby capturing the

putative drift occurring between the end of the learning phase and the start of the test phase. These

distractor events did not compete during retrieval.

The associative matrices at recall were each calculated as a weighted average of their episodic and

semantic components:

MFC = γFCSMFC + (1− γFC)EMFC, (4.6)

MCF = γCFSMCF + (1− γCF)EMCF, (4.7)

As in CMR and TCM-A (Sederberg, Howard, & Kahana, 2008), the recall period was governed by a

leaky, competitive accumulation process where experienced events accumulated activation until one
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passed a threshold and ‘won’ the competition (Usher &McClelland, 2001). The following calculates

the input to the accumulators:

f IN = MCFci. (4.8)

Which then guides the below competition dynamics:

xs = (1− τκ − τλN)xs−1 + τ f IN + ε,

xs → max(xs, 0).
(4.9)

Here, x is a vector with units corresponding to each element in the feature layer (fIN), and s in-

dexes the step in the accumulation process (units are initialized to zero, and cannot take on negative

values, second line of Eq. 4.9). The parameters governing the competition are τ, the time constant de-

termining the rate of accumulation, κ, the decay rate for active items, and λ, the lateral inhibition pa-

rameter which scales the strength of inhibitory matrix,N ; ε adds gaussian noise to the decision process

(drawn from a random normal distribution with mean zero and standard deviation η). This accumu-

lation process proceeded until one of the elements passed a threshold of 1, at which point the winning

item’s feature was reinstated in F, and its encoding context was reactivated, using Eq. 4.1.

The reactivated context was then used to update the current context vector following Eq. 4.2.

Subsequently, fIN was updated and the accumulation process restarted with x1 = 0. Previously re-

trieved items were allowed to continue competing in the accumulation process, but were prevented

from passing the retrieval threshold.

Model calibration

Before simulating our experiments, we determined which parameter values to use by identifying

combinations that replicate canonical findings in free recall tasks; namely, the higher probability of re-

calling the first item (‘primacy’) and the last item (‘recency’) in a given context, along with contiguity

effects (increased likelihood of recalling items that were studied close together in time, with a bias to-

wards forward transitions (Howard & Kahana, 2002). We identified these parameters by feeding our

network distinct events (orthogonal one-hot vectors) and running network simulations for all value
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combinations of the following four parameters (ranging from 0-1, in increments of 0.05; 100 simula-

tions for each combination): (1) d, context drift for primacy events (and for high-RPE events, in the

recognition simulations presented later); (2) β, context drift for non-primacy events (and for low-RPE

events in the recognition simulations); (3) γCF, the relative weight assigned to the semantic vs. episodic

components inMCF; and (4) γFC, the relative weight assigned to the semantic vs. episodic components

inMFC. All other parameter values were taken from Polyn et al., 2009; see Table 4.1. We generated se-

rial position curves and conditional response probability curves for each run, and filtered the parameter

values based on whether they generated characteristic features of these recall curves (Figure 4.6). Specif-

ically, in the serial position curves, the parameter values we chose generated primacy (higher recall of

the first item relative to the subsequent one) and recency effects (higher recall of the last item relative to

the preceding one). When simulating contiguity effects, we looked for parameter values that resulted

in greater sequential recall of events that were neighboring during encoding, with an increased likeli-

hood of forward recall (thereby matching the pattern that is typically observed in free recall (Howard &

Kahana, 2002).

We found that recency and contiguity effects were obtained across a fairly wide range of param-

eters in the model (as has been shown in previous work with TCM and CMR (Howard & Kahana,

2002; Polyn et al., 2009). Primacy effects were obtained across a more narrow range of parameters.

Specifically, to obtain primacy effects we needed to have a relatively high drift rate for primacy items

(d) compared to the drift rate for non-primacy items (β), as well as a strong contribution of the seman-

tic matrix to bothMCF andMFC (i.e., high values of γCF and γFC). This configuration of parameters al-

lowed primacy effects to arise in the following manner: When the primacy item is present, it is strongly

inserted into context, due to the high value of context drift (d) that we assigned to primacy items, and

the high contribution of the semantic matrix toMFC. Because the primacy item is strongly inserted

into context, it is still present in context (i.e., its unit’s activation has not fully decayed away) at the time

of test. Because of the strong contribution of the semantic matrix toMFC (which supports ‘direct read-

out’ of active items in context back into the feature layer), the fact that the primacy item is still active

in context leads to increased activation of that item back in the feature layer (via the aforementioned
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‘direct readout’ mechanism; see ‘Simulation results’ for how these matrices interact during our simu-

lations). Note that this way of modeling primacy is different from how primacy is handled in CMR

(Polyn et al., 2009) – primacy items are assigned a higher learning rate (for forming episodic context-to-

feature associations) but the drift rate is the same for primacy and non-primacy items. A key goal of our

modeling exercise was to assess if we could model our own experimental results and also classic recall

effects (e.g., primacy) only through drift manipulations and not through learning rate manipulations;

we return to this point in ‘Summary of computational model’ in the ‘General Discussion’ below.

As a result of these initial simulations, we selected the following parameter values: d = 0.8; β =

0.6; γCF = 0.75; γFC = 0.70. We subsequently ran the recognition priming and sequence memory pro-

cedure detailed below using these parameters. For recognition priming, we ran 10,000 simulations for

each condition, and for sequence memory, we ran a single simulation for each condition since dynam-

ics during encoding are deterministic.

Table 4.1: Parameters used in model. βenc, d, γ
FC, and γCF were determined based on a parameter search for values that best captured

primacy and recency effects in serial posiঞon curves, as well as the signature characterisঞcs of condiঞonal response probability curves
in free recall. All other parameters were taken from Polyn et al., 2009; ’enc’ refers to the value used during encoding and ‘rec’ during
recall.
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Figure 4.6: Free recall simulaঞons for a sequence of items without a high-RPE event (A-B) and with a high-RPE event at item 6 (C-D);
10,000 simulaঞons each. A. Serial posiঞon curve for a low-RPE sequence retrieved a[er another 15 ‘distractor’ items. There is a higher
probability of retrieving the first item than the second item (primacy) as well as for retrieving more recent items (recency). Note the
curve is much fla�er than typical immediate free recall results due to the substanঞal number of distractor events between encoding
and retrieval. B. Condiঞonal response probability (CRP) curve for a low-RPE sequence retrieved a[er 15 distractor items. The model
captured the main characterisঞc of CRP curves: Retrieval of an item led to a greater likelihood of recalling items that were nearby during
encoding, and in parঞcular for items that were encoded a[er the recalled item (forward asymmetry). C. Serial posiঞon curve for a high-
RPE sequence retrieved a[er 15 distractor items. The high-RPE item is the sixth in the sequence. The higher dri[ associated with the
high-RPE event led to a greater likelihood of retrieving that item and diminished the primacy effect. D. Condiঞonal response probability
(CRP) curve for the high-RPE sequence showing similar characterisঞcs to those of the low-RPE sequence.

Recognition priming

To simulate our recognition priming results, we used the following procedure: After the ini-

tial learning phase and presentation of filler items, we presented a ‘recognition prime’ (a low- or high-

RPE−1 event) to the network by activating the ‘one-hot’ feature vector that represents that event. After

the prime’s representation was activated in F, activation was allowed to spread up from F to C viaMFC.

The EMFC component ofMFC updates the context vector with the prime’s episodic context (i.e., the

context linked to the prime at encoding; this is the process commonly referred to as ‘mental time travel’,

since it makes the context at test resemble the context when the prime was studied (Kragel, Morton, &

Polyn, 2015; Tulving, 1984)). The SMFC component ofMFC allows for the prime itself to be inserted

into C (see ‘Simulation results’ and the subsequent discussion for more description on how these ma-

trices interact during retrieval).

106



Note that prior studies have found that recognition priming is only obtained when the prime

is successfully recollected at test (Schwartz et al., 2005). Our allowing activation to spread from the

prime’s feature-layer representation to C via EMFC corresponds to an assumption that the prime was

(itself) successfully recollected; this assumption is justified because – in the priming data that we set out

to model – we only analyzed trials where the prime was successfully remembered (so the assumptions

of the model match the structure of our analysis).

After context was updated by the prime, the recognition trial was simulated. Here, activation

was allowed to spread down from C to F viaMCF. EMCF modulates item activation as a function of

the match between each item’s episodic context and the current context, and SMCF provides a ‘direct

readout’ of activations from C to F (e.g., if the fifth unit in C is active, activity spreads directly down

to the fifth unit in F ). We then allowed the competition dynamics to unfold. To simulate the fact that

the recognition target is presented perceptually, we boosted the activation of the target event by in F by

0.75 at the start of the competition; this had the effect of ensuring that the target event would be the

winner of the competition, but still allowed for variance in recognition latency. We extracted recogni-

tion latencies for the target item and compared them with the empirical recognition data.

We tested target items matched to our experimental conditions, and ran simulations for each

condition separately (Figure 4.7). For the simulation of Experiment 2, the ‘low RPE’ target was the

low-RPE event that had been studied directly after the prime and the ‘high RPE’ target was the high-

RPE event that had been studied directly after the prime thus testing the link between the high-RPE

event and its predecessor. In this simulation, we further tested the associative links between the high-

RPE event and its successor (the high-RPE+1), which we did not behaviorally test; here, the prime was

the high-RPE event and the target was the high-RPE+1 event. For the simulation of Experiment 3,

the low-RPE+1 target was a low-RPE event that had been studied two events after the prime, and the

high-RPE+1 target was a low-RPE event that had been studied two events after the prime (with the

high-RPE event having occurred between the prime and the target). The ‘out of sequence’ target was

always an event that had been studied before the prime (3 trials apart). For conditions where there was

no prime (‘single high-RPE’ and ‘single low RPE’), we did not present a prime to the model prior to
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simulating target recognition – in this case, the state of C the start of target recognition only reflected

the effects of the reward learning phase and the distractor items (but not the prime); otherwise, the

procedure was the same as in primed trials.
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Figure 4.7: Illustraঞon of how high- versus low-RPE events are encoded and retrieved by the model. A. Encoding. The high-RPE event
enters the next event’s context with increased dri[, leading to greater acঞvaঞon of the high-RPE event at the expense of the acঞva-
ঞon of the high-RPE−1 item in context. Learning of context-feature associaঞons in the model is based on co-acঞvity of context and
feature units (Hebbian learning); because the high-RPE−1 item is less acঞve in context, it becomes less strongly associated with the
high-RPE+1 item in the feature layer. B. Recogniঞon priming. (1) The prime (high/low RPE−1 event) is retrieved by the network, (2)
Acঞvaঞon spreads up from F to C viaMFC, leading to higher acঞvaঞon of the prime in context, (3) Acঞvaঞon then spreads down from
C to F via theMCF, leading to acঞvaঞon of events that contained the prime in their context, (4) The prime strongly cues both the
high/low-RPE targets (Exp. 1 and 2). However, when the target item is the high-RPE+1 event (Exp. 3), that item receives less acঞva-
ঞon because of the weaker associaঞon between the high-RPE−1 item (in context) and the high-RPE+1 item (in the feature layer), as
menঞoned above.

Sequence memory

We aimed to capture the two characteristic results of our sequence memory paradigm: (1) worse

sequence memory for items that span a high-RPE event, and (2) better sequence memory with greater

distance between items in the low-RPE condition (but not the high-RPE condition).

Our simulation was based on ‘distance theories’ of temporal order memory (Friedman, 1993,
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2004), which posit that judgments of recency are a function of the similarity of the context associated

with an item at encoding and the context that is active at test (such that greater similarity leads to judg-

ments of greater recency (Hintzman, 2002)). In our task, we did not ask for a judgment of recency,

but instead asked for a judgment of primacy. To simulate these judgments, we first retrieved the con-

text vectors associated (at encoding) with each tested item, and then correlated each of these retrieved

vectors with the context vector active at test. We next took the difference of these correlations within

each tested pair, and used this as a measure of distance between items. We then put this correlation dif-

ference through a sigmoid function whereby larger differences increased the likelihood of a primacy

judgment for the more contextually distant item.

Simulation results

During the initial encoding (i.e., reward learning) phase, our use of a higher drift rate for high-

RPE events created a discontinuity in the mental contexts associated with events that occurred be-

fore the high RPE event versus those that occurred after it. We tested how this representational ‘event

boundary’ affected recognition priming in simulations of Experiments 2 and 3. Experiment 2 (Figure

4.8A-B) tested pairs of events that were consecutively-encoded during the reward-learning phase – call

these events n and n+1 (referring to their adjacent positions during learning). For some pairs, event n+1

was a high RPE event (‘high RPE’), and for other pairs, event n+1 was a low RPE event (‘low RPE’).

As noted in 7.4, the model is set up such that (during reward learning) each item becomes part of the

next item’s episodic context (i.e., item n is strongly active in the context layer when item n+1 is acti-

vated in the feature layer; see Figure 4.7). At test, when item n is presented as a prime (by activating its

representation in the feature layer), activation spreads up to item n’s representation in the context layer

(via the influence of SMFC). Next, activation is allowed to spread back down to the feature layer via

MCF. Here, the influence of EMCF is crucial – the effect of this matrix is that items whose context at

study matched the current context are activated in the feature layer. Crucially, because item nwas part

of item n+1’s context at study, the effect of EMCF in this situation is to allow activation to spread from

the ‘item n’ unit in the context layer to the ‘item n+1’ unit in the feature layer. This spreading activa-

tion allows the ‘item n+1’ unit to cross threshold sooner when item n+1 is presented as a recognition
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target, thereby giving rise to the recognition priming effect.

This priming effect is present in the model for both high-RPE primed targets and low-RPE

primed targets, but it is larger in magnitude for high-RPE targets than low-RPE targets (μ-high-RPE-

primed = 1007.14 ms, μ-low-RPE-primed = 1029.86 ms, μ-out-of-sequence = 1067.65). Moreover,

there was an interaction in the retrieval of high and low-RPE targets that were primed versus those

that were not, indicating that priming led to the faster retrieval of the high-RPE target relative to the

low-RPE target (μ-high-RPE-single = 1068.98 ms, μ-low-RPE-single = 1063.26 ms). The difference

in priming effects (in the model) between high-RPE and low-RPE targets is caused by the influence of

SMCF at retrieval. In addition to the effects of EMCF (described above), SMCF provides a ‘direct read-

out’ of which items are active in the context layer. Because of the greater drift associated with high-RPE

items, high-RPE (vs. low-RPE) items end up being more strongly active in context (even at the time of

test). This extra activation in context translates (via the influence of SMCF) into greater activation of

the high-RPE target in the feature layer, which further speeds recognition for high-RPE items, boosting

the level of recognition priming.

In addition to the strong link between the high-RPE event and its predecessor, we found the

high-RPE event to be similarly linked to its successor. In fact, when primed by the high-RPE event, the

high-RPE+1 event was retrieved faster than when the high-RPE event was primed by its predecessor

(μ-high-RPE+1-primed = 993.18). This is because the high-RPE item itself gets strongly inserted into

the high-RPE+1 item’s context during encoding, and then subsequently during retrieval, priming the

network with the high-RPE event leads to strong forward retrieval of the high-RPE+1 event. Although

we did not test this association behaviorally, our model simulation therefore suggests that the high-RPE

event is linked to both its predecessor and its successor.

In Experiment 3 (see Figure 4.8C-D), primed target items were studied two items after the prime

during the learning phase (i.e., with one event in between); sometimes the event interposed between

prime and target during learning was a high-RPE event, and sometimes it was a low-RPE event. For

the purpose of explaining what happens in the model on these trials, call the prime item n-1, the in-

terposed item n, and the target item n+1. First, consider the condition where the interposed item was

110



a low-RPE event. In this case, during learning, item n-1 (the prime) is still strongly active in context

when item n+1 (the target) is studied, so the prime’s representation in context gets linked to the target’s

representation in the feature layer. Because of this link, the usual mechanisms of recognition priming

(as described in the preceding paragraph) still apply. Next, consider the condition where the interposed

item was a high-RPE event. Because of the higher drift rate for high-RPE items, the effect of (strongly)

inserting high-RPE item n into context is to ‘push out’ the representation of item n-1 from the context

layer. Because item n-1 (the prime) is no longer strongly active in context when item n+1 (the target) is

studied, the crucial episodic link between the prime (in context) and the target (in the feature layer) is

not formed, eliminating the recognition priming effect. Finally, there was an interaction in the retrieval

of primed high and low-RPE items between experiments, such that priming of the high-RPE event it-

self (Exp. 2) is enhanced whereas priming of the high-RPE+1 event (Exp. 3) is interrupted relative to

the low-RPE items.
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Figure 4.8: Recogniঞon-priming simulaঞon along with behavioral results. A-B. Recogniঞon latencies as a funcঞon of item condiঞon
in Exp. 2 (A) compared to model simulaঞons (B). High- and low-RPE targets are retrieved faster than the out-of-sequence targets. In
the simulaঞons there is, moreover, an interacঞon between priming condiঞon and RPE, such that primed high-RPE targets are retrieved
faster than primed low-RPE targets, but this difference was not observed for single (unprimed) items. The data point in the do�ed
outline represents recogniঞon priming for the high-RPE+1 item (target) when primed by the high-RPE event (prime): although we did
not test this behaviorally, the model predicts a strong associaঞon between the high-RPE event and its successor. C-D. Recogniঞon
latencies as a funcঞon of item condiঞon in Exp. 3 (C) compared to model simulaঞons (D). In both the data and the simulaঞons, the
high-RPE+1 target no longer shows recogniঞon priming (i.e., it is no longer retrieved faster than the out-of-sequence target) but the
low-RPE+1 target shows robust recogniঞon priming.

In our sequence memory simulation, primacy judgments were based on which item’s context

was more distant from the retrieval context. Sequence memory for low-RPE pairs therefore improved

the further the items had been from each other at encoding (μ-low-RPE-0 = 0.49, μ-low-RPE−1 = 0.51,

μ-low-RPE-3 = 0.54; Figure 4.9). However, the simulation incorrectly predicted that sequence memory

for high-RPE pairs improves with increasing distance between items at encoding. Moreover, it incor-

rectly predicted better sequence memory for items spanning a high (compared to low) RPE event. This

was because - in our model - high RPEs induced a strong shift in context; this context shift between the

first and second items selectively increased the contextual distance between the first item and the test
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context, thereby making the model more (instead of less) accurate at choosing which item came first.
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Figure 4.9: Sequence-memory simulaঞons along with behavioral results. A. Sequence memory as a funcঞon of RPE event and presen-
taঞon distance (number of trials) within scene pairs in Exp. 4 and its replicaঞon (results averaged across both). Sequence memory was
impaired for items spanning a high-RPE event (i.e., 1 and 3-trials-between), but there was no impairment in sequence memory for the
high-RPE event and its direct predecessor (i.e., 0-trials-between). Also, sequence memory improved with increasing distance between
items in the low-RPE condiঞon but not the high-RPE condiঞon. B. The simulaঞon captured the effect that sequence memory improved
with increasing distance between items in the low-RPE condiঞon, but incorrectly predicted that sequence memory would improve with
increasing distance between items in the high-RPE condiঞon, and also incorrectly predicted be�er sequence memory for items spanning
a high (compared to low) RPE event. Error bars represent SEM.

Discussion of simulation results

Our model, with parameters chosen to generate canonical free recall dynamics, was able to cap-

ture the signature effects of our recognition and sequence memory tasks. In our simulation of Ex-

periment 2, we found that feeding the network recognition primes led to the faster retrieval of target

items that had come directly after the primes during the initial reward learning phase (i.e., the low- and

high-RPE targets) as compared to targets that were out of sequence or were not primed (single items).

Recognition priming was especially strong for high-RPE items, whose higher activation in C led to

faster retrieval times as compared to low-RPE targets. Although we did not observe significantly faster

retrieval times for high-RPE versus low-RPE events in Experiments 1 and 2, the simulation results sug-

gest that the numerical difference in their latencies may reflect an actual effect, which may reach sig-

nificance with sufficient power. Moreover, the model predicted not only an association between the

high-RPE event and its predecessor, but also one between the high-RPE event and its successor.

In our simulation of Experiment 3, the prime and the target always had one event (either high-
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RPE or low-RPE) between them. Our model captured the lack of recognition priming in the high-

RPE condition by creating a contextual discontinuity after the high-RPE item, thereby ‘breaking’ the

contextual link between the prime and the target. The same mechanism allowed us to simulate the key

result from Experiment 4: impaired sequence judgments when the to-be-judged items surrounded a

high-RPE event during learning.

In introducing the simulations, we identified four parameters of interest, namely the drift rates

for high-RPE and low-RPE events at encoding and the episodic and semantic proportions of the as-

sociative matrices. The effects of drift rate on model results ended up being fairly straightforward: d

(the high-RPE drift rate) had to be larger than β (the low-RPE drift rate) to create the aforementioned

contextual ‘gap’ after high-RPE items, which is how we explain impaired recognition priming in the

high-RPE condition of Experiment 3, and impaired sequence memory in the high-RPE 1-trial-between

and 3-trials-between conditions of Experiment 4.

The effects of γFC and γCF (episodic/semantic balance in the associative matrices) ended up be-

ing more complex. As discussed above, recognition priming depends on the semantic component of

MFC and the episodic component ofMCF: The prime is loaded into context via SMFC, and then it cues

the target via EMCF (since the prime was part of the target’s episodic context during learning). Note

that this is the same basic sequence of events that accounts for the forward bias in contiguity effects in

free recall. The only difference is that, in free recall, the just-recalled item plays the role of the prime:

the just-recalled item is loaded into context via SMFC and cues recall of the following item via EMCF

(Howard & Kahana, 2002). Thus, to explain recognition priming effects (and forward contiguity ef-

fects in free recall), we need to ensure a substantial contribution of SMFC and EMCF.

However, it would be unwise to fully “tilt”MFC towards semantic memory andMCF towards

episodic memory. The episodic component ofMFC is also important: As noted earlier, this component

is what gives rise to ‘mental time travel’ effects in free recall – in particular, backward transitions in free

recall (i.e., recalling items that were studied before the item that was just recalled) are thought to result

from a sequence where recalling an item reinstates that item’s context via EMFC, which then biases

recall towards nearby items symmetrically in the backward and forward directions (Howard & Kahana,
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2002). The semantic component ofMCF is also important: As described in ‘Model calibration’, our

model uses this ‘direct readout’ component to explain primacy effects in free recall – the primacy item

is (strongly) inserted into context via SMFC and then is directly read out from context at test via SMCF.

As an aside, this same mechanism that gives rise to primacy would also predict increased free recall of

high RPE items (which, like primacy items, are assigned a higher-than-usual drift rate); we have not yet

run an experiment to test this prediction in our paradigm.

To summarize the above: Both the episodic and semantic components of bothMCF andMFC

are important for explaining various effects (either effects in our data or classic regularities in free re-

call). As such, the greatest challenge in parameterizing the model was finding the right balance between

the episodic and semantic components for each matrix. The fact that we found a set of parameters that

works well for simulating our results (without impeding our ability to simulate primacy/recency/contiguity

in free recall) serves as an existence proof that these factors can be suitably balanced.

In our simulation of sequence memory, we sought to explain the following two effects: (1) im-

paired sequence memory for items that spanned a high-RPE event, and (2) better sequencing of low-

RPE pairs (but not high-RPE pairs) the further the items had been from each other at encoding. We

implemented a mechanism whereby primacy judgments were based on which item’s context was more

distant from the retrieval context, in line with distance theories of temporal ordering (Friedman, 1993,

2004). This simulation correctly predicted the better sequencing of low-RPE items that had been fur-

ther apart during encoding, but incorrectly predicted better, instead of worse, sequence memory for

items that spanned a high (compared to low) RPE event. This finding highlights that contextual dis-

tance theories can explain sequence memory performance for items within the same latent context,

but cannot explain it for items across latent contexts (i.e., across a high-RPE event), suggesting separate

mechanisms for organizing events within and across a latent context (DuBrow&Davachi, 2016; Ezzyat

& Davachi, 2014).

What kind of model could correctly explain the full pattern of sequence effects we observed? An

alternative account of sequence memory is that it relies on explicitly reconstructing the chain of events

involving the two queried items. Here, the sequence judgment could be based on the difference in re-
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constructed order between the two items: P(A before B) would be proportional to the reconstructed

serial position of B minus the reconstructed serial position of A. In this kind of model, event bound-

aries induced by high RPEs should disrupt temporal order memory by making it harder to reconstruct

the chain of events (i.e., they create a break in the associative ‘chaining’ of events across a high-RPE

event, Friedman, 1993). Furthermore, the model should also show greater accuracy with increasing dis-

tance between the items. While CMR does not include this kind of explicit reconstruction mechanism,

other recently developed models, like the Structured Event Memory (SEM) model (Franklin, Norman,

Ranganath, Zacks, & Gershman, 2020), do incorporate this mechanism. In future work, we plan to

explore how well SEM can account for these sequence memory results.

Lastly, although we found RPEs to modulate distance memory in the replication set of Exper-

iment 4, we did not simulate distance memory results. This was because we did not find consistent

results between this experiment and its replication, and because we found a pattern of RPE-modulated

effects for distance memory that was opposite to our recognition priming and sequence memory re-

sults. For distance memory, we found the greatest difference between the high and low-RPE conditions

for the pairs that included the RPE event and its predecessor; by contrast, for recognition priming and

sequence memory, effects of high vs. low RPE were largest for pairs that spanned the high-RPE event,

and nonsignificant for the pairs that included the RPE event and its predecessor. For this reason, we

speculate that distance memory may be supported by a different process than the one we have outlined.

4.6 General Discussion

Summary of behavioral results

In a passive-viewing, Pavlovian reward learning task, we found that large reward prediction er-

rors (RPEs) enhance memory for that event, demonstrate intact links with preceding events, yet create

event boundaries, thereby chunking rewarding experiences into discrete states in memory. Like other

types of event boundaries, high RPEs enhance recognition for the event associated with the prediction

error, while interrupting memory of the sequence of events across the boundary itself. Specifically, we

showed that high-RPE items demonstrate recognition priming, i.e, faster recognition of those items
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when primed by the previous item, indicating intact associative links with preceding events during en-

coding (i.e., between high-RPE−1 and high-RPE events: Exp. 1-2). However, we found diminished

recognition priming for events surrounding the high-RPE item (i.e., between high-RPE−1 and high-

RPE+1 events: Exp. 3) providing evidence of an RPE-modulated event boundary. Moreover, we found

that temporal memory, and in particular sequence memory, was worse for pairs that spanned a high

RPE versus those that did not (Exp. 4). Interestingly, and analogous to our recognition priming re-

sults, this worse overall sequence memory was seen for pairs that excluded the high-RPE event itself,

whereas we did not find impaired sequence memory for the pairs that included the high-RPE event and

its predecessor.

Summary of computational model

To illustrate and better understand the effects of event boundaries on memory in our experi-

ments, we developed a computational model, a variant of the CMRmodel (Polyn et al., 2009). To ex-

plain the effects of RPEs on memory, our model posits that large RPEs increase the drift rate of contex-

tual information, effectively flushing out previous events and adding the current event into the drifting

context.

We simulated recognition priming in the model and analyzed simulated recognition latencies; we

also simulated the accuracy of sequential memory judgments. Using the mechanism described above

(increased drift in response to large RPEs), we were able to explain our four most important experi-

mental findings: 1) there was recognition priming for pairs of items that were presented sequentially

at encoding, regardless of the size of the RPE associated with the target item; 2) when testing for prim-

ing of events that were separated by one event during encoding, recognition priming was disrupted if

the intervening event triggered a high RPE; 3) when testing sequence memory for pairs of items that

were presented adjacently at encoding, having one of those items be a high-RPE event did not impair

sequence memory; 4) when testing sequence memory for pairs of items that were presented either one

or three items apart at encoding, sequence memory was worse if that gap included a high-RPE event.

These simulation results illustrate the sufficiency of our drift-rate manipulation for explaining

the effects of high (vs. low) RPE in the studies reported here. However, this demonstration of suffi-
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ciency does not rule out the possibility that RPEs can affect declarative memory in other ways. For

example, in addition to (or instead of) increasing drift rate, RPEs might also increase the learning rate

on item-context associations – this would have the effect of stamping in the episodic memory of the

high RPE event more strongly. More simulation work is needed to determine what combination of

mechanisms does the best overall job of explaining the effects of RPEs on declarative memory.

High RPEs are better remembered

Consistent with previous results (Rouhani et al., 2018), we found that high RPEs led to better

recognition memory for the event associated with the RPE. This finding is moreover consistent with

work showing enhanced memory for other types of surprising events in the context of reward learning

(Murty & Adcock, 2014; Murty, Labar, & Adcock, 2016), and outside of reward learning (Greve et al.,

2017; Kalbe & Schwabe, 2019; De Loof et al., 2018; Ergo et al., 2019).

High RPEs form event boundaries in memory

We found that latent shifts in the reward value of a rewarding source induce event boundaries

by interrupting the sequential integration of memories that occur before and after a high-RPE event,

thus acting similarly to other event boundaries reported in the literature (DuBrow&Davachi, 2013,

2014; Ezzyat & Davachi, 2014; Horner et al., 2016). Heusser and colleagues recently demonstrated that

enhanced associative memory for a perceptual boundary comes at the cost of integrating events across

the boundary, reflecting a trade-off between the two processes (Heusser et al., 2018). Here, we found

concordant results in the domain of latent reward expectations: high-RPE events were not only better

encoded but also demonstrated intact associative memory with their preceding items, through intact

recognition priming and sequence memory. However, and in line with this trade-off, events surround-

ing the high RPE demonstrated diminished associative memory through impaired recognition priming

and sequence memory.

Across all experiments, with the exception of the distance judgment results in Experiment 4

(which need to be replicated), we did not find effects of the sign or a continuous measure of the RPE

on our behavioral measures. Previous work shows that positive RPEs increase memory for associated
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events more than negative RPEs (Jang et al., 2019), and that the strength of the RPE, regardless of sign,

enhances memory for events experienced during reward learning (Rouhani et al., 2018). Here, large

latent jumps in rewards, regardless of their sign and exact size, modulated the structure of memory,

implicating neural processes associated with event boundaries rather than reward learning per se (see

‘Neural mechanisms’ below). We note that, in our task, we were interested in the effect of having de-

tected a change in rewards (i.e., to induce sharp event boundaries), and so the jumps in the underlying

reward distribution were quite obvious. In the real world, however, these changes may be more subtle

and gradual, requiring multiple observations to infer an event boundary. Future work could introduce

uncertainty around reward shifts and examine how this affects the temporal organization of events in

memory (DuBrow et al., 2017).

Another key issue is whether the (apparent) contextual discontinuity evoked by high-RPE events

in our study is attributable to the prediction error per se, or whether it is attributable to the fact that

high RPEs indicated shifts in the underlying ‘latent cause’ driving participants’ observations (Zacks et

al., 2007). In our paradigm, these two factors (RPE and shift-in-latent-cause) were confounded – in

future work, we can try to unconfound them (e.g, by having isolated high-reward or low-reward items

that do not indicate a lasting change in the underlying mean reward value). Related to this point, Siefke

et al. recently ran a study that attempted to unconfound context change and prediction error, using

stimuli that varied in their background color; results from that study supported the hypothesis that

context change, not prediction error per se, is the key determinant of discontinuities in mental context

(Siefke et al., 2019). More work is needed to see if this applies to our RPE paradigm.

Event boundary occurs across the high-RPE event

Although some theories (e.g., latent cause models; Gershman et al., 2014) predict that an event

boundary occurs at the high prediction error event itself, separating that event from preceding items,

we found intact associative links between the high-RPE event and its predecessor. At the same time,

we found evidence for an event boundary across the high-RPE event. In our model, the high-RPE item

and its predecessor are linked because the high-RPE−1 item is active in the context layer when the high-

RPE item is presented at study. Additionally, the high-RPE item is strongly linked to its successor since
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the high-RPE item itself gets strongly inserted into the high-RPE+1 item’s context. For this reason,

although we did not test for recognition priming between the high-RPE item and high-RPE+1 item,

we predict, based on our model, that there will be strong recognition priming for the high-RPE+1

item when primed by the high-RPE item. Nevertheless, consistent with our behavioral results, the

model predicts that recognition priming between the high-RPE−1 and the high-RPE+1 item will be

disrupted because the increased drift associated with the high RPE leads to weak representation of the

high-RPE−1 item in the high-RPE+1’s context. In sum, our model predicts that the high-RPE item is

linked to both its predecessor and successor through context while disrupting the association of the

events around it. This explains the seemingly inconsistent results of our Experiments 1 and 2 (and the

‘0 between’ condition in Exp. 4), which suggest no boundary between the high-RPE item and its pre-

decessor, and Experiments 3 and 4 that provide evidence for a boundary across the high-RPE event.

Previous work offers another potential mechanism for the preserved link between the high-RPE

event and its preceding event, namely that at event boundaries, memory of the previous episode is re-

instated (Sols et al., 2017), perhaps leading to binding between the high-RPE event and its predeces-

sor. Other work has also shown that increased hippocampal activity at event offset (i.e., right after the

boundary is inferred) predicts subsequent retrieval of the previous episode, in a sense ‘registering’ the

just-experienced episode (Baldassano et al., 2017; Ben-Yakov &Dudai, 2011; Ben-Yakov et al., 2013).

In our task, the boundary itself is calculated by the difference between the expected value and the cur-

rent reward, which, along with the ‘replay’ mechanism described above, could additionally bind the

high-RPE event with its predecessor.

Recognition priming for high- versus low-RPE events

Our results in Experiments 1 and 2 were suggestive of more stable recognition priming for high-

RPE items than for low-RPE items (i.e., numerically, high-RPE items were retrieved faster than the

low-RPE targets, although not significantly). This pattern was also present in the model, where high-

RPE items were more strongly associated with their predecessor than low-RPE items. We note that in

previous studies, recognition priming was evident only for high-confidence recognition (i.e., for recol-

lection instead of familiarity; DuBrow&Davachi, 2013; Schwartz et al., 2005), and we did not collect
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confidence judgments in our task, perhaps occluding more stable recognition priming effects in the

low-RPE pairs. If anything, however, this emphasizes the intact association of the high-RPE event with

its predecessor, as we saw recognition priming for the high-RPE item across all confidence levels.

Sequence memory

We found two distinct effects of our RPE conditions on sequence memory: (1) temporal order

memory was impaired for items spanning a high (compared to low) RPE event, and (2) temporal or-

der memory in the low-RPE condition (but not the high-RPE condition) was enhanced with greater

distance between the events at encoding. In our simulation, primacy judgments were based on which

item’s context was more distant from the test context (Friedman, 1993, 2004; Hintzman, 2002). Using

this mechanism, our simulation captured the second effect (increased accuracy with greater distance

between events at encoding, in the low-RPE condition) but it failed to predict the first effect (impaired

sequence memory for items spanning a high RPE event). This is because high-RPE events in our model

create a contextual shift, thereby making it easier (instead of harder) to identify the first item as the

more contextually-distant (and thus earlier) item.

These results suggest that different mechanisms support temporal order memory for items

within a latent context versus those across one (DuBrow&Davachi, 2016; Ezzyat & Davachi, 2014).

Here, we suggest that a mechanism relying on contextual distance (i.e., the present simulation) can

explain temporal memory for items within a latent context, but not temporal memory across latent

contexts. As discussed above, a model incorporating an explicit reconstruction mechanism like SEM

(Franklin et al., 2020) may do better at explaining the full pattern of results.

Distance memory

Event boundaries increase the subjective temporal distance between events (Ezzyat & Davachi,

2014). We saw this effect only in the replication of Experiment 4, which points to more variable results

with this measure. Across both datasets in Experiment 4, participants’ responses were quite inaccurate:

the mean distance judgment was close to ‘3 between,’ even though two-thirds of the actual distances

were smaller than 3. Although this needs to be replicated, we did find greater subjective distance for
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high-RPE pairs that was largely driven by the pair that included the high-RPE event itself (‘0 between’).

However, this condition did not demonstrate impaired sequence memory, which points to a dissoci-

ation between mechanisms supporting sequence and distance memory. This finding is in line with a

recent study showing that, at event boundaries, separate components of pupillary response are associ-

ated with sequence and distance memory (Clewett et al., 2019).

Neural mechanisms

RPEs modulate dopamine release in the ventral tegmental area (VTA) by increasing firing when

rewards are better than expected, and decreasing firing when rewards are worse than expected (Barto,

1995; Montague et al., 1996). Given dopamine-dependent plasticity in the hippocampus, associated

with memory formation, putative links have been made between RPE signals in the VTA and modula-

tion of hippocampal plasticity (Lisman &Grace, 2005), giving rise to enhanced memory for events that

are better than expected (Jang et al., 2019).

In this study, however, we only observed effects of unsigned RPEs on the structure of memory.

Recent work offers a mechanism by which unsigned (absolute value) RPEs can interact with mem-

ory. The locus coeruleus (LC), a previously unknown source of dopamine, co-releases dopamine along

with its known release of norepinephrine, facilitating the generation of hippocampal memories during

learning and for novel events (Kempadoo et al., 2016; Takeuchi et al., 2016). Large RPEs, whether pos-

itive or negative, have been shown to increase learning rate during reward learning, and are thought to

modulate the noradrenergic LC system and its connections to the anterior cingulate cortex (Behrens

et al., 2007; Courville, Daw, & Touretzky, 2006; Nassar et al., 2012; Roesch et al., 2012; Sara, 2009)

– a system linked to memory for surprising or arousing events (Clewett et al., 2018, 2014). Moreover,

an increase in pupil dilation (a biomarker for LC activation) occurs at event boundaries, and predicts

sequence and distance memory (Clewett et al., 2019), providing further corroboration of the putative

role of the LC in supporting our results.

Nevertheless, there is still a question of whether this LCmechanism strengthens the high-RPE

event in memory and/or segments it from previous events. For example, it is possible that LC enhances

the encoding of the high-RPE event while the hippocampus segments or ‘pattern separates’ the events
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that come after the high RPE from those that came before (Yassa & Stark, 2011). Future work should

characterize how these potentially distinct processes of strengthening and segmenting are orchestrated

by the brain.

Moreover, prediction errors are thought to enact a ‘network reset’ (Zacks et al., 2007) that has

been recently linked to a shifting latent-state representation in the orbitofrontal cortex (Nassar, McGuire,

Ritz, & Kable, 2018). The orbitofrontal cortex is a strong candidate region for representing these latent

states (Schuck, Cai, Wilson, &Niv, 2016), which are thought to encode a cognitive map of task space

(Wilson, Takahashi, Schoenbaum, &Niv, 2014). Seeing that event boundaries modulate representa-

tions in the hippocampus (DuBrow&Davachi, 2014; Ezzyat & Davachi, 2014), it has been suggested

that at these boundaries, enhanced hippocampal activity and a shift in cortical representations (such

as in the orbitofrontal cortex) increases the drift in temporal context (Brunec, Moscovitch, & Barense,

2018). Future work should characterize the interactions between the orbitofrontal cortex and the hip-

pocampus in segmenting our experiences and organizing those memories.

Summary

Using four experiments, we established that latent shifts in the mean value of a reward distribu-

tion, generating the experience of high reward prediction errors, led to stronger recognition for the

event associated with the high prediction error and preserved its link to the preceding event, while

simultaneously interrupting the sequential integration of events across the prediction error event,

thereby creating an event boundary in memory. We developed a computational model that treats a

high prediction error event as an increase in the updating of that event to an internal, temporal context

during encoding (thus creating a representational break between the events that occurred before and

after the high prediction error event), and were able to capture our recognition priming and sequence

memory results. These results suggest that large changes in the value of a rewarding experience split our

memories of those experiences, separating them into separate clusters in memory, each including simi-

larly rewarding events. This mechanism can help create low-dimensional representations of task states

that are useful for both learning and decision making.
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5
Conclusion

Reinforcement learning and episodic memory have been traditionally studied separately, in part

because of their association with distinct neural mechanisms (Shohamy & Adcock, 2010), yet both

systems are critical to adaptive decision-making. In fact, more recent and converging work from psy-

chology, neuroscience, and computer science has considerably advanced our understanding of how the

brain accomplishes learning by characterizing the interaction between these two systems (for a review,

see Gershman &Daw, 2017). In this dissertation, I investigated the role of reward prediction errors

(RPEs), the reinforcement-learning signal that drives trial-and-error learning, in shaping our episodic

memory for those experiences. Below, I bridge across the results of our studies by offering putative neu-

ral mechanisms and addressing some remaining puzzles.

NeuralMechanisms

Across our studies, we found that large unsigned RPEs (‘large RPEs’) experienced at reward

outcome increased both the learning of values (learning rate) and memory for those events. Large

RPEs enhance attention (Pearce &Hall, 1980), supported by increased firing of noradrenergic neu-

rons from the locus coeruleus (LC; Sara, 2009) which further project to the amygdala (Holland &

Schiffino, 2016; Roesch, Calu, Esber, & Schoenbaum, 2010) and the anterior cingulate cortex (Roesch

et al., 2012) – all regions linked to the unsigned-RPEmodulation of learning rate (Behrens et al., 2007;

McGuire et al., 2014; Nassar et al., 2012; Pearce &Hall, 1980). Although the effects of unsigned RPEs

on memory have been less studied, prediction errors, more generally, are an established signal in mod-

ulating memory. They have been associated with the effects of surprise (e.g., Greve et al., 2017), nov-
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elty or more broadly, any change event (Zacks et al., 2007), on memory. Distinguishing the mecha-

nisms supporting these different kinds of prediction errors is an important direction for future research

(Schomaker &Meeter, 2015; Duncan & Schlichting, 2018). Regardless, they may each share the de-

ployment of the LC-norepinephrine (LC-NE) system at the prediction-error event, putatively giving

rise to both noradenergic and dopaminergic modulation of hippocampal memories (Kempadoo et al.,

2016; Takeuchi et al., 2016; Wagatsuma et al., 2017).

We also showed evidence of a signed-RPE effect on memory (Chapter 3), consistent with the

canonical dopamine signal from the midbrain, which increases when rewards are better than expected

and decreases when they are worse than expected (Barto, 1995; Montague et al., 1996). We found this

signed, memory-enhancing RPE to occur for reward-predicting cues instead of events at reward out-

come. This effect is putatively supported by the dopamine signal traveling from reward outcome to

the cue predicting outcome with more learning (Schultz et al., 1997). This finding is consistent with

work showing better memory for events that elicit high-reward expectation and anticipation (Stanek et

al., 2019; Murty & Adcock, 2014; Adcock et al., 2006; Jang et al., 2019; Wittmann et al., 2005), where

increased dopaminergic firing at cue amplifies the hippocampal encoding of events (Murty & Adcock,

2014). More recently, enhanced hippocampal activation during reward anticipation has been specu-

lated to reflect the simulation of future rewards, thus proposing that the hippocampus is engaging in

a retrieval process (i.e., the simulation or ‘retrieval’ of future outcomes) versus an encoding process.

Given that the hippocampus shifts between retrieval and encoding states (Hasselmo et al., 2002; Dun-

can et al., 2012), future work should identify hippocampal dynamics during reward anticipation.

Regardless, the role of hippocampal retrieval during reinforcement learning is of growing in-

terest, as demonstrated by episodic sampling models of decision-making (Lieder et al., 2018; Shadlen

& Shohamy, 2016; Bakkour et al., 2019; Bornstein &Norman, 2017; Bornstein et al., 2017). Unlike

standard reinforcement learning where values are generated by a recency-weighted average over all expe-

rienced rewards, these episodic values rely on individual memories of past outcomes, or a distribution

of those memories, that are sampled online when deliberating between options. These models thus al-

low for the prioritization of particular memories over others during decision-making, thereby biasing
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choice. The better memory for large-RPE events observed in our experiments suggests that these events

may be prioritized during decision-making. Accordingly, a new ‘utility-weighted sampling’ model in-

creases the sampling of extreme (i.e., large-RPE) outcomes to predict a wide-range of choice behavior,

and further demonstrates that an over-representation of extreme outcomes in memory is optimal when

making decisions under constraints (Lieder et al., 2018).

Greater sampling of large-RPE events can also occur offline through replay and consolidation of

those events in memory. Although all of the effects reported here were tested shortly after encoding,

large RPEs elicit the arousal and dopaminergic firing thought to predict increased replay and consol-

idation of those events (Mattar & Daw, 2018; Momennejad, Otto, Daw, &Norman, 2018; Russek,

Momennejad, Botvinick, Gershman, & Daw, 2017). I therefore hypothesize that our effects would be

observable and potentially strengthened after consolidation, in line with work showing signed-RPE

effects on memory after both a short and 24-hour delay (Jang et al., 2019).

Distinct Unsigned-RPE Effects on Learning andMemory

In Chapter 1, we first found large RPEs to increase both learning rate and memory, but we did

not find learning rate and memory to be correlated. Similarly, in the experiments of Chapter 3, large

(outcome) RPEs again increased learning rate and memory, but learning rates did not predict memory

for the outcome events that had generated that value update, nor did they predict memory for the sub-

sequent cue event where the value update was applied. These results held true for large RPEs caused by

either high-outcome variance or by change-point events. This consistent lack of relationship between

learning rate for values and memory for those events, raises the question of how large RPEs may be dif-

ferentially influencing learning and memory.

Chapter 1 results provide a strong illustration of this dissociation. In these experiments, par-

ticipants learned to predict rewards in contexts characterized by ‘high’ or ‘low risk’ (i.e., high or low-

outcome variance). We found that learning rate scaled with the reward variance of the context whereas

memory did not. In line with previous work (Diederen et al., 2016; Diederen & Schultz, 2015; Nas-

sar, Wilson, Heasly, & Gold, 2010), learning rates were, in general, lower in the high-risk context, and
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therefore less sensitive to the larger fluctuations of reward outcomes, demonstrating adaptive scaling to

the expected uncertainty of that context. Memory, however, was higher in the high-risk context thus

showing no such adaptation. These results may suggest that although unsigned RPEs drive both in-

creases in learning rate and memory, an additional step occurs for learning rates, where estimated values

reflect a scaling of prediction errors by the uncertainty of the reward context, which may in effect de-

couple its relationship to memory.

Such scaling has been observed for the reward prediction error itself, where dopaminergic fir-

ing adapts to the uncertainty of the reward environment by showing greater sensitivity to outcomes in

a low- versus high-variance reward context (Tobler et al., 2005). Another possibility, is that learning-

rate adaptation is influenced by acetylcholine, whose role in signalling the ‘expected uncertainty’ of a

learning environment (i.e., its reward variance) has been contrasted with the noradrenergic signalling of

‘unexpected uncertainty’ (changes in the reward state, i.e., change-point events; Yu &Dayan, 2005). A

higher level of acetylcholine is associated with greater expected uncertainty (as in a high-risk context).

Interestingly, increased acetylcholine is also thought to orchestrate hippocampal pattern separation,

giving rise to enhanced encoding of experienced events (Hasselmo et al., 2002; Duncan & Schlichting,

2018). Nevertheless, very little is known about how dopamine, norepinephrine, and acetylcholine may

independently or interactively contribute to value updating and memory for those events, begging fur-

ther investigation.

Moreover, this dissociation between learning rate and memory could be potentially explained

by an alternative model of decision-making, episodic sampling, where these seemingly contradictory

effects may in fact be complementary. In our paradigm, it’s possible that a sample of individual out-

comes was being recruited frommemory when estimating the value of that reward cue. Accordingly, in

the high-risk context, where memory was better for large-RPE events, a greater number of more active

outcome memories could have led participants to average across more outcomes from the past when
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updating their values, which is equivalent to a lower learning rate.* Higher learning rates in the low-risk

context, on the other hand, reflect the integration of fewer events from the past, consistent with worse

memory for those less surprising events.

Although we cannot adjudicate between a scaling versus sampling account for the observed dis-

sociation between learning rate and memory, a neural investigation probing the scaling of prediction

errors during reward outcome (e.g., Diederen et al., 2016) versus memory sampling at reward cue (e.g.,

Bakkour et al., 2019) may shed light on the underlying mechanism supporting these separate effects.

The Strengthening and Segmenting ofMemories

In our experiments, we investigated the mnemonic effects of large RPEs generated by either high

outcome variance (e.g., high-risk context) or by a change in the mean of the underlying reward distri-

bution (change-point event). Regardless of this difference, large RPEs boosted recognition memory

for those events across all of our studies. However, when testing memory for the temporal structure

of events, this difference led to an opposite pattern of results. Importantly, a change-point event in-

dicates a shift in the latent reward context (DuBrow et al., 2017), thereby creating an event boundary

in memory that segments experiences occurring before the change point from those that came after it.

In Chapter 4 , we showed evidence of an RPE-induced event boundary through impaired recognition

priming and sequence memory for events across a change-point (Rouhani et al., 2020). On the other

hand, when we tested whether large RPEs caused by high-outcome variance affected the structure of

memory (Chapter 1; Rouhani et al., 2018), we in fact found better sequence memory for items within a

high versus low-risk context. These two seemingly contradictory results indicate that large RPEs alone

do not create event boundaries in memory, they need to further reflect a (meaningful) change in the la-

*Lower learning rates indicate that a smaller proportion of the most recent outcome is used to update the internal value
re of a reward cue, thereby relying more on past outcomes.
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tent reward context. Otherwise, a reward context characterized by high-outcome variance – where large

RPEs potentially increase attention and memory for more events – gives rise to better memory for the

temporal organization of events.

It is furthermore unclear how the LC-NE systemmay help in the strengthening and/or segment-

ing of these events in memory. These two effects may both rely on the LC-NE system, where strength-

ening and segmenting occur at different time-points. Evidence for this comes from a study showing

that a surprising event predicted an early increase in pupil dilation, a marker of norephineprine re-

lease, whereas an event indicating a model update (i.e., a change-point event) predicted a late decrease

in pupil dilation (O’Reilly et al., 2013). In our paradigm, it is possible that a change-point event first

increased noradrenergic firing thereby strengthening that event in memory, and then decreased it thus

engaging in memory segmentation. In line with this, in our experiments (Chapter 4; Rouhani et al.,

2020), we did not find memory segmentation to occur at the change-point event itself but instead

found it for events across the change-point. In fact, in our CMRmodel, memory segmentation needed

to occur after the change-point event in order to explain our results (in our model, every event was inte-

grated into the next event’s context).

As another possibility, strengthening and segmenting could be orchestrated by distinct mecha-

nisms. Evidence for this comes from work demonstrating that event segmentation across change points

is associated with shifting state representations in the orbitofrontal cortex (Nassar et al., 2018) as well

as in the hippocampus (DuBrow&Davachi, 2014; Ezzyat & Davachi, 2014). We would not expect

large RPEs experienced in the same latent context (i.e., in a high-risk context) to induce such repre-

sentational changes. A neural investigation of these distinct effects of large RPEs on the structure of

memory could potentially disentangle the mechanisms supporting the mnemonic strengthening and

segmenting elicited by large-RPE events.

To conclude, I show that the signal driving reinforcement learning, the reward prediction error,

dynamically influences learning while separately strengthening and, at times, segmenting our memory

of those events, thereby offering neuroscientific targets for future theoretical and empirical work.
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