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Abstract 

We propose that brain-wide variations in neural gain control the degree to which information 

is processed in a broad, integrative manner, or conversely, in a narrowly focused manner. 

Neural gain, which is thought to be modulated throughout the brain by the locus coeruleus-

norepinephrine system, can be thought of as a contrast control mechanism. When gain is high, 

the contrast between weakly and strongly activated neurons is increased, and thus, we expect 

processing to be more narrowly focused on the most strongly represented sources of 

information. In contrast, low gain may allow the integration of a broader range of information. 

We first investigate the whole-brain effects of neural gain using functional connectivity and 

graph-theoretic analyses of neuroimaging data, in conjunction with pupil diameter indices of 

norepinephrine function, as well as in response to a norepinephrine-enhancing drug. The 

results reveal signs of brain-wide fluctuations in gain that are tracked by pupillary indices, and 

suggest that high gain has a focusing, clustering effect on neural interactions throughout the 

brain. We then present three sets if experiments designed to investigate the behavioral effects 

of variations in gain. In the first experiment, we show that pupillary and neuroimaging indices 

of high gain are associated with learning that is more focused on particular types of stimulus 

features, in accordance with individual predisposition. In the second set of experiments, we 

show that high gain has a similar effect on perception and memory, making them more focused 

and less integrative, and that the effects of gain do not have to be tied to individual 

predisposition, but rather, they can be flexibly manipulated by means of subliminal priming or 

experimental task. In the third set of experiments, we show that the reduced integration that is 

associated with high gain comes with a benefit – weaker susceptibility to classical decision 
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making biases. Finally, we end by integrating the results presented throughout the thesis into a 

coherent Bayesian account, and discuss how this account may serve as a basis for a cognitive 

theory of autism.   
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Introduction 

Suppose the brain had a contrast knob that could be used to control the contrast between 

strongly and weakly active neurons. How would increasing the contrast affect neural 

processing? Figure 1.1 suggests a possible answer. Increasing the picture’s contrast eliminates 

subtle differences and emphasizes the picture’s darkest areas. As a result, many features such as 

the tree rings are discarded, whereas the darkest features of the picture (in this case, the wood 

cracks) are emphasized. Similarly, we may hypothesize that increasing the contrast between 

strongly and weakly active neurons would focus neural processing on features that are 

represented by the most strongly active neurons, while discarding more weakly represented 

features. The purpose of this thesis is to test this hypothesis – that the brain has a global 

contrast-control mechanism whose effect is to focus neural information processing on the most 

strongly represented features of the information – and to investigate the implications of brain-

wide contrast modulation for human decision making in different domains.  
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Figure 1.1. The effect of increasing contrast. (A) A grayscale picture of a tree stump. (B) The 
picture from panel A with increased contrast. Lighter features are not visible whereas the 
darkest features are emphasized.  

1.1 Gain modulation as contrast control 

This thesis was inspired by the adaptive gain theory (Aston-Jones & Cohen, 2005), according to 

which the locus coeruleus-norepinephrine system serves to modulate neural gain throughout 

the brain (Servan-Schreiber et al., 1990). Brain-wide gain modulation can be naturally 

understood as modulation of the contrast between excited and inhibited neurons (Figure 1.2). 

We will later see that this should result, more generally, in modulation of the contrast between 

strongly and weakly activated neural units, provided that units compete through mutual 

inhibition. My own contribution to the theory lies in proposing that gain enhancement has an 

effect that is akin to that of contrast enhancement (Figure 1.1), that is, the focusing of neural 

processing on the most strongly represented features. Throughout this thesis, I present 

converging evidence in support of this proposal, including neural network simulations, 

neuroimaging data and behavioral data.  

B A 
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1.2 From molecules to systems to behavior 

The idea of neural gain modulation originated from studies of single-cell electrophysiology in 

response to the neurotransmitter norepinephrine. Based on this earlier work, I simulate the 

effect of gain modulation on neural activity and connectivity in neural network models 

(Rumelhart & McClelland, 1986), which I use to predict whole-brain neuroimaging measures, 

as well as the behavior of human participants in different experimental tasks. In so doing, I 

attempt to link a low-level principle of neural function via computational modeling to system-

level neural and behavioral phenomena.  

While I believe that this constitutes a powerful and promising approach, this approach suffers 

from the inherent disadvantage of relying on a relatively broad set of assumptions. In 

particular, the link between the neural network models presented in this thesis and neural 

processes that take place on the single-cell level is far from obvious. It is not even clear whether 

the models’ units best correspond to single neurons or to population of neurons. This problem 

is compounded by the indirect and imprecise nature of the indices of neural function that are 

available in human participants. Thus, the models that I present are best viewed as high-level 
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Figure 1.2. Input-output function of a 
model neuron (or population of 
neurons) with low and high neural 
gain. Adapted from Aston-Jones & 
Cohen (2005). 
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abstractions of neural processes, whose validity should be primarily assessed by the accuracy of 

the system-level predictions that they generate. My hope is that the wide range of model 

predictions that were borne out by the experimental results will convince the reader of the 

strength of the hypotheses that the models embody. 

1.3 Organization of the thesis 

The thesis begins with a background chapter (chapter 2) in which I explain the concept of 

neural gain and survey evidence in support of a brain-wide gain modulation mechanism that is 

subserved by the locus coeruleus-norepinephrine system. Existing evidence includes a wide 

range of findings from cellular electrophysiology studies and behavioral studies, but no system-

level neural observations. Thus, in Chapter 3, I investigate the whole-brain effects of neural 

gain using whole-brain functional connectivity and graph-theoretic analyses of neuroimaging 

data, in conjunction with pupillary indices of norepinephrine function, as well as in response to 

a norepinephrine-enhancing drug. The analyses are based on predictions generated from neural 

network simulations, and are designed to uncover signs of brain-wide fluctuations in gain, and 

to examine the relationship of these fluctuations with pupillary indices, and with the focusing of 

neural connectivity.  

Next follow three chapters about the behavioral effects of variations in gain. In each of these 

chapters, I generate a different prediction concerning the effects of gain, illustrated using a 

neural network model, and then test the prediction in a behavioral experiment in conjunction 

with pupillometry (and in chapter 4 only, also neuroimaging). Chapter 4 is concerned with the 

focusing effect of high gain on learning, which is manifested in accordance with individual 

predisposition. In Chapter 5, I show that high gain has a similar effect on perception and 
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memory, making them more focused and less integrative, and that the effects of gain do not 

have to be tied to individual predisposition, but rather, they can be flexibly manipulated by 

means of subliminal priming or experimental task. Finally, in Chapter 6, I show that the 

reduced integration that is associated with high gain comes with a benefit – weaker 

susceptibility to classical decision making biases.  

I end the thesis with Chapter 7 in which I integrate the results presented throughout the thesis 

into a coherent Bayesian account, and discuss how this account may serve as a basis for a 

cognitive theory of autism.  
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Background 

A principal aim of cognitive neuroscience is to understand how humans process information. 

Significant progress has been made in this endeavor by using general principles, abstracted 

from biological properties of the central nervous system (CNS), to explain system-level neural 

or behavioral phenomena (e.g., Rumelhart & McClelland, 1986). In keeping with this tradition, 

this thesis builds on the concept of brain-wide gain modulation, derived from the biological 

study of the neuromodulator norepinephrine (Servan-Schreiber et al., 1990; Aston-Jones & 

Cohen, 2005), to explain a range of whole-brain neuroimaging and behavioral data. In this 

chapter, I will introduce the concept of neural gain and the way it is typically modeled. I will 

then survey previous evidence in support of the existence of a brain-wide gain modulation 

mechanism that is realized by the locus-coeruleus-norepinephrine (LC-NE) system. In addition, 

I will discuss the use of pupillometry as a noninvasive method for tracking levels of LC-NE 

function and neural gain.  

2.1 Neural gain 

Neural gain modulation refers to modulation of the impact of incoming neural signals on neural 

activity. Thus, with higher gain, a neural unit responds with a larger increase in activity to an 
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excitatory signal and with a larger decrease in activity to an inhibitory signal, as compared to 

with lower gain (Figure 1.2). Gain is typically modeled as a multiplicative factor that enhances 

the effect of input on output (Servan-Schreiber et al., 1990):  

output = 𝑓(𝑔𝑎𝑖𝑛 ∙ input)                                                       (2.1) 

where f is the activation function, which is used to compute a neural unit’s level of activity (i.e., 

its output) given the input that it receives. 

2.2 Selective gain modulation 

The concept of neural gain modulation originated from observations of the response profiles of 

single neurons. For instance, a key study showed that the response of posterior parietal 

neurons to visual stimuli that lie in their receptive field is multiplicatively modulated by eye 

position (Andersen et al., 1985). The concept of gain was later generalized to explain the 

modulation of neural responses throughout sensory and motor cortex (Salinas & Abbott, 1995; 

McAdams & Maunsell, 1999; Treue & Martınez-Trujillo, 1999) as a function of attention. The 

simple, yet powerful, idea is that selective attention to specific features of sensory input is 

brought about by a selective increase in neural gain in neurons that represent these features 

(Figure 2.1). Selective gain modulation has been suggested to result from changes in overall 

levels of background synaptic input, both excitatory and inhibitory (Chance et al., 2002).  
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2.3 Brain-wide gain modulation 

Neural gain may also be modulated non-selectively, increasing or decreasing simultaneously all 

over the brain. From a modeling perspective, brain-wide gain modulation should follow the 

same mathematical form as selective gain modulation (Eq. 2.1), except that all network units 

share the same setting of the gain parameter. Brain-wide gain modulation was first used to 

model behavioral effects of the neuromodulators norepinephrine and dopamine, which had been 

suggested to enhance neural gain (Servan-Schreiber et al., 1990). Following up on this early 

work, and integrating a wide range of more recent evidence, Aston-Jones and Cohen (2005) 

proposed that the LC-NE system primarily acts by modulating neural gain throughout the 

brain. This proposal depends on two assertions: first, the LC-NE system issues a uniform brain-
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Figure 2.1. Schematic illustration of the way selective gain modulation is thought to 
mediate selective attention. (A) Response profile of three model neurons as a 
function of the location of the input (e.g., in visual field). (B) Response profile of the 
same model neurons when attention is directed to the right. The gain of the neuron 
that responds to right-sided input is enhanced, whereas the gain of the neuron that 
responds to left-sided input is diminished. As a result, the network as a whole is 
more sensitive to right-sided input. Adapted from Salinas & Thier (2000). 
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wide NE signal, and second, NE modulates neural gain. In what follows I review evidence in 

support of each of these assertions in turn.   

2.3.1 The locus coeruleus and norepinephrine  

The LC nucleus, located in the dorsorostral pons, is the sole source of NE to the cerebral, 

cerebellar, and hippocampal cortices (Aston-Jones, 2004; Aston-Jones et al., 1984; Moore & 

Bloom, 1979). Although small in number, LC neurons project widely, to the entire neocortex, 

as well as to the rest of the forebrain with the exception of the striatum (Jones et al., 1977; 

Jones & Moore, 1977; Jones & Yang, 1985; Figure 2.2). LC projections are unmyelinated and 

therefore slowly conducting (Aston-Jones et al., 1985), and some have extra-synaptic release 

sites that may necessitate further diffusion to exert an effect (Beaudet & Descarries ,1978; 

Seguela et al., 1990). Taken together, these findings indicate that signals sent by the LC have 

low spatial and temporal specificity, and thus, are well suited to providing a uniform brain-wide 

neuromodulatory signal. 

2.3.2 Norepinephrine and neural gain 

NE, also called noradrenaline, is a monoamine neurotransmitter that is thought to exert its 

effect in the CNS by means of  and  adrenergic receptors (Devilbiss & Waterhouse, 2004). 

Early studies of NE function focused on its direct impact on neural activity. Both local 

application of NE and stimulation of LC input pathways showed that NE suppresses 

spontaneous spiking of neurons in the cerebellum (Hoffer et al., 1971; Hoffer et al., 1973), 

cerebral cortex (Olpe et al., 1980; Stone, 1973), hippocampus (Segal & Bloom, 1974a; Segal & 
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Bloom, 1974b), thalamus (Nakai & Takaori, 1974; Phillis et al., 1967) and hypothalamus 

(Miyahara & Oomura, 1982). However, the direct effect of a neurotransmitter on neural activity 

may not fully capture the neurotransmitter’s contribution to the operation of a neural circuit. 

Thus, later studies tested for potential second-order (i.e., neuromodulatory) effects of NE, by 

examining its impact on neural responses to independent input signals that were mediated by 

other neurotransmitters. 

 

 

Figure 2.2. Illustration of projections of the LC system. Sagittal view of a monkey 
brain showing LC neurons located in the pons with efferent projections throughout 
the central nervous system. Note that only few areas do not receive LC innervation 
(e.g., hypothalamus and caudate-putamen). Reproduced from Aston-Jones & Cohen 
(2005). 

 



CHAPTER 2. BACKGROUND 11 
  

2.3.2.1 Norepinephrine as a neuromodulator 

First attempts to examine the second-order effects of NE revealed that it suppresses 

spontaneous neural activity more strongly than responses to a co-occurring input signal (Foote 

et al., 1975; Freedman et al., 1977). A different line of studies, which focused on low levels of 

NE and weak co-occurring input signals, found that NE actually potentiates, and in some cases 

even gates, neural response to co-occurring input (Moises et al., 1983; Moises et al., 1981; 

Moises & Woodward, 1980; Moises et al., 1979; Waterhouse et al., 1980; Waterhouse & 

Woodward, 1980; Woodward et al., 1979; Waterhouse et al., 1988). NE’s neuromodulatory 

effects were further observed in a wide range of brain regions including visual cortex (Videen et 

al., 1984), lateral geniculate nucleus (Rogawski & Aghajanian, 1980), lateral hypothalamus 

(Sessler et al., 1988), hippocampus (Segal & Bloom, 1976), and superior colliculus (Sato & 

Kayama, 1983). These results suggested that NE sharpens the contrast between neural 

response to synaptic input and spontaneous neural activity, thus facilitating neural 

communication. 

2.3.2.2 Conflicting evidence  

The finding that NE facilitates neural signaling naturally lead to the modeling of NE’s effect as 

increasing neural gain (Servan-Schreiber et al., 1990). Further investigations, however, 

revealed a more complicated pattern. Brain slice recordings showed that while NE facilitates 

response to excitation in most cells by means of 1 receptor activation, in some cells it in fact 

suppresses response to excitation by activating  receptors (Devilbiss & Waterhouse, 2000). A 

similar result was observed when the effect of NE was studied in rats by means of tonic LC 
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stimulation in conjunction with sensory whisker stimulation (Devilbiss & Waterhouse, 2004). 

Moreover, while LC stimulation mostly facilitated response to whisker stimulation in the 

ventroposterior medial thalamus, it was as likely to facilitate as to suppress response further 

downstream, in the barrel field somatosensory cortex. Even in those cells whose response to 

excitation was facilitated by NE, higher levels of NE facilitated response less strongly, 

resulting in an inverted U-shaped relationship between NE levels and response to excitation. 

Finally, other studies reported that NE has more specific effects on neural activity, such as an 

increase in the selectivity of neural response (Hurley et al., 2004), or a specific facilitation of 

bottom-up inputs at the expense of top-down inputs (Hasselmo et al., 1997).  

These observations challenge the conception that NE strictly increases neural gain. However, 

many of the observations that seem to conflict with the gain theory may be explained in terms 

of increased neural gain acting in particular network architectures. For instance, both the 

suppression of neural responsivity and increased selectivity could result from the potentiation 

of inhibitory connections. Indeed, some of the neural network simulations that will be 

presented in later chapters produce just such effects. Furthermore, the higher NE levels that 

lead to a U-shaped pattern of facilitation may not be reached under physiological conditions. In 

addition, the gain theory of the LC-NE system is primarily concerned with system-level effects. 

According to this view, changes in neural gain characterize processes at the system level, which 

may emerge from a more diverse set of processes acting at the level of single neurons.  
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2.3.3 Evidence at the system level 

We have seen that evidence at the cellular level in support of the LC’s role in brain-wide gain 

modulation, while suggestive, cannot be regarded as conclusive. Further support for the gain 

theory, however, is provided by studies of the system-level effects of LC activity.  

2.3.3.1 The effect of tonic LC-NE activity 

Baseline (i.e., tonic) levels of LC activity seem to control the state of arousal and wakefulness of 

an animal (Aston-Jones & Bloom, 1981a; Hobson et al., 1975; Rajkowski et al., 1997; 

Rasmussen et al., 1986). Behaviorally, arousal and wakefulness are characterized by higher 

sensitivity to sensory stimulation and more vigorous motor activity, both of which could 

naturally be explained by the facilitation of neural signaling that is brought about by increased 

neural gain. Indeed, increased tonic levels of gain have been used to model the observed 

boosting of signal-detection performance by CNS stimulants that increase NE and dopamine 

levels (Servan-Schreiber et al., 1990; Servan-Schreiber et al., 1998a; Servan-Schreiber et al., 

1998b).  

2.3.3.2 The effect of phasic LC-NE activity 

In addition to its tonic levels of activity, the LC responds transiently (i.e., in a phasic manner) 

to salient sensory stimuli that elicit a behavioral response (Aston-Jones & Bloom, 1981b; Foote 

et al., 1980; Grant et al., 1988). More specifically, within the context of an experimental task, 

the LC responds strongly to target stimuli but minimally or not at all to distractors (Aston-

Jones et al., 1994). This finding was confirmed in reversal experiments, in which the LC 
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responded preferentially to a stimulus when it constituted a target, but not when the same 

stimulus appeared as a distractor (Aston-Jones et al., 1997). Critically, LC response was time 

locked to the behavioral response, not to stimulus onset, though it only preceded a response 

induced by a task stimulus (Figure 2.3; Clayton et al., 2004; Bouret & Sara, 2004). These 

findings suggest that phasic LC responses might serve to facilitate the execution of task 

decisions, an effect that has been theoretically explained by an increase in neural gain (Usher et 

al., 1999).  

 

  

 

Figure 2.3. Phasic activation of monkey LC neurons in a two-alternative forced 
choice task. Stimulus- and response-locked population peri-event time histograms 
(PETH) showing LC responses for trials yielding correct and incorrect behavioral 
responses. (A) Stimulus-locked population PETHs showing LC response to cues 
(presented at time 0) for trials yielding correct or incorrect behavioral responses. 
Note that the LC response rises sooner and is less prolonged on correct compared 
with incorrect trials in this analysis. No LC activation was detected on omission 
trials (orange line). Vertical dashed lines indicate the mean behavioral RTs. Curves 
below represent the normalized RT distributions for correct and incorrect trials. (B) 
The difference in the phasic LC response between correct and incorrect trials was 
not evident in response-locked population PETHs. In addition, no LC activation 
occurred prior to or following lever releases not associated with stimulus 
presentation (orange line). Dashed vertical lines indicate the mean stimulus onset 
times. Reproduced from Aston-Jones & Cohen (2005). 
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2.3.3.3 A tradeoff between tonic and phasic activity 

In times of high tonic LC activity, phasic responses tend to be weaker. A state of high tonic and 

low phasic LC activity was shown to follow changes in reward contingencies, when the monkey 

does not yet recognize the rewarding stimulus and thus makes more errors (Aston-Jones et al., 

1997). According to the gain theory of the LC-NE system, high tonic LC activity should 

facilitate behavioral responses in a nonspecific manner, which is what the monkey needs to do 

(and in fact does) to re-explore the task space when reward contingencies change. Thus, Aston-

Jones & Cohen (2005) proposed that the balance between phasic and tonic modes of LC-NE 

activity is controlled so as to optimize the balance between task engagement and exploitation 

(low tonic, high phasic) on the one hand, and task disengagement and exploration (high tonic, 

low phasic) on the other.  

2.3.3.4 Pupil diameter as an index of LC-NE activity 

It is not possible to measure neural gain non-invasively in humans, nor is it possible to directly 

measure the LC activity thought to regulate it. However, converging evidence suggests that 

pupil diameter is closely correlated with LC-NE activity. LC responses are coupled with 

activity of the peripheral sympathetic nervous system, which is known to modulate pupil 

diameter (Svensson, 1987; Elam et al., 1981; Elam et al., 1984). Furthermore, a series of 

carefully controlled studies showed that adrenergic stimulation in the CNS leads to pupil 

dilation in rats and cats (Koss, 1986). Finally, pupil diameter was shown to strongly correlate 

with LC activity in the monkey (Figure 2.4; Rajkowski et al., 1993). Building on these findings, 
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recent studies have begun using pupil diameter to test predictions of the gain theory of the LC-

NE system in humans (Aston-Jones & Cohen, 2005).  

2.3.3.5 Pupillometry-based evidence in humans 

Paralleling LC findings in monkeys, Gilzenrat et al. (2010) found that increases in baseline 

pupil diameter are associated with decreases in task utility and disengagement from the task, 

whereas reduced baseline diameter (but increases in phasic dilations) are associated with task 

engagement. Similarly, Jepma and Nieuwenhuis (2011) showed that pupil diameter predicts 

changes in the balance between exploration and exploitation. Closely related findings 

concerning the relationship between pupil diameter and behavior were also observed in humans 

performing an auditory oddball task (Murphy et al., 2011) or perceiving ambiguous stimuli 

(Einhäuser et al., 2008).  

These results support the gain theory of the LC-NE system, and moreover, they suggest that 

gain can be assessed non-invasively in human participants using pupillometry. Specifically, 

baseline pupil diameter may track tonic LC activity, while task-evoked pupil responses may 

track phasic LC activity. Furthermore, while differences in baseline pupil diameter across 

individuals may reflect factors other than tonic LC-NE activity (e.g., physical pupil size), phasic 

pupil dilation responses can be normalized to the baseline diameter to obtain a between-

participants measurement of neural gain: because phasic responses are inversely related to 

baseline pupil diameter, and thus, presumably, to tonic LC-NE activity, the average phasic 

response may provide an inverse measure of sustained levels of neural gain. 
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2.4 Conclusion 

A wide range of pharmacological, electrophysiological, pupillometric and behavioral evidence 

suggests that the LC-NE system serves to modulate neural gain non-selectively throughout the 

brain. Brain-wide variations in gain may be tracked non-invasively in humans by measuring 

pupil diameter. Some of the observed effects of LC-NE activity on single neurons seemingly 

conflict with the neural gain theory, but many of these findings could in fact result from 

increased gain acting in a particular network architecture. More importantly, the gain theory is 

primarily concerned with high-level abstractions of brain-wide neural processes, rather than 

with the activity of single neurons, and thus, the theory should be primarily assessed by its 

ability to predict system-level neural and behavioral phenomena.

Figure 2.4. Relationship between tonic pupil diameter and baseline firing rate of an LC 
neuron in monkey. Pupil diameter measurements were taken by remote eye-tracking 
camera at each instant in time when the monkey achieved fixation of a visual spot 
during a signal-detection task. Note the close relationship between the pupil diameter 
and the rate of LC activity. Reproduced from Aston-Jones & Cohen (2005). 
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The whole-brain effects of neural gain* 

A wide range of anatomical, electrophysiological and behavioral evidence suggest that the locus 

coeruleus modulates neural gain throughout the brain. However, the brain-wide effects of gain 

modulation have yet to be studied. If brain-wide gain modulation indeed exists, it should affect 

neural function all over the brain, and thus, give rise to system-level neural effects that are 

evident when brain function is considered as a whole. Such effects may manifest throughout the 

brain in changes in neural activity. However, since gain modulation specifically relates to the 

enhancement of neural communication, its effects may be more clearly revealed by examining 

changes in functional connectivity. An effect on whole-brain neural function may manifest not 

only in the strength of functional connectivity, but also in the way that functional connections 

are distributed throughout the brain. In this chapter, I examine these three types of effects 

theoretically and experimentally, using whole-brain functional Magnetic Resonance Imaging 

                                                 

 

* Parts of this chapter appeared in Eldar, E., Cohen, J. D., & Niv, Y. The effects of neural gain on attention and 
learning. Nature neuroscience 16, 1146-1153 (2013), and were presented at SfN 2012, the Third Symposium on 
Biology of Decision Making 2013, and MathPsych 2013. 
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(fMRI) in conjunction with pupillary indices of neural gain, as well as in response to 

pharmacological manipulation.  

3.1 Changes in activity  

Increased gain entails that neural activation is driven toward maximal or minimal levels 

(Figure 1.2). Thus, large baseline pupil diameter should be associated with more extreme fMRI 

activations. Indeed, we found that the fMRI blood-oxygen-level-dependent (BOLD) signal, 

taken while participants were performing a learning task, was farther from its mean when 

baseline pupil diameter was large (mean absolute deviation from the mean 8.36) compared to 

when it was small (mean absolute deviation 8.02; t29 = 3.79, p < 10-4, paired t-test comparing 

10% of trials with highest pupil diameter to 10% of trials with lowest pupil diameter, out of a 

total of 216 trials per participant).   

An additional prediction that stems from the hypothesized relationship between pupil diameter 

and gain is that the magnitude of pupil dilation in response to task-relevant stimuli should 

correlate with the magnitude of the BOLD response to task-relevant stimuli, but not to task-

irrelevant stimuli (Aston-Jones & Cohen, 2005). This is so because the low tonic/high phasic 

state of LC-NE function is thought to specifically enhance the processing of task stimuli. To 

test this prediction, our experiment included random, task-irrelevant, auditory stimuli that 

participants were instructed to ignore. As predicted, both low baseline pupil diameter and high 

pupil dilation response were associated with stronger BOLD responses to task-relevant stimuli, 

but not to task-irrelevant stimuli (baseline diameter: t27 = -5.04, p < 10-5; dilation response: t27 = 

2.56, p < 0.05; Figure 3.1). 
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Figure 3.1. Relationship between pupil diameter and BOLD response to task-relevant and task-
irrelevant stimuli. (A) Pupil diameter normalized by its value at trial onset (time 0), averaged 
within participants across trials, and then across participants (lighter shade: s.e.m. across 
participants; n = 28). Pupil dilation response was computed as the difference between the peak 
pupil diameter during the 4 s that followed trial onset and the pre-trial baseline diameter, 
normalized by the pre-experiment resting diameter. As expected, baseline pupil diameter and 
pupil response were anticorrelated in all participants (mean r = –0.77, range –0.89 to –0.54, t27 
= –28.9, p < 10–21). While baseline diameter is thought to correlate positively with tonic LC-
NE function, the normalized pupil dilation response can serve as an inverse index that is 
comparable between individuals. (B) High baseline pupil dilation was associated with a weaker 
response to task-relevant stimuli compared to task-irrelevant stimuli, whereas high pupil 
dilation response was associated with a stronger response to task-relevant stimuli compared to 
task-irrelevant stimuli. n = 28, *: p < 0.05, **: p < 10-4, errors bars: between subject s.e.m. 

3.2 Changes in functional connectivity 

Increased gain means that neural signals are enhanced, which predicts that interactions 

between connected parts of the network should increase. Indeed, gain modulation has been 

proposed as a mechanism for flexible control of network functional connectivity (Salinas, 2004; 

Salinas & Bentley, 2009; Haider & McCormick, 2009). We first tested this prediction 

theoretically by simulating the effect of gain on functional connectivity using randomly 

constructed neural network models, in which we varied the gain parameter and measured the 

resulting unit-to-unit correlations. The simulations suggested that global fluctuations in neural 

gain should be associated with global fluctuations in the mean strength of functional 
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connectivity (Figure 3.2A-C; r = 0.99, p < 10–13). Different simulations, in which each unit was 

only connected to a minority of other units (10%), or in which correlations were measured 

between the mean activity of groups of 10 units, yielded qualitatively similar results, indicating 

that our simulation results are robust to network density and measurement granularity. 

3.2.1 Global fluctuations in local functional connectivity 

We thus examined the fMRI data for evidence of global fluctuations in the strength of 

functional connections. Towards this end, we measured functional connectivity while 

participants performed a learning task, which consisted of a series of games, and assessed the 

extent to which game-to-game fluctuations in functional connectivity in different brain areas 

were correlated with each other. To do this, we arbitrarily divided each participant’s brain into 

32 boxes that contained roughly similar volumes of gray matter (27.1 ±2.6 cm3; Figure 3.3A). 

We then measured the mean strength of functional connectivity within each box during each 

game (quantified as the mean absolute correlation of the time series of the fMRI signal among 

pairs of voxels within the box). Finally, we correlated the time series of mean functional 

connectivity values over games for each pair of boxes. Mean functional connectivity strength 

across games was positively correlated for 96% of all box pairs, and the mean correlation 

coefficient was 0.72 (range 0.27 to 0.95 across participants, t29 = 10.85, p < 10–10; Figure 3.3B). 

Notably, this correlation did not simply reflect a common global signal component, since the 

mean gray-matter signal was regressed out of the data prior to the functional connectivity 

analysis (see Section 3.6 for detailed methods). Thus, even though our measurements of 

functional connectivity in different boxes involved strictly disjoint brain areas, we found very 

strong correlations in fluctuations of these measurements throughout the brain.  
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Figure 3.2. Simulation of the effect of global changes in gain on functional connectivity 
strength and clustering. Recurrent neural networks were composed of 1000 fully connected 
units with random connection weights. Unit-to-unit correlations were computed across 500 
trials for each level of gain, for each of 100 networks. (A) Distribution of correlation coefficients 
for each of 15 different levels of gain. Higher gain results in stronger functional connections 
(correlations or anti-correlations). (B) Mean correlation coefficient increases as a function of 
gain. S.e.m. is too small to observe. (C) Correlation between the global gain parameter and the 
frequency of correlation coefficients as a function of correlation coefficient. Stronger 
correlations are more prevalent (and weaker correlations are less prevalent) when gain is 
higher. (D) Clustering coefficient of the networks’ functional connectivity graphs as a function 
of gain. Clustering coefficient tended to increase with gain. Ligher shade: s.e.m. 
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Figure 3.3. Global fluctuations in local functional connectivity. (A) 3D rendering of one 
participant’s gray-matter voxels divided into 32 boxes, viewed from the right and from above. 
Each sphere represents a voxel. Adjacent boxes are denoted in different colors. Voxel division 
is visualized using custom-made software created in the Processing programming environment 
(Reas & Fry, 2007). (B) Histogram of between-box correlations of mean within-box functional 
connectivity strength (light blue, left Y axis), and of participants’ mean correlation values (dark 
blue, right Y axis). 
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3.2.2 Functional connectivity and pupil diameter 

While this result is strongly suggestive of global modulation of neural signaling, it is 

nevertheless possible that global fluctuations in local functional connectivity reflect correlated 

local instabilities of the MRI scanner. Such a confound could be dismissed if the measured 

fluctuations in functional connectivity were also to covary with the separately attained 

measures of baseline pupil diameter. Indeed, we found that when baseline pupil diameter was 

highest (indicative of high gain), high functional connectivity measurements were more 

prevalent (Figure 3.4A, gray), whereas when baseline pupil diameter was lowest (low gain) 

weaker functional connectivity was more prevalent (Figure 3.4A, black). Accordingly, baseline 

pupil diameter was positively correlated with mean functional connectivity strength (mean r = 

0.27 across participants, t27 = 2.98, p < 0.01), and, similarly, pupil responses were anticorrelated 

with mean functional connectivity strength (mean r = –0.24 across participants, t27 = –3.63, p < 

0.01). In particular, baseline diameter was positively correlated with the number of functional 

connectivity measurements stronger than ±0.17, and anticorrelated with the number of weaker 

functional connectivity measurements (Figure 3.4B). Remarkably, this non-monotonic 

relationship between functional connectivity strength and its correlations with baseline 

diameter was predicted by our simulation of the effects of gain on functional connectivity in 

randomly connected neural networks (cf. Figure 3.2B). 

To verify that the relationship between functional connectivity and pupil diameter was not 

specific to particular brain regions, but rather was manifest throughout the brain, we examined 

this relationship separately in each of the 32 boxes. Functional connectivity strength was 

positively correlated with baseline pupil diameter in 70% of the boxes (22 out of 32 boxes per 
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participant on average; Figure 3.5A), and the mean correlation coefficient was 0.19 (t27 = 3.19, p 

< 0.01; Figure 3.5B). Notably, baseline pupil diameter was not correlated with the mean box 

fMRI signal (mean r = –0.004, t27 = –0.35, p = 0.73), indicating that the relationship with 

functional connectivity strength did not reflect pupil-related variations in signal strength. 

Further, the relationship between baseline diameter and functional connectivity strength was 

fairly consistent throughout the brain: for every box, functional connectivity was positively 

correlated with baseline pupil diameter in at least half of the participants. As expected, 

functional connectivity strength was also anticorrelated with pupil dilation response in 75% of 

the boxes (Figure 3.5C), and the mean correlation coefficient was –0.20 (t27 = –3.54, p < 0.01; 

Figure 3.5D). Our results thus suggest that the strength of functional connectivity fluctuated in 

a similar manner throughout the brain, and these fluctuations were tracked closely by both 

pupil diameter indices.  

3.2.3 The distribution of functional connections 

Thus far, we provided evidence of brain-wide fluctuations in gain, as manifested in fMRI 

activity and connectivity, which reflects the enhancement of neural signals. We now turn to a 

more specific effect of gain modulation that is central to the theme of this thesis. Recall that we 

proposed that increasing gain has an effect that is akin to that of increasing contrast, namely 

the effect of focusing information processing on a more limited set of features (Figure 1.1). 

Accordingly, we hypothesized that high gain would be associated with a more tightly clustered 

pattern of neural interactions, reflecting selective processing of particular input streams. In 

contrast, we expected low gain to be associated with widely distributed neural interactions, 

which mediate concurrent processing of multiple input features.   



CHAPTER 3. WHOLE-BRAIN EFFECTS OF GAIN 26 
  

 

 

Figure 3.4. Pupil diameter and whole-brain functional connectivity. (A) Distribution of 
functional connections by connection strength (n = 28). The distribution is shown separately 
for all games (gray shading), for the third of each participant’s games in which the participant’s 
baseline pupil diameter was lowest (solid line), and for the third of games in which pupil 
diameter was highest (dashed line). Insets: magnification of boxed areas to show differences 
between lowest and highest pupil diameter games. (B) Game-by-game correlation between 
baseline pupil diameter and frequency of functional connectivity measurements as a function of 
functional connectivity value (n = 28). The Y axis indicates whether large pupil diameter was 
associated with more (positive values) or fewer (negative values) voxel pairs for which 
functional connectivity strength is indicated on the X axis. For each participant, we computed 
the distribution of functional connections during each game, and then computed the correlation 
across games between baseline pupil diameter and the number of voxel pairs in each bin of the 
distribution. The curve shows the correlations averaged over participants with s.e.m. indicated 
by the lighter shading. Larger pupil diameter was associated with more strong functional 
connectivity measurements (absolute strength > 0.17) and fewer weak functional connectivity 
measurements (between –0.17 and +0.17). 
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Figure 3.5. Pupil diameter and local functional connectivity. (A, C) Proportion of 
boxes within which mean functional connectivity strength was positively correlated 
with baseline pupil diameter (A) or negatively correlated with pupil dilation 
response (C) for each participant. (B, D) Mean correlation between within-box 
functional connectivity strength and baseline pupil diameter (B) or pupil dilation 
response (D) for each participant. Solid horizontal line: group means, dashed 
horizontal lines: s.e.m. 
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To examine this idea theoretically, we constructed a functional connectivity graph (Eguíluz et 

al., 2005) for each of the random 1000-unit networks described above. Each of the graphs’ 

nodes represented a unit and two units were connected by an edge if the correlation of activity 

between them was in the top 1% of all such correlations. The clustering coefficient (Luce & 

Perry, 1949) of such a graph indicates the degree to which functional connectivity is tightly 

clustered in the network. As predicted, higher gain was associated with higher clustering 

coefficients (Figure 3.2D; r = 0.99, p < 10–12).  

To test the degree to which functional connectivity was tightly clustered in the brain, we 

similarly constructed a functional connectivity graph for each participant and each game (18 

graphs per participant). The graphs were constructed as done for the simulated networks, 

except that in this case each of the graphs’ nodes represented a voxel, and connectivity was 

determined by the correlation between voxels’ time series (see Figure 3.6 A and B for example 

graphs). As predicted, we found a significant game-by-game correlation between the clustering 

coefficient of these graphs and baseline pupil diameter (mean r = 0.14 across participants, t27 = 

1.82, p < 0.05 one tailed; Figure 3.6C). That is, when participants’ pupil diameter indicated high 

gain, their neural functional connectivity tended to be more tightly clustered. Moreover, we 

found a similar correlation when the analysis was restricted to prefrontal cortex, an area that is 

not involved in primary visual processing (mean r = 0.14 across participants, t27 = 2.05, p < 

0.05), suggesting that the relationship between pupil diameter and clustering was indeed due to 

global fluctuations in gain and not due to differences in activation to the visual stimuli. 

 



CHAPTER 3. WHOLE-BRAIN EFFECTS OF GAIN 29 
  

 

 

Figure 3.6. The distribution of functional connection. (A) Connectivity graphs from participant 
10 in two different games. This participant’s baseline pupil diameter was highest in game 1 and 
lowest in game 15. In line with our hypothesis, the clustering coefficient was higher in game 1 
(0.28) than in game 15 (0.02). As can be seen, connectivity formed two disparate clusters in 
game 1, whereas in game 15 it was more globally distributed. (B) Connectivity graphs from 
participant 28 in two different games. The clustering coefficient was highest for this participant 
in game 12 and lowest in game 13. As shown, functional connections were mostly clustered in 
fontal cortex in game 12, whereas in game 13 they were distributed over most of the brain. 
Indeed, the participant’s baseline pupil diameter was higher in game 12 (5.68) than in game 13 
(5.48). A – anterior, P – posterior. For the purpose of visual rendering only, connectivity 
graphs were compressed to a size of 10,000 vertices using a k-means clustering algorithm, 
merging together vertices whose voxels’ MNI coordinates are closest. The correlation values of 
merged vertices were averaged, and the strongest 0.05% of the resulting correlations were 
displayed as edges. (C) Game-by-game correlation between clustering coefficient and baseline 
pupil diameter by participant. n = 28. 
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3.3 Pharmacological manipulation 

In studying the effects of LC-NE function and neural gain, pupil diameter measurements only 

provide correlational evidence. Causal evidence, however, can be obtained using 

pharmacological manipulation. Thus, we next examined variations in functional connectivity 

strength and clustering in response to the norepinephrine-specific reuptake inhibitor 

reboxetine.  

Reboxetine has been in use for the treatment of depression, anxiety and attention deficit 

hyperactivity disorder (Hajós et al., 2004). Its binding affinity is highly selective to the 

norepinephrine transporter, and both acute and chronic administration of the drug have been 

shown to raise extracellular levels of norepinephrine in frontal cortex and hippocampus (Hajós 

et al., 2004; Millan et al., 2001; Sacchetti et al., 1999). However, reboxetine does suppress LC-

NE activity, and thus reduces physiologic norepinephrine function (Szabo and Blier, 2001). 

Still, since reboxetine increases cortical extracellular norepinephrine levels, we predicted that 

its administration would be associated with signs of increased gain in fMRI – that is, with 

stronger and more tightly clustered functional connectivity networks. 

To test this prediction, we analyzed a pharmacological fMRI data set that was shared with us 

by Andrea Reinecke and Catherine Harmer from the University of Oxford (Papadatou-Pastou 

et al., 2012). Half of the participants received reboxetine, and half received placebo, 2 hours 

before performing an autobiographical memory task in the MRI scanner for a period of 9 

minutes. In analyzing the fMRI data, we used the same methods as in the pupillometry study. 

That is, absolute functional connectivity was measured throughout the brain, and graph-
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theoretic analysis was used to compute for each participant the degree to which functional 

connectivity was clustered.  

3.3.1 Functional connectivity strength and clustering 

Salivary cortisol levels, which are indicative of the efficacy of reboxetine, were similar in the 

two study groups at baseline (reboxetine group: 15.71 ±1.80 mmol/L; placebo group: 15.08 

±1.75 mmol/L), but higher in the reboxetine group before entering the scanner (reboxetine 

group: 17.48 ±1.93 mmol/L; placebo group: 11.57 mmol/L ±1.36 mmol/L) and at the end of 

the study (reboxetine group: 14.85 ±1.53 mmol/L; placebo group: 9.29 mmol/L ±1.09 

mmol/L; F1,20 = 6.62, p < 0.05, ANOVA). 

In contrast to our prediction, mean whole-brain functional connectivity strength was lower in 

the reboxetine group compared to the placebo group (t20 = -2.2, p < 0.05; Figure 3.7A, left). 

Furthermore, graph-theoretic analysis showed that functional connections were less clustered 

in the reboxetine groups (t20 = -3.1, p < 0.01; Figure 3.7A, right) as compared to controls. Both 

of these results are consistent with lower rather than higher neural gain in response to 

reboxetine. 

Functional connectivity and clustering coefficient were strongly correlated across participants 

(r = 0.65, t20 = 3.8, p < 0.005; Figure 3.7B), suggesting that low clustering in the reboxetine 

group might have simply reflected weaker functional connectivity. However, clustering was 

still lower in the reboxetine group after the effect of mean functional connectivity was 

regressed out (t20 = -1.82, p < 0.05 one tailed). The same result was found when clustering was 

compared between the reboxetine group and those participants in the placebo group whose 
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mean functional connectivity was in the same range (functional connectivity < 0.07; t15 = -2.06, 

p < 0.05 one tailed). Thus, the effect of reboxetine on the clustering of functional connections 

was only partially predicted by its effect on mean functional connectivity.  

Notably, reboxetine administration seemed to restrict mean functional connectivity and 

clustering coefficients to a specific range (0.06 to 0.07 for the former, 0.004 to 0.012 for the 

latter), as compared to the more varied measurements in the placebo group (Figure 3.7B).  To 

gain further insight into these results, we examined the number of strong connections made by 

each voxel (i.e. its cardinality) in participants’ functional connectivity networks. In participants 

with strong mean functional connectivity (FC > 0.07), all of which belonged to the placebo 

group, connectivity mostly involved relatively few densely connected voxels (cardinality > 

500), while most voxels were sparsely connected (cardinality < 100; variance of cardinality: 

17026 ±2024; Figure 3.7C). Densely connected voxels were not limited to particular brain 

regions, but rather, were scattered throughout the brain (Figure 3.7D). In contrast, in 

participants from both study groups whose mean functional connectivity was weaker (FC < 

0.07), connectivity involved a large number of voxels with an intermediate number of 

connections (100 to 500; variance of cardinality: 7588 ±754; difference from high FC 

participants: t20 = 4.9, p < 10-5). Seemingly, without pharmacological intervention (i.e., in the 

placebo group) participants functioned in one of two modes: either few voxels were significantly 

involved in neural communication, or almost all voxels were. In contrast, only the latter mode 

was evident in participants who received reboxetine suggesting that reboxetine restricted 

whole-brain neural communication to this specific mode.   
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Figure 3.7. Functional connectivity strength and clustering in response to reboxetine. (A) 
Mean whole-brain unsigned functional connectivity and clustering coefficient for the placebo (n 
= 11) and reboxetine (n = 11) study groups. *: p < 0.05, *: p < 0.01, error bars: s.e.m. (B) 
Clustering coefficient as a function of mean functional connectivity for the placebo and 
reboxetine study groups. (C) Distribution of voxels by the number of graph connections that 
each voxel makes (i.e., cardinality). The data are shown separately for the reboxetine study 
group (n = 11), for participants of the placebo group for whom mean functional connectivity 
was in the same range as in the reboxetine group (< 0.07, n = 6), and for participants of the 
placebo group for whom functional connectivity was stronger (> 0.07, n = 5). Inset: 
magnification of marked area to show differences between groups in the high cardinality range. 
Shaded area: s.e.m. (D) Exemplary horizontal brain images (MNI Z = 0), showing the spatial 
arrangement of high and low cardinality voxels in participants with low (0.007, reboxetine 
group) and high (0.03, placebo group) clustering coefficients. Note that cardinality is less 
uniform in the high clustering image, and that high cardinality voxels are distributed 
throughout the brain. 
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3.3.2 Signs of decreased gain? 

While weaker and more distributed functional connectivity is suggestive of low gain, it can also 

result from an increase in norepinephrine and gain that exceeds physiological levels. This can be 

demonstrated in our neural network models: when gain was increased in the model to such a 

degree that, on average, half of the model’s units were at saturation levels of activity, unit-to-

unit correlations started decreasing with increasing gain (Figure 3.8A). However, this decrease 

in correlations was not coupled with a decrease in the clustering coefficient as was the case in 

our fMRI data. Nevertheless, clustering coefficients are sensitive to the underlying structure of 

the network, prompting us to examine these effects in a more structured network. Our 

simulations showed that in a network composed of multiple groups of units with strong within-

group connections and weak between-group connections the clustering coefficient did drop 

with the weakening of correlations at high levels of gain (Figure 3.8B). 

To determine whether weaker functional connectivity in the reboxetine group resulted from 

low gain or from exceedingly high levels of gain, we thus examined the absolute mean-

corrected blood-oxygen-level dependent (BOLD) signal. By definition, increased gain should 

always drive activations towards maximal or minimal levels (Figure 1.2), regardless of network 

structure. Thus, provided that activations are mean corrected, absolute activation levels should 

increase monotonically with gain (Figure 3.8, mean activation level). Indeed, we have seen 

previously that pupillary indices of high norepinephrine are associated with a higher mean 

BOLD signal (see section 3.1). Here, however, mean BOLD signal was similar in the reboxetine 

group and in participants from the placebo group with similarly low functional connectivity 

levels (FC < 0.07; t15 = 0.3, p = 0.73), but higher in participants from the placebo group that 
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had stronger functional connectivity (FC > 0.07; t14 = 2.3, p < 0.05; Figure 3.9). This result 

indicates that weaker functional connectivity in the reboxetine group was most likely a result of 

low, not high gain.   

 

 

 

Figure 3.8. Neural network simulations of the effect of gain on activations and correlations. 
Mean unsigned unit-to-unit correlation, clustering coefficient, saturation level, and mean 
unsigned activation are shown as a function of gain. Saturation level reflects the proportion of 
units whose activation is close to maximal (>0.95) or minimal (<0.05) levels. 500 trials were 
conducted for each of 100 randomly constructed networks. Error bars are too small to observe. 
(A) Results of a random 1000-unit model. All weights were drawn from the same uniform 
distribution. (B) Results of a “structured” model, consisting of ten 100-unit groups, with strong 
weights between units of the same group, and weak weights between units of different groups. 
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3.4 Discussion 

We investigated the existence of brain-wide fluctuations in neural gain using pupillometry, 

fMRI and a pharmacological manipulation. Pupil diameter indices of LC-NE function were 

associated with changes in the variance of the BOLD signal, and in BOLD response to task 

stimuli, that are predicted by changes in gain. In addition, fMRI data were characterized by 

global fluctuations in the strength of functional connectivity, as would be expected from global 

modulation of gain, and these fluctuations were tracked by pupillary indices of LC-NE function. 

Moreover, these pupillary indices were correlated with the degree to which functional 

connectivity was clustered, as predicted by our neural network modeling. These findings 

support existing theory that implicates the LC-NE system in global modulation of neural gain 

(Servan-Schreiber et al., 1990; Aston-Jones & Cohen, 2005). Additionally, our clustering 

analysis extends this theory by suggesting that high gain is associated with a shift from a 

widely distributed pattern of neural processing to a more tightly clustered pattern, which 

potentially mediates more selectively focused processing. The behavioral consequences of this 

shift in the mode of processing will be the topic of the remaining chapters.  
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Figure 3.9. Mean absolute mean-
corrected BOLD signal. Data are shown 
separately for the reboxetine study 
group (n = 11), for participants of the 
placebo group for whom mean functional 
connectivity was in the same range as in 
the reboxetine group (< 0.07, n = 6), and 
for participants of the placebo group for 
whom functional connectivity was 
stronger (> 0.07, n = 5). Weaker 
functional connectivity was associated 
with lower mean activation levels, which 
is suggestive of lower gain. *: p < 0.05. 
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In contrast to our predictions, functional connectivity strength and clustering decreased in 

response to reboxetine, a NE reuptake inhibitor. These results are surprising since NE is 

thought to increase, not decrease gain. Although these results could potentially be explained by 

the chaotic dynamics that may characterize unusually high levels of gain, weaker functional 

connectivity in our data was associated with a lower mean BOLD signal, making such an 

interpretation unlikely. Thus, our findings suggest that neural gain is decreased in response to 

reboxetine. 

How can norepinephrine reuptake inhibition, presumably accompanied by an increase in levels 

of norepinephrine, result in a decrease in gain? First, reuptake inhibition does not only increase 

a neurotransmitter’s extracellular level, but also changes its spatial profile. For example, 

inhibition of dopamine reuptake increases extrasynaptic dopamine levels, but not its 

intrasynaptic levels (Cragg and Rice, 2004). A similar effect has been suggested to follow 

norepinephrine reuptake inhibition (Bönisch and Brüss, 2006). A shift in the balance between 

intrasynaptic and extrasynaptic norepinephrine transmission may be further facilitated by the 

suppressive effect of reboxetine on LC-NE activity (Szabo and Blier, 2001). In addition, 

differences in dose, spatial and temporal profile of norepinephrine transmission may also 

change the type of adrenergic receptor that is primarily activated by norepinephrine. 

Indeed, further investigation of the neuromodulatory effect of NE indicated that adrenergic 

stimulation may in fact suppress response to glutamate (i.e., reduce neural gain) when applied 

in high doses or if β receptors are selectively stimulated (Devilbiss & Waterhouse, 2000). It has 

thus been suggested that NE increases neural gain at low doses, but that further increases in 

NE can decrease gain. Since our pupil diameter study progressed at a slow pace (inter-trial 

intervals were 6 to 10 s long), it is possible that participants were at a state of low arousal, and 
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thus had low LC-NE activity. Therefore, in sum, our findings seem to suggest an inverted U-

shaped relationship between NE and gain, echoing recent single-cell electrophysiology 

findings. In general, though, any one of the aforementioned differences between physiological 

NE function and the effect of reuptake inhibition may explain why the effect of reboxetine in 

our data was consistent with lower, not higher gain.  

3.5 Conclusion 

The present findings suggest that brain function is characterized by global fluctuations in 

neural gain, which are modulated by the LC-NE system, and that increased gain is associated 

with a shift from a widely-distributed to a tightly clustered pattern of neural interactions. 

Response to pharmacological manipulation indicates that gain may increase in response to NE 

at low NE levels, but decrease in response to NE at high NE levels. It is unclear, however, 

whether a decrease in gain would be observed in response to physiological NE activity as well. 

3.6 Appendix: Methods 

3.6.1 Pupil diameter study 

3.6.1.1 Participants  

36 participants (mean age 25.1, age range 18-61, 22 females) performed the behavioral 

experiment and 35 participants (mean age 20.5, age range 18-30, 25 females) performed the 

fMRI experiment. Participants were from the Princeton University area, and gave written 

informed consent before taking part in the study, which was approved by the university’s 
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institutional review board. Participants received monetary compensation for their time, as well 

as a bonus according to their performance (4 cents per reward point, $8.04-$10.72, mean $9.47).  

3.6.1.2 Stimuli 

To minimize luminance-related changes in pupil diameter, all stimuli (which were either words 

or images) were made isoluminant with the background, to best approximation. Word colors 

were adjusted to be isoluminant using the flicker-fusion procedure (Lambert et al., 2003) on the 

display systems that were used in the experiments. More complex images, which consisted of 

many colors, were adjusted by scaling all colors so as to equate the mean estimated luminance 

with the background. For this purpose, luminance of each color was estimated based on its 

RGB values as 0.2126∙R + 0.7152∙G + 0.0722∙B (http://www.w3.org/Graphics/Color/sRGB). 

The mean deviation of luminance within images was 29% (range 0% to 76%). Since within-

image variance and deviation of the display system from the sRGB standard might cause slight 

differences in luminance perception, all of the analyses based on pupil dilation response were 

repeated using pupil responses to word stimuli only, which did not suffer from these sources of 

variance. The results of these analyses were similar to those reported here, and are thus not 

reported for the sake of brevity.  

Stimuli were presented using MATLAB software (MathWorks) and the Psychophysics 

Toolbox (Brainard, 1997) using a projector outside the MRI scanner that displayed the stimuli 

onto a translucent screen located at the end of the scanner bore (fMRI experiment), which 

participants viewed through a mirror attached to the head coil. To compare BOLD responses to 

task-relevant and task-irrelevant stimuli, 72 task-irrelevant auditory stimuli (phonemes), which 

participants were instructed to ignore, were played at random times during the inter-trial 
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intervals in the fMRI experiment (4 stimuli per game). The phonemes were obtained from 

http://www.wikipedia.org and were at most 1 s long.  

3.6.1.3 Behavioral task  

The task consisted of 18 games, in which participants chose between pairs of stimuli and 

received monetary reward according to their choices. Each game included 12 trials, each of 

which took up to 5 seconds. Inter-trial interval was varied randomly (uniformly) between 6 s 

and 10 s. The task is described in detail in Chapter 4.  

3.6.1.4 Eye tracking  

An ASL Long Range Optics unit (Applied Science Laboratories, MA) was used to measure 

pupil diameter at a rate of 60 samples per second during the fMRI experiment. Pupil diameter 

data were processed in MATLAB to detect and remove blinks and other artifacts. Specifically, 

samples below 66.67% or above 150% of each block’s median sample, or differing by more than 

10% from the previous sample, were labeled as artifactual. Then, based on an examination of 

the artifact-triggered average, we labeled as artifactual, in addition, 6 samples before and 2 

samples after every sample already labeled as artifactual. All artifactual samples were replaced 

using linear interpolation. At the beginning of the experiment, a measurement of pupil diameter 

at rest was taken for a period of 45 s. All subsequent pupil dilation responses were normalized 

by the pre-experiment resting pupil diameter. For each trial, baseline pupil diameter was 

computed as the average diameter over a period of 1 s prior to the beginning of the trial (at the 

end of the inter-trial interval, at which point pupil activity from the trial itself should have 

subsided). Pupil dilation response was computed as the difference between the peak diameter 
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recorded during the 4 s following trial onset and the preceding baseline diameter (Figure 3.1A). 

Baseline pupil diameter and dilation response measurements in which more than half of the 

samples contained artifacts were considered invalid and excluded from the analysis. Only 

participants with at least 30 valid trials were included in the across-participant analysis of mean 

pupil dilation (n = 30). Only participants for whom at least 6 games included 6 valid trials each 

were included in the game-by-game analysis of baseline pupil diameter (n = 28). 

3.6.1.5 fMRI Data Acquisition  

Functional (EPI sequence; 34 slices covering whole cerebrum; resolution = 3 × 3 × 3 mm with 

1-mm gap; repetition time (TR) = 2.0 s; echo time (TE) = 30 ms; flip angle = 90°) and 

anatomical (MPRAGE sequence; 256 matrix; TR, 2.5 s; TE, 4.38 ms; flip angle, 8°; 1 × 1 × 1 

mm resolution) images were acquired using a 3T Allegra MRI scanner (Siemens, Erlangen, 

Germany).  

3.6.2 Pharmacological manipulation study 

3.6.2.1 Participants 

Twenty-two healthy volunteers participated in the study (age range: 23–38 years). All 

participants were free of medication, apart from contraceptive pills. Exclusion criteria included 

a current or previous history of psychiatric disorder (assessed with the Structured Clinical 

Interview for DSM: Clinical Version [SCID-CV]; Frances et al., 1995), substance abuse, and 

serious physical and neurological problems. Participants who reported any current use of illicit 

drugs were excluded. Participants gave written informed consent and were reimbursed for 
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their time and traveling expenses. The study was undertaken with ethics approval granted by 

the Oxfordshire Psychiatric Research Ethics Committee. 

3.6.2.2 Procedure 

The study followed a between-groups, double-blind, randomized design with two groups: a 

reboxetine group, and a placebo group. The reboxetine group received a single 4mg oral dose 

of the drug. The placebo group received a matched placebo capsule. The two groups were 

matched with respect to age (reboxetine group: 28.1 ±3.0 years, placebo group: 26.5 ±4.5 

years). Participants attended the hospital having fasted for 3 hours prior to and during study 

participation to ensure similar rates and levels of reboxetine absorption. They were briefed on 

scanner safety and gave written consent before the study commenced. In order to confirm the 

absorption of reboxetine at the time of testing, salivary cortisol, which is indicative of central 

norepinephrine levels, was measured at baseline, before entering the scanner, and at the end of 

the study, using an in-house double antibody radioimmunoassay (intra- and inter-assay 

coefficients of variation were 3% and 10%, respectively; lower limit of detection was 0.5 

mmol/L). Previous work has shown that levels of salivary cortisol peak approximately 2 hr 

after the administration of reboxetine and remain elevated for at least 2 hr (Hill et al., 2003). 

Testing therefore began 2 hrs after administration of the drug.  

3.6.2.3 Behavioral Task 

Participants performed an autobiographic memory retrieval task, in which they recalled specific 

memories in response to different word cues, for a total time of 9 min. All participants were 

debriefed after exiting the scanner and were asked to report their memories in order to ensure 
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that they had performed the task as instructed. Further details about the task, as well as results 

of task-based analyses of the fMRI data are reported elsewhere (Papadatou-Pastou et al., 2012).  

3.6.2.4 fMRI Data Acquisition 

Imaging was performed at the University of Oxford Centre for Clinical Magnetic Resonance 

Research Unit, at the John Radcliffe Hospital in Oxford, using a whole body 1.5-T scanner 

(Siemens Sonata Medical Systems) with a standard quadrature birdcage head coil. Structural 

images were acquired with a 3-dimensional T1-weighted FLASH sequence (repetition time 

[TR] = 12 ms, echo time [TE] = 5.6 ms, flip angle = 19°, 1-mm isotropic voxels, matrix = 

256 × 160 × 208; elliptical sampling, orientation = coronal, acquisition time = 5 m 14 s). 

Functional images were acquired with a T2*-weighted echoplanar imaging sequence (TR = 3 s, 

TE = 50 ms, 32 slices, matrix = 64 × 64, 3 mm3 isotopic voxels, 180 volumes per participant).  

3.6.3 fMRI data processing 

3.6.3.1 fMRI Data Preprocessing 

Data were processed using MATLAB and SPM8 (Wellcome Trust Centre for Neuroimaging, 

UCL). Functional data were motion corrected, and low-frequency drifts were removed with a 

temporal high-pass filter (cutoff of 0.0078 Hz). Images were normalized to Montreal 

Neurological Institute (MNI) coordinates. No spatial smoothing was applied. Brains were 

segmented into gray matter, white matter and cerebrospinal fluid (CSF). Mean Gray-matter, 

white-matter and CSF fMRI signals, and movement parameters were regressed out of 
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functional data. Cerebral and frontal lobe MNI coordinates provided with xjView 

(www.alivelearn.net/xjview8) were used to restrict analysis to the cerebri.  

Data from 4 participants in the pupil diameter study whose head moved by more than 2 mm or 

2° were excluded from further analysis, leaving 30 participants. To further validate the results 

of the regional and whole-brain functional connectivity analyses in the pupil diameter study, we 

repeated these analyses with alternative preprocessing in which: 1. stimulus and outcome 

presentation events (convolved with SPM’s canonical hemodynamic response function) were 

regressed out of the data. 2. Mean gray-matter signal was not regressed out. 3. The analysis 

was restricted to voxels that were activated in response to task stimuli or outcomes (p < 0.001 

uncorrected), as determined by a general linear model that included regressors for stimulus and 

outcome presentation and for movement parameters. Results were qualitatively similar to the 

original analysis and are thus not presented. 

3.6.3.2 General Linear Model analysis 

Two general linear models were used to compare the way the fMRI BOLD signal response to 

task-relevant and task-irrelevant stimuli varied with baseline pupil diameter and pupil dilation 

response. Each model included regressors for task-relevant stimuli onset, task-irrelevant 

stimuli onset, and for each of these – a parametric regressor that reflected the trial-to-trial 

variability of either the baseline pupil diameter or the pupil dilation response. In addition, 

regressors that reflect head movement parameters were included in both models. 
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3.6.3.3 Regional functional connectivity analysis 

To divide gray-matter voxels into uniformly-sized regions, we partitioned each brain 

recursively into 32 boxes as follows: first, the median X coordinate was used to split all voxels 

into two boxes. Then, each of the resulting subsets of voxels was divided by its median Y 

coordinate into two boxes. The same procedure was then repeated recursively with the median 

Z coordinates, with the median X coordinates and finally, with the median Y coordinates, 

resulting in 32 boxes of voxels. Mean functional connectivity strength was measured for each 

box in each game as the mean absolute correlation between all voxel pairs within the box. We 

then computed the across-games correlations of boxes’ mean functional connectivity strength, 

both between the boxes, and with the baseline pupil diameter and the pupil dilation response.  

3.6.3.4 Whole-brain functional connectivity analysis 

To examine functional connectivity throughout the brain, we first computed a full voxel-to-

voxel correlation matrix for each participants using the time series of all cerebral gray matter 

voxels (20786-29254 voxels per participant). In the pupil diameter study, this was done for each 

game separately. We then constructed a 2000-bin histogram of correlation (connectivity) 

strengths using the values of each correlation matrix. Game-by-game correlation between the 

pupil measurements and the number of functional connections was then computed for each bin 

separately, in order to assess whether there were fewer or more connections of this strength 

when gain increased (as assessed by pupil measurements). We also calculated the correlation 

between the pupil measurements and the mean functional connection strength, computed as the 

average absolute correlation coefficient. 
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3.6.3.5 Functional-connectivity clustering analysis 

For each functional-connectivity correlation matrix, we constructed a ‘functional connectivity 

graph’ (Eguíluz et al., 2005) in which each voxel was represented by a vertex and two vertices 

were connected if the absolute value of the correlation between their respective voxels was in 

the top 0.05% of all voxel-voxel correlations. The 0.05% threshold was chosen so as to limit 

computing time to an acceptable level, resulting in 233929 to 431794 connections per graph. In 

the pharmacological manipulation study, which involved a much lower number of correlation 

matrices (22 vs. 540), we used a threshold of 1%, resulting in 2160185 to 3342793 connections 

per graph. To quantify the degree to which functional connectivity was tightly clustered, rather 

than broadly distributed, we computed each graph’s clustering coefficient (Luce & Perry, 1949), 

defined as the number of closed triplets of vertices divided by the number of all connected 

triplets of vertices. Images of connectivity graphs were produced using custom-made software 

in the Processing programming environment (Reas & Fry, 2007).   

3.6.3.6 Statistical analysis 

Statistical analysis was carried out using MATLAB. All correlations values reported are 

Pearson correlation coefficients. Averaging of correlation coefficients was preceded by Fisher r-

to-z transformation and followed by Fisher’s z-to-r transformation, so as to mitigate the 

problem of the non-additivity of correlation coefficients (Fisher, 1921). Group-level significance 

of within-participant correlations was tested statistically by converting the correlation 

coefficients to z values, and then using a t test to determine whether the mean of this set of 

values is significantly different from 0. Significance of across-participant Pearson correlation 
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coefficients was computed using the Student’s t-distribution. All tests were two tailed except 

where indicated otherwise.   

3.6.4 Neural network model 

To examine theoretically the relationship that should hold between gain, activations and 

functional connectivity, we constructed a recurrent neural network of 1000 fully connected 

units. Weights were randomly sampled from a uniform distribution between –0.01 and 0.01. On 

every trial, activations (a) were randomly sampled from a uniform distribution between 0 and 1, 

and then updated in a random order until each unit was updated 5 times. Unit i activation was 

computed as: 

𝑎𝑖 = 𝑓 (∑ 𝑤𝑖𝑗𝑎𝑗

𝑗

)                              (3.1) 

where wij is the connection weight from unit j to unit i, and f(x) is the sigmoid activation 

function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑔𝑎𝑖𝑛∙𝑥
.                            (3.2) 

until each unit was updated 5 times. The same gain was used for all units. The end state was 

considered as the activation pattern of that trial. For each level of gain, we conducted 500 trials 

and computed the degree to which each pair of units was correlated across trials. The full unit-

to-unit correlation matrix was used to compute the clustering coefficient as described below for 

the fMRI data. We repeated the simulation 100 times, each time with a different randomly 

determined weight matrix. Finally, we also tested the relationship between gain and unit-to-
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unit correlations in an alternative “structured” network, which consisted of 10 groups of 100 

units, with stronger connections within the groups (range: -0.05 to 0.05), and weaker 

connections between the groups (range: -0.0056 to 0.0056). The total sum of weights was equal 

to that of the non-structured network. 
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Neural gain and the focus of learning* 

Having examined in the previous chapter the neural effects of gain, as manifested in whole-brain 

fMRI, we now turn to the behavioral effects of gain. In this chapter we will examine the effects 

of gain on learning from multidimensional information. When presented with a set of stimuli, 

some people may attend to, and therefore learn most about concrete visual details, while others 

may attend to abstract semantic concepts associated with those stimuli. Evidence suggests that 

such variations in attention and learning may reflect stable individual predispositions (Felder & 

Silverman, 1988; Coffield et al., 2004; Felder & Spurlin, 2005). Here, we hypothesize that the 

expression of these predispositions is modulated by global variations in neural gain. 

Specifically, we propose that high gain focuses attention and learning on dimensions of the 

environment to which one is predisposed to attend, whereas low gain broadens attention, 

thereby weakening the constraint of prior dispositions on attention and learning.   

                                                 

 

* The material in this chapter appeared in Eldar, E., Cohen, J. D., & Niv, Y. The effects of neural gain on attention 
and learning. Nature neuroscience 16, 1146-1153 (2013), and was presented at SfN 2012, the Third Symposium on 
Biology of Decision Making 2013, and MathPsych 2013. 
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We first use a simple neural network model in which different neural representations compete 

through mutual inhibition, to demonstrate that applying a high global level of gain to all 

network units can make strong neural representations even more dominant, while further 

weakening weaker competing representations. Accordingly, we hypothesized that high gain 

results in processing that is more narrowly focused on the most strongly represented features 

of perceived information.  

To test our hypotheses, we then use a novel task that quantifies the degree of learning about 

perceptual versus semantic features of stimuli (Figure 4.1), together with a standard trait 

questionnaire that assesses predispositions to attend to and learn about perceptual versus 

semantic dimensions of stimuli (Felder & Spurlin, 2005). In general, we expected participants to 

exhibit better learning for the type of features (perceptual or semantic) to which they are 

predisposed. More importantly, we hypothesized that the degree to which participants would 

selectively learn about their preferred type of features would be modulated by neural gain. 

While it is impossible to directly measure gain in human participants, we have seen in previous 

chapters that pupil diameter may provide an easily measurable indirect index of gain 

(Section 2.3.3 & Chapter 3). Specifically, while baseline pupil diameter can be used to monitor 

changes in gain for an individual, phasic pupil dilations, which are inversely related to the 

baseline diameter, may provide an inverse index of gain that is better suited for between-

participant comparisons, since they can be normalized to the baseline diameter, and thus, 

dissociated from factors such as physical pupil size that can confound baseline measurements.  
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Figure 4.1. Experimental design of the visual/semantic learning task. In each trial, participants 
were presented with a choice between two images (objects or words). Participants were 
rewarded according to their choices, with counterfactual rewards also displayed. In this 
particular game, to maximize reward participants had to learn by trial and error that office-
related images provide a higher reward than food-related images (semantic features), and that 
grayscale images provide a higher reward than color images (visual features). Each trial 
involved two new stimuli. 

In addition, our neural network modeling of the effect of gain on learning suggested that the 

link between gain and focused learning should be mediated by a more tightly clustered pattern 

of neural interactions through which processing is selectively focused on particular input 

streams. In contrast, when gain in the model was low, widely distributed interactions mediated 

the concurrent processing of multiple stimulus features. Accordingly, we predicted that the 

degree to which functional connectivity is clustered, as measured using graph-theoretic 

analysis (Eguíluz et al., 2005), would correlate with a bias in learning performance toward the 

type of features that individual participants are predisposed to process. 

Trial 1 

 

 

 

 

 

 

 

Trial 2 
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4.1 A neural network model  

First, to formalize our hypothesis about the effect of gain on attention and learning, we 

constructed a simple neural network model of the task, that learned a stimulus-reward 

relationship from examples (Figure 4.2A,B). The input to the network consisted of two separate 

streams of information, each representing one dimension (e.g., visual or semantic). One feature 

in each dimension was associated with a monetary reward whereas the other was not. We 

simulated a predisposition to attend to one dimension more than to the other by making 

connection weights in one stream stronger than those in the other stream (while maintaining a 

fixed sum of weights). We then examined the degree to which the network learned to associate 

the reward-predicting feature in each stream with a reward output, as a function of both the 

predisposition of the network and the level of gain.  

With low gain, inputs from both the strong and weak streams propagated to the subsequent 

layers (Figure 4.2A), and the relationship with reward was learned for both types of features 

(that is, predisposition did not significantly bias learning; Figure 4.2C, black). In contrast, when 

gain was high, inputs in the strong stream dominated representations in the middle layer 

(Figure 4.2B) and learning of the input-reward relationship tended to proceed only on 

strongly-represented features (i.e., learning was biased towards features that the network was 

predisposed to represent; Figure 4.2C, gray). Thus, the simulations demonstrate that increased 

gain can focus learning on those features that the network is predisposed to represent. The 

simulations also demonstrate that gain affects communication patterns in the network: with 

lower gain multiple input streams interact (Figure 4.2A); but with higher gain weak input 
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streams have less of an effect on other parts of the network, with the result that network 

connectivity is more tightly clustered and separate subnetworks are formed (Figure 4.2B). 

 

 

Figure 4.2. Simple reward-learning neural network. (A, B) Arrows denote excitatory 
connections, round edges denote inhibitory connections. Darker fill color indicates more 
activity and thicker lines indicate stronger weights in examples with low (A) and high (B) gain. 
With high gain, activity of weakly represented features (type 2) is blocked at the middle layer 
(circled), so the mapping between type 2 features and reward cannot be learned. This condition 
effectively separates the second input stream from the rest of the network. (C) Simulated 
learning of mapping between the reward-predicting features and reward. The relative strength 
of learning for the two features is shown as a function of the ratio between the input weights 
(varied between 1/2 and 2/1), for different levels of gain. The higher the gain, the more 
learning performance depends on the relative weight of each input stream. 

4.2 Pupil diameter and adherence to predispositions 

To test for the predicted relationship between pupil responses (as an index of neural gain) and 

the influence of attentional predispositions on learning, we asked participants to choose 

between pairs of multidimensional images (comprised of visual and semantic features) and 

rewarded them according to their choices. Unbeknownst to the participants, within each 
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stimulus set one visual feature and one semantic feature predicted monetary reward 

(Figure 4.1). For example, in one stimulus set, office-related images but not food-related images 

(semantic features) yielded reward and, similarly, grayscale images but not color images (visual 

features) yielded reward (rewards were additive so that a grayscale office-related image yielded 

twice the reward). Throughout 18 games, each with different semantic and visual dimensions 

and unique stimuli, we measured participants’ visual and semantic performance separately 

using trials in which stimuli differed on either the visual or the semantic features, but not both. 

In addition, we assessed each participant’s predisposition to process either the visual or 

semantic features using the Index of Learning Styles (ILS) questionnaire (Felder & Spurlin, 

2005). The ILS questionnaire contrasts a ‘sensing’ learning style that indicates a predisposition 

to process and learn about sense-related data such as visual features, with an ‘intuitive’ learning 

style that indicates a predisposition to learn about abstract concepts such as semantic 

categories. 

The results showed that a more intuitive (and less sensing) learning style was correlated with 

better performance on the semantic trials compared to the visual trials (r = 0.28, p = 0.05 one 

tailed; Figure 4.3A; see Figure 4.4 for overall performance levels), consistent with a 

predisposition to attend to and learn about semantic vs. visual features of the stimuli. Critically, 

the degree to which task performance matched individual predisposition was strongly 

anticorrelated with mean pupil dilation response across individuals (r = –0.96, p < 0.01; 

Figure 4.3B). Given the inverse relationship between pupil response and gain discussed above, 

our finding suggests that the association between task performance and individual 

predisposition was itself associated with high gain. These behavioral results were fully 

replicated in a second experiment in which a different group of participants performed the same 
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Figure 4.3. Relationship between learning performance and ILS scores. (A) Difference in 
learning about semantic and visual features in the behavioral experiment as a function of 
sensing-intuitive score on ILS questionnaire. Negative values indicate better visual 
performance (Y axis) and a sensing learning style (X axis), while positive values indicate better 
semantic performance and an intuitive learning style. n = 35. (B) Correlation between ILS 
sensing-intuitive score and visual-semantic performance difference on the task (as shown in 
(A)), as a function of mean pupil dilation response. To examine the degree to which task 
performance matched ILS score in participants with different levels of pupil response, 
participants were divided into 5 bins according to mean pupil dilation. Each data point 
represents a group of 7 participants. To illustrate, data points from the individual members of 
the group with lowest mean pupil response appear in black in (A). (C, D) Replication of 
behavioral results in the fMRI experiment with a different group of participants. n = 30. In (D) 
each data point represents a group of 6 participants. 
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Figure 4.4. Performance on visual and semantic trials. Chance performance level is 0.5. (A) 
Behavioral experiment. n = 35. (B) Imaging experiment. n = 30. Performance on visual trials 
was lower in the imaging experiment compared to the behavioral experiment, most probably 
due to a lower quality visual display, but it was still significantly above chance (mean 0.54, t29 = 
5.05, p < 10-5). 

task while being scanned using fMRI (Figure 4.3C,D). Moreover, in both experiments mean 

pupil dilation response did not correlate with overall task performance (behavioral experiment: 

n = 35, r = –0.13, p = 0.44; imaging experiment: n = 30, r = 0.04, p = 0.82), mean reaction times 

(following log transform; behavioral experiment: n = 35, r = 0.17, p = 0.33; imaging 

experiment: n = 30, r = 0.06, p = 0.77), or with answers to debriefing questions regarding 

interest, motivation and attention (Table 4.1). These results suggest that the relationship 

between pupil responses and adherence to one’s learning predisposition cannot be explained in 

terms of fluctuations in overall level of arousal or attention to the task. Further analysis 

confirmed that the decrease in correlation between ILS score and task performance for 

participants with higher pupil response (lower gain) was not simply a result of a more limited 

range of ILS scores for these participants (Figure 4.5). 
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Correlation with mean pupil 

response 

Behavioral Experiment (n = 

35) 
Imaging Experiment (n = 29) 

   

Interest r = 0.26, p = 0.14 r = -0.39, p = 0.038 

Motivation r = 0.23, p = 0.19 r = -0.45, p = 0.013 

Difficulty to maintain attention  r = 0.21, p = 0.27 

   

Correlation with match 

between task performance 

and ILS score (i.e., adherence 

to predispodition) 

Behavioral Experiment  

(n = 5 groups of 7) 

Imaging Experiment (n = 29) 

(n = 5 groups of 6) 

   

Interest r = -0.46, p = 0.44 r = 0.43, p = 0.47 

Motivation r = -0.20, p = 0.75 r = 0.72, p = 0.17 

Difficulty to maintain attention  r = -0.33, p = 0.58 

 

Table 4.1. Post-experiment ratings, pupil response and task performance. Relationship of post-
experiment ratings of interest, motivation and difficulty to maintain attention, with pupil 
diameter (top) and adherence to predispositions in the task (bottom). Following the experiment, 
participants were asked to rate between 1 to 5 how interesting they found the experiment 
(Interest), how motivated they were to earn as much money as possible (Motivation), and, in 
the imaging experiment, how difficult it was for them to maintain attention (Difficulty to 
maintain attention). One participant in the imaging experiment did not fill out the debriefing 
questionnaire. Thus, in the group-based analysis (bottom panel), the group with the lowest 
ratings consists of 5 participants only. 
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Figure 4.5. ILS score range and the relationship between ILS score and task performance. In 
the first experiment, high mean pupil response was associated not only with a decrease in 
correlation between ILS scores and task performance (A, C; r = -0.96, p < 0.005), but also with 
a decrease in the range of ILS scores (B; r = -0.85, p = 0.07). Decrease in range may thus serve 
as an alternative explanation for the decrease in correlation. However, in the second (imaging) 
experiment the range of ILS scores did not vary with mean pupil response (r = -0.03, p = 0.97), 
while the decrease in correlation between ILS scores and task performance recurred (r = -0.93, 
p < 0.01; Figure 4.3D). Furthermore, equating the range of ILS scores between the different 
groups of participants of the first experiment (D, E), did not eliminate the decrease in 
correlation between ILS scores and task performance that was observed in the first experiment 
(F). Thus, we can conclude that low mean pupil response was associated with a decrease in 
correlation between ILS scores and task performance irrespective of ILS score range. 

(A) Visual-semantic performance difference on the behavioral task as a function of sensing-
intuitive score on the ILS questionnaire. Negative values indicate better visual performance (Y 
axis) and a ‘sensing’ learning style (X axis), while positive values indicate better semantic 
performance and an ‘intuitive’ learning style. Color indicates binning according to mean pupil 
response, with a redder color indicating lower pupil response. n = 35. (B) Range of ILS sensing-
intuitive scores for each group of participants. Participants were divided into 5 groups 
according to mean pupil response. Each data point represents a group of 7 participants. (C) 
Correlation between ILS sensing-intuitive score and visual-semantic performance difference in 
the task, as a function of mean pupil response. (D, E, F) ILS score range was equated for all 
groups by discarding the data of 6 participants whose score was lower than -9 or larger than 3, 
and merging the two groups whose mean pupil response was lowest. 
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4.3 Functional connectivity clustering and adherence to 

predispositions 

To test whether the link between gain and focused learning was mediated by a more tightly 

clustered pattern of neural interactions, as predicted by our neural network simulations, we 

constructed a functional connectivity graph for each participant and each game (18 graphs per 

participant), and computed the clustering coefficient of each of these graphs (see Section 3.2.3 

for details). In Chapter 3, we have already seen that, as predicted, the degree of clustering of 

functional connections was correlated with a pupillary index of gain (Figure 3.6). Here, we 

examine whether clustering also correlated with the degree to which learning was focused on 

stimulus features to which the individual was predisposed to attend. Consistent with our 

hypothesis, we found a significant game-by-game correlation between the clustering coefficient 

and a shift in learning performance toward the type of feature that the ILS scores indicated as 

preferred by each participant (mean r = 0.08 across participants, t29 = 2.2, p < 0.05).  

Concordantly, ILS score was correlated with the relationship between clustering coefficient and 

task performance (r = 0.35, p < 0.05; Figure 4.6). Thus, when participants’ neural functional 

connections were more tightly clustered, task performance more strongly reflected individual 

predispositions. 
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4.4 Discussion 

We investigated the relationship between global, brain-wide fluctuations in neural gain and the 

effect of individual priors or attentional predispositions (so-called ‘learning styles’) on trial-and-

error learning behavior. More specifically, we used pupil-diameter measures as a proxy for 

global levels of neural gain, to test the hypothesis that predispositions constrain learning more 

strongly when gain is higher. In two experiments, the degree to which learning performance 

followed individual predisposition was strongly correlated with pupil response. In addition, we 

showed that within participants, the relationship between pupil diameter and focused learning 

was mediated by the clustering of functional connections. Taken together, these results support 

the hypothesis that high gain constrains the type of information that is learned from 

multidimensional sensory input in accordance with one’s prior processing dispositions.   

The results of our study provide a neural-computational framework within which past findings 

concerning the relationship of stress and norepinephrine levels to cognitive function can be 

understood. A large body of psychological research in humans suggests that stress (which is 

associated with high levels of norepinephrine) reduces the breadth of attention (Easterbrook, 
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1959; Staal, 2004). Another line of studies shows that stress and norepinephrine shift rat and 

human behavior from a flexible mode of behavior to a more rigid habitual mode in which 

previously established stimulus-response associations are followed (Dias-Ferreira et al., 2009; 

Schwabe & Wolf, 2011; Schwabe et al., 2010; Schwabe et al., 2011). Stress and norepinephrine 

have also been linked to diminished performance in tasks requiring cognitive flexibility 

(Alexander et al., 2007; Campbell et al., 2008). Our findings suggest an explanation of these 

previously observed phenomena in terms of the influence of the LC-NE system in globally 

modulating neural gain. Increased gain narrows attention by strengthening already strong 

neural representations at the expense of competing weaker representations. This, in turn, 

favors previously established patterns of behavior, which are subserved by well-established 

neural circuits and thus tend to form stronger representations.   

We attempted to identify the effects of neural gain – a computational concept defined in terms 

of the input-output function of neural units – on behavior and on whole-brain fMRI metrics. 

This constitutes a novel, promising approach by which low-level principles of neural function 

may be linked via computational modeling to system-level neural and behavioral phenomena. 

However, the disadvantage of our approach is that it necessarily relies on a broad set of 

assumptions. Specifically, in making our predictions, in this and the previous chapter, we 

assumed that changes in pupil diameter would track changes in neural gain. Furthermore, our 

fMRI predictions were based on the assumption that the BOLD signal would reflect the neural 

effects of gain simulated by changes in firing rates in our computational models. This last 

assumption is particularly tenuous, since several studies have found dissociations between 

spiking activity and the BOLD signal specifically under conditions that are thought to involve 

changes in neuromodulation (Maier et al, 2008; Sirotin & Das, 2009; Logothetis, 2008). 
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Nevertheless, we presented here a diverse set of behavioral and imaging results that precisely 

match the predictions made by our neural network simulations of the effect of gain on neural 

activity, connectivity and behavior. This set of converging results, in addition to evidence from 

past studies, provides substantial support for the assumptions underlying this study.  

The focusing effect of neural gain on processing may at first glance seem to be in conflict with 

previous accounts suggesting that tonically high gain reduces task-focused attention (Aston-

Jones & Cohen, 2005). However, while our findings suggest that increased gain focuses 

attention on predisposed dimensions of sensory stimuli, these need not be related to the task at 

hand. Rather, if distracting stimuli are salient enough to evoke strong neural representations, 

our theory predicts that high gain would be associated with increased attention to distracters, 

and thus, with reduced task-focused attention. Our findings also fit well with a previous 

suggestion (Dayan & Yu, 2005) that phasic norepinephrine responses, which are stronger in 

low gain states (low tonic LC-NE activity), facilitate behavioral flexibility in response to 

unexpected target stimuli.  

Several of our results drew upon graph-theoretic methods, which have been increasingly used 

to analyze both structural and functional brain imaging data (Bullmore & Sporns, 2009; 

Bullmore & Sporns, 2012). The strength of these methods lies in their ability to capture, by 

simple quantitative measures, characteristics of networks that are comprised of a very large 

number of elements. Most previous studies employing graph-theoretic analyses have 

investigated stationary aspects of neural processing networks, but a few recent studies have 

begun to examine how measures of functional brain network topology vary with behavior 

(Bassett et al., 2011; Kitzbichler et al., 2011; Nicol et al., 2012). The latter, however, analyzed 

relatively small networks (<120 nodes). In contrast, we used graph-theoretic measures to 
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examine how the topology of high-resolution whole-brain networks (>20000 nodes) varies with 

behavior. Our results indicate that such an analysis can provide meaningful insights into the 

way sensory information is processed and learned.  

4.5 Conclusion 

Our findings suggest that processing predispositions can influence learning, but that these 

priors are not always binding. Rather, brain-wide fluctuations in neural gain affect the 

distribution of neural interactions, thereby modulating the breadth of attention, and thus the 

extent to which processing and learning are constrained by prior dispositions.  

4.6  Appendix: Methods 

4.6.1 Neural network model 

We modeled learning of stimulus-reward mapping from examples using a three-layer neural 

network. The network consisted of a 4-node “stimulus” input layer, in which the stimulus was 

represented using two types of features (e.g., in the case of our task, semantic and visual 

features of the stimulus), a “representation” middle layer and a “reward” output layer in which 

activity represented the expected reward (Figure 4.2A,B). As in our task, there were two 

possible features in each type, one of which was associated with a reward output. Our aim was 

to examine how associative learning changes as a function of gain and of the network’s 

predisposition to represent either of the stimulus features more strongly. Thus, each stimulus 

consisted of a binary input vector where one input feature of each type was set to 1 (and the 
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rest were set to 0), and the weights associated with each input reflected the degree to which the 

network is predisposed to represent that type of feature. In addition, middle layer units 

inhibited each other (weight = –1), to simulate competition for attention between different 

representations. Unit i activation was computed as: 

𝑎𝑖 = 𝑓 (∑ 𝑤𝑖𝑗𝑎𝑗

𝑗

)                              (4.1) 

where wij is the connection weight from unit j to unit i, and f(x) is the sigmoid activation 

function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑔𝑎𝑖𝑛∙𝑥
.                            (4.2) 

The parameter gain reflected the level of neural gain in the network, and had the same value for 

all units. To determine how much inhibition each middle layer unit should exert, the activation 

level of each unit was first computed based on the input from the input layer. Then, the 

resulting values were used to compute the magnitude of lateral inhibition in the middle layer, 

and activation levels were recomputed.  

We ran the simulation with 15 different values of gain between 0.1 and 20, and with 16 

different settings of predisposition to one of the input streams for each level of gain. Network 

predisposition to represent feature 1 relative to feature 2 was varied between 1/2 and 2/1, and 

input-to-middle layer weights were set accordingly, under the constraint that both weights 

sum to one (e.g. for a ratio of 1/2, weight 1 was set as 0.33 and weight 2 was set as 0.67).  

On each run, each of the 4 possible stimuli and its associated reward output were presented to 

the network. The network’s task was to learn to associate between the reward-associated 
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features and a reward output, and we examined the extent to which that was learned for each of 

the input streams. Learning proceeded as follows: weights from the middle layer units to the 

output unit (woi) were initialized to 0, and the output unit activation (o) was computed according 

to equation 1. Then, the difference between the target (t) and actual output activation was used 

to update the weights to the output unit using the delta rule (McClelland & Rumelhart, 1988): 

𝑤𝑜𝑖 = 𝑤𝑜𝑖 + (𝑡 − 𝑜)𝑓′ (∑ 𝑤𝑜𝑗𝑎𝑗

𝑗

) 𝑎𝑖                  (4.3) 

where f'(x) is the derivative of the activation function, which in this case is: 

𝑓′(𝑥) = 𝑔𝑎𝑖𝑛 ∙ 𝑓(𝑥)(1 − 𝑓(𝑥)).                              (4.4) 

The learned weights woi reflected the degree to which the network learned to associate each of 

the stimulus features with the reward output. We thus used the ratio between these weights to 

represent the bias in learning performance towards either of the reward-associated features. It 

is easy to see that the only term that differentiates between the update equations of the two 

weights is ai, the activation of the respective middle layer unit. Indeed, the ratio between the 

learned weights followed the ratio between the activation of the two middle layer units. Each 

run was repeated 100 times, with a random ordering of the stimuli, and the resulting weight 

ratios were averaged.  
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4.6.2 Experimental methodology 

4.6.2.1 Participants 

36 naïve participants (mean age 25.1, age range 18-61, 22 females) performed the behavioral 

experiment and 35 naïve participants (mean age 20.5, age range 18-30, 25 females) performed 

the fMRI experiment. Participants were from the Princeton University area, and gave written 

informed consent before taking part in the study, which was approved by the university’s 

institutional review board. Participants in the behavioral experiment received monetary 

compensation according to their performance on the task (6 cents per reward point, $13.5-$16.2 

total, mean $14.88). fMRI Participants received monetary compensation for their time, as well 

as a bonus according to their performance (4 cents per reward point, $8.04-$10.72, mean $9.47).  

4.6.2.2 Stimuli 

The experiment involved 18 stimulus sets, half of which consisted of images of objects and the 

other half consisted of images of words. Words were generated using the Processing 

programming environment (Reas & Fry, 2007), and object images were collected from various 

sources on the internet using the Creative Commons search interface 

(http://search.creativecommons.org/), and edited using Adobe Photoshop CS5 (Adobe Systems 

Inc.). To minimize luminance-related changes in pupil diameter, all stimuli were made 

isoluminant with the background, to best approximation (see Section 3.6.1.2 for further details).  
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4.6.2.3 Behavioral task 

Participants chose between pairs of stimuli and received monetary reward according to their 

choices. On each trial, participants had 3 s to choose between two stimuli, after which the 

reward was presented for 2 s. Inter-trial interval was varied randomly (uniformly) between 6 s 

and 10 s. We used a relatively long inter-trial interval to allow enough time following each 

trial for the pupil dilation response to evolve (Hoeks & Levelt, 1993). To minimize inter-subject 

variability, all participants encountered the same stimulus sets in the same order. For the same 

reason, as well as to speed up learning, participants were presented with both the reward for 

their choice above the chosen stimulus, and (slightly dimmed) the reward that they could have 

received if they had chosen the other stimulus (Figure 4.1). No stimulus appeared more than 

once.  

Participants were instructed that stimuli had some properties that predict reward. They then 

underwent a short training session with a few example trials before starting the task. 

Unbeknownst to the participants, each stimulus set had one visual feature (bright background, 

blurry texture, etc.) and one semantic feature (food, sea-related, etc.) that was rewarded, and 

these differed from game to game. For example, in a particular game, choosing a grayscale 

image or an image of food led to reward while choosing a color image or of office equipment did 

not lead to reward. Rewards for the two features were additive such that choice of a stimulus 

that possessed both rewarding features resulted in two reward points.  

Each of the first two trials included one stimulus that possessed the rewarding visual and 

semantic features, and thus yielded two reward points, and one stimulus that possessed neither 

of the rewarding features, and thus yielded no reward. In the following ten trials stimuli 
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differed on either the visual (5 trials) or the semantic (5 trials) dimension, but not both. These 

trials allowed us to measure performance on the visual and semantic dimensions separately. 

Performance was computed as the proportion of trials in which the more highly rewarding 

stimulus was chosen. One fMRI participant was excluded from the analysis due to lack of 

cooperation, as evidenced by performance that was lower than chance and frequent eye closing. 

Performance of all other participants was better than chance. Following completion of the task, 

participants completed the Index of Learning Styles questionnaire (Felder & Spurlin, 2005). 

Finally, participants filled out a standard debriefing questionnaire in which they were asked to 

rate on a scale of 1 to 5 how interesting they found the experiment, how motivated they were to 

earn as much as possible, and, in the imaging experiment, how difficult it was for them to 

maintain attention during the task. 

4.6.2.4 Eye tracking 

Eye tracking methodology is described in detail in section 3.6.1.4. A desk-mounted ASL model 

504 eye-tracker (Applied Science Laboratories, MA) was used to measure participants’ left pupil 

diameter at a rate of 60 samples per s while they were performing the behavioral task with their 

head fixed on a chinrest. Only participants with at least 30 valid (i.e., mostly artifact free) trials 

were included in the across-participant analysis of mean pupil dilation (n = 35 for the 

behavioral experiment, n = 30 for the imaging experiment).  

4.6.2.5 fMRI methodology  

fMRI data acquisition and processing is described in detail sections 3.6.1.5 and 3.6.3. 
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4.6.2.6 Statistical analysis 

Statistical analysis was carried out as described in section 3.6.3.6.   
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Manipulating the effect of gain on 

perception and memory* 

In the previous chapter, we saw that increased gain focuses information processing on features 

to which one is predisposed to attend. This finding could be explained in terms of a direct 

relationship between neural gain and predispositions. Instead, I argued, high gain has the 

general effect of focusing attention on the most strongly represented features, and in the 

specific case that we studied, those features happened to be determined by individual 

predisposition. Thus, had participants been biased by means of an attentional manipulation to 

attend to a different set of features, these should have been the features on which high gain 

focused processing. In this chapter, I test whether the effects of neural gain are indeed sensitive 

to manipulations of attention.  

                                                 

 

* Parts of this chapter were presented at Cosyne 2012. 
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5.1 Introduction 

Perception depends not only on features of a physical stimulus, but rather, it is also determined 

by the context in which a stimulus is perceived and the stimulus’ relationship to prior 

knowledge and experience. For instance, the middle letter in the stimulus “CAT” may look 

more like an H if you focus on its shape, but more like an A if you focus on the surrounding 

letters and the word they could form (Figure 5.1). Extensive work (Reicher, 1969; Palmer, 

1975; Massaro, 1979; McClelland & Rumelhart, 1981; Paap et al., 1982; Pellicano & Rhodes, 

2003) has investigated the relative influence of stimulus information and context on perceptual 

processing, and the extent to which these are integrated in perception. Here, we propose that 

the extent of this integration is subject to modulation by neural gain. Specifically, we test the 

hypothesis that the extent to which perceptual processing is dominated by a particular source 

of information (e.g., stimulus or context) or integrates the different sources, is determined by 

brain-wide levels of neural gain (Servan-Schreiber et al., 1990; Aston-Jones & Cohen, 2005; 

Eldar et al., 2013).   

 

 

TAE 
CAT  

Figure 5.1. Two example stimuli. The 
resemblance of the trigram stimuli to 
known words favors perception of the 
ambiguous middle character as an H in 
the top stimulus and A in the bottom 
stimulus. 
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Our hypothesis follows from the idea that, as neural gain increases throughout the brain, 

excited neural units become even more active and inhibited units become even less active 

(Figure 1.2). Consequently, processing occurs faster, and is thus dominated by proximal 

sources of information that have the strongest, most immediate influence. In contrast, when 

gain is lower, processing is slower, permitting the integration of more weakly activated or 

distal sources of information, that take longer to exert their influence. We explored this 

hypothesis using a neural network model, and then tested it experimentally using an 

ambiguous-letter perception task in conjunction with pupillometry. 

5.2 A neural network model of perceptual integration of letter 

shape and context 

The sharpening of perceptual focus as a result of higher neural gain is illustrated by the neural 

network model shown in Figure 5.2A. Here we simulated the influence of different sources of 

information on the processing of ambiguous visual stimuli (based on a previous model 

developed by McClelland & Rumelhart, 1981). Consider, for example, the character “A” flanked 

by C and T (i.e., CAT). We simulated the ambiguity of A by providing partial bottom-up input to 

both the A and H letter units, while the C and T units received maximal input. We chose to 

provide stronger input to the H unit, simulating stronger visual similarity to that letter, so that 

we may contrast the contributions of visual input with semantic information: Since the letter 

units corresponding to the word CAT project to the CAT word unit, activation of the word 

unit generated semantic top-down feedback, further exciting the word-congruent letter units 

(i.e., C, A and T) and inhibiting word-incongruent letter units, such as ‘H’. As it is not possible 
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to interpret the same stimulus simultaneously in two different ways (Necker, 1832), the A and 

H units competed through mutual inhibition, until only one prevailed in any given trial. The 

extent to which bottom-up vs. top-down influences affected this competition interacted with 

the level of gain. As seen in Figure 5.2B, under low neural gain top-down information could 

influence processing, so that despite the stronger bottom-up input to the H unit, A and H were 

equally likely to prevail as the interpretation of the middle letter. In contrast, high neural gain 

enhanced the initial advantage provided by the bottom-up input in support for interpreting the 

letter as ‘H’, thus allowing the H unit to outcompete the A unit and determine network output 

before the top-down support for the ‘A’ interpretation could have its influence (Figure 5.2B, 

blue line).  

 

Figure 5.2. A neural network model of the effect of neural gain on ambiguous letter perception. 
(A) A model simulating perception of a stimulus similar to the bottom one in Figure 5.1. Blue 
lines: excitatory connections, red lines: inhibitory connections. (B) Simulated letter perception 
as a function of neural gain and the degree of priming of the CAT word-layer unit.  
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5.3 Pupil diameter and perceptual processing 

To test for an effect of neural gain on perception of ambiguous letters in humans, we showed 

participants letter strings such as CAT, and asked them to indicate which letter the ambiguous 

character resembled the most, irrespective of whether it formed a word. Based on the 

simulation results, we predicted that high levels of neural gain would correlate with choices of 

the letter most visually resembling the character (e.g., H), whereas low gain would be 

associated with choices of the letter that formed the word (e.g., A).  

As mentioned previously, it is not possible to directly measure neural gain, nor the 

noradrenergic activity thought to regulate gain (Aston-Jones & Cohen, 2005), using non-

invasive methods in human participants. Thus, in line with the findings reported in chapters 3 

and 4, we used pupil diameter as an indirect index of gain. Specifically, we measured the mean 

pupil dilation response to task stimuli throughout the experiment, and normalized the 

responses to participants’ baseline pupil diameter to obtain a stable measure that is thought to 

be inversely related to tonic LC-NE activity and sustained levels of neural gain, and that can be 

compared across participants.  

As predicted, lower mean pupil response (indicating higher sustained neural gain) was 

associated with shape-related (versus word-related) perception of ambiguous letters (r = 0.37, 

t65 = 3.2, p < 0.005; Figure 5.3A). Thus, high neural gain was associated with a greater 

influence of bottom-up information about the visual stimulus than the influence of top-down 

information about known words that the letter might complete. Our model suggests that this is 

because the letter’s shape provided a more immediate and stronger source of activation than the 

top-down influence of the word. However, it is also possible that high neural gain generally 
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favors processing of bottom-up (e.g., visual) input over processing of top-down (e.g., semantic) 

influences, irrespective of the immediacy or relative strength of these signals. 
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Figure 5.3. Letter perception as a function of 
pupil dilation response. n = 67 participants. 
(A, B) Percentage of trials in which 
participants chose the word-forming letter as 
a function of mean pupil dilation response, 
without (A) and with (B) semantic priming. 
(C) Percentage of trials in which participants 
chose the word-forming letter as a function 
of semantic priming and mean pupil dilation 
response. Participants were divided into two 
equal-sized groups according to the median 
pupil dilation response (below or above 
9.74%). The effect of priming was greater in 
participants with low pupil dilation 
(ANCOVA F1,130 = 9.8, p < 0.005).   
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5.4 An attentional manipulation 

To determine whether gain enhances sources of information that are strongest and/or most 

immediate, or rather it favors a particular source (bottom up vs. top down), we used semantic 

priming to pre-activate the top-down word information prior to presenting the stimulus. In our 

network model, pre-activating the word unit for CAT before presenting the stimulus caused 

the model to settle on the word-congruent interpretation of the ambiguous character more 

frequently and, critically, this interacted with gain: When the word was adequately primed, 

higher gain became associated with a higher frequency of word-congruent letter perception 

(Figure 5.2B, red line). Thus, the model predicted that gain would enhance processing of the 

most activated source of information. To test this empirically, on half the trials (priming 

condition) we preceded the letter strings by subliminal presentation of a semantically related 

prime word (e.g. DOG preceded CAT). On the other half of trials (no-priming condition), a 

non-word was presented subliminally. Based on the model, we predicted that semantic priming 

would shift the positive correlation between pupil response and letter perception in the opposite 

direction. Our findings were consistent with this prediction. When words were semantically 

primed, pupillary responses indicating high neural gain were no longer associated with shape-

related perception (r = -0.17 vs. r = 0.37, z = 3.17, p < 0.005; Figure 5.3B). Moreover, while 

semantic priming generally increased word-related perception (main effect of priming: 

ANCOVA F1 = 16.2, p < 0.005), it did so only in participants whose pupil responses indicated 

high gain (i.e., mean pupillary response below median; Figure 5.3C; priming × pupil response 

interaction: ANCOVA F1,130 = 9.8, p < 0.005). This group of participants was more likely than 

chance to perceive the shape-related letter in the absence of priming (t32 = 2.38, p < 0.05), and 
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the word-related letter in the priming condition (t32 = 2.89, p < 0.01). In contrast, participants 

whose pupil responses indicated low neural gain (i.e., whose pupil response was higher than the 

median) were relatively unaffected by the priming manipulation (t32 = 0.35, p = 0.73), exhibiting 

almost equal sensitivity to letter shape and word in both conditions (no priming condition: t32 = 

1.40, p = 0.17; priming condition: t32 = 1.40, p = 0.17). 

5.5  Within-participant variations 

While we observed the predicted relationship between neural gain and letter perception across 

participants, we did not find a similar relationship within participants. That is, we did not find a 

significant relationship between letter perception and trial-by-trial variations in pupillary 

response. One reason for this may be that neural gain did not vary sufficiently within individual 

participants during the course of the experiment for such a relationship to be detectable. 

Consistent with this possibility, the difference in mean pupil response between the first and 

second halves of the experiment was significantly lower within participants (mean 2.3%) 

compared to between participants (mean 5.3%; t66 = -7.92, p < 10-11).  

In addition, it is possible that the high level of noise associated with pupillometric 

measurements does not allow trial-by-trial within-participant effects to be detected. This 

problem may be circumvented by using reaction time as a mediating variable between pupil 

response and letter choice. Our neural network model indicated that the relationship of neural 

gain to reaction time (with high gain associated with faster responses) may be more robust, and 

thus easier to detect, than the relationship with choice behavior (Figure 5.4A). The model also 

predicted that the effects of priming on letter choice should interact with reaction time in the 
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same way that it does with gain – an interaction that can be detected without pupillometry. In 

agreement with these predictions, we found that trial-by-trial pupil responses were positively 

correlated with reaction time, during both the no-priming (mean r = 0.09, t66 = 2.72, p < 0.01) 

and priming conditions (mean r = 0.06, t66 = 2.01, p < 0.05). Critically, reaction times were 

faster for shape-related letter perceptions in the no-priming condition (t66 = -2.15, p < 0.05) but 

not in the priming condition (t66 = 0.40, p = 0.69; ANOVA priming × letter-choice interaction 

analysis: F1,1 = 3.36, p < 0.05 one-tailed; Figure 5.4B). This priming-dependent relationship 

between reaction time and letter choice mirrors the priming-dependent relationship between 

pupil response and letter choice found in the between-participant analysis (Figure 5.3C). 

 

  

Figure 5.4. Pupil response, reaction time and letter perception. (A) Correlations, in model 
simulations, between pupillometric neural gain, reaction times and letter choices, as a function 
of noise in the “measurement” of gain. The latter was used to simulate noise assumed to be 
associated with pupillometric measurements as an index of actual neural gain (see Methods for 
details). For high levels of noise, the relationship between neural gain and letter choice is easier 
to detect through their relationship with reaction time. (B) Mean reaction time in human 
participants as a function of letter choice and semantic priming (n = 67). Faster reaction times 
were associated with choice of the non-word-forming letter, only when the word was not 
semantically primed. 
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5.6 Voluntary direction of attention 

So far, strength of activation was manipulated by varying factors typically associated with 

involuntary processes (i.e., stimulus salience and subliminal priming). In an additional 

experiment, we tested whether the same effects obtain when activation is manipulated by the 

voluntary allocation of attention. To this end, we presented participants with words in one of 

two highly dissimilar fonts. To focus participants’ attention on the shape of the words, we 

asked them to rate how readable each word was. Then, to test the degree to which participants 

had selectively processed word shape, we had them perform a recognition memory test, in 

which half of the target words assumed the same shape as in the readability rating phase, and 

the other half appeared in a different font. Participants with low pupillary response during the 

readability task (i.e., mean pupil response below median) were significantly affected by the 

change of font (mean d’ difference: -0.36 ±0.1, t20 = 3.5, p < 0.005) whereas participants with 

high pupillary response were not (mean d’ difference: +0.07 ±0.1, t20 = -0.6, p = 0.53), 

suggesting that low pupillary response (high gain) was associated with more selective 

processing of word shape (correlation between pupil response and d’ difference: n = 43, r = -

0.41, p < 0.01; Figure 5.5A,C). Moreover, this effect was not evident in words for which 

participants did not rate readability, but instead, performed a control, semantic task (correlation 

between pupil response and d’ difference: n = 29, r = 0.07, p = 0.72; difference between 

readability and semantic tasks: z = 2.01, p < 0.05; Figure 5.5B,C). This indicates that the effect 

of high gain augmented the influence of attention in accordance with task demands. Finally, 

pupil response did not significantly correlate with general recognition performance levels (n = 
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43, r = -0.12, p = 0.44), suggesting that pupillary indices of gain primarily reflected an 

interaction with the distribution of attention, not overall task engagement. 
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Figure 5.5. Recognition memory as a 
function of pupil dilation response. (A, 
B) Difference in recognition memory 
performance (d’) between words that 
changed font and words that did not, as 
a function of mean pupil response, for 
words from the readability task (A, n = 
43 participants), and words from the 
semantic task (B, n = 29). (C) 
Participants were divided into two 
equal-sized groups according to the 
median pupil dilation response. The 
difference between participants with low 
and high pupil responses was higher in 
the readability task than in the semantic 
task (ANCOVA F1,68 = 4.0, p = 0.05).   
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5.7 Conclusion 

We showed that individual differences in a pupillary index of neural gain are correlated with 

the degree to which perception and memory are influenced by the strongest and most 

immediate source of information. Our findings are consistent with the hypothesis that increases 

in neural gain affect network dynamics, favoring the influence of strong and immediate sources 

of information over weaker or more distal sources. It is important to note that, while we 

illustrated this point theoretically in a neural network that used top-down feedback connections 

to implement the effects of context, our theory would make similar predictions for models in 

which context effects are mediated through feedforward connections, so long as these are less 

direct (Paap et al., 1982) or weaker (Massaro & Cohen, 1991) than those mediating stimulus 

information. The critical interaction is between gain and the strength (and corresponding 

timing) of the influence of a source of information on the process of interest. Our priming 

results supported this conclusion, demonstrating that increases in gain favored the strongest 

source of information irrespective of its source (i.e., bottom-up vs. top-down). Furthermore, our 

findings from the final experiment suggest that gain interacts with the strength of processing 

irrespective of its cause (i.e., whether it is due to automatic processes or the influence of 

attention). Finally, these findings lend further support to a dimension of individual differences 

in information processing — breadth of integration — as well as a practical way of measuring 

it, which may help explain differences in behavior in real world domains, including disturbances 

of behavior in psychiatric disorders. We will expand on this last point in Chapters 6 and 7. 
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5.8 Appendix: Methods 

5.8.1 Neural network model 

We simulated the effect of neural gain on perception of the ambiguous letter in the stimulus 

CAT using a neural network model loosely based on McClelland and Rumelhart’s (1981) 

interaction activation model. The network consisted of three layers: a ‘visual’ input layer, a 

letter layer and a word layer (Figure 5.2A). All weights were set to 1 (for excitatory 

connections) or -1 (for inhibitory connections). Since C and T are unambiguous, their respective 

letter-layer units received maximal input (input = 1). In contrast, since the middle letter was 

ambiguous, the H and A letter-layer units received sub-maximal input (input < 1). The H 

received stronger input than A to reflect the fact that the shape of the ambiguous letter was 

closer to H. As perception of the letter H is mutually exclusive with perception of the letter A, 

the corresponding letter-layer units had inhibitory connections between them. Similarly, 

because perception of the letters C, A and T is consistent with perception of the word CAT, 

excitatory connections were assigned among the corresponding units.  

To simulate the limited exposure time used in the experimental task, input was presented to the 

network for 225 iterations, during which the activity 𝑎𝑖
𝑡 of network unit i at time step t built up 

gradually according to a weighted sum of its inputs: 

𝑎𝑖
𝑡 = 0.9𝑎𝑖

𝑡−1 + 0.1𝑓 (𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑎𝑗

𝑗

) + 𝑛                             (5.1) 
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where bi is the bias to unit i (set to -0.5 for all units), wij is the connection weight from unit j to 

unit i, n refers to a normally distributed random noise variable, and f(x) is the sigmoid 

activation function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑔𝑎𝑖𝑛∙𝑥
.                                                                    (5.2) 

The parameter gain reflected the level of neural gain in the network.  

Since the network’s task was to reach a decision between perception of the middle character as 

A and H, two corresponding decision units were added to the network (activity initialized to 0, 

bias = 0). The decision units shared a mutually inhibitory connection with one another (weight 

= -1) and a mutually excitatory connection with the respective letter-layer units (weight = 1). 

Following presentation of the stimulus, the network switched to a ‘decision’ mode, in which the 

biases of the letter-layer A and H units were increased from their resting state of -0.5 to 0, 

simulating the allocation of attention to the letter-decision task (Cohen et al., 1990). Activity 

was updated using Equation 1 until one of the decision units reached an activity level of 0.9 or 

1000 iterations were completed, at which point the probability of choosing the word-forming 

letter (A) was computed as the activity of the A decision unit divided by the sum of the activity 

of both decision units.  

The strength of the inputs to the H (0.52) and A (0.2) letter-layer units and the level of noise 

(standard deviation = 0.035) were adjusted so as to make the network equally likely to decide in 

favor of H or A under conditions of low gain (gain = 1).  



CHAPTER 5. MANIPULATING THE EFFECT OF GAIN 84 
  

5.8.1.1 Simulation 1: variations in neural gain 

To simulate the effect of neural gain on perception of the ambiguous letter, the gain parameter 

was varied between 0 and 10. For each level of gain, the procedure described above was 

repeated 1000 times, and the resulting decisions were averaged. 

5.8.1.2 Simulation 2: semantic priming 

To simulate the effect of semantic priming on perception of the ambiguous letter, the 

simulation started with a ‘priming’ phase in which, prior to presentation of the stimulus input, 

the CAT word unit received an excitatory ‘priming’ input (varied between 0 and 1, weight = 1) 

for 33 iterations. The simulation then proceeded as in Simulation 1. It was repeated 1000 times 

for each value of “priming” input and each value of neural gain, and the results were averaged. 

5.8.1.3 Simulation 3: pupillometric noise 

The purpose of this simulation was to determine whether, according to the model, it would be 

reasonable to use reaction time as a mediating variable in assessing the relationship between 

gain and letter choice. The motivation for doing so is that it can be assumed that noise corrupts 

the relationship between pupillometric measurements and actual neural gain within individual 

participants. However, if gain is more reliably related to reaction time, then the latter might be 

used as a proxy in assessing the relationship to letter choice. To simulate the effects of noise in 

measurements of neural gain, the measured level of neural gain was computed as the true level 

plus randomly distributed noise, the standard deviation of which varied between 0 and 10 (see 

Figure 5.4A). The simulation proceeded as in Simulation 1. Reaction time was computed as the 
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iteration in which a decision unit reached an activity level of 0.9. If that did not happen within 

1000 iterations then reaction time was counted as 1000. The simulation was repeated 1000 

times for each level of noise, and each level of neural gain, with and without priming (priming 

input = 0 or 1). The correlations between measured gain, reaction time and letter choice were 

computed for each repetition and averaged.  

5.8.2 Ambiguous letters experiment 

5.8.2.1 Participants  

30 participants (mean age 20.4, age range 18-23, 25 females) performed a preliminary 

experiment (see below) and 83 participants (mean age 21.6, age range 18-61, 65 females) 

performed the main experiment. The sample size was chosen based on previous studies of 

semantic priming effects (Lucas, 2000). Participants were from the Princeton University area, 

and gave written informed consent before taking part in the study, which was approved by the 

university’s institutional review board. Participants received either monetary compensation 

($10) or course credit for participation. 

5.8.2.2 Experimental task 

Participants were instructed to identify letters regardless of whether they formed words. 

Participants were presented with 88 3-letter strings, 52 of which included an ambiguous letter 

that could form a word depending on the way that it was perceived. Half of these letter strings 

were preceded by subliminal presentation (33 ms) of a semantically related word, while the 

other half were preceded by subliminal presentation of a similarly sized non-word. Each letter 
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string was semantically primed in half of the participants. Following the priming stimulus, the 

3-letter target stimulus was presented. The target stimulus was flanked by %%% on both sides 

so as to mask the priming stimulus, which could consist of more than 3 letters. After 225 ms, 

the 3-letter string disappeared from the screen and an arrow pointed to where the target letter 

previously appeared. Participants had 5 seconds to choose, out of a list of 4 letters, to which 

letter the target letter was most similar. The list always included the two letters that the 

ambiguous letter resembled and two other letters that did not appear in the letter string. 

Choices of one of the two letters that did not appear in the letter string were infrequent (less 

than 5% of trials) and were not included in the analysis. Inter-trial interval was varied 

randomly (uniformly) between 6 s and 10 s. We used a relatively long interval to allow enough 

time following each trial for the pupil dilation response to resolve (Hoeks & Levelt, 1993). 

To avoid the influence of any response biases that may have resulted from conscious awareness 

of the priming manipulation, participants were asked whether they saw any words appearing 

immediately before any of the letter strings. Data from 10 participants who reported that they 

saw such words were excluded from the analysis. 

5.8.2.3 Stimuli 

We designed 52 ambiguous letters using the Processing programming environment (Reas & 

Fry, 2007). Each ambiguous letter was created by morphing one letter into a different letter 

until it looked, in the eyes of the designer, equally similar to the two letters. Each ambiguous 

letter was embedded in a 3-letter string that could either form or not form a word depending 

on which letter is perceived. To counteract the contextual effect of the word on perception of 

the ambiguous letter, ambiguous letters were then slightly morphed toward the letter that does 



CHAPTER 5. MANIPULATING THE EFFECT OF GAIN 87 
  

not form a word (paralleling the assignment of a greater weight to input for that letter in the 

model). Ambiguous letters were positioned in either the beginning or the end of the letter 

string (1st or 3rd letter), whereas participants were directed to fixate at the center. This ensured 

that the distance between the ambiguous letters and the focus of gaze remained constant 

throughout the experiment, while allowing variability in the location of the ambiguous letter. 

The words that letter strings could form were all medium-to-high frequency words (above 10 

per million; Kucera & Francis, 1967) picked using the MRC Psycholinguistic Database 

(http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm).  

To prime the words that ambiguous letters could form, we used semantically related words, 

three to seven letters long. To avoid shape-related priming effects, prime words included 

neither of the two letters that the ambiguous letter resembled, nor other visually confounding 

letters (e.g., due to visual resemblance F could favor perception of E).  

To ensure that participants were paying attention to all three letters of each string and not just 

to the ‘funny looking’ letter, we designed 36 additional 3-letter strings in which the letter that 

participants were asked to identify was not a morphed letter. One of the non-target letters in 

each such string was somewhat morphed, though not toward any other English letter. 

To maximize the ambiguity of the ambiguous letters, we conducted a preliminary experiment, 

the results of which were used to adjust ambiguous letters so that they appeared equally similar 

to the word-forming and non-word-forming letters. Four participants performed the task 

described below. Subsequently, every ambiguous letter that was perceived as one particular 

letter at least 80% of the time was slightly morphed toward the other letter. This process was 

iterated 6 times prior to the main experiment, and was reasonably successful, as evidenced by 

the fact that in the main experiment the word-forming letter was chosen in 51.6% of the trials 
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in which one of the two relevant letters was chosen (standard deviation across ambiguous 

letters: 16.5%). 

To minimize luminance-related changes in pupil diameter, all stimuli were adjusted to be 

isoluminant with the background using the flicker-fusion procedure (Lambert et al., 2003) on 

the display system used in the experiment.  

5.8.2.4 Pupillometry  

An ASL Series 5000 remote optics eye tracker (Applied Science Laboratories, MA) was used to 

measure participants’ left pupil diameter while they were performing the task. At the beginning 

of the experiment, a baseline measurement of pupil diameter at rest was taken for a period of 45 

s. Pupil-diameter data were processed in MATLAB to detect and remove blinks and other 

artifacts. For each trial, baseline pupil diameter was computed as the average diameter over a 

period of 1 s prior to the beginning of the trial (at the end of the inter-trial interval, at which 

point pupil activity from the trial itself should have subsided). Pupil-dilation response was 

computed as the difference between the peak diameter recorded during the 4 s that followed the 

beginning of the trial and the preceding baseline diameter. All pupil dilation responses were 

normalized by the pre-experiment baseline pupil diameter. Data from 6 participants, who had 

fewer than 20 trials in which at least half of the baseline pupil diameter and pupil response 

measurements were free of artifacts, were excluded from the analysis.  
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5.8.3 Recognition memory experiment 

5.8.3.1 Participants  

45 participants (mean age 19.8, age range 18-22, 28 females) performed the recognition 

memory experiment, and received course credit for participation. Participants were Princeton 

University students who gave written informed consent before taking part in the study, which 

was approved by the university’s institutional review board. 

5.8.3.2 Experimental task 

To test whether the relationship between neural gain and stimulus processing is also affected 

by the task-related, voluntary direction of attention, participants performed a word recognition 

memory experiment, in which the learning phase required attention to either visual or semantic 

aspects of the words (Graf & Ryan, 1990). Participants were presented with 72 words in one of 

two highly dissimilar fonts, each for a period of 2 s. Half of the words were coupled with a task 

that focused participants’ attention on word shape. Specifically, participants were asked to rate 

how readable the word was on a scale of 1 (very hard to read) to 4 (very easy to read). The 

other half of the words were coupled with a semantic task that required processing both a 

word’s shape (so as to read it) and its meaning. Specifically, participants reported for each word 

whether it refers to something that would exist without humans (for example, trees) or would 

not exist without humans (for example, buildings). Words were divided into 4 blocks of 18 

words, each of which was associated with one of the tasks. Task order was counterbalanced 

both within and between participants. In order to mitigate primacy and recency effects, each 

block started and ended with 4 words that were not included in the recognition memory test. 
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Participants could also indicate that they were not able to read the word, and such words (on 

average 1.0 ±0.18 words per block) were excluded from further analysis. Words were separated 

by a (uniformly) random inter-trial interval of 7 s to 9 s. Following an average period of 19.0 

±0.18 minutes, during which participants performed an unrelated roommate decision-making 

task, we held a word recognition memory test in which half of the words were foils, a quarter of 

the words had previously appeared in the same font (in the readability or semantic task), and a 

quarter of the words had previously appeared in a different font. Recognition memory 

performance was computed in line with signal detection theory as d’ (Stanislaw & Todorov, 

1999). Performance could not be reliably quantified in participants that reached ceiling 

performance or that did not recognize any of the target words, and thus data from such 

participants (2 in the readability task and 16 in the semantic task) was excluded from further 

analysis. Importantly, excluded participants did not differ in mean pupillary response from the 

average participant (9.4% ±0.9% vs. 9.3% ±0.5%, t43 = 0.15, p = 0.88). Since we hypothesized 

that high gain is associated with more selective processing, we expected that recognition 

memory would be more strongly degraded by font change in participants whose pupillary 

responses indicated high gain. However, we only expected to see this effect of gain for words 

from the readability task, which specifically required processing of word shape, and not for 

words from the semantic task, which required processing of both word shape and meaning. 

5.8.3.3 Stimuli 

176 words, each 5 to 7 letters long, of medium-to-high frequency (above 10 per million; Kučera 

& Francis, 1967) were randomly assigned for each participant to different blocks or used as 

foils. Words were presented using an isoluminant color in capital letters in one of two fonts, 
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Old English Text MT or Matura MT Script, which were chosen since they are highly 

dissimilar.  

5.8.3.4 Pupillometry 

A desk-mounted SMI RED 120Hz eye-tracker (SensoMotoric Instruments Inc., MA) was used 

to measure participants’ left and right pupil diameters at a rate of 60 samples per second while 

they were performing the experiment with their head fixed on a chinrest. Pupil diameter data 

were processed as for the ambiguous letters experiment. Mean pupil dilation response was 

computed separately for the readability and the semantic tasks.  

5.8.3.5 Statistical analysis 

Analyses were carried out using MATLAB. All correlation values reported are Pearson 

correlation coefficients. Averaging of correlation coefficients was preceded by Fisher r-to-z 

transformation and followed by Fisher’s z-to-r transformation, so as to mitigate the problem of 

the non-additivity of correlation coefficients (Fisher, 1921). Group-level significance of within-

participant correlations was computed using a one-tailed one-sample Student’s t-test on the 

vector of correlation coefficients following Fisher r-to-z transformation. Significance of 

Pearson correlation coefficients was computed using the Student’s t-distribution. Interactions 

between pupil response and experimental conditions were computed using ANCOVA. All 

statistical tests were two tailed. 
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Neural gain and decision making biases 

If neural gain affects how we process information, it is bound to have a substantial impact on 

the decisions we make. For instance, gain may affect the degree to which our decisions are 

susceptible to being biased. The results presented in the previous chapter suggest that high 

gain is associated with greater susceptibility to a perceptual bias induced by subliminal priming. 

However, in that specific case priming biased perception by focusing it on a particular feature of 

the stimulus. Thus, a more focused mode of processing was conducive in that case to a stronger 

bias. In contrast, in more complex decisions, for instance those that involve personal preference, 

biases are thought to emerge from the integration of information (Usher at al., 2013; 

Busemeyer et al., 2006). If that is the case, high gain, by limiting integration, could lead to 

decisions that are less biased. Here we test the relationship between neural gain, as indexed by 

pupillometry, and biases in a variety of decision making scenarios.  

6.1 Introduction 

In some well-described scenarios, human decision making exhibits systematic deviations from 

rational behavior. For instance, a particular action could be more or less likely to be chosen 
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depending on how it is framed, even though the information provided is in both cases 

equivalent (Tversky et al., 1981). However, the classic decision making biases that have been 

described in the literature are typically induced by peripheral aspects of the decision problem, 

exerting a relatively weak effect that is only detectable when the behavior of dozens or even 

hundreds of participants is averaged (e.g., Levin et al., 1998; Kühberger, 1998). Based on our 

findings, we hypothesize that such biases only manifest in decision makers that process 

information in a broad, integrative manner, which takes into account both central and 

peripheral aspects of the problem. Indeed, recent theoretical work suggests that many decision 

biases, such as sensitivity to framing and other contextual and attentional effects, arise from the 

gradual integration of information that takes place as the different aspects of a decision problem 

are examined (Usher at al., 2013; Busemeyer et al., 2006; Krajbich & Rangel, 2011). 

Accordingly, models involving gradual integration of information have been used to explain 

many of the peculiarities that characterize human decision making (Usher & McClelland, 2004; 

Busemeyer & Townsend, 1993; Diederich, 1997; Roe et al., 2001; Johnson & Busemeyer, 2005).   

We have seen that pupil diameter indices of locus coeruleus-norepinephrine function and neural 

gain (Servan-Schreiber et al., 1990; Aston-Jones & Cohen, 2005) track the degree to which 

information processing is narrowly focused on the most strongly represented stimulus features, 

or conversely, is broadly integrative of both weakly and strongly represented features. An 

increase in gain can be thought of as an increase in contrast between weakly and strongly 

active neural units that further focuses information processing on the strongest representations 

(Figure 1.2). Thus, if the manifestation of decision making biases depends on the integration of 

weakly-represented aspects of the problem, low gain should be associated with more robust 

biases, whereas high gain may diminish them.  
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6.2 Anchoring  

One of the simplest decision biases, which directly arises from integration of information over 

time, is that of the anchoring of estimations to arbitrary values considered in preceding 

questions (Tversky & Kahneman, 1974). In line with previous studies of anchoring, we asked 

participants to indicate whether seven different quantities (e.g., the height of the Eiffel tower) 

was higher or lower than some arbitrary value, and then estimate the quantity (Jacowitz & 

Kahneman, 1995). Anchoring was measured as the degree to which a participant’s estimation 

deviated towards the arbitrary value that the participant was asked to consider, as compared to 

other participants’ estimations. In addition, we used pupil dilation in response to task stimuli as 

an inverse index of gain.  

We divided participants into tertiles of low, medium and high mean pupil dilation, and 

computed the mean anchoring effect for each group. All groups of participants exhibited a 

significant anchoring effect, regardless of pupillary response (low: t12 = 3.7, p < 0.005; medium: 

t13 = 3.3, p < 0.01; high: t12 = 4.2, p < 0.005; Figure 6.1), and the trend towards stronger 

anchoring with higher pupillary response (indicating lower gain) was not significant (low vs. 

high: t24 = 0.81, p = 0.43). 
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Figure 6.1. Anchoring effect. Deviation 
of participants’ estimates towards the 
arbitrary anchors which they were 
asked to consider. Estimates were 
normalized to the range of 0 to 1. n = 
40 participants, *: p < 0.01, **: p < 
0.005, error bars: across-participant 
s.e.m. 
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6.3 Persistence of belief 

The persistence of beliefs formed early in an experiment in the face of contradictory evidence 

that is presented later (Peterson & DuCharme, 1967) is thought to arise from the effect of 

previously gathered information on the perception of new information (Lord et al., 1979). 

Therefore, this bias too may depend on integration of information over time. To test 

persistence of belief, we presented participants with a series of colored balls while asking them 

which of two urns the balls are more likely to be coming from. The two urns differed in the 

proportion of balls of each color, and thus, in the probability of being the source of the series of 

balls (Figure 6.2A). The order of the balls presented was predetermined so as to initially favor 

one urn (first 30 balls), and then the other (last 60 balls). We quantified persistence of belief 

bias by the degree to which participants continued to favor the initially favored urn during the 

second part of the sequence. Only participants with high pupillary responses (indicating low 

gain) continued to prefer the initially supported urn (t11 = 2.8, p < 0.05). In contrast, 

participants with low pupillary responses updated their estimates to a similar extent in the first 

and second part of the experiment (t22 = 2.4, p < 0.05; Figure 6.2B). 
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Figure 6.2. Persistence of belief. (A) The two urns contained different proportions of balls of 
different colors. (B) Preference of the initially supported urn during the last 60 balls, which 
were suggestive of the other urn. An optimal observer would be indifferent on average. 
Preferences were mapped to a scale between -1 and 1. n = 35 participants, NS: p > 0.1, *: p < 
0.05, error bars: across-participant s.e.m. 

6.4 Framing 

Many decision biases arise not from the temporal structure of the problem, but rather from the 

integration of its multiple attributes. We tested two types of biases that characterize decision 

problems involving the evaluation of items with multiple attributes: framing effects and 

sample-size neglect. Considered by many as a prime example of irrational behavior, “framing 

effects” refer to the often-replicated finding that logically equivalent descriptions of a problem 

can lead to systematically different decisions (Levin et al., 1998). We tested three different 

types of framing effects previously reported in the literature: attribute framing, risky choice 

framing and task framing.  

6.4.1 Attribute framing 

Participants evaluated items of three different types (ground beef, student exam performance 

and gambles), whose attributes were framed either positively or negatively (Levin et al., 1985). 
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For example, student exam performance could be described in terms of % correct (positive 

frame) or % incorrect (negative frame). Positive framing invoked significantly higher 

evaluations than negative framing only in participants with high pupillary responses 

(indicating low gain; t13 = 2.17, p < 0.05; Figure 6.3). 

 

6.4.2 Risky choice framing 

In this task, participants chose between a certain and an uncertain outcome, both framed either 

as gains or as losses (Tversky et al., 1981; Van Schie & Van Der Pligt, 1995). For example, the 

outcome of a treatment program could be described as ‘200 people (out of 600) will be saved’ or 

as ‘400 people (out of 600) will die’. This manipulation builds on people’s previously-established 

tendency to be risk averse in the domain of gains, but risk seeking in the domain of losses 

(Kahneman & Tversky, 1979). Framing outcomes as gains rather than losses evoked more risk 

averse preferences only in participants with high pupillary responses (t13 = 2.34, p < 0.05; 

Figure 6.4). 
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Figure 6.3. Attribute framing effect. 
Difference in evaluation of items framed 
positively rather than negatively. Item 
rating were mapped to a scale between 
0 and 1. n = 43 participants, NS: p > 0.1, 
*: p < 0.05, error bars: across-
participant s.e.m. 
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6.4.3 Task framing  

Participants were asked to either accept or reject one of two options. One option – the enriched 

option – had more positive as well as more negative dimensions than the other, impoverished, 

option (Shafir, 1993). It has been shown that people are biased to select the enriched option 

regardless of whether they are accepting it or rejecting it, presumably because the enriched 

option provides good reasons to do either. Participants with medium or high pupillary 

responses, but not with low pupillary responses, showed a significant preference for the 

enriched option across the “accept” and “reject” tasks (medium: t13 = 3.5, p < 0.005; high: t13 = 

2.2, p < 0.05; Figure 6.5). 
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Figure 6.4. Risky choice framing effect. 
Increase in risk aversion when 
outcomes were described in terms of 
gain rather than losses. Preferences 
were mapped to a scale between -1 and 
1. n = 42 participants, NS: p > 0.2, *: p 
< 0.05, error bars: across-participant 
s.e.m. 

 

Figure 6.5. Task framing effect. 
Preference to both accept and reject the 
enriched option more than the 
impoverished option. Preferences were 
mapped to a scale between -1 and 1. n = 
42 participants, NS: p > 0.1, *: p < 0.05, 
**: p < 0.005, error bars: across-
participant s.e.m. 
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6.5 Sample-size neglect 

A different bias that may result from multi-attribute integration is evident in people trying to 

determine whether a coin is biased to heads or tails, given the number of head and tail 

outcomes. People’s certainty about the coin’s bias is typically determined by the ratio between 

heads and tails (Griffin & Tversky, 1992). However, ratios such as 9 to 7 or 6 to 5 are unlikely 

to be computed precisely, and thus, the decision process has to involve the integration of both 

raw numbers. In contrast, an optimal judge can simply reduce the numbers of heads and tails to 

the difference between them, which is easily computable, and then make a decision based on this 

single attribute. This simpler, single-attribute strategy is optimal since it does not fail to take 

into account the sample size (i.e., the total number of outcomes; see Methods). 

Thus, we asked participants how certain they were that a coin was biased in favor of heads 

given different sets of outcomes. Participants with medium and high pupil responses exhibited 

significant sample-size neglect (medium: t12 = 6.3, p < 10-5; high: t11 = 4.1, p < 0.005), whereas 

those with low pupil responses exhibited only a trend-level effect (t11 = 2.1, p = 0.06) that was 

significantly weaker than in the other groups (vs. medium: t23 = 2.5, p < 0.05; vs. high: t22 = 2.6, 

p < 0.05; Figure 6.6). Accordingly, responses of participants with low pupil responses reflected 

precise inference more than responses in the other groups (vs. medium: t23 = 2.7, p < 0.05; vs. 

high: t22 = 3.5, p < 0.005). In addition, the difference between heads and tails predicted the 

estimates of participants with low pupil responses better than the ratio between heads and tails 

(beta difference 0.56 ±0.13, t11 = 4.3, p < 0.005), but this was not true for the estimates of 

participants with medium (beta difference 0.10 ±0.09, t12 = 1.1, p = 0.31; difference from low 

group: t23 = 3.0, p < 0.01) and high (beta difference -0.04 ±0.14, t11 = -0.2, p = 0.81; difference 
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from low group: t22 = 3.1, p < 0.005) pupil responses, indicating that only low-pupil-response 

participants primarily relied on the difference, not the ratio, between heads and tails.  

 

6.6 Overall susceptibility to biases 

Although differences in decision making biases between participants with low and high pupil 

responses were, for the most part, not statistically significant, they were highly consistent – in 

each one of the six tasks, participants with high pupil responses were more strongly biased. 

Thus, we compared the average normalized effect size across all experiments using a 

permutation test. Participants with low pupillary responses were significantly less biased 

overall (Figure 6.7), suggesting that pupillary response indexed general susceptibility to 

decision making biases in our experiments.  
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Figure 6.6. Sample-size neglect. 
Measured as the overweighting of the 
ratio between heads and tails relative to 
the weight given to the optimal 
inferences. n = 37 participants, NS: p > 
0.05, *: p < 0.05, **: p < 0.005, error 
bars: across-participant s.e.m. 
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6.7 Computational model 

We next used Usher & McClelland’s (2004) decision model (Figure 6.8A) to illustrate how high 

gain may weaken the expression of a bias (e.g., framing effect) in a multi-alternative, multi-

attribute decision problem, using. Consider a choice between two items, one attribute of which 

favors the first item and a second attribute favors the second item. The model assumes that on 

each time step, one of the attributes is selected at random, and the evidence it provides is 

accumulated at the decision layer. A framing bias can be implemented in the model either as a 

tendency to select one of the attributes more frequently, or as a selective increase in the 

strength of evidence provided by one of the attributes. Either way, over a large number of time 

steps even a small bias may consistently determine the result of the decision process. In 

contrast, with a low number of time steps, the decision would be determined by whichever 

attribute happened to be selected more often so far. Increasing gain strengthens the effect of 

evidence on the decision units, and consequently, fewer time steps are required to reach a 

decision. As a result, the bias is diminished (Figure 6.8B). With minor modification, this model 

may explain the weakening of any of the three framing effects tested here. We also note that 
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Figure 6.7. Overall susceptibility to 
biases. Average normalized effect size 
across all experiments. The values 0 
and 1 correspond to the minimal and 
maximal effect sizes exhibited by any 
selection of 14 participants in each 
experiment. n = 44 participants, *: p < 
0.01, **: p < 0.0005, permutation test. 
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our specific choice of decision model is inconsequential, since similar results should be obtained 

using any decision model, as long as it relies on a gradual integration or diffusion process. 

      

Figure 6.8. A model of the effect of gain on the manifestation of a decision bias. (A) Structure of 
the model. On each time step, one attribute is randomly selected, and the evidence in favor of 
each item is accumulated by the competing decision units. A bias was implemented as a 
tendency to select one of the attributes more frequently. (B) Proportion of bias-consistent 
decisions made by the model as a function of gain. With higher gain decisions are less biased. 
The decision process was simulated 100,000 times with each level of gain. The dashed line 
indicates the proportion that would be needed to detect a statistically-significant bias given a 
sample of 100 decisions (binomial test).  

6.8 The cost of weaker biases  

While high gain seems to be associated with weaker biases, this should come at the cost of 

limited integration, leading to potential decisions that are based on fewer samples and are thus 

less certain. Uncertainty concerning a potential decision is  thought to affect the likelihood of 

executing the decision (Daw et al., 2005), and thus we may expect that high gain would be 

associated with a higher likelihood of indecision (e.g., expressing indifference between available 

options). Indeed, in the multi-alternative decision problems, participants with low pupil 
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responses decided not to decide more often than participants with high pupil responses 

(Figure 6.9A; p < 0.05, permutation test).  

 

 

Figure 6.9. Indecision and response time (RT). (A) Proportion of decisions expressing 
indifference between available options. Data include experiments that involved choice between 
two alternatives (i.e., risky choice framing, task framing and persistence of belief experiments). 
(B) Response time in two-alternative decision problems in which decision time was measureable 
(i.e., risky choice framing, task framing). The low pupil response group was further divided into 
participants that exhibited indecisions and those that did not. (C) Mean across-participant 
correlation between average response time and bias effect size. Data include experiments in 
which the source of bias was continuously available (i.e., the framing and sample-size neglect 
experiments). n = 44 participants, NS: p > 0.2, *: p < 0.05, **: p < 0.005, permutation test. 

Alternatively, failure to reach a certain, integrative decision may induce a deliberative, time-

consuming process whose purpose is to increase decision certainty (Glöckner & Betsch, 2008; 

Daw et al., 2005). In line with this view, participants with low pupillary responses that avoided 

indecision took more time to make decisions than those that did not avoid indecision (p < 0.05, 
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permutation test), as well as than those with stronger pupillary responses (p < 0.005, 

Figure 6.9B). Moreover, taking more time seems to have restored some level of evidence 

integration, since in participants with low pupillary responses longer response times were 

associated with stronger biases (p < 0.05, permutation test; Figure 6.9C).  

6.9 Discussion 

We investigated the relationship between a pupillary index of neural gain and individual 

differences in decision making biases. Low pupil responses, which are consistent with high gain, 

were associated with weaker biases across six different tasks involving integration of 

information over time and over problem attributes. We used a computational model to 

illustrate how the latter type of biases may be diminished with high gain as a result of 

diminished integration. Diminished biases, however, came at the cost of indecisiveness, or 

alternatively, longer deliberation time. In contrast, participants with high pupil responses 

showed remarkably consistent biases.  

Typically, to demonstrate a decision making bias, dozens or even hundreds of participants are 

needed. It is thus notable that a small group of participants, at most 15 in number, consistently 

exhibited statistically-significant biases across six different experiments. This underscores the 

role of information-processing mode, broadly integrative or narrowly focused, in explaining 

inter-individual differences in decision making.  

Throughout this chapter, we adopted the view that decision biases emerge from a process of 

integration. While this view is supported by various experimental and theoretical works (Usher 

at al., 2013; Busemeyer et al., 2006), it is by no means fully established. Moreover, different 
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biases could arise from different mechanisms. Our findings, however, lend further support to 

the role of integration in a diverse set of decision making biases, by showing that susceptibility 

to biases can be predicted by a pupillary index of gain, which we have previously linked to 

behavioral and neural markers of integration.  

Our findings may seem to suggest that high gain is generally associated with more optimal 

decisions. However, classic decision making biases, such as the ones tested here, are specifically 

designed to exploit people’s tendency to integrate irrelevant cues into the decision process. In 

more complex and real-life like tasks, in which integration of information is paramount (Usher 

et al., 2011; Rusou et al., 2013), we predict that high gain would in fact be associated with 

poorer decision making. 

6.10 Appendix: Methods 

6.10.1 Experimental methodology 

6.10.1.1 Participants 

44 Princeton University students (mean age 19.5, age range 18-23, 28 females) performed the 

experiment. Participants gave written informed consent before taking part in the study, which 

was approved by the university’s institutional review board. Participants received course credit 

for participation. 
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6.10.1.2 Stimuli  

Stimuli were generated using the Processing programming environment (Reas & Fry, 2007). 

To minimize luminance-related changes in pupil diameter, stimuli were made isoluminant with 

the background by adjusting their colors using the flicker-fusion procedure (Lambert et al., 

2003) on the display system that was used in the experiment. Stimuli were presented on a 

computer screen using MATLAB software (MathWorks) and the Psychophysics Toolbox 

(Brainard, 1997). 

6.10.1.3 Anchoring experiment 

Participants answered two questions about each of 7 quantities (e.g., the height of the Eiffel 

tower). They first indicated whether the quantity was greater or less than an anchor value. 

Next, they estimated the quantity. Each quantity was coupled with a low anchor for half of the 

participants and with a high anchor for the other half. Each participant was presented with a 

low anchor for half (3 or 4) of the quantities, and with a high anchor for the other half. 

Quantities and calibrated anchor values were taken from a previous study (Jacowitz & 

Kahneman, 1995), including: length of the Mississippi river, population of Chicago, number of 

babies born per day in the US, height of mount Everest, pounds of meat an American eats per 

day, year the telephone was invented, and maximum speed of a house cat. Anchoring effect was 

quantified by the deviation of an estimate from the group mean estimate in the direction of the 

anchor, normalized to the group estimates’ range. Data from 3 participants whose estimates 

were clear outliers (i.e., whose distance from others’ estimates was more than ten times the 

range of others’ estimates) and 1 participant with fewer than two valid (i.e., mostly artifact free) 

pupil response measurements were excluded from the analysis. 
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6.10.1.4 Persistence of belief experiment 

Participants were presented with two urns filled with colored balls (Figure 6.2A), and with a 

sequence of 90 balls, which they were told were sampled with replacement from one of the urns 

(Peterson & DuCharme, 1967). Every 5 balls, participants indicated using a sliding bar which 

urn they thought the sequence was sampled from. The precise position of the bar indicated 

degree of certainty. The first 3 participants performed a preliminary version of the experiment 

in which they responded after every ball. This was changed to make the experiment faster and 

more engaging, and thus, 41 participants performed the final version of the experiment. One 

urn contained 3 red balls, 2 green balls, 2 blue balls, 2 brown balls and 1 purple ball, and the 

other urn contained 2 red balls, 3 green balls, 1 blue ball, 2 brown balls and 2 purple balls. The 

sequence of balls was set up so that the first 30 balls favored one of the urns as their source 

with a probability of 0.95, and the next 60 balls favored the other urn to a similar degree (per 

30 balls). Therefore, it was optimal to favor one urn after 30 balls, be indifferent after 60 balls, 

and favor the other urn after 90 balls (Figure 6.10). Accordingly, an optimal observer would be 

indifferent on average during the last 60 balls. Thus, persistence-of-belief effect was quantified 

by the degree to which participants’ average response during the last 60 balls favored the 

initially-favored urn. The initially-favored urn was counterbalanced between participants. Data 

from 4 participants who did not favor the correct urn during the first 30 balls and 2 

participants with fewer than two valid pupil response measurements were excluded from the 

analysis.  
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6.10.1.5 Attribute framing experiment 

Participants used a sliding bar to rate ground beef products, gambles, and students’ 

performance, whose attributes were framed either positively or negatively (Levin et al., 1985). 

In the ground beef task, participants were asked to imagine that they were having a friend over 

for dinner and they were about to make their favorite lasagna dish with ground beef. They were 

then asked to rate how satisfied they would be purchasing each of 4 ground beef products, 

described in terms of price per pound ($2.7 and $3.3), and either percentage lean (80% and 90%, 

positive frame) or percentage fat (20% and 10%, negative frame). In the gambles task, 

participants were asked to imagine that they started out with $10 and they can either keep the 

$10 and not play the gamble or pay the $10 to take the gamble. They were then asked to rate 

how likely they were to take each of 3 gambles, described in terms of amount to be won ($50, 

$100 and $200) and either probability of wining (20%, 10% and 5%, positive frame) or 

probability of losing (80%, 90% and 95%, negative frame). In the student performance task, 

participants were asked to evaluate each of 2 students on the basis of midterm exam and final 

exam performance, described in terms of either % correct (50% and 70%, positive frame) or % 

incorrect (50% and 30%, negative frame). Each item was framed positively in half of the 
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participants, and negatively in the other half. For a given participant, all items of a particular 

type were similarly framed (i.e., either positively or negatively), so as to minimize awareness of 

the framing manipulation, but framing was varied within participants across item types. 

Framing effect was quantified for each item type by the deviation of a participant’s mean rating 

from the group mean rating in the direction of the frame (i.e., upwards for positive frames, and 

downwards for negative frames). Data from 1 participant with fewer than two valid pupil 

response measurements were excluded from the analysis. 

6.10.1.6 Risky choice framing experiment 

Participants faced two different scenarios, a medical scenario and a fire scenario, and indicated 

using a sliding bar which of two available actions they would choose in each scenario. One 

action had a certain outcome and the other an uncertain outcome, both of which were framed in 

terms of either gains or losses. Scenarios were described in full as done previously (Van Schie & 

Van Der Pligt, 1995). In the medical scenario, which concerned the treatment of a deadly 

disease at an island inhabited with 600 inhabitant, participants chose between the gain-framed 

outcomes ‘300 people will be saved’ and ‘a 50% chance that 600 people will be saved and a 50% 

chance that none of the people will be saved’, or between the loss-framed outcomes ‘300 people 

will die’ and ‘a 50% chance that 600 people will die and a 50% chance that none of the people 

will die’. In the fire scenario, which concerned the treatment of fires threatening 9000 acres of 

forest, participants chose between the gain-framed outcomes ‘3000 acres of forest will be saved’ 

and ‘a 60% chance that 5000 acres will be saved and a 40% chance that no forest under threat 

will be saved’, or between the loss-framed outcomes ‘6000 acres of forest will be lost’ and ‘a 

60% chance that 4000 acres will be lost and a 40% chance that 9000 acres will be lost’. Framing 
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effect was quantified as the deviation of a participant’s preferences from the group mean in the 

direction of the frame (i.e., towards the certain outcome in the gain frame, and towards the 

uncertain option in loss frame). Data from 2 participants with no valid pupil response 

measurements were excluded from the analysis. 

6.10.1.7 Task framing experiment 

Participants faced 5 different problems, concerning various subjects such as child custody, 

vacation choice, ice-cream choice and gambling. Each problem involved one option that had 

more positive and negative attributes (the “enriched” option) and one option that had fewer 

positive and negative attributes (the “impoverished” option). In each problem, half of the 

participants were asked to choose one of the options, and the other half were asked to reject one 

of the options. For example, in one problem participants were asked to imagine that they 

served on the jury of an only-child sole-custody case following a relatively messy divorce, and 

they decided to base their decision entirely on the following few observations. Parent A: 

average income, average health, average working hours, reasonable rapport with the child, 

relatively stable social life. Parent B: above-average income, very close relationship with the 

child, extremely active social life, lots of work-related travel, minor health problems. Half of the 

participants were asked to which parent they would award sole custody of the child, while the 

other half were asked which parent they would deny sole custody of the child. Framing effect 

was quantified by the degree to which across tasks (i.e., award and reject) participants preferred 

the enriched option (i.e., Parent A) more frequently than the impoverished option (i.e., Parent 

B). Full description of the other problems can be found elsewhere (Shafir, 1993; problems 1, 2, 
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4, 5 and 6). Data from 2 participants with fewer than two valid pupil response measurements 

were excluded from the analysis. 

6.10.1.8 Sample-size neglect experiment 

Participants were told to imagine that they were spinning a biased coin, and they recording 

how often the coin landed heads and how often the coin landed tails. They knew that the coin 

tended to land on one side 3 out of 5 times, but they did not know if this bias is in favor of 

heads or in favor of tails. Participants were then presented with 10 different sets of results 

(number of heads and number of tails), in which the heads always outnumbered the tails, and 

they indicated using a sliding bar how certain they were given each set that the coin was biased 

in favor of heads. Sets of results were similar to those used previously (Griffin & Tversky, 

1992).  

The probability that the coin was biased in favor of heads was inferred as: 

𝑝(𝐻|𝐷) = 𝑒
(ℎ−𝑡) log

3
2

                                           (6.1) 

where h is the number of heads and t is the number of tails. This expression is equivalent to 

𝑝(𝐻|𝐷) = 𝑒𝑛
(ℎ−𝑡)

𝑛
log

3
2                                         (6.2) 

which depends on the sample size (i.e., the number of outcomes, n) and on the ratio between 

heads and tails (
ℎ−𝑡

𝑛
). It was previously found that people tend to overweigh the ratio 

component at the expense of the sample size component (sample-size neglect; Griffin & 

Tversky, 1992). To measure this bias, we regressed participants’ estimates against the real 

probabilities (Eq. 6.1), and then regressed the residuals against the ratio component alone 
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(𝑒
ℎ−𝑡

𝑛
log

3

2
 
). The resulting regression coefficients captured overweighing of the ratio component 

at the expense of the sample size. In addition, to test whether the difference between heads and 

tails explained participants’ estimates better than the ratio between them, we reversed the 

steps. That is, we first regressed participants’ estimates against the ratio component, and then 

the residuals against the real probabilities, which reflect the difference between heads and tails 

(Eq. 6.1). We then compared the resulting regression coefficients to the coefficients produced 

when the regressions were performed in the reverse order. All inputs to regression analyses 

were z scored so as to produce normalized coefficients. 7 participants who were more certain 

that the coin was biased in favor of heads given 3 heads and 2 tails, than given 7 heads and 2 

tails, were excluded from the analysis, as we suspected that they mistakenly looked for a ratio 

that best matched 3 to 2.  

6.10.1.9 Eye tracking 

A desk-mounted SMI RED 120Hz eye-tracker (SensoMotoric Instruments Inc., MA) was used 

to measure participants’ left and right pupil diameters at a rate of 60 samples per second while 

they were performing the behavioral tasks with their head fixed on a chinrest. At the beginning 

of the experiment, a baseline measurement of pupil diameter at rest was taken for a period of 45 

s. Pupil-diameter data were processed in MATLAB to detect and remove blinks and other 

artifacts. For each trial, baseline pupil diameter was computed as the average diameter over a 

period of 1 s prior to the beginning of the trial (at the end of the inter-trial interval, at which 

point pupil activity from the trial itself should have subsided). Pupil-dilation response was 

computed as the difference between the peak diameter recorded during the 4 s that followed the 

beginning of the trial and the preceding baseline diameter. All pupil dilation responses were 
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normalized by the pre-experiment baseline pupil diameter. Pupil dilation responses in which 

more than half of the measurements were affected by artifacts were considered invalid and 

excluded from the analysis. 

6.10.1.10 Statistical analysis 

Analyses were carried out using MATLAB. Permutation tests were performed by sampling 

100,000 random permutations of the coupling between pupillary and behavioral individual data 

sets. Results based on the permuted data served as null distributions to which actual results 

were compared. Correlation values reported are Spearman correlation coefficients. Averaging of 

correlation coefficients was preceded by Fisher r-to-z transformation and followed by Fisher’s 

z-to-r transformation, so as to mitigate the problem of the non-additivity of correlation 

coefficients (Fisher, 1921). All statistical tests were two tailed.  

6.10.2 Computational model 

We modeled decision between two items, each with two attributes, using a leaky competing 

accumulator model (Usher & McClelland, 2001). The model consisted of two competing 

accumulators, one for each item (Figure 6.8A). Every time step, activity ai of accumulator i was 

updated to reflect evidence in favor of the respective item by: 

∆𝑎𝑖 = 0.1 (−𝑎𝑖 + 𝑔(𝐼𝑖 − |𝑎𝑗|
+

) + 𝜖)                        (6.3) 

where g reflects the level of gain, Ii is the evidence-based excitatory input to accumulator i, j is 

the competing accumulator whose positive component (||+) provided inhibitory input, and 𝜖 is 

normally-distributed noise with a standard deviation of 0.01. As in previous models of multi-
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attribute multi-item decisions (Usher & McClelland, 2004), on each time step, one attribute was 

selected at random, and excitatory input was determined accordingly. One of the attributes 

favored one item, and thus generated input of 1.25 to one accumulator and 0.75 to the other 

accumulator (plus normally-distributed random noise with standard deviation of 0.01). The 

other attribute favored the other item, and thus generated the same input but reversed. A 

decision was reached once one of the accumulators reached a value of 1. A bias was 

implemented by either setting the likelihood of selecting one of the attributes to 0.55 (instead of 

0.5), or by increasing the input to one of the accumulators by 0.05. The two implementations 

gave similar results, and thus only the results of the first are shown. We conducted 1,000,000 

simulations with each level of gain between 1 and 10. 
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Theoretical and practical implications 

In this chapter, I will attempt to integrate the different results presented in this thesis into a 

coherent Bayesian perspective on the effects of neural gain. I will then argue that high levels of 

gain may provide a more complete account of the behavioral and biological features of autism 

than previous theories. Finally, I will highlight some of the questions that are left open and 

potential future directions. 

7.1 A Bayesian perspective 

I started this thesis by examining neural gain at the cellular level, and from there proceeded to 

explore, via a set of mechanistic network models, system-level neural and behavioral effects of 

gain. Thus, in term of Marr’s (1982) levels of explanation, my approach proceeded from the 

implementational to the algorithmic. We will now take another step up Marr’s ladder, and 

attempt to understand the effects of gain from a computational, normative Bayesian 

perspective.  

In Chapter 4, we saw that increased gain focuses learning on stimulus features to which one is 

predisposed to attend. In that context, individual predisposition can be understood as a prior on 
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the types of features that could be relevant. Such a prior is necessary to guide learning in a 

multidimensional environment, in which exploration of all features is infeasible (Wilson & Niv, 

2011). Thus, the results of the learning experiment may lead us to suggest that high gain is 

associated with stronger (i.e., narrower) priors. However, in later chapters we encountered 

results that could lead us to the opposite view. In 0, we saw that high gain was associated with 

a weaker effect of prior semantic knowledge on perception of ambiguous letters (in the no-

priming condition). In Chapter 6, we saw that high gain was associated with prior information 

having a weaker biasing effect (in the anchoring and persistence-of-belief tasks). Both of these 

results suggest that high gain is associated with weaker priors. Thus, the effects of gain on 

priors were not consistent across experiments.  

We can gain a better understanding of the computational implications of high gain if we start 

from the algorithmic level. At that level, the effects of high gain all seem to reflect reduced 

representational breadth, and thus, reduced integration. Breadth and integration, however, are 

fundamental to Bayesian inference, which requires representation of probability distributions in 

order to integrate incoming evidence with prior expectations. Thus, the effects of high gain can 

be understood as narrowing distributions – that is, overweighing high probabilities events at 

the expense of low probabilities – and thus compromising the correct integration of evidence 

and priors. This could amount, in some cases, to overweighing evidence (Figure 7.1A) and in 

other cases to overweighing priors (Figure 7.1B), depending on which is stronger (i.e., more 

precise) in a specific situation.  
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Figure 7.1. Integration of prior expectation and evidence, with low and high gain. (A) The 
visual evidence in favor of H is stronger than the prior expectation to see A in between C and 
T. Thus, precise inference favors H, and this preference is amplified by high gain and reduced 
by low gain. In this case, high gain results in overweighing the evidence. (B) Semantic priming 
strengthens the prior expectation to see CAT, which is now stronger than the evidence. Thus, 
precise inference favors A, and this preference too is amplified by high gain and reduced by low 
gain. In this case, high gain results in overweigh the prior. Note that low levels of gain also 
compromise precise inference, but in favor of the less probable option.   

It could be argued that variations in gain do not, in fact, compromise inference, but rather, gain 

is optimally adjusted so as to produce precise inference. For instance, in a highly predictable 

environment in which few potential outcomes are probable, inference should yield narrow 

distributions, and thus high gain may be suitable. Conversely, in a less predictable 

environment, low gain may allow the representation of the larger number of probable 

outcomes. Such a view, however, would be hard to reconcile with the considerable inter-

A H

Evidence

CAT CHT

Prior

CAT CHT

Precise 
inference

CAT CHT

Low gain

CAT CHT

High gain

CAT CHT

Prior

A H

Evidence

CAT CHT

Precise 
inference

CAT CHT

Low gain

CAT CHT

High gain

CAT  
A DOG  

CAT  
B 



CHAPTER 7. THEORETICAL AND PRACTICAL IMPLICATIONS 118 
 

individual differences that we observed in measures of gain and behavior in a simple perceptual 

task. Instead, we propose that variations in gain do lead to deviations from optimal inference, 

but these deviations are in fact advantageous in certain circumstances. Specifically, in stressful 

situations, which are known to activate the LC-NE system (Korf et al., 1973; Abercrombie & 

Jacobs, 1987) and thus presumably increase gain, immediate coherent action is often required. 

In such situations, it could be disadvantageous to consider the multiple low-probability 

possibilities that optimal inference typically involves. Rather, it is often best to focus one’s 

resources on the single, most immediately-relevant possibility. Conversely, in low-stake 

situations, when there is no pressing need for action, and no significant outcome is imminent, it 

can be advantageous to explore a wider range of possibilities, including less probable ones, thus 

gaining information about the environment and improving one’s ability to maximize utility 

(Kaelbling et al., 1996). In such typically low-arousal circumstances, low gain may enhance the 

representation of low-probability possibilities and thereby facilitate their exploration. Thus, 

while variations in gain likely compromise optimal inference, they may help optimize utility.  

7.2 A neural gain account of autism 

Our account of the effect of gain on the integration between prior and evidence points to a 

potential solution to a long-standing controversy concerning the key cognitive dysfunction 

underlying autism spectrum disorders (ASD). Early cognitive theories of autism, such as the 

weak central coherence theory (Frith & Happé, 1994), the theory of mind theory (Baron-Cohen 

et al., 1985), and the executive dysfunction theory (Hughes et al., 1994), helped conceptualize 

the wide-range of behavioral findings in autism in terms of few fundamental characteristics. 

These theories, however, often relied on imprecise theoretical concepts, were focused on 
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particular clusters of symptoms, and did not provide mechanistic explanations for the 

emergence of the deficits that they posited.  

More recently, the discussion shifted towards Bayesian formulations of the problem. Weaker 

priors (Pellicano & Burr, 2012), or alternatively, stronger evidence (Brock, 2012), have been 

suggested to underlie perceptual atypicalities in autism such as more accurate perception 

(Ropar & Mitchell, 2002), failure to use prior information (Becchio et al., 2010), and the sense of 

being overwhelmed by sensory information (Bogdašina, 2005). However, autistic individuals 

sometimes show inflexible and perseverating behavior (Ciesielski & Harris, 1997), which 

implies excessively strong priors. In addition, they do not have a problem forming priors in a 

simple sensory oddball task (Ferry et al., 2003; Kujala et al., 2007). This lead Van de Cruys et 

al. (2013) to propose a predictive coding (Bastos et al., 2012) account of autism, according to 

which the disorder is caused by chronically strong sensory prediction errors (i.e., strong 

evidence), which lead to the formation of priors that are too strong to be applicable in all but 

the simplest cases.  

The predictive coding hypothesis is appealing since it predicts overweighting of priors in 

simple cases, and underweighting of priors in more complex circumstances, as seems to be the 

case in autism. However, it falls short on two accounts. First, if evidence signals are uniformly 

strong then multiple stimuli presented simultaneously should all elicit an equally strong 

response (or if signals are normalized, an equally weak response), and should thus be processed 

equally, in a manner that is even more balanced than in typically developing individuals, at 

least in those cases in which priors are inapplicable. Evidence, however, suggests the opposite. 

Autistic individuals spontaneously attend to fewer cues than typically developing individuals 

(Lovaas et al., 1971; Liss et al., 2006; Ciesielski & Harris, 1997). Even in a simple, highly 
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structured task, autistic participants did not benefit from congruent information simultaneously 

provided by two dimensions of a stimulus, in contrast to typically developing participants 

(Plaisted et al., 1999). Autistic children could only learn to discriminate multiple-cue complexes 

when taught to use a sequential strategy (Koegel & Schreibman, 1977). In fact, a recent meta-

analysis found that the most consistent sensory symptom in autism is not hyper-responsivity, 

but rather reduced responsivity, which presumably reflects selective attention directed 

elsewhere (Ben-Sasson et al., 2009). Thus, over-selective attention seems to be a primary 

feature of autism, and it is not consistent with the predictive coding account.  

In addition, the predictive coding account, like previous theories, fails to provide a 

parsimonious mechanistic explanation for the dysfunction that it proposes. In predictive coding, 

selective attention is implemented by the modulation of sensory prediction error signals, so 

that error signals evoked by attended stimuli are enhanced, and error signals evoked by 

unattended stimuli are inhibited (Van de Cruys et al., 2013). Thus, since autistic individuals are 

capable of attending selectively, they must be capable (according to the predictive coding 

account) of modulating prediction errors signals. The dysfunction in autism, then, cannot be in 

a primary mechanism that is required for modulation of error signals, but rather, it has to be in 

a system that determines when, where and to what extent error signals are modulated, or in 

other words, in the system that controls attention. However, areas that are involved in 

regulating attention, mostly located in frontal and parietal lobes (Corbetta & Shulman, 2002), 

are thought to be involved in multiple functions, and thus, isolated dysfunction in the 

modulation of attention seems unlikely. Moreover, there is little evidence that attention areas 

are structurally or biochemically distinct from nearby cortical areas. Thus, the prospect of 
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identifying biological factors that specifically affect the attention system does not seem 

promising.   

I argue that high neural gain provides a more parsimonious and complete account of the 

symptomatology of autism, and moreover, it is tightly linked to biological factors that are 

known to be affected in autism. The high gain account of autism subsumes the key predictions 

made by the predictive coding account, including stronger evidence and stronger priors, either 

of which could dominate in any given case. However, in the high gain account, these 

predictions are inherently coupled with reduced attentional breadth and an inability to 

integrate information, as shown throughout this thesis. Thus, high gain naturally explains 

autistic individuals’ over-selective attention, as well as their difficulties with multisensory 

integration (Smith & Bennetto, 2007), integration of context (Wang et al., 2006), and 

integration of prior knowledge (Becchio et al., 2010). In addition, since high gain is associated 

with more locally-clustered functional connectivity, it can explain the stronger local and 

weaker global connectivity that is thought to develop in autism (Courchesne & Pierce, 2005; 

Barttfeld et al., 2011), as well as the association between autism and focal epilepsy (Levisohn, 

2007).  

In keeping with my proposal, autism has already been associated with abnormalities that may 

increase brain-wide levels of gain. LC-NE activity, which modulates neural gain throughout the 

brain, has been suggested to play a central role in the pathophysiology of autism, due to the 

role that the LC plays in generating fever and the ameliorating effect fever has in autism 

(Mehler & Purpura, 2009). Moreover, drugs that oppose the effect of NE, such as -adrenergic 

antagonists and 2 agonists, have been shown to improve cognitive and social functioning in 

autistic individuals (Beversdorf et al., 2008; Beversdorf et al., 2011; Ming et al., 2008; Ratey et 
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al., 1987). Autism has also been associated with increases in tonic pupil diameter (Anderson & 

Colombo, 2009), skin conductance (Hirstein et al., 2001), heart rate (Ming et al., 2005), blood 

pressure (Ming et al., 2005), and respiratory rate (Zahn et al., 1987), all of which could reflect 

increased LC-NE activity. Finally, many of the genetic abnormalities that underlie 

susceptibility to autism are involved in synaptic growth, and thus, may have a direct impact on 

neural gain (Bourgeron, 2009).     

In sum, I argue that a neural gain account of autism improves on previous theories by 

providing a computationally precise theory that explains a wider range of the behavioral and 

biological characteristics of the disorder.  

7.3 Open questions 

Previous findings suggested that the effects of NE follow an inverted-U-shaped relationship, 

both at the cellular level (Devilbiss & Waterhouse, 2000) and at the level of behavior (Baldi & 

Bucherelli, 2005). In contrast, in our experiments pupillary indices of LC-NE function were 

monotonically related to behavioral and neural measures. However, due to the sluggish 

pupillary response, all of our experiments involved relatively long inter-trial intervals that 

presumably induced boredom and decreased arousal. Thus, it is possible that participants’ LC-

NE activity levels were relatively low, and thus, the results only reflected the first half of the 

inverted U. Indeed, the effects of NE reuptake inhibitors was opposite to that associated with 

pupillary indices of high gain. It is unclear however whether the difference between the 

pharmacological and pupillary results reflected differences in NE levels, or other differences 

that exist between pharmacological and physiological NE stimulation. Further research is 
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necessary to clarify whether the effects that we found to be correlated with pupillary indices of 

gain follow an inverted U-shaped relationship. 

Finally, throughout this work, we used fMRI to investigate the whole-brain effects of gain on 

neural activity and connectivity. However, the BOLD signal does not exclusively reflect neural 

activity (Maier et al., 2008; Sirotin & Das, 2009; Logothetis, 2008), and it may be affected by 

any factor that affects blood flow. This is especially concerning because NE is known to affect 

cerebral arteries (Toda & Fujita, 1973). Thus, the imaging work presented here should be 

complemented by methods that do not rely on measurements of blood flow. For instance, 

electrocorticography would be particularly suitable for replicating our connectivity analyses 

due to its high spatial and temporal resolution.   

7.4 Future directions 

7.4.1 Information processing styles 

The effects of neural gain in our experiments mostly manifested in differences between 

individuals in the way in which they processed information. These differences may reflect in 

part stable tendencies of particular individuals to utilize different modes of information 

processing to different extents. Such information processing styles could arise from genetic 

variations in NE signaling and metabolism, as well as from differences in genes that affect 

synaptic efficacy, such as those that have been implicated in autism. As a first step, to test for 

the existence of stable information processing styles, the same participants can be re-tested at 

different times and in different tasks, for instance using the tasks presented in this theses.  



CHAPTER 7. THEORETICAL AND PRACTICAL IMPLICATIONS 124 
 

7.4.2 Dynamic interactions between gain and information processing 

Although gain may be determined in part by stable individual traits, we have seen that it also 

varies within participants over the course of an experiment. This opens up the possibility for 

exploring the dynamic interactions between gain and information processing. For example, in a 

risky situation some individuals may become more stressed because they pay more attention to 

potential negative outcomes than to potential positive outcomes. Stress may then lead to higher 

LC-NE activity which should increase gain and thus make these individuals more narrowly 

focused on the potential negative outcomes. This, in turn, can make them even more stressed, 

and thus a vicious cycle may ensue. 

7.5 Conclusion 

I have shown that the idea of gain modulation, although originally derived from the study of 

single neurons, and measured here indirectly using pupillometry, successfully accounts for a 

wide range of system-level neural and behavioral phenomena. Neurally, gain modulation can 

explain brain-wide changes in fMRI activity and connectivity. Specifically, our findings suggest 

that increased gain is associated with a shift from a globally distributed mode of neural 

communication to a locally clustered mode. Paralleling this shift in neural function is a 

behavioral shift, from a broad, integrative mode of information processing to a narrowly 

focused mode. This behavioral effect, which we explored in four different experiments, was 

manifested in the way participants perceived and remembered visual input, learned from 

outcomes, and made decisions. The close association of the brain’s gain control system with the 

“fight-or-flight” sympathetic system suggests a normative explanation for the effect of gain 



CHAPTER 7. THEORETICAL AND PRACTICAL IMPLICATIONS 125 
 

modulation: in high-stake situations, arousal and gain increase, thus focusing resources on the 

most immediately-relevant possibility. Conversely, in low-stake situations, low gain may 

facilitate attention to, and exploration of, a wider range of possibilities. Finally, the neural, 

behavioral and computational effects of high gain examined here suggest a novel, parsimonious 

account of many of the disturbances found in autism spectrum disorders.  
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