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ABSTRACT

The multidimensional nature of our environment raises a fundamental question in the
study of learning and decision-making: how do we know which dimensions are relevant for
reward, and which can be ignored? For instance, an action as simple as crossing the street
might benefit from selective attention to the speed of incoming cars, but not the color or
make of each vehicle. This thesis proposes a role for selective attention in restricting rep-
resentations of the environment to relevant dimensions. It further argues that such repre-
sentations should be guided by inferred structure of the environment. Based on data from
a paradigm designed to assess the dynamic interaction between learning and attention, the
thesis introduces a novel sequential sampling mechanism for how such inference could be
realized.

The first chapter discusses selective attention in the context of Partially-Observable
Markov Decision Processes. Viewed through this lens, selective attention provides a map-
ping from perceptual observations to state representations that support behavior.

Chapter 2 provides evidence for the role of selective attention in learning such repre-
sentations. In the ‘Dimensions Task,” human participants must learn from trial and error
which of several features is more predictive of reward. A model-based analysis of choice
data reveals that humans selectively focus on a subset of task features. Age-related differ-
ences in the breadth of attention are shown to modulate the speed with which humans
learn the correct representation.

Next, a method is introduced for directly measuring the dynamics of attention allocation
during multidimensional reinforcement learning. fMRI decoding and eye-tracking are
combined to compute a trial-by-trial index of attention. A model-based analysis reveals a
bidirectional interaction between attention and learning: attention constrains learning; and
learning, in turn guides attention to predictive dimensions.

Finally, Chapter 4 draws from statistical theory to explore a novel mechanism for selec-
tive attention based on particle filtering. The particle filter keeps track of a single hypothesis
about task structure, and updates it in light of incoming evidence. To offset the sparsity
of the representation suggested by gaze data, the particle filter is augmented with working
memory for recent observations. Gaze dynamics are shown to be more consistent with the
particle filter than with gradual trial-and-error learning. This chapter offers a novel account
of the interaction between working memory and selective attention in service of representa-
tion learning, grounded in normative inference.
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The art of being wise is the art of knowing what to overlook.

William James

Introduction

MILLENNIAL DECISION-MAKING CAN BE COMPLICATED. We have a myriad of apps at
our disposal providing us with ever more goals to strive towards. Our attention is in high
demand by different facets of social media. Our working memory is taxed by constant mul-
titasking. To go about our daily lives, we must somehow discount the distal sense of catas-
trophe surrounding climate change (and the not-so-distal one brought on by a global pan-
demic). Yet, even in these conditions, we strive to make sense of the world and make good
decisions. At the core of this flexibility is the ability to select relevant sources of informa-
tion, and use them for appropriate action selection. The central theme of this dissertation
is the dynamic interaction of selective attention and learning. I share what I have learned in
my attempt to glean an answer to a fundamental question about this interaction: what is

worth learning about?

0.1 DEFINING ATTENTION

Every organism receives input from the world through a limited number of sensors. Hu-

man vision for example is possible because when light hits the retina, specialized photore-



ceptors transform photons into action potentials. From there, information travels along
the visual pathway. By the time neural signals reach the primary visual cortex, they have
been optimized for highly specialized functions, such as edge detection and depth per-
ception (Kuffler, 1953; Blake & Logothetis, 2002). The physical peculiarities of the visual
system determine many aspects of how we see. For instance, we only have three types of
color-sensitive photoreceptors, which limit the color spaces we can perceive. The decreasing
acuity in our peripheral vision means that we need to constantly move our eyes (“foveate”)
in order to increase the quality of our perception and maintain a coherent picture of the
world. So at least partially, evolution has selected visual information for us.

Nevertheless, the 2D projection of the environment is rich with sources of information:
a single visual scene may contain common features such as objects of different colors and
shapes; but also less likely entities, like starfish. My work approaches the problem of how
we sift through this information and learn to focus only on features that are relevant for the
task at hand. I take an implicitly normative stance throughout: selective attention can be
construed as a cognitive action (Dayan, 2012; Frank, 2011). Like any other action, it ought
to serve some adaptive purpose. And that purpose depends on one’s goals.

Attention can be concisely defined as the selective processing of a subset of features at
any stage between sensation and action (Gottlieb, 2012). In my doctoral work, I have pri-
marily studied the selective processing of visual features when choosing between options,
and during explicit reward feedback. But the hope is to develop a more general theory that

can be applied to a broad class of tasks and representational spaces.



0.2 THESIS OVERVIEW

This thesis comprises of a background chapter, three main chapters that together offer
an account of the role of attention during reinforcement learning, and a conclusions chap-
ter.

In Chapter 1, I provide much of the theoretical background useful for understanding
the rest of the thesis. I explicitly frame selective attention in the computational language
that has been used to study goal-directed action. In particular, I propose a role for attention
in carving state representations for reinforcement learning. Drawing on a rich literature on
human category learning, I suggest that such representation learning is guided by infer-
ring the structure of the environment.

In Chapter 2, I study how the interaction of reinforcement learning and selective atten-
tion critical in forming task representations changes with age. In particular, I present results
from a multidimensional learning paradigm in which humans must identify which fea-
tures are relevant for accruing reward. I show how age-related differences in representation
learning can be captured using trial-by-trial fitting of computational models to behavioral
choice data. In particular, older adults seem to employ a narrower focus of attention when
learning what to attend to.

The main model used to study age differences in Chapter 2 is not expressive enough to
tully distinguish selective attention from passive forgetting of past experiences. To over-
come this limitation, in Chapter 3 I provide a set of novel empirical methods for studying
the interaction between learning and attention. I use data from two different modalities,

functional magnetic resonance imaging (fMRI) and eye-tracking, to directly measure the



dynamics of attention learning. I develop a method for fitting computational models not
just to choices, but to trial-by-trial attention dynamics. Using this method, I show that at-
tention and learning are engaged in a bidirectional interaction: human reinforcement learn-
ing is constrained by attention, and selective attention dynamics are sensitive to reward.
Finally, I show that separable attention processes constrain human reinforcement learning
during the choice and learning stages of each decision.

In Chapter 4, I present a new computational model of attention learning grounded in
statistical inference theory. This model explicitly instantiates the hypothesis in Chapter 1,
and is inspired by a rich tradition of treating Monte-Carlo methods as psychologically plau-
sible algorithmic solutions to otherwise intractable Bayesian inference problems. I suggest
attention learning can be viewed as particle filtering: humans sequentially entertain one
or few hypotheses about which features of a task are relevant, and revise these hypotheses
in light of feedback. Previous data from animal learning suggest a particle filter with one,
or few particles. To allow the single-particle model to maintain enough evidence to switch
hypotheses efficiently, I augment it with memory for recent observations. I show that this
memory-augmented particle filter is consistent with trial-by-trial attention dynamics mea-
sured in the paradigm described in Chapter 3. This final chapter proposes a novel mech-
anism for attention learning, and highlights the role of memory in enabling inference of
which features in the environment are relevant for reward.

Finally, in Chapter 5 I summarize the conclusions and contributions of the thesis as a

whole, as well as directions for future research.



We demand rigidly defined areas of doubt and uncertainty!

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Selective attention for state representation

ATTENTION is both intuitively easy to grasp and famously elusive to define (James, Burkhardt,
Bowers, & Skrupskelis, 1890). Empirical studies usually conceptualise attention as an (ob-
served) consequence of limited computational resources. For example, in the Posner spatial
cuing task, a cue signals the relevance of a particular spatial location. In response to this
cue, participants may make an internal decision to shift attention, and devote more compu-
tational resources to that location. Attentional shifts can be overt, which involves physically
moving one’s eyes to collect sensory data; or covert, which involves redistributing com-
putational resources between different sources of sensory data. Controlling attention in
this way allows participants to respond faster when a second cue appears at the same loca-
tion (Posner, 1980). Such facilitation is taken as evidence of attention. As in the Posner
Task, across many paradigms, attention is defined in terms of the observed behavioral ef-
fects (e.g. faster responding, focus of eye-gaze). However, few attempts exist to explicitly
model why attention should be devoted to some features (e.g. location) but not others. For
such an analysis, we turn to reinforcement learning theory.

In the following sections, I lay out a framework for defining attention from the point



of view of a goal-directed agent that is trying to make optimal decisions in a multidimen-
sional world. I introduce Markov Decision Processes (MDDPs), and algorithms for solving
MDPs that have been most widely used to model human and animal learning and decision-
making. Finally, in a section based on a recently published paper (Radulescu, Niv, & Bal-
lard, 2019), I briefly review their limitations, and data suggesting a role for selective atten-
tion in carving state representations in an MDP by inferring relevant structure in the envi-

ronment.

1.1 MARKOV DECISION PROCESSES IN LEARNING AND DECISION-MAKING

An agent’s internal model of the way the world unfolds as a consequence of its actions
can be formalized as a Markov Decision Process (MDP). This framework spans cognitive
science, artificial intelligence and robotics. Algorithmic solutions to MDPs provide a pow-
erful common language for describing how intelligent agents should behave in a variety of
environments. Markov Decision Processes (MDPs) consist of tuples {S, A, R, T }.

The state space S denotes a set of states of the external world. We can define szate as the
subset of environmental features relevant to the agent’s goal. For a rat trying to find food in
the New York subway, the state may consist of its current position on the train tracks; for a
deep neural network playing a game of Pong (Mnih et al,, 2015), the state may consist of an
array of color pixel values.

Given a set of possible actions A, (e.g., turning left and turning right), the transition
function 7 governs how the state of the world changes when the agent performs an ac-
tion. For example, moving along the tracks would typically lead the rat to a subway sta-

tion. Knowledge of 7" enables an agent to plan action sequences more efficiently. If the



rat found itself at soth St, and knew that turning left leads to Times Square, while turning
right leads to 59th St, it might generate a simple plan to turn left, and forage for pizza.

A key property of MDPs is that the current state 5, contains all the information needed
to determine the probability of ending up in any state at time # 4 1, given the agent’s ac-
tions. This is known as the Markov property. For instance, we can say that Times Square is
a “Markov state” if and only if where the rat has been before Times Square has no bearing
on which stations it will reach in the future if he turns left and walks straight.

Finally, the reward function R takes as input the state of the environment and the cur-
rent action 4,, and returns 7;, a scalar representing the immediate utility of performing that
action in the current state. In human and animal learning paradigms, rewards are typically
construed as primary extrinsic signals, such as juice, shocks, money, or, for our prototypical
subway rat, the abundance of pizza.

For a given MDP, a policy 7 defines a mapping between states and actions. An agent is
said to be behaving in a normative manner if the state-action mappings it has learned help
it receive the most long-term reward. Finding such policies is difficult because the agent
automatically faces a credit assignment problem: when a behavior is protracted, the agent
needs to determine which actions led to the outcome. For example, the subway rat might
have “turned left”, but also “jumped over the tracks” before it got to the pizza. Which of
these actions was critical, and which was less important for leading the rat into a better state
than it found itself previously?

The quantity in reinforcement learning that summarizes how “good” it is to be in a par-
ticular state is known as the value function, V*(s). The value of a state is the sum of future

(discounted) rewards that an agent can expect to collect when following a specific policy



from that state on. Here, “discounted” means that rewards that are farther in the future are
only worth a fraction of immediate ones. We return to New York one last time to illustrate
this concept: given the rat’s goal to reach the pizza, the value of being at soth St is higher
than being at 59th St Columbus Circle.

Until relatively recently (Daw, Niv, & Dayan, 2005), the dominant theory of human
learning had been an algorithm for learning state values known as TD-Learning (Sutton,
1988). Given an MDP with a discrete and finite set of states, TD-Learning updates the
value V(s) of the current state following each outcome, using a temporal-difference learn-
ing rule (Niv, 2009). Seminal work by Schultz and colleagues has sparked a flurry of progress
in mapping the neural substrates of TD-Learning, leading to the influential “reward predic-
tion error theory” of dopamine function (Barto, 1995; Montague, Dayan, & Sejnowski,
1996; Schultz, Dayan, & Montague, 1997): when a neutral stimulus such as a tone is fol-
lowed by an unexpected reward, midbrain dopamine neurons fire; repeating this stimulus-
reward pattern leads to the stimulus becoming “conditioned”; that is, it elicits a dopamine
response, despite not being intrinsically rewarding. In MDP terms, the stimulus (or state)
has now acquired predictive value. The framework elegantly explains why animals learn
to associate arbitrary stimuli with reward, clarifying the neural basis of classical condition-
ing (Pavlov, 1927). This foundational theory has been extended to action selection, most
notably in the form of two algorithms, Q-Learning and Actor-Critic (Daw et al., 2005;
Daw, 2011; Joel, Niv, & Ruppin, 2002; Collins & Frank, 2014). These RL algorithms have
proven powerful descriptors of how humans and animals learn to make good decisions

from trial and error.



1.2 REVISITING STATE

One aspect of human and animal RL theory that might give us pause is that the same
algorithms that explain behavior and neural activity on simple learning tasks learn much
more slowly as the number of states in the environment grows (Bellman, 1957; Sutton,
1988). This is because the multidimensional nature of the environment quickly leads to
a combinatorial explosion: representing all features of the environment (e.g. all possible
shapes, or possible colors, and so on) yields too many possible states, each defined by a spe-
cific feature configuration.

Recall however our previous definition of state: the subset of environmental features
relevant to the agent’s goal. This definition rests on the assumption that some features are
relevant for behavior, while others are not. So an agent can reduce the dimensionality of the
state space by representing only some features and not others. But this gives rise to a second
problem: which features ought to be included in the state?

Imagine for instance that you are learning to take photographs. In the beginning, you
may not be able to distinguish relevant aspects of the task from those that matter less for
taking good photos. But in time, with enough practice and feedback, you will learn to pay
attention to the features that matter. Once you take enough photos, you will learn that the
light source is more important than the brand of your camera. Experience will eventually
lead you to discover that photographing near a window requires difterent settings, depend-
ing on whether you are photographing at midday, or minutes before sunset. All else equal,
the nature of light is an aspect of photography that meaningfully distinguishes between dif-

ferent situations. To borrow an ancient metaphor, light carves nature at its joints (Plato, ca



360BCE): if photographers pay attention to it, they will eventually reach their goal.

In multidimensional settings typical of our every day experience, the dynamics of the
world might thus be better described as a Partially Observable Markov Decision Process
(POMDP) (Kaelbling, Littman, & Cassandra, 1998). In a POMDDP, instead of receiving
the exact state as input, agents have access to noisy observations O. An agent’s model of the
world can then consist of all or a subset of these computations (Hamrick, 2019):

Representing a mapping between observations and states:

plsilos) (1.1)
Representing the transition function:
Plseialsr, ar) (1.2)
Representing the reward function:
p(rlsi; a;) (1.3)

The rest of this thesis seeks to model how humans accomplish the first aspect of model
building, which is to learn a useful mapping between observations and states (Equation
1.1). The process of learning this mapping is known as representation learning (Bengio,
Courville, & Vincent, 2013).

Equation 1.1 can be interpreted in two ways: in the early POMDP literature, it encoded

a probability distribution over true states of the environment. The agent then had the addi-
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tional task of inferring what state it is in, given the most recent observations. For example,
a wildlife photographer might try to guess the position of an approaching animal from the
rustling of leaves.

Alternatively, we can interpret s, as a state representation internal to an agent. This view
is convenient, because it does not require us to commit in advance to an exhaustive state
space that may not ever be truly knowable. Instead, we can treat Equation 1.1 as a mapping
between raw observations and state representations that changes with task demands. The
usefulness of this mapping can then be solely determined by reward: if distinguishing be-
tween the absence or presence of a feature changes the outcome, then the agent should in-
clude it in the state representation (McCallum, 1997). Of course, one might still ask, what
is the observation space the agent is mapping from? One conjecture I will make for the
purposes of this thesis is that the observation space is only constrained by the “primitive”
features that an agent’s perceptual system has access to during a given task. For humans,
this space might consists of objects with semantic labels which have certain attributes like
shape, color, etc. I refrain from speculating how such a feature space might itself be learned,
in large part because this endeavor necessarily requires taking a developmental view that is
beyond the scope of this thesis (Sanborn, Chater, & Heller, 2009). Still, given an observa-
tion space invariant to reward over the course of a task”, I suggest that selective attention

can be understood in light of Equation 1.1.

"To illustrate what I mean by this, consider a negative example: we will likely not be able to “condition” a
participant to stop perceiving an object over the course of a short laboratory experiment.
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1.3 EMPIRICAL STUDIES OF HUMAN REPRESENTATION LEARNING

The flexibility with which humans adapt their state representation to different situations
has been studied in multidimensional learning tasks, which I review in detail in Radulescu,
Niv, and Ballard (2019). In such tasks, human participants make responses based on stim-
uli that vary along several dimensions. Observations consist of both the sensory properties
of the stimuli, and the reward outcome that follows each action. Efficient learning depends
on how participants use raw observations to construct an appropriate mapping between
percepts and internal state representations (Equation 1.1). For instance, in Schuck et al.
(2015) participants were instructed to respond manually to the location of a patch of col-
ored squares within a square reference frame. A latent deterministic mapping was induced
between the color of the patch and the correct response. Despite extended practice with the
location-based policy, some participants spontaneously adapted their state representation
to the structure of the task, using color to respond faster. This strategy shift was preceded
by an increase in color information content in the medial prefrontal cortex. Humans can
thus flexibly change strategies from one feature to another in the absence of explicit instruc-
tions.

The kinds of paradigms that have been used to study how humans form state represen-
tations resemble classic tasks in human category learning. In category learning tasks, par-
ticipants are required to sort multidimensional stimuli one at a time into one of several
categories. Category membership usually depends on the presence or absence of one or
more features, as well as on the relationship between features. For example given two cate-

gory labels “dax” and “bim”, a red square would be classified as a “dax” if “all red objects are
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daxes” or as a “bim” if “only red circles are daxes” (Ballard, Miller, Piantadosi, Goodman, &
McClure, 2018). How humans infer category structure has successfully been modeled with
Bayesian models of categorization (Sanborn, Griffiths, & Navarro, 2010; Anderson, 1991;
Mansinghka et al., 2016; Goodman, Tenenbaum, Feldman, & Griffiths, 2008).

Tasks probing state representation learning may differ in framing (e.g. decision-making
vs. categorization), the size of the observation space (i.e. how many dimensions stimuli can
vary on), the nature of the feedback (scalar reward vs. a category label; stochastic vs. deter-
ministic) and the instructions the participant receives about the structure. But they also are
alike in that each trial consists of a perceptual observation, an action and a reward outcome.
And they share the key property that the participant needs to disambiguate observations
by learning and representing an appropriate mapping between perceptual observations and
states. How fast participants learn depends on learning to carve the perceptual observation
space into a compact state representation appropriate for the task.

In this dissertation, I propose that representations of task structure learned through
Bayesian inference are the source of selective attention during learning (Figure 1.1). In
POMDP terms, selective attention is a useful mapping function from observation to states
(Equation 1.1). This mapping changes from task to task, as the agent infers new mod-
els for how rewards are generated, allowing her to make useful distinctions in perceptual
space, and biasing attention towards features that are causally related to predictable fluc-
tuations in reward (Mackintosh, 1975; McCallum, 1997). To mitigate the computational
intractability of Bayesian inference, I further propose that changes in attention correspond
to an approximate sequential sampling mechanism known as a particle filter (Doucet &

Johansen, 2009; Sanborn & Chater, 2016; Speekenbrink, 2016). I show how this type of
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sequential sampling mechanism can be realized in a multidimensional environment with a
simple underlying structure, in which one of three dimensions is relevant, and within that

dimension, one of three features predicts reward.
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From structured representations to selective attention. Rules inferred by Bayesian
probabilistic programming models (Goodman et al., 2008; Lake, Salakhutdinov, & Tenen-
baum, 2015) (top row) or clusters inferred by Bayesian non-parametric models (Gershman
& Blei, 2012; Franklin & Frank, 2018) (middle row) lead to different perceptual distinc-
tions in observation space (bottom row). Left column: if the agent infers that red objects
are “daxes”, or that red and “dax” cluster together, then she can ignore shape and only at-
tend to color when categorizing a stimulus as a “dax” or a “bim”. Middle column: similarly
if the agent infers that squares are “daxes” (middle left), or that square and “dax” cluster
together, then she can ignore color and only attend to shape. Right column: finally if the
agent infers that red squares are “daxes”, or that red, square and “dax” cluster together, then
she should attend to both color and shape.
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Age is an issue of mind over matter. If you don’t mind, it doesn’t matter.

Mark Twain

Representation learning over the lifespan

2.1 INTRODUCTION

REPRESENTATION LEARNING refers to the process of discovering aspects of the environ-
ment relevant for the task at hand (Bengio et al., 2013). In the paper that this chapter is
based on (Radulescu, Daniel, & Niv, 2016), I asked, how do humans learn representations
in complex environments? To gain insight into what factors might be at play, I studied
both younger and older adults. Aging is known to independently affect both simple trial-
and-error learning and selective attention, which I argued in Chapter 1 should play a key
role in learning state representations. A cross-sectional aging study therefore allows us to
more precisely tease out the contribution of each process to representation learning.
Previous studies suggest that healthy aging affects the ability to associate stimuli with ex-
pected future rewards (Mata, Josef, Samanez-Larkin, & Hertwig, 2011; Mell et al., 2005;
Samanez-Larkin & Knutson, 2014). When required to learn stimulus-reward associations
from feedback, older adults consistently need more trials to reach the same level of per-
formance as younger adults, and exhibit slower reaction times (RTs). Previous work has

also emphasized that dopamine neurons—which have been implicated in reinforcement
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learning (Niv, 2009)- are gradually lost over the course of the life span (Eppinger, Him-
merer, & Li, 2011; Li, Lindenberger, & Bickman, 2010). Drawing on these findings, age-
related behavioral differences in RL tasks have been linked to a reduced efficacy in reward
prediction-error signaling in the human striatum (Eppinger, Schuck, Nystrom, & Cohen,
2013). Using a pharmacological manipulation, Chowdhury and colleagues further showed
that dopaminergic drugs can restore this signal, and boost the performance of older adults
to levels comparable to those observed in younger adults (Chowdhury et al., 2013).

But a deficit in simple stimulus—reward learning might not be at the heart of the diffi-
culties that older adults show when learning in the real world. Instead, older adults may
struggle exerting the attentional control required to update and maintain task representa-
tions. Behaviorally, older adults exhibit lower performance on tasks that require internally
generating and maintaining task-relevant information (Braver & Barch, 2002; Hampshire,
Gruszka, Fallon, & Owen, 2008), as well as suppressing task-irrelevant distractors (Campbell,
Grady, Ng, & Hasher, 2012; Gazzaley, Cooney, Rissman, & D’esposito, 2005; Schmitz,
Cheng, & De Rosa, 2010). A recent review summarized evidence that older adults com-
pensate for these lapses in cognitive control by relying more on the external environment to
provide task-appropriate representations (Lindenberger & Mayr, 2014). At the neural level,
it has been suggested that changes in the interaction between DA and the prefrontal cortex
(PFC) can account for observed differences in attentional modulation and inhibition of
irrelevant stimuli (Braver & Barch, 2002; Dennis & Cabeza, 2012; Li et al., 2010). Taken
together, these findings suggest that age may strongly affect the interaction between reward
learning and attention.

In two experiments described in the chapter, younger and older adults performed a
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learning task in which only one stimulus dimension was relevant to predicting reward,
and within it, 1 “target” feature was the most rewarding. Participants had to learn the cor-
rect task representation through trial and error. In Experiment 1, stimuli varied on 1 or 3
dimensions and participants received hints that revealed the target feature, the relevant di-
mension, or gave no information. Group-related differences in accuracy and RTs differed
systematically as a function of the number of dimensions and the type of hint available. In
Experiment 2, I used trial-by-trial computational modeling of the learning process to test
for age-related differences in learning strategies. Behavior of both young and older adults
was explained well by a reinforcement-learning model that uses selective attention to con-
strain learning. However, the model suggested that older adults restricted their learning to
fewer features, employing more focused attention than younger adults. Furthermore, this

difference in strategy predicted age-related deficits in accuracy.

2.2 GENERAL METHODS: THE DIMENSIONS TASK WITH COLOR-SHAPE-TEXTURE

I studied how strategies for representation learning change over the lifespan using a
paradigm previously developed in our lab known as the Dimensions Task (Niv et al., 2015).
On each trial of the task, participants were presented with three visual stimuli. Stimuli dif-
fered along either one or three dimensions (color, shape, and texture, Figure 2.1). Within
each dimension, a given stimulus could have one of three features (e.g., red, green, and
yellow). On each trial, participants chose between stimuli that consisted of random com-
binations of features (e.g., red square with polka dots). Importantly, at any time point,
only one dimension of the stimuli determined reward. Specifically, one “target” feature

within this “relevant” dimension was more rewarding than the others: choosing the stim-
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ulus that contained the target feature led to 75% chance of receiving 1 point (and o points
otherwise), whereas choosing either of the other two stimuli was rewarded by 1 point with
only 25% chance. Participants were fully informed of these reward probabilities, and the
existence of a relevant dimension and target stimulus within it. To maximize the num-

ber of points earned, participants had to learn the identity of the target feature and use it
to select the correct stimulus on each trial. Participants were asked to make their choice
within 2 seconds, after which the trial timed out and the next trial began. To acquire re-
peated measurements of learning within each participant, we divided the task into several
“games”. The identity of the target feature stayed constant throughout a game. Once the
game ended, participants were allowed a short, self-paced break and were notified that the
relevant dimension and target feature would now be changing. This task is related to the
Wisconsin Card Sorting Task that has previously been used to study cognitive flexibility in
older adults (Fristoe, Salthouse, & Woodard, 1997; Rhodes, 2004), with the key difference
being that rewards were probabilistic much like in the weather prediction task (Knowlton,
Squire, & Gluck, 1994). The design prolonged the learning process such as to allow the use

of computational modeling to analyze the dynamics of learning.

2.3 GENERAL METHODS: EXCLUSION CRITERIA

A game was considered “learned” if the participant chose the stimulus containing the
target feature in each of the last six trials of the game. In both experiments, we excluded
participants who learned fewer than 20% of all games, missed more than 10% of the trials,
or performed at chance in any of the tasks. Chance was defined as less than 38% accuracy

(two standard deviations above the mean of a binomial distribution with p = 1/3 and N of
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Figure 2.1: The Dimensions Task with Color-Shape-Texture. In Experiment 1, at the start of each game participants were
given a ‘hint’ regarding the target feature, the dimension of the target feature, or else no hint was given. On each trial,
participants chose between three stimuli that varied along a single dimension (e.g., shape) in the 1D case, or along three
dimensions (shape, color, and texture) in the 3D case. Participants received binary reward feedback, winning either one
or zero points on every trial, with reward probability depending on whether they chose the stimulus that contained the
target feature. The game ended when the participant reached a performance criterion, or after 25 trials. A new game
began with a signaled rule change followed by a new hint screen. Experiment 2 had the same structure, except that all
games involved three-dimensional stimuli, no hints, and lasted 30 trials regardless of performance.

1000 trials, matching the average number of trials performed by participants).

2.3.1 GENERAL METHODS: APPARATUS

Participants sat approximately so cm from an LCD monitor and responded on a stan-
dard Macintosh keyboard using three adjacent keys corresponding to the left, middle,

and right stimulus respectively. Stimuli were presented and responses were registered us-
ing MATLAB (The MathWorks, Natick, MA) and the Psychophysics Toolbox (Brainard,

1997; Pelli, 1997).

2.4 GENERAL METHODS: STATISTICAL ANALYSES

To quantify effect sizes, unless otherwise noted, we report the following: (a) Hedges’

¢ for independent-sample t-tests, a measure more robust to small samples (Hedges, 1981;

20



Hentschke & Stiittgen, 2011). (b) partial 5* for analyses of variance (ANOVAs), (c) Pear-

son correlation coefficients, (d) standardized regression coefficients.

2.5 EXPERIMENT 1 METHODS

The aim of the first experiment was to separately assess the contributions of reinforce-
ment learning and attention to age differences in the performance of trial and error learning
in a multidimensional environment. I tested each participant on five versions of the task,
manipulating the number of dimensions along which stimuli varied (one or three, hence-
forth abbreviated as 1D and 3D) and the availability of hints that could be used to reduce
the computational demands of probabilistic learning (Figure2.1). Throughout, reward

contingencies and motor requirements were kept constant.

2.5.1 PARTICIPANTS

33 younger adults (23 female, 10 male; mean age 23 years; age range 19-37) and 33 older
adults (16 female, 17 male; mean age 69.4 years; age range 62—80) participated in the ex-
periment for either monetary compensation or course credit (younger adults). Older par-
ticipants were recruited from among members of the Community Auditing Program at
Princeton University.

All participants reported normal or corrected-to-normal color vision, were enrolled in
an undergraduate program or held at least a university degree, had no history of psychiatric
disorders, and provided informed consent. The experiment was approved by the Princeton
University Institutional Review Board. The older adult cohort was screened for early onset

dementia using a shortened version of Raven’s Progressive Matrices (Raven et al., 1998).
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One older adult who scored less than a 5 (out of 18) on this test was excluded from further
analysis. Additionally, 2 younger adults and 7 older adults were excluded from further anal-
ysis as per the task performance criteria above, yielding a final sample of 31 younger adults

and 25 older adults.

2.5.2 STIMULI AND PROCEDURE

Games in the task were divided into five randomly intermingled conditions with 1o repe-
titions each.

In the first condition (“feature 1D”), stimuli varied on one dimension (e.g., the 3 dis-
tinct shapes; Figure 2.1 top). Before the game, a “hint” screen revealed which of the features
within this dimension was the target (e.g., “square”; Figure 2.1). This condition was thus
equivalent to performing a visual search for a predefined feature, and had no learning com-
ponent: to maximize reward, participants simply had to select the target feature.

In the second condition (“feature 3DD”), I again cued participants regarding the target
feature, but presented them with three-dimensional stimuli each varying along color, shape,
and texture (Figure 2.1 bottom). Comparing group behavior between the 1D scenario
above and the 3D case allowed me to ask whether older adults show a disadvantage when
distractor dimensions are present even when no learning is required.

In the third condition (“dimension 1D”), stimuli varied on a single dimension, but in-
stead of being told the identity of the target feature, participants had to learn it from trial
and error. This condition is equivalent to a 3-armed bandit task akin to the kinds of tasks
that have previously been studied in older adults to characterize deficits in reinforcement

learning (Chowdhury etal., 2013; Mell et al., 2005).
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The fourth condition (“dimension 3D”) involved three dimensional stimuli and a hint
disclosing which dimension is relevant for predicting reward. Participants were thus re-
quired to learn the identity of the target feature within that dimension, as in the dimension
1D task. However, because distractor dimensions were present (Figure 2.1, bottom), this
task required sustained attention to one dimension. To do well, participants had to restrict
learning to the cued dimension and ignore the other distracting dimensions.

Finally, in the fifth condition (“full 3D”), participants were presented with three-dimensional
cues, and received no information as to the relevant dimension or target feature. This con-
dition is identical to the Color-Shape-Texture “dimensions task” that has been developed
by Niv and colleagues to investigate the interaction between selective attention and rein-
forcement learning in younger adults (Niv et al., 201 5; Wilson & Niv, 2012).

Prior to the experimental session, participants were given a tutorial that described the
reward structure and informed them about the different conditions. Following the tuto-
rial, participants completed several sample games. They were then tested on 5o games of the
task with condition randomized such that within each block of five games, each condition
appeared once for a total of 10 games per condition. Each game consisted of a minimum
of 8 and a maximum of 25 trials. A correct trial was defined as one in which the participant
chose the stimulus containing the target feature. Once a criterion of 8 consecutive correct
trials was reached, the game had a 50% chance of ending on any subsequent trial. Games
lasted at most 25 trials. The target feature was chosen randomly, avoiding relevant dimen-
sion repeats from game to game. Rewards were drawn pseudorandomly such that within
each block of eight trials the frequency of presented rewards matched the reward proba-

bilities specified in the design. Once a valid response was registered, stimuli that were not
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chosen were removed from the screen and after a brief delay the outcome was presented for

0.5 seconds. A new trial started after o.5 seconds.

2.5.3 REACTION TIME ANALYSIS

The ex-Gaussian distribution has been proposed as an analysis tool for RT that disen-
tangles variance arising from two separate cognitive processes: The tzansduction compo-
nent, indexed by a positive shift in the Gaussian mean, can be thought of as the time it
takes to process the sensory information plus the time required to physically make the re-
sponse once a decision has been made. The decision component, reflected in the exponen-
tial skew, is a proxy for the time it takes to represent the task and decide which response to
make (Lacouture & Cousineau, 2008; Luce et al., 1986).

Maximum likelihood estimation was used to fit individual RT distributions separately
within each condition. By analyzing RT data in this way, I sought to dissociate age effects in
how the task is represented from perceptual and motor differences. I hypothesized that as
representational demands increase with the number of dimensions, older adults would be

selectively impaired in the decision component of RT.

2.6 EXPERIMENT I RESULTS

I first examined the effect of condition on overall accuracy. A 2 (age-group) x 5 (con-
dition) mixed-effects ANOVA (Figure 2.2A) revealed a main effect of age (F(1,54) =
6.80,p < .01, 7 = .11), 2 main effect of condition (F(4, 216) = 705.66,p < .001,7* =
.93), and a significant interaction between age group and learning condition (F(4, 216) =

5.50,p < .001, 7> = .09).
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Figure 2.2: Performance of younger adults (dashed) and older adults (solid) in Experiment 1. A. Average accuracy in each
of the five task conditions. Dotted line indicates chance performance. B. Decision component of RT by task condition.
Error bars indicate one SEM (gray) and 95% confidence intervals (black). Asterisks indicate significant interactions (lines)
and differences between groups within each condition (*p < .05,** p < .01,*** p < .001).
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To better delineate the various determinants of accuracy differences between older and
younger adults, I next performed 2 (age-group) x 2 (condition) ANOVAs examining the
effect of each progression in task difficulty. I first compared the two “feature” conditions,
in which trial-and-error learning was not necessary because the target feature was disclosed
via the hint. In the “feature 1D” condition, both groups performed at ceiling. Although I
did find a main effect of condition when adding the distractor dimensions in the “feature
3D” case (Mfmmw = .993, Mpuuresp = 987, F(1,54) = 14.122, p < .001, ;72 = .21),
there was no main effect of group (£(1,54) = 2.38,p = .13,»* = .04) and no interaction
between age and condition (F(1,54) = .28,p = .60, 7> = .01). These results suggest that
the presence of extradimensional distractors did not specifically impair accuracy in older
adults, and also confirms that participants understood the instructions and used the hint
correctly.

I next focused on performance differences when participants had to learn the target fea-
ture from trial and error, but were cued as to the relevant dimension. In the 1D case, this
amounts to a simple 3-way choice task with binary rewards and fixed reward probabilities.
As expected from previous work showing age-related impairments in probabilistic learning,
I observed a significant group effect on overall accuracy when comparing the “feature 1D”
to the “dimension 1D” condition (main effect of group : F(1,54) = 5.56,p = .02,7* =
.09; interaction : F(1,54) = 7.74,p = .01,5* = .13).

In the 3D case, the dimension hint helps participants assign credit for a reward to only
one of the 3 features of a stimulus: if the reward-relevant dimension is color, feedback
for, say, choosing a green square with polka dots, can be correctly assigned to the color

“green,” while ignoring the “square” and “polka dot” features that act as distractors. Thus
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the “dimension-3D” case is similar to a 3-way choice task, only with known distractors.
As expected, here too I observed a significant group eftect on accuracy when comparing
the “feature 3D” to the “dimension 3D” condition (main effect of group : F(1,54) =
7.18,p = .01,7* = .12;interaction : F(1,54) = 8.77,p = .01,7* = .14). These age-
related deficits in learning from trial and error have previously been attributed to a reduced
efficacy of dopamine-dependent prediction error signals (Eppinger et al., 2013).

Finally, I compared the “dimension 3D” condition with the “full 3D” condition. In
the latter, participants were also required to identify the relevant dimension from trial
and error. As a result of this extra demand, I expected the performance of older adults to
drop more precipitously than that of younger adults, as compared to the “dimension 3D”
case. In line with this prediction, the analysis revealed a main effect of group (F(1,54) =
5.73,p = .02,7* = .10) and of condition (F(1,54) = 183.93,p < .001,7* = .77).1
also observed a significant interaction between group and condition (F(1,54) = 5.89,p =
.02,7* = .10). Surprisingly however, this interaction was in the direction opposite from
what was initially predicted. That is, when the dimension hint was removed, older adults
incurred a smaller additional cost in accuracy than younger adults, performing as well as
younger adults on the task (M., = .48, 8D,y = .09;M. vounger = 49, SDyounger =
.06,#(54) = .65;p = .52,¢ = .17). To rule out the possibility of either a floor or ceiling
effect driving this interaction, I performed a within-group median split on accuracy . Both
older and younger adults were distributed symmetrically around their respective group
mean, giving no indication that the observed result was due to boundary effects.

I next analyzed response times using the ex-Gaussian distribution. Examining RTs re-

vealed more subtle effects of condition than were apparent in overall accuracy. I submitted
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the fitted skew parameters indexing the decision component of the RT to a 2 (age-group)

x 5 (condition) mixed-effects ANOVA (Figure 2.2B). Paralleling the accuracy results, this
initial test revealed a main effect of age (F(1,54) = 17.53,p < .001,7* = .25), a main
effect of condition (F(4, 216) = 108.15,p < .001, 7> = .67), and a significant interaction
between age group and learning condition (£(4, 216) = 10.68,p < .001,7* = .17). An
independent-samples t-test indicated no group difference between older (M = .13,8D =
.05) and younger (M = .15, 5D = .06) adults for the decision component in the “feature
1D” condition, #(54) = .81,p = .42,¢ = .22, indicating that by analyzing RT using the
ex-Gaussian distribution, the variance associated with the cost of visual search and response
mapping was successfully removed. (Nevertheless, all interaction results reported here for
the decision component also held when using raw RT as the dependent variable).

I then performed 2 (age-group) x 2 (condition) ANOVAs paralleling those we reported
above for accuracy, to separately assess the effect of each manipulation on the decision
component of the RT. Although in both the “feature 1D” and “feature 3D” conditions
older and younger adults performed at ceiling as reflected by average accuracy, I did observe
a group by condition interaction in the decision component of RT (F{(1,54) = 5.12,p =
.03,7* = .09), suggesting that older adults required more time to decide on their choice
when the stimulus consisted of multiple features.

As expected, I also found a group by condition interaction when comparing both the
“feature 1D” and the “dimension 1D” conditions (F(1,54) = 53.89,p < .001,7* =
.50), and when comparing the “feature 3D” condition with the “dimension 3D” condition
(F(1,54) = 7.2,p = .01, »* = .18). These results mirror the accuracy effects, and suggest

that having to learn the target feature from feedback affected older adults’ decision time
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significantly more than it did younger adults’.

Finally, I did not observe an interaction between group and condition when comparing
the “dimension 3D” with the “full 3D” condition (£(1,54) = .05,p = .82,7* = .00).
This finding suggests that in the full dimensions task, older adults respond slower than
younger adults, but not more so than in a simple probabilistic learning setting in which the
relevant dimension is known. Together, the results of Experiment 1 suggest that although
older adults are significantly more impaired than younger adults in simple trial-and-error
learning, they do not show an additional impairment when required to learn which dimen-
sion is relevant to determining reward. In this latter case, their accuracy was not signifi-
cantly different than that of younger adults, and although they did take significantly longer
to respond than younger adults when the relevant dimension was unknown, this group dif-
ference was not greater than in the cued dimension case. These results are in line with pre-
vious reports of age-related deficits in reinforcement learning (Eppinger et al., 2013; Mell et
al., 2005) and reveal that, contrary to expectations, attentional demands do not confer dif-
ferential additional hardship on older adults. As previous work has suggested that attention
processes do change during healthy aging, one possibility is that older adults adapt their
strategies such as to allow them to perform the full 3D representation learning task better

than would otherwise be expected.

2.7 EXPERIMENT 2 METHODS

2.7.1 PARTICIPANTS

Twenty-eight younger adults (17 female, 11 male; mean age 23.9 years; age range = 20—

31) and 30 older adults (10 female, 20 male; mean age 7o.1 years; age range = 65-80) partic-
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ipated in the second experiment. All participants reported normal or corrected-to-normal
color vision, were enrolled in a university or held at least a university degree, had no history
of psychiatric disorders, and provided informed consent. The protocol was approved by
the Princeton University Institutional Review Board.

In addition to completing the main task, participants in both groups also completed
several psychometric tests and questionnaires: (a) a computerized version of the Digit-
Symbol substitution test (Salthouse, 1992), (b) a 2-back task (Nystrom et al., 2000), (c)
the Spot-the-Word test (Baddeley, Emslie, & Nimmo-Smith, 1993), (d) the BIS-BAS ques-
tionnaire (Carver & White, 1994), and (e) a shortened version Raven’s Progressive Matri-
ces (Raven et al., 1998). As in the first experiment, the older adult cohort was screened for
early onset dementia using the Raven’s Progressive Matrices. Exclusion criteria were identi-
cal to those of Experiment 1. One younger adult and 3 older adults were excluded from the

analysis, yielding a final sample of 27 younger adults and 27 older adults.

2.7.2 STIMULI AND PROCEDURE

Stimuli were identical to the “full 3D” condition in Experiment 1. On each trial, partic-
ipants were presented with multidimensional stimuli varying in color, shape, and texture.
One of the three dimensions was used to determine rewards. Within this reward-relevant
dimension one target feature had a 75% probability of reward, whereas all other features
had a 25% probability of reward. Participants received no information about the identity
of the relevant dimension. Each participant played, on average, 35-50 games for a total of
approximately 1,500 trials per participant. The length of a game was fixed at 30, excluding

missed trials. The total duration of the experiment was capped at 40 min. Once a valid re-
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sponse was registered, the stimuli that were not chosen were removed from the screen and
the outcome was immediately presented for o.5 seconds. A new trial started after 0.3 sec-

onds.

2.7.3 MODEL-BASED ANALYSIS

Previous work has shown that in the Color-Shape-Texture of the Dimensions Task, RL
models that allow for effects of selective attention explain subjects’ behavior better than
either a naive RL model that learns values for each of the 27 possible stimuli or a Bayesian
ideal-observer model that makes statistically optimal use of information (Wilson & Niv,
2012; Niv et al., 2015). Here I was interested in testing for an effect of age on the width of
the “attentional filter.” Unlike in the Faces-Landmarks-Tools version presented in Chapter
2, in this study neither fMRI decoding nor eye-tracking were available as a direct measure
of participants’ selective attention. To test for group differences in attentional strategies, I
employed a model-based analysis.

I compared between two RL models, a “feature RL” (fRL) model that attends uni-
formly to all three dimensions, and a “feature RL with decay” (fRL+decay) model that
emulates selective attention to dimensions that include consistently chosen features (see
below). Both models track a weight 77 for each feature f'and calculate the value V{(S) of
stimulus S as the sum of the weights of its three features 17(f), where each stimulus has one
feature per dimension. In the fRL model, on every trial, once the outcome for the chosen

stimulus is displayed, the weights corresponding to the three features of the chosen stimu-

31



lus are updated according to:
W (f) = W) + 5(R(2) = V(S)) YV E S (2.1)

where 7 is the step size or learning rate parameter and R(#) is the reward (1 or o points) on
the current trial.
The fRL+decay model is identical to the fRL model, except that it also decays to zero the

weights of features that do not appear in the chosen stimulus:
WJ%W(/() = (1 - d) WOM(/() \V/f¢ Sc/aoxen (24-2)

where d is the decay rate. For both models, at the beginning of each game, the weights are
initialized at zero. On each trial, the probability of selecting each of the three available stim-

uli is calculated using a softmax distribution:

AVS)

p(Scho.cm = Sz) == W

(2.3)

where the inverse temperature parameter 2 captures the noise 7 the subjects’ choices. Thus
the fRL model has two free parameters, o, = {», 8}, and the fRL+decay model has three

free parameters, Oz +decay = 17,58, d}-
The total likelihood of the data is given by the product of the trial-by-trial choice proba-

bilities (Daw, 2011):

P(CI:TW) = Hp(Sclﬂoxm = Sz) (24)

Importantly, the decay rate d dictates the width of an implicit attentional filter. To un-
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derstand this mechanism, it is instructive to consider two hypothetical consecutive trials,
rand (¢ + 1), in which a participant might choose stimuli such that only one feature —
for example red — appears in the chosen stimulus on both trials. A decay rate of zero re-
duces the fRL+decay model to simple fRL and means that although the two features that
co-occurred with red on trial # did not appear on trial (# + 1), their weights remain un-
changed on that second trial. At the other extreme, a decay rate of 1 means that on trial

(£ 4 1) all weights except those of features of the most recently chosen stimulus are set to o,
in effect erasing the values learned on trial £ for features other than red. This is tantamount
to a narrow attention filter that, across trials in which red is consistently chosen, only accu-
mulates value for that feature, effectively attending only to color information. Intermediate
values of d smoothly interpolate between these two extremes, with higher decay rates corre-
sponding to more focused attention as reflected in high weights for fewer (recently chosen)
features. Another way to view this model is that decay emulates attention with a one-trial
delay; that is, the features the subject chooses on trial # 4- 1 are used to infer what they at-
tended to on trial 7, and decay the learning that was done at # to nonattended dimensions.
Again, such model-based inferences are necessary because when we do not have direct ac-
cess to participants’ attention (Niv et al,, 2015).

To compare between models based on their predictive accuracy, I used participants’ trial-
by-trial choices to fit the parameters that maximize the likelihood of each subject’s choices
(Equation 2.4). In practice, this amounts to minimizing the log of the quantity in Equa-
tion 2.4. As the models had different numbers of parameters, I compared models using
a leave-one-game-out cross-validation approach: for every participant and every game, I

fit the model to all data excluding that game. The model and its maximum likelihood pa-
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rameters were then used to assign likelihood to the trials of the left-out game. I repeated
this procedure for each game and divided the resulting total likelihood by the number of
trials /N to yield the geometric average of the likelihood per trial. This is a quantity that
varies between o and 1, and roughly corresponds to the average probability with which the
model predicted the choices of the participant (% is chance). This quantity was then used
for model comparison, with the model that best predicts participants’ behavior deemed the
winning model. With this model in hand, I once again applied maximum likelihood param-
eter estimation, this time using all available data for each participant, to obtain individual
parameters for every participant in each group. All optimizations were carried out using
MATLAB’s fimincon function.

Finally, to restrict the fitting as much as possible to trials in which the participants were
still learning (rather than simply selecting the target feature), and to be able to compare
the results here with those from Experiment 1, model fitting and model comparison anal-
yses were done after imposing a post-hoc learning criterion of 8 correct trials in a row and
capping the length of each game at 2.5 (as was the case in Experiment 1). All model-based

results reported here also hold without this modification.

2.8 EXPERIMENT 2 RESULTS

Independent-sample t-tests showed that the average accuracy of older adults was sig-
nificantly lower than that of younger adults (M., = .42, 8Dy = .04; Mypunger =
46, 8D, pnger = .04,2(52) = 3.49;p = .001,¢ = .94). Older adults also learned fewer
games than younger adults (M,ur = .39, 8Dy = .09; Myounger = 49, SDyunger =

.09;£(52) = 4.2,p = .001,¢ = 1.13). These results were contrary to the findings in
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Figure 2.3: Model comparison for younger (left) and older (right) adults. Likelihood per trial as a function of trial within
a game for A. younger adults and B. older adults. For both groups, the data heavily favor the fRL+decay model. Dashed
line: chance (33%); shading: SEM; p-value corresponds to a repeated measures ANOVA (model x trial).
the first experiment, and suggested that failing to detect a difference in accuracy in Experi-
ment 1 might have been due to the smaller number of games (10 per participant compared
to 35—40 in the second experiment). Nevertheless, because Experiment 1 established that
reward learning is significantly more impaired in older adults, I was interested in analyz-
ing the differential contributions of learning and selective attention to task performance in
older adults versus younger adults.

To determine which learning strategy best describes trial-by-trial behavior for each group,
I performed a within-group model comparison by taking the average cross-validated likeli-
hood per trial for each model and submitting it to a repeated measures ANOVA (Figure
2.4). In both groups the fRL+decay model predicted participants’ choices better than the
fRL model (younger adults: F(1,1248) = 42.31,p = .001,7* = .46, Figure 2.4A;
older adults: £(1,1248) = 23.32,p = .001,7* = .47, Figure 2.4B). This finding is in

line with previous work showing that strategies that incorporate attentional mechanisms
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better explain behavior in the task (Wilson & Niv, 2012; Niv et al,, 2015). Importantly, no
significant difference emerged in the average per-trial likelihood of the fRL+decay model
(F(1,1248) = .66,p = .42,7* = .018). In other words, the fRL+decay captured both
groups’ strategy equally well and could thus be used to assess group difterences in fit param-

eters.

Table 2.1: Best-fit values for fRL+decay model across groups (mean &= SEM). Bottom: Results of the corresponding
Mann-Whitney test for group differences for each parameter.

Group Learning rate () Decay rate (d) Inverse temperature (4)
Younger adults A1+ .01 45 £.017 12.52 + .68
Older adults 12 +.01 .56 +.03 14.06 + 1.65

p=49,r=.005 p=.002,r=40  p= .41,r=.03

To test for group differences in the breadth of attention for learning, I compared the
decay rate parameters for the two groups. A Mann—Whitney test indicated that older
adults had significantly higher decay rates than younger adults (older adults median = .52,
younger adults median = .42, U = 192.0, p = .002, r = .40, Figure 4A). This suggests that
older adults utilize narrower stimulus representations in trial-and-error learning in multidi-
mensional environments. The results of all group tests on fit parameters are summarized in
Table 2.1.

If the model indeed captures aspects of subjects’ strategy that are relevant to behavior, it
should be able to reproduce the qualitative patterns observed in the data. To test this, we
used individual fit parameters drawn from each group to simulate 54 agents (27 per group),
and computed their average learning curves. We found that the model could perform the

task at a level comparable to that of participants, slightly undershooting the performance of
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Figure 2.4: Age-related differences in decay rate and empirical vs. simulated learning curves. A. Group difference in de-
cay rate. Error bars: SEM (gray) and 95% confidence interval (black). Black dots show the decay rate estimates for each
participant. B. Average learning curves for participants performing the task (N = 27 for each group) and for simulated
agents (27 per group) performing 40 games of the task with individual fit parameters within each group. Single data
points indicate the empirical performance, and continuous lines indicate simulated performance. Dotted line: chance
(33%), error bars and shading: SEM.

younger adults, but capturing that of older adults. Importantly, the model reproduced the
general performance differences between older and younger adults (Figure 2.4).

To assess the specific effect of the decay rate parameter on task performance in our data,
we took a multiple linear regression approach. In particular, each participant’s accuracy
was regressed on learning rate, decay rate and inverse temperature estimated from the fRL
decay model. The results of the regression indicated that the three parameters explained
49% of the variance (R?> = .49, F(3,50) = 16.0,» = .001). We found that lower de-

) ) )
cay rates predicted higher accuracies (8 = —.52,p = .001), suggesting that even after
taking into account possible eftects of learning rate and inverse temperature, the width of

the attentional filter modulates performance in the task. We also found that learning rate

did not significantly predict accuracy (8 = .077,p = .61), whereas inverse temperature
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did (8 = —.53,p < .001). Including both the learning rate and the inverse temperature
parameters in the regression was necessary to isolate the effect of decay on performance.
However, because these parameters are not completely separable in the model (that is,
they cannot be precisely estimated independently of each other (Daw, 2011)), we cannot
make strong claims about any observed effect of learning rate or inverse temperature alone.
Importantly, we repeated the above analysis within each group, and found that decay re-
mained a significant predictor of performance within both younger (8 = —.59,p < .01)
and older adults (8 = —.35,p < .01). Taken together, our results suggest that more fo-
cused attention during learning in older adults can, in part, explain the observed decrease in
task performance.

Finally, we investigated whether the decay rate reflects a deficit in working memory
rather than more focused attention. To test this, we regressed decay rate as estimated from
the dimensions task on the working memory score measured using the 2-back task, and in-
cluded age as a covariate in the regression. We found thatage (8 = .09,p < .05), but not
working memory (8 = —.02,p = .19), significantly predicted decay rate, suggesting that
age differences in the decay rate parameter are not due to working memory impairments in

older adults.

2.9 DiscussioN

In this chapter, I described a study of how age affects reinforcement learning in multidi-
mensional environments that characterize real-world learning and decision-making scenar-
ios. In Experiment 1, I tested young and older adults on a set of probabilistic learning tasks

in which I manipulated the number of stimulus dimensions and the availability of hints
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about the identity of the target feature or relevant dimension. The aim was to dissociate
the relative contribution of reinforcement learning and representation learning processes
to age-related differences in task performance. I found that age differences in both accuracy
and RT depended on the extent to which reward learning was required to solve the task.
Surprisingly, adding representation learning to the demands of the task did not affect the
performance of older adults more than it did the performance of younger adults. The re-
sults of the first experiment therefore suggested that older adults might adapt to deficits in
reinforcement learning such as to reduce the burden on this mechanism in multidimen-
sional environments.

To test this hypothesis, in Experiment 2, I modeled choice data of a new group of partici-
pants who performed the full three-dimensional representation learning and reinforcement
learning task without any hints regarding the identity of the target feature or relevant di-
mension. I found that the behavior of both groups was well described by a reinforcement
learning model that emulates an attentional filter by decaying the value of unchosen op-
tions to zero. Group differences in the decay rate suggested that older adults employ more
focused attention—they are more likely to maintain high values for single features rather
than combinations of features. But, this difference in strategy came at a cost: more focused
attention at least partially explained the lower performance of older adults in our task.

Two mechanistic explanations are consistent with higher decay rates in older adults: par-
ticipants could employ narrower selective attention at the time of learning, attributing the
reward to fewer stimulus features; or they could be more likely to forget recently learned
feature—reward associations. Although further work is necessary to precisely distinguish

between the two, both lead to a strategy closer to serial hypothesis testing (Wilson & Niv,
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2012) in which older adults attend to single features when learning from reinforcement,
whereas younger adults may be learning about multiple chosen features at once. Ignoring
the relationship between reward feedback and incidental features of the chosen stimulus
(i.e., unattended features that were not responsible for it being chosen) may be detrimental
if participants have learned the wrong task representation. For instance, a participant could
be focusing on the red color when trying to maximize reward, and not notice that, in fact,
rewards are obtained more often when the red stimulus happens to be a square. Learning
about incidental features would enable more efficient switching to other potentially re-
warding features. In this sense, narrowly focused attention could pose difhiculties for older
adults. However, this is not always the case, and in some situations a narrower focus of at-
tention may be normative. Although in the specific task used in this study such focused
attention is not statistically optimal (Niv et al., 2015), the findings are consistent with a re-
cent proposal that in older adults, general models of the world that have been learned over
the lifespan reduce the need to rely on sensory updating (Moran, Symmonds, Dolan, &
Friston, 2014). Focusing on fewer aspects of the environment during learning can, in fact,
be seen as an adaptation to the structure of real-world tasks, where correct performance
might often depend on only few attributes. This is especially true if the representations
older adults have learned are useful for generalizing across different situations. Mata and
colleagues term this idea “ecological rationality.” They make a compelling case for the ar-
gument that age-related deficits in strategy use may not necessarily be due to impaired deci-
sion making, and that decision strategies can only be evaluated relative to the environment
in which they are used (Mata et al., 2012). A striking example is work by Worthy and Mad-

dox, who show that older adults perform better than younger adults in a task with com-
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plex structure that favors a Win-Stay-Lose-Shift strategy, which older adults are more likely
to employ, over a reinforcement learning strategy (Worthy, Gorlick, Pacheco, Schnyer, &
Maddox, 2011; Worthy & Maddox, 2012). An interesting avenue of future research would
thus be to characterize the statistics of natural tasks that older adults have learned to engage
in. Ecological rationality view suggests that older adults should be just as good as younger
adults at learning new tasks in which previously learned structure could be “recycled.”

The idea that older adults may display more focused attention in certain situations has
been suggested before, in work examining age differences in category learning. For in-
stance, Glass and colleagues argue that when older adults are trained to categorize exemplars
from two prototypes, they take into account fewer stimulus dimensions (Glass, Chotibut,
Pacheco, Schnyer, & Maddox, 2012). My findings suggest that this strategy also manifests
during sequential learning and decision making, therefore laying the groundwork for a
number of future questions: is more focused attention in older adults accompanied by less
or more frequent attention switching, as compared to younger adults? And if so, is there an
age difference in how much feedback is needed to redirect attention, as suggested by studies
that report a tendency to perseverate in older adults (Rhodes, 2004; Ridderinkhof, Span, &
Van Der Molen, 2002).

In light of the results in this chapter, perseveration may be attributed to a more rigid
focus of attention that prevents the formation of alternative representations, because it fil-
ters out incidental learning. Although less efficient, this could reflect an adaptation to the
reduced efficacy of dopaminergic signaling (Li et al., 2010) in which selective attention is

deployed during learning so as to tax mechanisms subserved by dopamine as little as possi-

ble.
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Finally, the finding that older adults are more likely to filter out information may seem at
odds with a broad literature documenting age-related deficits in suppressing task-irrelevant
distractors (Campbell et al., 2012; Gazzaley et al., 2005; Schmitz et al., 2010). Lindenberger
and Mayr have suggested that the inability of older adults to ignore visual distractors is
linked to a broader developmental trend in which older adults shift from internal cogni-
tive control to relying more on the environment to provide appropriate task representa-
tions (Lindenberger & Mayr, 2014). However, increased focus and increased distractibility
could both result from an attentional system that cannot allocate attention to multiple
items, but rather can only maintain narrow, rigid hypotheses. In such conditions, a distrac-
tor that captures attention would do so more strongly, and to the exclusion of the task oth-
erwise being performed, leading to apparent distractibility. When attention can be main-
tained more broadly, to the task-relevant stimuli and also to incidental features, the effect
of attention-grabbing distractors is mitigated.

Another way to reconcile the idea of increased environmental reliance with narrower
attention when learning task sets concerns the broader question of how tasks are repre-
sented in the brain (Wilson, Takahashi, Schoenbaum, & Niv, 2014). In a recent paper,
Mayr and colleagues have suggested an intriguing explanation for age-related increases in
task-switching RT costs: older adults may not fully represent the relevant task states, opting
for a simpler structure at the expense of flexibility (Mayr, Spieler, & Hutcheon, 2015). The
Dimensions Task was explicitly designed to study how participants learn to represent a task.
Narrow attention in our case has the effect of preventing complex stimulus—reward asso-
ciations from forming (e.g., the participant is more likely to learn that red predicts reward,

instead of red and polka dots predict reward). This narrowness limits internal representa-
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tions, and simplifies the task as much as possible. The trade-off is that such simple repre-
sentations may not allow for flexibility in learning new tasks that require de-aliasing similar
percepts. That is, older adults might have difficulty when choosing the correct action re-
quired to learn about a second, disambiguating feature. Finally, the process of learning to
attend, is different from maintaining (instructed) attention in the face of distraction—the
results in this chapter suggest that older adults may filter out important relationships be-
tween reward feedback and incidental cues, while at the same time they may erroneously
focus attention on incidental distractors.

A growing interest in applying RL methods to the study of cognitive aging has bridged
knowledge about dopaminergic loss in older adults and deficits in trial and error learn-
ing (Shohamy & Wimmer, 2013). This chapter focused on how age-related impairments
in RL might play out in multidimensional environments where, in addition to trial-and-
error learning, one must learn the relevant task representations. In such cases, attentional
mechanisms have been hypothesized to interact with RL so as to allow more efficient learn-
ing (Niv et al., 2015; Wilson & Niv, 2012; Geana & Niv, 2014). I found that aging is ac-
companied by a narrowing of attention during reinforcement learning, perhaps in order to
adapt to impairments in neural trial-and-error learning mechanisms. These results suggest
a role for selective attention in representation learning. However, the evidence is indirect,
relying on a computational model that does not distinguish between selective attention and

passive forgetting of values. I address this limitation in the next chapter.
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Tears are lovely prisms. In every tear, there’s a rainbow.

Anon

Learning to attend, attending to learn

3.1 INTRODUCTION

In Chapter 2, I showed how humans faced with high-dimensional learning problems
seem to solve them with ease, despite cognitive changes that come with age. But the con-
clusions were limited by a computational model that did not fully disentangle the role of
selective attention and working memory in learning task representations. Moreover, the
task did not allow a direct measurement of attention. In the paper that this chapter is based
on (Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017), Yuan Chang Leong and I set out
to more directly study the question of how humans learn to efliciently deploy attention
when learning in multidimensional environments. Given evidence that selective attention
is critical for narrowing down the dimensionality of the task (Jones & Canas, 2010; Wil-
son & Niv, 2012; Niv et al,, 2015; Radulescu et al., 2016), we designed a study to directly
measure the dynamics of selective attention during learning.

Selective attention prioritizes a subset of environmental dimensions for learning while
generalizing over others, thereby reducing the number of different states or stimulus con-
figurations that the agent must consider. However, attention must be directed toward di-

mensions of the environment that are important for the task at hand (i.e., dimensions that
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predict reward) to provide learning processes with a suitable state representation (Gershman
& Niv, 2010; Wilson et al., 2014). What dimensions are relevant to any particular task is
not always known and might itself be learned through experience. In other words, for at-
tention to facilitate learning, we might first have to learn what to attend to. We therefore
hypothesized that a bidirectional interaction exists between attention and learning in high-
dimensional environments.

To test this hypothesis, we had human participants perform a modified Dimensions Task
with compound stimuli—each comprised of a face, a landmark, and a tool—while scan-
ning their brain using fMRI. As before, at any one time, reward depended on only one of
the three stimulus dimensions, mimicking real-world learning problems where only a sub-
set of dimensions in the environment is relevant for the task at hand. Using eye tracking
and multivariate pattern analysis (MVPA) of fMRI data, we obtained a quantitative mea-
sure of participants’ attention to different stimulus dimensions on each trial. We then used
trial-by-trial choice data to test whether attention biased participants’ valuation of stimuli,
their learning from prediction errors, or both processes. Estimates of participants’ choice
value and outcome-related prediction errors using the best-fitting model were generated
and regressed against brain data to further determine the influence of attention on neural
value and prediction error signals. Finally, we analyzed trial-by-trial changes in the focus of
attention to study how attention was modulated by ongoing experience and to search for

neural areas involved in the control of attention.
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Figure 3.1: The Dimensions Task with Faces-Landmarks-Tools. A. Schematic illustration of the task. On each trial, the
participant was presented with three stimuli, each defined along face, landmark, and tool dimensions. The participant
chose one of the stimuli, received feedback, and continued to the next trial. The relevant dimension and target feature
changed every 25 trials (announced: “new game”), requiring new “representation learning” B. Learning curves. The
fraction of trials on which participants chose the stimulus containing the target feature (i.e., the most rewarding feature)
increased throughout games. Dashed line: random choice, shading: SEM, grey lines: individual participants. C. Percent

learned games. The fraction of games on which participants selected the stimulus containing the target feature on 6 of
the last 6 trials of each game.
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3.2 METHODS: THE DIMENSIONS TAsK WITH FACES-LANDMARKS-TOOLS

On each trial, participants were presented with three compound stimuli, each defined by
a feature on each of the three dimensions (faces, landmarks, and tools), vertically arranged
into a column (Figure 3.1). Row positions for the dimensions were fixed for each partici-
pant and counterbalanced across participants. Stimuli were generated by randomly assign-
ing a feature (without replacement) on each dimension to the corresponding row of each
stimulus. Participants had 1.5 s to choose one of the stimuli, after which the outcome was
presented for o.5 s. If participants did not respond within 1.5 s, the trial timed out. The
inter-trial interval (ITT) was 2 s, 4 s, or 6 s (truncated geometric distribution, mean = 3.5 s),
during which a fixation cross was presented. Stimulus presentations were timelocked to the
beginning of a repetition time (TR). In any one game, only one dimension was relevant for
predicting reward. Within that dimension, one target feature predicted reward with high
probability. If participants chose the stimulus containing the target feature, they had a 0.75
probability of receiving reward. If they chose otherwise, they had a 0.2.5 probability of re-
ceiving reward. The relevant dimension and target feature were randomly determined for
each game. Participants were instructed of the structure of the task in advance: they knew
that they were looking for one target feature within one relevant dimension, as well as the
reward probability associated with choosing the target feature. They were told when a new
game started but were not told which dimension was relevant or which feature was the tar-
get feature. Participants performed four functional runs of the task, each consisting of six

games of 25 trials each.
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3.3 METHODS: MEASURING ATTENTION

To obtain a trial-by-trial index of attention, we combined fMRI decoding and eye-tracking
to directly measure participants’ focus of attention as they played the task. Taking advan-
tage of differential activation in the human ventral visual stream in response to faces, land-
marks and tools, a classifier was trained on fMRI data from a localizer task in which par-
ticipants were told which dimension was relevant (details on the the localizer task follow
below). This classifier was then used decode which dimension participants were attending
to on every trial of the uninstructed task. The trial-by-trial output of the classifier was com-
bined with a second measure of attention obtained by averaging and normalizing looking
time to each dimension within a trial. This method yielded a trial-by-trial composite mea-

sure of a participant’s focus of attention as they learned the structure of the task (Figure

3.2).

3.3.1 METHODS: FMRI DATA ACQUISITION AND PREPROCESSING

MRI data were collected using a 3T MRI scanner (Siemens Skyra). Anatomical images
were acquired at the beginning of the session (T'1-weighted MPRAGE, TR = 2.3 s, echo
time [TE] = 3.1 5, flip angle = 9, voxel size 1 mm3). Functional images were acquired in
interleaved order using a T2*-weighted echo planar imaging(EPI) pulse sequence (34 trans-
verse slices, TR = 2 s, TE = 30ms, flip angle = 71, voxel size 3 mm3). Image volumes were
preprocessed using FSL/FEATv.5.98 (FMRIB software library, FMRIB). Preprocessing in-
cluded motion correction, slice-timing correction, and removal of low-frequency drifts us-
ing a temporal high-pass filter (10oms cutoff). For MVPA analyses, the classifier was trained

and tested in each participant’s native space. For all other analyses, functional volumes were
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Figure 3.2: Using fMRI decoding and eye-tracking to measure attention. Left: Sample timecourse obtained by applying
an SVM classifier trained on the localizer task to trials in the uninstructed task and returning the class probabilities

for each dimension. In the trial marked in grey for instance, the classifier returned a probability of 0.66 for faces, 0.26
for landmarks, and 0.08 for tools. Right: Sample raw gaze data collected during the trial marked in grey on the left.

In this example, the participant looked mostly at faces, but directed some attention to landmarks. This distribution of
attention across the three dimensions is reflected in the relative looking time to faces (0.75), landmarks (0.25) and tools
(0) respectively, computed by summing the raw number of samples and normalizing the counts to sum to 1. While the
two measures are correlated (» = 0.33,]) < .001), they are not redundant, likely because fMRI and eye-tracking have
different sources of noise. Indeed in a model-based analysis, we show that a model which uses the composite measure
outperforms one which uses the eye-tracking or MVPA measure alone (see Choice Models section).
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first registered to participants’ anatomical image (rigid-body transformation with 6 of free-
dom) and then to a template brain in Montreal Neurological Institute (MNI) space (affine

transformation with 12 of freedom).

3.3.2 METHODS: FMRI LOCALIZER TASK

A modified one-back task was used to identify patterns of fMRI activation in the ven-
tral visual stream that were associated with attention to faces, landmarks, or tools. Par-
ticipants observed a display of the nine images similar to that used for the main task. On
each trial, they had to attend to one particular dimension. Participants were instructed to
respond with a button press if the horizontal order of the three images in the attended di-
mension repeated between consecutive trials. The order of the images on each trial was
pseudo-randomly assigned so that participants would respond on average every three trials.
Participants were told which dimension to attend to at the start of each run, and the at-
tended dimension changed every one to five trials, signaled by a red horizontal box around
the new attended dimension. The sequence of attended dimensions was counterbalanced
(Latin square design) to minimize order effects. On each trial, the stimulus display was pre-
sented for 1.4 s, during which participants could make their response. Participants received
feedback (500 ms) for hits, misses, and false alarms, but not for correct rejections (where a
fixation cross was presented for sooms instead). Each trial was followed by a variable ITT (2
S, 4 S, or 65, truncated geometric distribution, mean = 3.5 1 s). Participants performed two

runs of the localizer task (135 trials each) after completing the main task.
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3.3.3 MEgTHODS: FMRI MVPA ANALYSIS

A linear support vector machine (SVM) was trained on data from the localizer task to
classify the dimension that participants were attending to on each trial based on patterns of
BOLD activity. Analysis was restricted to voxels in a ventral visual stream mask consisting
of the bilateral occipital lobe and ventral temporal cortex. The mask was created in MNI
space using anatomical masks defined by the Harvard-Oxford Cortical Structural Atlas as
implemented in FSL. The mask was then transformed into each participant’s native space
using FSL’s FLIRT implementation, and classification was performed in participants’ na-
tive space. Cross-validation classification accuracy on the localizer task was 87.4% (SE =
0.9%; chance level: 33%). The SVM was then applied to data from the Dimensions Task to
classify participants’ trial-by-trial attention to the three dimensions. Classification was per-
formed using the SVM routine LinearNuSVMC (Nu = o.5) implemented in the PYMVPA
package(Hanke et al., 2009). On each trial, the classifier returned the probability that the
participant was attending to each of the dimensions (three numbers summing to 1). To
model subject-specific noise inherent in the BOLD data, a weighted sum was computed
between these probabilities and uniformly distribution attention. The weight wspp4 was
a free parameter fit to each participant’s behavioral data (see Choice Models section be-
low). As wprppy decreased, the MVPA measure of attention contributed less to the final
attention vector. Fitting a subject-specific wypy parameter thus provided us with a data-
driven method to weigh the MVPA measure based on how much it contributed to explain-

ing choices.
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3.3.4 METHODS: EYE-TRACKING

Eye-tracking data were acquired using an iView X MRI-LR system (SMI SensoMotoric
Instruments) with a sampling rate of 6o Hz. System output files were analyzed using in-
house MATLAB code. A horizontal rectangular area of interest (AOI) was defined around
each horizontal dimension in the visual display. Data were preprocessed by low-pass fil-
tering (1o Hz cutoft) to reduce high-frequency noise, discarding data from the first 200
ms after the onset of each trial to account for saccade latency and taking the proportion of
time participants’ point of gaze resided within each AOI as a measure of attention to the
corresponding dimension. The level of noise in the eye-tracking measure can vary system-
atically between participants. As with the fMRI data, to account for subject-specific noise,
we computed a weighted sum between the raw measure and uniform attention (one-third
to each dimension). The weight wz7, which served to smoothly interpolate between uni-
form attention and the eye-tracking measure of attention, was a free parameter fit to each
subject’s behavioral data (see Choice Models section below). Lower values of wz meant

the eye-tracking attention measure contributed less to the final attention vector.

3.3.5 METHODS: COMPOSITE MEASURE OF ATTENTION

To combine the two measures of attention, a composite measure was computed as the
product of eye-tracking and MVPA measures of attention, renormalized to sum to 1. Tak-
ing a product means that each of the two measures contributes to the composite according
to how strongly the measure is biased toward one dimension and not others. For example,
auniform (1/3,1/3,1/3) measure contributes nothing to the composite measure for that

trial. In contrast, if one measure is extremely biased to one dimension (e.g., 1, 0, 0), it over-

52



rides the other measure completely. In the Choice Models section below, we provide the
exact equations used to compute the composite measure, and show how it can be used to

separately modulate computing and updating the value of each stimulus.

3.4 METHODS: CHOICE MODELS

To elucidate the role attention might play in the computations that underlie learning
and decision-making, four RL models were tested by fitting them trial-by-trial to partici-
pants’ choices (Sutton & Barto, 2018; Daw, 2011). All four models assumed that partic-
ipants learned to associate each feature with a value and linearly combined the values of

features to obtain the value of a compound Face-Landmark-Tool stimulus:

V(t)(Si) = Z CDt(d) ’ Ut(d> St‘) (3.1)
d

V(S;) is the value of the stimulus 7 on trial #, @,(d) is the attention weight of dimension
d and v,(d, S;) denotes the value of the feature in dimension d of stimulus ;. Following
feedback, a prediction error, 9, was calculated as the difference between observed reward, 7;,

and the expected value of the chosen stimulus 7;(S,):

J; was then used to update the feature values of the chosen stimulus:

vy (d,Se) = vy(d,S.) +7- D(d) - 9, (3.3)
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The update is weighted by attention to the respective dimensions and scaled by a learning
rate 5, which was fit to each participants’ behavioral data. Because one prediction error
and one update were computed per trial, this model can be viewed as an instance of the
Rescorla-Wagner learning rule (Rescorla, Wagner, et al., 1972), which in turn is a special
case of TD-learning with a discount factor set to 0 (Ludvig, Sutton, & Kehoe, 2012).

In the ACL (Attention at Choice and Learning) model, both value computation and
value update were biased by attention weights. In the AC (Attention at Choice) model,
the attention measure was used for value computation, but all ®,(d) were set to one-third
during value update such that the three dimensions were updated equally during learning.
In the AL (Attention at Learning) model, the attention measure was used for value update,
but all ®,(d) were set to one-third for value computation, weighting all dimensions equally
at choice. In the UA (Uniform Attention) model, @,(d) were set to one-third for both
value computation and value update. For all models, choice probabilities were computed
according to a softmax action selection rule:

. gth(Sz‘)
72}(2) = W (3.4)

In the equation above, 7,(7) is the probability of choosing stimulus 7, 2 enumerates over the
three available stimuli, and 4 is a free inverse-temperature parameter that determines how
strongly choice is biased toward the maximal-valued stimulus.

The trial-by-trial composite measure of attention to each dimension ®@,(d) was com-

puted as follows. First, the raw MVPA measure was smoothed:

D,(d) arveasmootied = L) atvra raw - @arvea + (1 — warvpa) - [1/3,1/3,1/3] (3.5)
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The same transformation was applied to the eye-tracking measure with a different smooth-

ing parameter:

q)t(d)ET,xmoothed - q)z(d)ET,mw *WET + (1 - wET) . [1/3) 1/37 1/3] (36)

Finally, the two smoothed measures were combined by element-wise multiplication and
re-normalizing:

CDZ (d)MVPA smoothed ®© CDt (d>ET,:mooZ/oed
Zd CDZ (d)MVPA,xmoozbed ®© th (d>ET,:maothed

(Dt(d) = (3-7)

3.5 METHODS: FITTING AND COMPARING THE CHOICE MODELS

The three choice models incorporating the composite attention measure (ACL, AL
and AC) had four free parameters — wasyp4, @gr> B and 5 — while the uniform attention
model (UA) had two free parameters, 8 and 5. As in Chapter 2, model comparison used
a leave-one-game-out cross-validation procedure: for each participant and for each game,
the model was fit to participants’ choices from all other games by minimizing the negative
log-likelihood of the choices (Daw, 2011). For the minimization procedure, we used MAT-
LAB’s fmincon function.

Given the best fit parameters, the likelihood of each choice in the held-out game was
computed. The total likelihood of the data of each participant, computed for each game
as it was held out, was then divided by the number of trials that the participant played to
obtain the geometric average of the likelihood per trial. Using cross-validation allowed us to
compare between models based on their likelihood per trial without over-fitting and thus

we did not need to correct for model complexity.
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3.6 METHODS: ATTENTION MODELS

The main benefit of the approach outlined in this chapter is that it allows us to directly
measure the focus of attention as participants learn task representations. The section above
treats the MVPA and eye-tracking measures as direct readouts of attention. Combining
these attention measures with RL models of choice allows us to ask what role attention
plays in the computations that underlie trial and error learning and decision making.

But with the attention measure in hand, we can also study the other side of this interac-
tion: given past choices and rewards, how is attention determined in the first place? To be-
gin chipping away at this question, in models presented in this section, I treated the atten-
tion measure as an outcome variable. That is, instead of making predictions about what the
participants choose trial by trial, I tried to predict how attention to each of the face, land-
mark and tool dimensions changes as a function of recent experience. Specifically, I built
a series of RL models that tested the hypothesis that attention fluctuates with recent re-
wards, while controlling for another factor known to modulate attention: choice (Krajbich,
Armel, & Rangel, 2010).

The first two models tested the hypothesis that attention only depends on prior choices.
The “Full Choice History” model allocated attention based on a leaky choice count. This
model instantiated the hypothesis that participants are more likely to attend to features that
have been chosen most often. On each trial, counts for each of the three chosen features
were incremented by 1, and counts for the remaining six unchosen features were decayed
toward 0 at a subject-specific decay rate. Attention to each dimension was then determined

by the softmax of the maximal count on each dimension. That is, on each trial, I took the
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highest counts among the three features of each dimension and passed them through a
softmax function (see Equation 3.4) to obtain three attention weights that sum up to 1.
This model had two free parameters: a decay rate for the choices, and the softmax inverse
temperature for distributing attention in proportion to highest choice counts within each
dimension.

The “Recent Choice History” model added an additional assumption: only recent
choices determine attention. The model used a delta-rule update to adjust the weights of
the chosen features toward 1. For each chosen feature, the weight w,(d, S, ) was updated

as:

thrl(d’Scbwm) = wt<d7 S[//Jw‘m) + ;7ﬂ [1 - wt(du Scbwﬁn)] (38)

where 7_is a free update rate parameter. Here, too, the weights of the unchosen features
were decayed toward 0 at a subject-specific decay rate, and the predicted attention weights
were determined using softmax on the maximum weights in each dimension. In addition
to the decay rate for choices and softmax temperature free parameters, this model also had a
learning rate for updating choice counts.

The next two models tested the hypothesis that attention is only directed to chosen fea-
tures, but only they have been rewarded.

In contrast to the “Full Choice History” model, the “Full Reward History” model allo-
cated attention based on a leaky reward count: on rewarded trials only, counts of chosen
features were incremented by 1 and counts of unchosen features were decayed toward 0 at
a subject-specific decay rate. No learning or decay occurred on unrewarded trials. Again,
softmax was applied to the maximum counts in each dimension to determine attention.

This model also had two free parameters: a decay rate, and the softmax inverse temperature
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for distributing attention in proportion to highest reward counts within each dimension.
In the “Recent Reward History” model, analogous to the “Recent Choice History”
model, on each rewarded trial a delta-rule update was used to adjust the weights of the cho-
sen features toward 1. As before, weights of the unchosen features were decayed toward 0.
This model builds in the additional assumption that participants learn to attend to features
that were chosen recently, but only if the choice was rewarded. In addition to the decay rate
and softmax temperature, this model also had a learning rate for updating reward counts.
Finally, in the “Value” model, attention was hypothesized to follow feature values that
are learned from trial and error. Specifically, feature values were initialized to 0 and updated
via feature reinforcement learning with decay, the same model presented in Chapter 2 (Niv
etal., 2015; Radulescu et al., 2016): on each trial, a prediction error was calculated as the
difference between the obtained reward and the value of the chosen stimulus. The value
of each stimulus was assumed to be the sum of the values of all its features (Equation 3.1).
The value of chosen features was updated based on the prediction error scaled by a subject-
specific update rate, while the value of unchosen features was decayed toward 0 at a subject-
specific decay rate. While in Chapter 2 stimulus values in the feature RL + decay model
only determined choice, here I assumed that feature values also guided attention. As in
the models above, the maximum feature value in each dimension was passed through a
softmax function to obtain the predicted attention vector. This model is different from
the “Recent Reward History” model in that it learns not only from positive, but also from
negative prediction errors, basing attention learning on a stimulus-level prediction error.
The “Value” model had three free parameters: a learning rate for updating feature values, a

decay rate and a softmax temperature for determining how attention is distributed between
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dimensions in proportion to the highest-valued features.

3.7 METHODS: FITTING AND COMPARING THE ATTENTION MODELS

I compared these five attention models to a baseline zero-parameter model in which
attention is always uniform (1/3,1/3,1/3). As with our models of choice behavior, the
attention models were evaluated using leave-one-game-out cross-validation: for each par-
ticipant and for each game, I fit the free parameters of the model to all but that game by
minimizing the Root-Mean-Square Deviation (RMSD) of the predicted attention weights
from the measured attention weights. I then used the model to predict attention weights
for the left-out game to determine the mean RMSD per trial for each model (Figure 3.3.

I fit the models separately to the raw (preprocessed but not smoothed) eye-tracking atten-
tion measure, the raw (unsmoothed) MVPA attention measure, and the composite measure
(with smoothing parameters wzrand wasppy determined according to the best fit to choice
behavior)®. Other distance methods are possible, and are theoretically more appropriate

for compositional data (Aitchison, 1982). All model comparison results presented here are

robust to the choice of distance metric.

3.8 METHODS: FMRI ANALYSES

Three general linear models (GLMs) were implemented as design matrices for analysis of
the fMRI data:

GLM1 served to investigate whether the computation and update of the expected value

" Aside from the smoothing parameters, the learning rate and decay rate were optimized based on gaze
dara. In the Conclusions chapter, we discuss the issue of jointly fitting gaze and choice data
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Figure 3.3: Modeling ‘attention learning’. A. sample time course obtained from eye-tracking during one game, as the
participant was trying to learn the target feature from trial and error. Even though the target feature stayed constant
throughout this game, the participant switched attention at least once, focusing on tools early in the game, but then
gradually switching to landmarks. B. Schematic of model comparison procedure for attention data. The attention index
on each trial is a 3D vector of weights that sum to 1 (also known as a compositional vector (Aitchison, 2003)), which can
be visualized on a 2-simplex (right). The projection of the attention weights on the trial highlighted in (A) is marked by
an arrow. In this particular trial, attention was directed mostly to landmarks. In general, the closer a point is to the cor-
ners of the triangle, the more focused attention is on one of the three dimensions. The grey dot in the middle denotes
uniform attention (1/3, 1/3, 1/3). As a distance measure for model comparison, | used the root mean square distance
(RMSD) between the measured and predicted attention distribution on each trial.

6o



signal in the brain was biased by attention. For each participant, estimates for the expected
value of the chosen stimulus on each trial were generated using the UA, AC, AL, and ACL
models. These value estimates were entered into the GLM as parametric modulators of the
stimulus onset regressor. Because, in linear regression, variance shared by different regres-
sors is automatically not attributed to any of the regressors, the regressors were not orthog-
onalized. GLM1 could therefore identify regions that are associated with the value esti-
mates of each model, while simultaneously controlling for the value estimates of the other
models. Through contrasting the different model regressors, this GLM allows pinpointing
areas that correlate with values from one model significantly better than they correlate with
values from another model.

Reaction time, trial outcome, outcome onset, and head movement parameters were
also added as nuisance regressors. With the exception of head movement parameters, all
regressors were convolved with the hemodynamic response function. Missed-response trials
were not modeled as there was no chosen stimulus in those trials. The GLM was estimated
throughout the whole brain using FSL/FEAT v.5.98 available as part of the FMRIB soft-
ware library (FMRIB). Results were corrected for multiple comparisons using a family-wise
error cluster-corrected threshold of p < 0.05 (FSL FLAME 1), with a cluster-forming
threshold of p < 0.001. Unless otherwise stated, all GLM analyses included the same nui-
sance regressors and were corrected for multiple comparisons using the same procedure.

GLM2 served to investigate whether prediction error signals were also biased by atten-
tion. This GLM was identical to GLM1 except that instead of including estimates of ex-
pected values, estimates of trial-by-trial prediction errors were generated using the four

models and entered into the GLM as parametric modulators of the outcome onset regres-
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sor.

GLM 3 modeled switch and stay trials as stick functions at the onset of the respective
trials. Switch trials were defined as trials in which the maximally attended dimension was
different from the previous trial. All other trials were modeled as stay trials. A contrast

identified clusters that were more active during switch versus stay trials.

3.9 RESULTS: ATTENDING TO LEARN

Through trial and error, participants learned to choose the stimulus containing the tar-
get feature over the course of a game (Figures 3.1B and C). A learned game was defined as
one in which participants chose the target feature on every one of the last five trials. By this
metric, participants learned on average 11.3 (SE = 0.7) out of 25 games. The number of
learned games did not depend on the relevant dimension (F(2, 24) = 0.886, p = 0.42).

In this section, I present behavioral and neural evidence suggesting that decision-making

and learning in multidimensional settings are both constrained by attention.

3.9.1 BoTH CHOICE AND LEARNING ARE BIASED BY ATTENTION

The ACL model, in which the composite measure of attention modulated both choice
and learning, outperformed the other three models. Average likelihood per trial for the
ACL model was highest for 21 of 25 subjects, on average significantly higher than that for
the AC (23 = 4.72,p < 0.001), AL (£ = 6.70,p < 0.001),and UA (t25 = 8.61,p <
0.001) models. Both the AC and AL models also yielded significantly higher average likeli-
hood per trial than the UA model (AC: £,4 = 8.03,p < 0.001; AL: 1,5 = 7.20,p < 0.001)

(Figure 3.4A). Moreover, the average likelihood per trial of the ACL model diverged sig-
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nificantly from that of the other models early in the game, when performance was still well
below asymptote (as early as trial 2 for AL and UA, and from trial 7 for AC). These results
were not driven by the learned portion of games (in which participants may have focused
solely on the relevant dimension), as they held when tested on unlearned games only.

The ACL model used the same set of attention weights for choice and learning; how-
ever, previous theoretical and empirical work suggest that attention at choice might focus
on stimuli or features that are most predictive of reward (Mackintosh, 1975), whereas at
learning, one might focus on features for which there is highest uncertainty (Pearce & Hall,
1980). To test whether attention at learning and attention at choice were separable, I took
advantage of the higher temporal resolution of the eye-tracking measure. I considered eye
positions from 200 ms after stimulus onset to choice as indicating “attention at choice” and
eye positions during the 500 ms of outcome presentation as a measurement of “attention
at learning.” Attention at choice and attention at learning on the same trial were moder-
ately correlated (average » = 0.56), becoming increasingly correlated over the course of a
game (F(24,24) = 4.95,p < 0.001). This suggests that as participants figured out the
relevant dimension, they attended to the same dimension in both phases of the trial. When
the ACL model was fit using attention at choice to bias value computation and attention
at learning to bias value update, the model performed slightly, but significantly, better than
the ACL model that used whole-trial attention weights for both choice and learning. This
suggests that attentional processes at choice and at learning may reflect dissociable contri-

butions to decision making.
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Figure 3.4: Behavioral and neural evidence for attentional selection during learning. A. Average choice likelihood per
trial for each model shows that the Attention at Choice and Learning (ACL) model predicted the data significantly better
than other models (paired t tests, p < 0.001). B. BOLD activity in the vimPFC was significantly correlated with the
value estimates of the ACL model, controlling for the value estimates of the AC, AL, and UA models. C. BOLD activity
in the striatum correlated with reward prediction errors generated by the ACL model, controlling for reward prediction
error estimates from the AC, AL, and UA models. In sum, the ACL model’s predictions for value and prediction errors
best corresponded to their respective neural correlates.
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3.9.2 ATTENTION BIASES NEURAL VALUE AND REWARD PREDICTION ERRORS SIGNALS

To test which model was most consistent with the neural value representation, the trial-
by-trial value estimates of the chosen stimulus generated by all four models were entered
into a single GLM (GLM1 in the fMRI Analyses section). This allowed searching the
whole brain for clusters of brain activity whose variance was uniquely explained by one
of the models while simultaneously controlling for the value estimates of the other mod-
els. Results showed that activity in the vmPFC was significantly correlated with the value
estimates of the ACL model (Figure 3.4B), suggesting that the computation and update
of the value representation in vmPFC was biased by attention. No clusters were signifi-
cantly correlated with the value estimates of the AC and AL model; one cluster in the visual
cortex was significantly correlated with the value estimates of the UA model. Next, we in-
vestigated whether neural prediction error signals were also biased by attention. For this,
trial-by-trial prediction error regressors generated by each of the four models were entered
into a single whole-brain GLM (GLM2 in the fMRI Analyses section). Prediction errors
generated by the ACL model were significantly correlated with activity in the striatum (Fig-
ure 3.4C), the area most commonly associated with prediction error signals in fMRI stud-
ies (O’Doherty et al., 2004; Niv, Edlund, Dayan, & O’Doherty, 2012; Pagnoni, Zink, Mon-
tague, & Berns, 2002). Prediction error estimates of the other models were not significantly
correlated with any cluster in the brain. Together, these results provide neural evidence that
attention biases both the computation of subjective value as well as the prediction errors

that drive the updating of those values.
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3.10 RESULTS: LEARNING TO ATTEND

In previous analyses, I demonstrated that attention biased both choice and learning. In
the subsequent analyses, I focus on the other side of the bidirectional relationship, examin-

ing how learning modulates attention.

3.10.1 ATTENTION DYNAMICS ARE SENSITIVE TO REWARD

To understand how subjects decided what features to attend too, I compared different
models of the trial-by-trial dynamic allocation of attention. In particular, I tested whether
attention allocation could be better explained by choice history (i.e., attention was en-
hanced for features that have been previously chosen), reward history (i.., attention was
enhanced for features that had been previously rewarded), or learned value (i.e., attention
was enhanced for features associated with higher value over the course of a game). Cross-
validated model comparison revealed that both the eye-tracking and attention data were
best explained by a model that tracked feature values. In particular, the “Value” model out-
performed the next-best “Recent Reward History” model for both the eye-tracking (low-
est root-mean-square deviation [RMSD] in 17/25 subjects, paired-sample t-test, #(24) =
2.77,p < 0.05, Figure 3.5 A) and composite attention measured (lowest RMSD in 18/25
subjects, paired-sample t-test, #(24) = 2.41,p < 0.05). For the MVPA data, the “Value”
model did not significantly improve upon the predictions of the Recent Reward History
model (lowest RMSD in 16/25 subjects, paired-sample t test, t(24) = 1.02, p = 0.3 1, Fig-
ure 3.5B); however, it still performed significantly better than the “Recent Choice His-
tory” model (paired-sample t-test, #(24) = 3.83,p < 0.001).

These results suggest that attention is dynamically modulated by ongoing learning. As
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Figure 3.5: Behavioral and neural evidence for reward-sensitive attention dynamics. A. and B. Comparison of models

of attention fitted separately to the eye-tracking (A) and the MVPA (B) measures, according to the root-mean-square
deviation (RMSD) of the model’s predictions from the empirical data (lower values indicate a better model). Plotted is
the subject-wise average per-trial RMSD calculated from holdout games in leave-one-game-out cross-validation (see
Fitting and Comparing the Attention Models section). The Value model (dark grey) has the lowest RMSD. Error bars, 1
SEM. ***p < 0.001; **p < 0.01; *p < 0.05. C. BOLD activity in the frontoparietal network was higher on switch trials than

on stay trials.
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participants learned to associate value with features over the course of a game, attention was
directed toward dimensions with features that acquired high value (which, in this task, are
also the features that are most predictive of reward (Mackintosh, 1975)). The greater the
feature values in a dimension, the stronger the attention bias was toward that dimension.
Finally, attention was better explained as a function of learned value rather than simpler

models of reward or choice history.

3.10.2 NEURAL CORRELATES OF ATTENTION SWITCHES

Modeling results suggested that ongoing learning and feedback dynamically modulated
participants’ deployment of attention. How might the brain be realizing these attention
dynamics? To answer this, I searched for brain areas that were more active during switches
in attention. Trials on which the maximally attended dimension was different from that of
the preceding trial were labeled as switch trials and the rest as stay trials. A contrast search-
ing for more activity on switch rather than stay trials (GLM3 in the fMRI Analyses section)
showed clusters in the dorsolateral prefrontal cortex (dIPFC), intraparietal sulcus (IPS),
frontal eye fields (FEF), presupplementary motor area (preSMA), precuneus, and fusiform
gyrus (Figure 3.5C). These brain regions are part of a frontoparietal network that has been
implicated in the executive control of attention (Corbetta & Shulman, 2002; Petersen &
Posner, 2012). These results suggest that this attentional control system also supports top-
down allocation of attention during learning and decision making in multidimensional

environments.
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3.11  DiscussioN

As discussed and shown in Chapter 2, learning and attention play complementary roles
in facilitating adaptive decision making (Niv et al., 2015; Wilson & Niv, 2012). Here, to
test directly for the interaction between attention and reward learning, we combined com-
putational modeling, eye tracking, and fMRI to study the interaction between trial-and-
error learning and attention in a decision-making task. We used eye tracking and pattern
classification of multivariate fMRI data to measure participants’ focus of attention as they
learned which of three dimensions of task stimuli was instrumental to predicting and ob-
taining reward. Model-based analysis of both choice and neural data indicated that atten-
tion biased how participants computed the values of stimuli and how they updated these
values when obtained reward deviated from expectations. The strength and focus of the
attention bias was, in turn, dynamically modulated by ongoing learning, with trial-by-trial
allocation of attention best explained as following learned value rather than the history of
reward or choices. Blood-oxygen-level-dependent (BOLD) activity in a frontoparietal exec-
utive control network correlated with switches in attention, suggesting that this network is
involved in the control of attention during reinforcement learning.

This study builds on a growing body of literature in which RL models are applied to be-
havioral and neural data. Converging evidence suggests that the firing of midbrain dopamine
neurons during reward-driven learning corresponds to a prediction error signal that is key
to learning (D. Lee, Seo, & Jung, 2012; Schultz et al., 1997; Steinberg et al., 2013). The
dopamine prediction error hypothesis has generated much excitement, as it suggests that

RL algorithms provide a formal description of the mechanisms underlying learning. How-
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ever, it is becoming increasingly apparent that this story is far from complete (Dayan &
Niv, 2008; Langdon, Sharpe, Schoenbaum, & Niv, 2018). In particular, RL algorithms
suffer from the “curse of dimensionality”: they are notoriously inefficient in realistic, high-
dimensional environments (Bellman, 1957; Sutton & Barto, 2018).

How can the RL framework be extended to provide a more complete account of real-
world learning? A key insight is that learning can be facilitated by taking advantage of regu-
larities in tasks. For example, humans can aggregate temporally extended actions into sub-
routines that reduce the number of decision points for which policies have to be learned (Botvinick,
2012). The results here point to a parallel strategy whereby participants employ selective at-
tention to simplify the state representation of the task. While real-world decisions often
involve multidimensional options, not all dimensions are relevant to the task at hand. By
attending to only the task-relevant dimensions, one can effectively reduce the number of
environmental states to learn about. In the Dimensions Task, for example, attending to
only the face dimension simplifies the learning problem to one with three states (each of the
faces) rather than 27 states corresponding to all possible stimulus configurations. Selective
attention thus performs a similar function as dimensionality-reduction algorithms that are
often applied to solve computationally complex problems in the fields of machine learning
and artificial intelligence (Ponsen, Taylor, & Tuyls, 2009).

Drawing on theories of visuospatial attention (Desimone & Duncan, 1995), we concep-
tualized attention as weights that determine how processing resources are allocated to dif-
ferent aspects of the environment. In the computational models of choice behavior, these
weights influenced value computation in choice and value update in learning. Several previ-

ous studies have taken a similar approach to investigate the relationship between attention
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and learning (Jones & Canas, 2010; Markovi¢, Glascher, Bossaerts, O’Doherty, & Kiebel,
2015; Wilson & Niv, 2012; Wunderlich, Beierholm, Bossaerts, & O’Doherty, 2011), and
recently, we demonstrated that neural regions involved in control of attention are also en-
gaged during learning in multidimensional environments, providing neural evidence for
the role of attention in learning (Niv et al., 2015). These prior studies, however, have relied
on inferring attention weights indirectly from choice behavior or from self-report.

Here, we obtained a direct measure of attention, independent of choice behavior, using
eye-tracking and MVPA analysis of fMRI data. Attention and eye movements are func-
tionally related (Kowler, Anderson, Dosher, & Blaser, 1995; D. Smith, Rorden, & Jackson,
2004) and share underlying neural mechanisms (Corbetta et al., 1998; Moore & Fallah,
2001). Attention is also known to enhance the neural representation of the attended object
category (O’Craven, Downing, & Kanwisher, 1999), which can be decoded from fMRI
data using pattern classification (Norman, Polyn, Detre, & Haxby, 2006). Therefore, as a
second proxy for attention, we quantified the level of category-selective neural patterns of
activity on each trial. By incorporating attention weights derived from the two measures
into computational models fitted to participants’ choices, we provide evidence for the influ-
ence of attention processes on both value computation and value updating during RL.

Previous work has shown that value computation is guided by attention (Krajbich et al.,
2010) and that value signals in the vmPFC are biased by attention at the time of choice (Hare,
Malmaud, & Rangel, 2011; Lim, O’Doherty, & Rangel, 2011). For example, Hare et al.
(2011) found that when attention was called to the health aspects of food choices, value
signals in the vmPFC were more responsive to the healthiness of food options, and par-

ticipants were more likely to make healthy choices. Here, we extended those findings and
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demonstrated that attention biases not only value computation during choice, but also the
update of those values following feedback. Another neural signal guiding decision making
is the reward prediction error signal, which is reflected in BOLD activity in the striatum,

a major site of efferent dopaminergic connections (O’Doherty et al., 2004; Seymour et al.,
2004). This prediction-error signal was also biased by attention, providing additional evi-
dence that RL signals in the brain are attentionally filtered.

But how does the brain know what to attend to? To facilitate choice and learning, atten-
tion has to be directed toward stimulus dimensions that are relevant to obtaining reward,
such that learning processes operate on the correct state representation of the task. How-
ever, at the beginning of each game in the Dimensions Task, participants did not know
which dimension is relevant. The results presented here, as well as those presented in Chap-
ter 2, suggest that without explicit cues, participants can learn to attend to the dimension
that best predicts reward and dynamically modulate both what they attend to and how
strongly they attend based on ongoing feedback. These findings are consistent with the
view of attention as an information seeking mechanism that selects information that best
informs behavior (Gottlieb, 2012). In particular, a model in which attention was allocated
based on learned value provided the best fit to the empirical attention measures. Notably,
this model is closely related to a model of associative learning that assumes attention is di-
rected to features that are most predictive of reward (Mackintosh, 1975).

An alternative view is that attention should be directed to the most uncertain features
in the environment — that is, the features that participants know the least about and that
have been associated with more prediction errors (Pearce & Hall, 1980). In support of this

theory, errors in prediction have been shown to enhance attention to a stimulus and in-
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crease the learning rate for that stimulus (Esber et al., 20125 Holland & Gallagher, 2006).
The seemingly contradictory Mackintosh and Pearce-Hall theories of attention have both
received extensive empirical support (Dayan, Kakade, & Montague, 2000). Dayan et al.
(2000) offered a resolution by suggesting that when making choices, one should attend to
the most reward-predictive features, whereas when learning from prediction errors, one
should attend to the most uncertain features. When attention at choice and attention at
learning were assessed separately, the two measures were correlated. Nevertheless, a model
with separate attention weights at choice and learning fit participants’ data better than the
same model that used the same whole-trial attention weights at both phases. This result
suggests a dissociation between attention at choice and learning, although further work is
clearly warranted to determine how attention in each phase is determined. In particular,
the current task was not optimally designed for separately measuring attention at choice
and attention at learning as the outcome was only presented for soo ms, during which par-
ticipants also had to saccade to the outcome. The task was also not well suited to test the
Pearce-Hall framework for attention at learning because, in the Dimensions Task, the fea-
tures associated with more prediction errors are features in the irrelevant dimensions that
participants were explicitly instructed to try to ignore.

Neural results suggested that the flexible deployment of attention during learning and
decision making is controlled by a frontoparietal network that includes the IPS, FEF, pre-
cuneus, dIPFC, and preSMA. This network has been implicated in the executive control
of attention in a variety of cognitive tasks (Corbetta & Shulman, 2002; Petersen & Posner,
2012), and the dIPFC in particular is thought to be involved in switching among “task sets”

by inhibiting irrelevant task representations when task demands change (Dias, Robbins, &
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Roberts, 1996; Hyafil, Summerfield, & Koechlin, 2009). Our findings demonstrate that
the same neural mechanisms involved in making cued attention switches can also be trig-
gered in response to internal signals that result from learning from feedback over time. A
possible interpretation is that the frontoparietal executive control network flexibly adjusts
the focus of attention in response to ongoing feedback, such that learning can operate on
the correct task representation in multidimensional environments.

In summary, this chapter provided behavioral and neural evidence for a dynamic re-
lationship between attention and learning: attention biases what we learn about, but we
also learn what to attend to. By incorporating attention into the reinforcement learning
framework, we provided a solution for the seemingly computationally intractable task of
learning and decision making in high-dimensional environments. This chapter also demon-
strated the potential of using eye-tracking and MVPA to measure trial-by-trial attention
in cognitive tasks. Combining such measures of attention with computational modeling
of behavior and neural data will be useful in future studies of how attention interacts with

other cognitive processes to facilitate adaptive behavior.
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Without a filter, one is just chaos walking.

adapted from Patrick Ness

Selective attention as particle ﬁltering

As shown in Chapters 2 and 3, SELECTIVE ATTENTION plays a role in representation
learning of task-relevant features. Yet a formal theory is still missing for how humans learn
what to attend to. In this chapter, parts of which have been published as a short conference
paper (Radulescu, Niv, & Daw, 2019), I lay out a formal account of ‘attention learning’
grounded in principles of statistical inference. In particular, I model the dynamics of se-
lective attention as a memory-augmented particle filter, a flexible sequential sampling algo-
rithm that can provide approximate solutions to complex inference problems (Sanborn &
Chater, 2016; Speekenbrink, 2016; A. Smith, 2013). I show that trial-by-trial attention to
features measured using eye-tracking is better fit by a one-particle particle filter, compared
to the reinforcement learning mechanism introduced in Chapters 2 and 3. This is because
inference based on a single particle captures the sparse allocation of attention, predomi-
nantly to one dimension at each point in time. Unlike gradual reinforcement learning, the
particle filter can also accommodate the rapid switching of attention between dimensions.
However, because a single particle maintains insufficient information about past events
to switch hypotheses as efficiently as do participants, the data are best fit by the filter aug-

mented with a memory buffer for recent observations. This proposal suggests a new role
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for working memory in enabling tractable, resource-efficient approximations to normative
inference, and proposes a tight link between memory and attention functions in realistic

tasks.

4.1 INTRODUCTION

Results in previous chapters highlight a role for selective attention in shaping reinforce-
ment learning in multidimensional environments. In the work that follows, I suggest that
selective attention during human reinforcement learning arises from sequential sampling
of hypotheses about which features of a task are relevant. I formalize the attentional selec-
tion process as a memory-augmented particle filter (Doucet & Johansen, 2009; Bonawitz,
Denison, Gopnik, & Griffiths, 2014; Speekenbrink, 2016). Particle filters offer a tractable
approximation to rational inference and in the case of only a few particles, resemble sequen-
tial hypothesis testing (Wilson & Niv, 2012). The key idea of a particle filter is to represent
the target probability distribution using a finite number of point estimates, or particles.
The ensemble of particles is dynamic: estimates that are inconsistent with recent evidence
are filtered out. With additional experience, the ensemble comes to better approximate the
target distribution.

In general, the quality of the approximation increases both with time, and with the num-
ber of particles. Here, I show that a single-particle model does well in capturing the dynam-
ics of human attention allocation, due to the sparsity of the representation and the model’s
ability to rapidly switch hypotheses about the identity of the reward-predictive feature. But
such sparsity is in tension with the main normative appeal of particle filters, which is to

treat the ensemble of particles as approximating the exact posterior at each step.
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One way to compensate for using fewer particles is through the choice of ‘proposal dis-
tribution’ for re-sampling particles. In general, the closer the match between the proposal
distribution and the target posterior distribution that is being approximated, the better
the approximation to the posterior will be (Speekenbrink, 2016). In the Dimensions Task
(Chapters 2 and 3), the proposal distribution defines an implicit switching rule for staying
with the current hypothesis about which feature is more predictive of reward, or switching
to a different one. One suggestion in a similar setting was to use the exact posterior as the
proposal distribution, effectively endowing the model with the ability to switch hypotheses
in proportion to the true posterior probability (Bonawitz et al., 2014). But this is unrealis-
tic as a process-level model, since it relies on access to the very distribution the particle filter
is attempting to approximate.

Thus, I replace this assumption with a novel memory mechanism that modifies the pro-
posal distribution to incorporate a set of the most recent observations. This modification
both solves the efficiency problem associated with single-particle models and highlights
a new role for memory in enabling approximate inference. I develop a method for fitting
memory-augmented particle filters to trial-by-trial eye-tracking data, and compare the par-
ticle filter to the reinforcement learning account of selective attention in the Dimensions
Task (Chapters 2 and 3). I find that the memory-augmented particle filter more closely
matches the trial-by-trial dynamics of attention allocation, suggesting a role for memory in

guiding attention to task relevant features.
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4.2 PARTICLE FILTER MODEL

Consider the task environment described in Chapters 2 and 3: multidimensional stimuli
vary along several discrete dimensions 4 (e.g. Faces, Landmarks and Tools). Each dimension
can take on ffeatures per dimension (e.g. Einstein, ...). The structure of the task is defined
such that only one dimension is relevant for reward, and one target feature /* within that

dimension is most rewarding. At each time point #:

plff) # p(nl=f0). (4.1)

When p(r|f}) > p(r.|—f;), the presence of f* signals a higher probability of future reward.
While in the Dimensions Task changes in the target feature are signaled, here we consider

a more general setting in which the identity of the target feature changes according to:

p(fralfy) ~ U{1, K} with probability »

pfralfy) =f; with probability 1 — 4

(4.2)

That s, there is a fixed / probability (hazard rate) that /* will change in the future, and a
(1 — h) probability that /* will stay the same.

Under the generative model defined by Equations 4.1 and 4.2, we can model participants
as sequentially approximating the belief state p(f*) using particle filtering. Instead of main-
taining and updating the full posterior distribution over /* (Niv et al., 2015), we assume
that they keep track of a single particle A, which represents their hypothesis about the iden-

tity of the target feature. Participants have access to observations of the form O, = {C,, R, }
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Heny [——>

(1) Particle update
Hii1 ~ p(Ft | Ot-nit, Ht-n-1= k)

(2) Attention model
At.1 ~ Dirichlet(Softmax(1[H.1 = K], B), €)

Figure 4.1: Graphical model for the particle filter. Circular nodes in white represent the latent target feature. Circular
nodes in gray represent observations. The square node in gray represents the previous hypothesis. The square node in
white represents the updated hypothesis. Nodes in blue denote fixed parameters of the model. Solid and dotted lines
distinguish between observations experienced by the participant during the task (i.e. choices and rewards), and data that
the experimenter gets to observe when fitting the model (e.g. looking times).

— the choice and reward experienced on each trial, which they can use to update their hy-
pothesis about the identity of f*.

Particle filters learn by sampling new particles from a proposal distribution, and discard-
ing particles that are inconsistent with new evidence. Over time, particles settle on hypothe-
ses that, in ensemble, approximate the true posterior. Previous work has shown that indi-
vidual behavior in classic associative learning experiments supports single-particle mod-
els (Daw & Courville, 2008). But a single particle is impoverished in that it does not main-

tain enough history to learn efficiently in our task. We thus consider a memory-augmented

particle filter in which the proposal distribution at each time point is given by the probabil-
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ity of the current target feature being £, conditional on the 7z most recent observations, and

the hypothesis # — 1 trials back (Figure 4.1):
H, NP(E|Ot7n:t7Ht7n71 = k) (4-3)

The intuition behind using this proposal distribution is that a participant who has been
testing the hypothesis that £ is the target feature will switch to a different hypothesis based
on current observation Oy, as well as observations O,_,.,; stored in working memory. The
proposal distribution can also be viewed as the statistically optimal answer to the question,
“if k was the target feature # — 7z — 1 trials ago, what is the most likely target feature now,
given the outcomes I just observed?”

We now turn to how the proposal distribution in Equation 4.3 can be computed. Since
the dynamics of the target feature correspond to the latent state in a Hidden Markov Model,
we can use the Forward algorithm (Ghahramani, 2001). For every state £, the forward

probability 2,(k) is given by:

2i(k) = p(ONF = ) S plF, = HFi = flasa() (4.4

J

We can understand this recursion as follows: the sum expresses the prior probability of
the target feature being £ (the total number of possible £’s is the product of the number of
dimensions d and the number of features per dimension f). To calculate the prior probabil-
ity, we enumerate over all the possible target features in the previous trial, 7, from which we
could have transitioned to £ on this current trial with probability p(F, = k|F,_; = j). This

is weighted by «,_(f), the posterior probability that the target feature was indeed 7 in the
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previous trial. The transition probability depends on b, a free parameter that governs the
participant’s fixed belief about the rate of change in the target feature (Equation 4.2).

The prior is multiplied by p(O,|F, = #), the likelihood of the observation given that £
is the target. This depends on p,, a free parameter that governs the participant’s fixed belief
about how likely rewards are given the presence or absence or the target feature (Equation
4.1). Equation 4.4 therefore defines a recursion over the posterior probability of each tar-
get feature, 2,(k). On each trial, the recursion runs over 7 time steps back (or fewer if there
were fewer timesteps so far) and ends with a normalization step to yield the desired condi-
tional probability:

_ o, (k)

P(E|Otfn:t7 Htfnfl = IC) m (45)
It

Finally, the free parameter 7 can be interpreted as the working memory capacity of the

model. At each time point, the model computes the switching rule given the current obser-

vation, and the » — 1 most recent observations from memory.

4.3 FITTING THE PARTICLE FILTER TO GAZE DATA

So far, I have described a model of approximate inference over task-relevant features
from the point of view of a participant learning in multidimensional environments. But
how might this inference process modulate the allocation of attention to different features?
In Chapter 1, I suggested that selective attention carves out state representations guided by
the structure of a particular task: that is, attention prioritizes features that are predictive of
reward. The particle filter specified in the previous section provides a mechanism for infer-
ring structure in a multidimensional environment in which one dimension is relevant. I

next show how we can use trial-by-trial model fitting of the particle filter to ask, does such
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inference indeed guide selective attention? Specifically, I test whether the (latent) dynamics
of the hypothesis participants were considering at each time point are reflected in trial-by-
trial looking times.

Trial-by-trial maximum likelihood estimation (MLE) requires computing the likelihood
of a data sequence D;.7 under a set of parameters ¢ (Daw, 2011). While MLE is standard
practice in the human reinforcement learning literature (Wilson & Collins, 2019), evaluat-
ing the likelihood of data under models with stochastic latent states is typically intractable
because the state space of possible trajectories grows exponentially with the number of tri-
als (c.f. Findling, Skvortsova, Dromnelle, Palminteri, and Wyart (2019); van Opheusden,
Acerbi, and Ma (2020)). Since we cannot directly observe what hypothesis the participant
was considering, we need to marginalize out our uncertainty about /;.7. This computation
is quite costly, because it requires summing over all possible hidden state values at all times,

yielding K” terms. However, if we factorize the join likelihood as follows,

P(Drrl6) = > p(Drr, Hy = k6) = > &r(k) (4.6)

we notice that the term inside the summation is the joint probability of being in state £ at
time 7, and all observations up to that time point. Because the state space is discrete, we can
again compute this joint probability efficiently using the recursion given by the Forward

algorithm for inference in hidden Markov models:

&r(k) = p(Dr|Hr = k) > p(Hr = k|Hr— = j)ir1(j) (4.7)
J

Here, we keep the « notation standard for forward probabilities that we used in Equa-
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tion 4.4. But note that in the previous section, « denoted the forward probability from
the point of view of the participant, necessary for computing the proposal distribution
(Equation 4.3). The recursion ran for 7 trials, where 7 is the fixed working memory capac-
ity (Equation 4.4). Here, 2 denotes the forward probability from the point of view of the
experimenter, and runs over all 7 trials of the task.

Let us unpack the terms of this second recursion (compare to 4.4). The sum expresses
the prior probability of the hypothesis being £ (again, the total number of possible £’s is the
product of the number of dimensions & and the number of features per dimension £). To
calculate the prior probability, we enumerate over all the possible hypotheses in the previ-
ous trial, 7, from which the participant could have switched to £ on this current trial with
probability p(F, = k|F,_; = ;). This is weighted by ,_;(;), the posterior probability that
the hypothesis was indeed ; in the previous trial. This transition term can be computed for
each feature using the formula for the proposal distribution in Equation 4.3. Because this
computation relies on the Forward recursion in Equation 4.4, obtaining the likelihood re-
quires us to run two nested Forward algorithms: an “inner” one for calculating proposal
distributions, and an “outer” for calculating the likelihood of observed data. Inferring
the hypothesis here can be viewed as inference in non-homogenous-HMMs (nHMMs),
in which the transition probabilities depend on recent rewards (Kour & Morris, 2019).

The prior is multiplied by p(D7|Hy = k), the likelihood of the data given that £ is the
hypothesis. Recall from Chapter 3 that the data we observe are summarized as relative look-
ing times (Figure 4.3)". So we need to additionally specify a linking function between the

latent dynamics of the hypothesis and these trial-by-trial looking times. We use the Dirich-

"In the Conclusions chapter, we turn to the issue of jointly fitting gaze and choice data
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let distribution, a generalization of the Beta distribution over N-dimensional compositional
vectors (i.e. vectors of proportions that sum to 1) (Aitchison, 1982; Stoji¢, Orquin, Dayan,

Dolan, & Speckenbrink, 2020):
p(DJ|H, = k) = Dirichlet(Softmax(1H+=H g) ¢) (4.8)

The linking function above uses a softmax to determine how much of probability mass to
place on the current hypothesis. It can be thought of as capturing directed exploration: the
lower 8 is, the more attention is directed to features other than the current hypothesis (Guo
& Brunskill, 2019). In addition, the fixed precision ¢ models random probability of explor-
ing other hypotheses.
In sum, Equation 4.8 formalizes the idea that hypotheses about task structure guide at-
tention: attention is mostly focused on the current hypothesis, and sometimes explores al-
ternative hypotheses. The free parameters of the particle filter model are § € {z, b, DPhigh» Plows £ bypotbesis’ 3%
the working memory capacity, the prior probability of the change in the target feature, a
probability of reward given the target is present, a probability of reward given the target is

absent, a softmax temperature and a precision.

4.4 ALTERNATIVE MODEL: FEATURE REINFORCEMENT LEARNING WITH DECAY

In Chapter 2, Iintroduced Feature Reinforcement Learning with decay (fRL+decay)
as a candidate mechanism for learning what to attend to in a multidimensional setting. As
a brief reminder, fR L+decay, assumes the participant learns a feature weight 17 for each

of the nine features. The predicted value for the chosen stimulus is the sum of its feature
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weights. After each observation, the weights of the chosen features are updated based on
a prediction error — the difference between the obtained reward and the predicted value
(multiplied by learning rate 7). Weights of unchosen features decay toward zero in propor-
tion to decay rate d. This results in a set of updated weights 177,4;.

In Chapter 3, I modeled dimensional attention as a softmax over maximum feature
weights in each dimension. Here I model feature attention as a softmax over the vector
of updated feature weights 77, ,, where the inverse temperature 4 dictates the degree to
which attention is focused attention on features with higher values:

)
?.(k) = S A0 (4.9)

As with the particle filter, the output from the softmax determines the parameters of a
Dirichlet distribution that translates the feature weights to a prediction of eye gaze for each

feature:

p(D|W,) = Dirichlet(p,, <) (4.10)

The softmax temperature 3 dictates how likely it is that attention is directed to features that
accrue a high value, and the precision ¢ models random noise. So the free parameters of this
model are § € {7,d, B, ¢}: alearning rate, a decay rate, a softmax temperature and a preci-
sion. The total likelihood of the data is simply the product of the trial-by-trial probabilities
(Daw, 2011) (see also Chapters 2 and 3):

T

p(Dil6) = [ [ 2D 7., 6) (4.11)

t=1
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The fRL+decay model is an exemplar in a wide class of “connectionist” (artificial neural-
network) architectures that have proposed ‘attention learning” happens via trial and er-
ror (Cohen, Dunbar, & McClelland, 1990; Kruschke, 19925 Roelfsema & Ooyen, 2005).
These include modern approaches based on deep reinforcement learning, which, notably,
are more efficient when basic mechanisms of attentional selection are introduced (Vaswani
etal.,, 2017). But while the fRL+decay model has mechanisms for “sparsifying” the state
representation, it still assumes a gradual learning process very different from stepping dy-
namics exhibited by the particle filter (Zoltowski, Latimer, Yates, Huk, & Pillow, 2019).
Thus, the comparison between the two models is informative with respect to a fundamen-
tal question about attentional dynamics: does attention arise from fast-switching serial
hypothesis testing? Or are attentional biases acquired through gradual, error-correcting

learning that starts from a wide attention distribution and narrows over time?

4.5 FITTING PROCEDURE

Both models were fit to gaze data by minimizing the negative log of the likelihood func-
tion (particle filter: Equation 4.6; fLR+decay: Equation 4.11). I used the minimize func-
tion (L-BFGS-B algorithm) in the SciPy Python package. As in Chapter 3, I take a leave-
one-game-out cross validation approach: starting from different initial conditions, the
model is fit to all games but one, and tested on the left-out game. The log likelihoods of
all left-out games are then summed to get the cross-validated log likelihood. To investi-
gate the robustness of fit results, this procedure was repeated s times using different initial
conditions. Because it provides a full generative model of how gaze data are generated, the

fitting procedure presented here improves upon the regression-based approach I presented

86



in Chapter 3.

4.6 DATASET: THE DIMENSIONS TASK WITH FACES-LANDMARKS-TOOLS, V2.0

I tested the particle filter on gaze data from the a multidimensional learning study simi-
lar to the one presented in Chapter 3. Human participants were tasked with learning from
trial and error which of nine features was most predictive of reward (Figure 4.2). The de-
sign of the task was similar, with a few modifications: participants could respond within 2
seconds, and their choice was indicated by a grey rectangle that stayed on until the 2-second
mark; the outcome was presented for 2 seconds and consisted of a colored rectangle around
the chosen column (green for a rewarded trial, and red for a non-rewarded trial); the uncho-
sen features remained on the screen for the duration of the outcome presentation, allowing
participants to attend to both chosen and unchosen features; and finally, in this dataset we
only collected eye-tracking data as a measure of attention.

Aside from these modifications, as before, on each trial, participants selected one of 3
columns, each including a face, a landmark, and a tool. Choosing the column containing
the target feature yielded a reward with o.75 probability. Choosing any of the other two
columns was rewarded with only 0.25 probability. All features were visible on every trial,
with feature combinations within columns determined randomly on each trial. Each block
of 20 trials was defined as a ‘game’ during which the target feature stayed constant. The
target feature randomly changed between games, and this was announced to participants.
Participants were instructed about the reward contingencies before the experiment, but
were not instructed for each game regarding the relevant dimension or the target feature.

In Chapter 3, I demonstrated the viability of using eye-tracking to measure trial-by-trial
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Figure 4.2: The Dimensions Task with Faces-Landmarks-Tools, v2.0. Left: As in Chapter 3, participants had to learn from
trial and error which of 9 features was predictive of most reward. In this version, the outcome consisted of a rectangle
around the chosen column stimulus, and was presented for 2 seconds. Unchosen columns remained on screen during
outcome presentation.
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Figure 4.3: Sample attention dynamics for one game of the task Inset shows the looking patterns corresponding to the
first trial of the game. Within each trial, looking time was binned and averaged across the spatially-resolved features.
The size of the squares indicates the relative looking time spent looking at each feature, averaged over the whole trial.
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changes in attention to different dimensions of the task (Faces, Landmarks or Tools). Here
I extend this approach by employing high-frequency eye-tracking to derive a trial-by-trial

measure of feature-level attention (Figure 4.3).

4.7 RESULTS

I first investigated whether the particle filter can reliably learn the task as quickly as hu-
mans do (Figure 4.4). I simulated the choice behavior of particle filter agents with different
memory capacities on the same stimulus sequence as human participants were exposed to.
For illustration, I fixed the hazard rate / at 0.001, to compensate for the assumption that
b does not exactly match the generative dynamics of the task (i.e there are no unsignaled
changes in the target feature). I used a probability of reward p, = 0.99, which means
agents treat the likelihood function as more deterministic than in the true model of the
task (where p, = 0.75). This was done to mitigate effects of stochasticity that might arise
after learning, when the agent, unlike humans, does not know to stop testing hypotheses.
In practice, p, can be fit to individual participants’ data. Particle filter agents were randomly
initialized to one of the 9 possible features, and made choices using a softmax choice rule
with an inverse temperature of 100 (i.e. the model almost always chooses the stimulus con-
taining the current hypothesis).

I found that the performance of the model improved with memory capacity, and ap-
proached human performance for the 5-back condition both in terms of speed of learning
(Figure 4.4B) and accuracy on the last 6 trials of a game (Figure 4.4D).

Next, I compared the performance of the particle filter and fRL+decay models in pre-

dicting trial-by-trial fluctuations in relative looking times (Figure 4.5). I found that the par-
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Figure 4.4: Particle filter task performance. A: Learning curves for 21 human participants. Performance was assessed
as the proportion of trials in which the participant chose the stimulus containing the target feature. Shading: SEM. B:
Learning curves for particle filter agents with different memory capacities experiencing the same stimulus sequence as
human participants (100 agents per value of 7). 0-back agents are equivalent to a win-stay-lose-shift (WSLS) strategy.
Shading: SEM. C: Histogram of the average number of correct choices participants made in the last 6 trials of each
game. Games in which they made the correct choice in 6 of the last 6 trials can be considered “learned”. D: Average
number of correct choices in the last 6 trials of a game by the particle filter model, as a function of memory capacity.
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ticle filter outperformed fRL+decay for all but three participants, suggesting that shifts in
attention were more consistent with hypothesis testing based on evidence from recent trials
than with gradual error-driven learning (Figure 4.5 A). I also found significant variability

in the estimated memory capacity of each participant, with 11 out of 21 participants being
better fit by particle filters with » > 0 (Figure 4.5B). One reason for which many partici-
pants seem to be fit by particle filters with no memory (i.e. # = 0) is that 7 determines the
amount of recent evidence that drives hypotheses switches. While so far I have treated it as
fixed, in principle 7 could vary depending on the stage of the learning process. For instance,
n might be lower early on, when the participant is testing various hypotheses, than late in
the game when learning is complete; alternatively, 7 could change depending on whether

a participant was rewarded or not in the recent past (Bonawitz et al., 2014). While further
work is necessary to fully investigate these variants, as well as potential interactions between
n and other parameters of the particle filter, these results are suggestive of a role for working
memory in storing recent experiences relevant for guiding selective attention.

Finally, I tested a key empirical prediction of the particle filter model. Recall that the
relative looking times to each of the 9 features yield a trial-by-trial index of a participant’s
focus of attention. As such, descriptive statistics of these time series can offer clues as to the
underlying dynamics of attention learning. In particular, we would expect that if partici-
pants switch attention in accordance to the mechanics of a one-particle particle filter, the
relative looking time for the feature with the highest weight should be 1 or close to 1, in-
dicating (almost-)full attention to one feature. A secondary prediction can be made about
the difference between the maximum feature weight and that of the second highest fea-

ture weight: if the participant is switching hypotheses from one feature to another, then we

92



>
o2)

800 © 1.0| —— Highest
E —— Difference
= 2nd highest
600 o8
- £
= % 0.6 ____\__/w/_\/\
3 400 S
© + 04 M
o
200
V0.2
[}
% 0.0
%0 0.5 10 123456 78 91011121314151617181920
Max percent looking time Trial

Figure 4.6: Attention is focused, its dynamics consistent with abrupt switching A: Histogram of the maximum relative
looking time to each of the 9 features across all participants. B: Difference between the highest and second highest
relative looking time to each of the 9 features as a function of trial within a game. The difference is relatively constant
across a game, suggesting hypothesis testing rather than gradual learning.
would expect the difference in relative looking times to stay relatively constant throughout
a game. Both of these predictions were borne out in the empirical data (Figure 4.6).

In sum, the results in this chapter provide evidence that approximate inference over task-

relevant features guides selective attention during trial and error learning, and point to a

new mechanism by which memory of recent experiences informs this inference.
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Everything is going to be fine in the end. If it’s not fine it’s not the end.

Oscar Wilde

Contributions and future directions

I started this thesis by defining selective attention as a function that maps from percep-
tual observations to state representations in reinforcement learning. I suggested that such
a mapping might be learned by inferring the structure of the environment: features of the
observation space should be represented to the extent that they are useful for predicting
reward. This first contribution is thus a conceptual one: framing selective attention as carv-
ing state representations in service of decision-making joins in a tradition of research that
asks not how selective attention is deployed, but why it might be directed to some features
and not others (McCallum, 1997; Dayan et al., 2000; Najemnik & Geisler, 2005; Gottlieb
& Oudeyer, 2018; Callaway & Griffiths, 2019).

In Chapter 2, I provided empirical evidence for the role of attention in state represen-
tation learning. I studied younger and older adults’ behavior in the ‘Dimensions Task’,

a multidimensional learning environment in which one dimension was relevant for pre-
dicting reward. I showed that a reinforcement learning model which includes an indirect
mechanism for selective attention is more consistent with choice data than a model which
assumes uniform attention. Moreover, older participants’ selective attention strategies dif-

fered from younger adults in a manner that was predictive of performance.
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In Chapter 3, I described a series of methodological contributions that enabled us to
more directly study how attention carves state representations. Using fMRI and eye-tracking,
we obtained a trial-by-trial index of selective attention in a modified version of the ‘Di-
mensions Task.” We used this index in conjunction with reinforcement learning models
of choice to precisely pinpoint a role for attention in biasing both the valuation of multi-
dimensional stimuli, and in biasing learning about difterent features. This technical con-
tribution made it possible to begin asking questions about the other side of the interaction
between learning and attention: given past experience, how is attention determined in the
first place? I developed a preliminary model comparison for predicting gaze and BOLD
attention data, which revealed that selective attention is sensitive to recent outcomes, con-
trolling for choice (Krajbich et al., 2010; Krajbich, Lu, Camerer, & Rangel, 2012). Taken
together, these results provide evidence for a bidirectional interaction between selective at-
tention and reinforcement learning: attention constrains how we choose and what we learn
about, and learning in turn directs our attention to task-relevant features. On the technical
side, this study adds to a growing literature on using additional data modalities in conjunc-
tion with choice to disentangle different decision-making strategies.

Finally, Chapter 4 describes the main theoretical contribution of this thesis. I suggested
in Chapter 1 that attention might be guided by inference over task-relevant features. Chap-
ter 4 makes this hypothesis explicit and provides an algorithmic solution, in the form of a
computational model grounded in principles of statistical inference. I propose that latent
attention dynamics in the ‘Dimensions Task’ are consistent with particle filtering. This
algorithm keeps track of one particle (or hypothesis) about which feature within the rele-

vant dimension is most predictive of reward. On each trial, the particle filter computes a
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switching rule (i.e. a proposal distribution for new hypotheses) based on recent evidence.

I fit the particle filter model to a trial-by-trial index of attention measured from gaze (as
shown in Chapter 3). The results of this analysis showed that attention dynamics reflected
in trial-by-trial looking times are more consistent with particle filtering than with the fea-
ture reinforcement learning model tested in Chapter 3. Specifically, the one-particle par-
ticle filter captures rapid switching and focused attention, two prominent qualitative fea-
tures of the attention data. Critically, augmenting the particle filter with memory enables it
to compensate for only keeping track of one hypothesis, and to learn as quickly as human
participants do. These results suggest a tight link between selective attention and working
memory (van Ede, Chekroud, & Nobre, 2019; Panichello & Buschman, 2020), and show
how this link might support state representation learning (McCallum, 1997). The find-
ings in this chapter also open up the intriguing possibility that previously proposed optimal
strategies for attention allocation could be realized, but over approximate representations
of learned beliefs (Najemnik & Geisler, 2005; Nelson & Cottrell, 2007; Braunlich & Love,
2018; Callaway & Griffiths, 2019). On a final technical note, while stochastic decision-
making models with continuous latent variables are notoriously difficult to fit to trial-by-
trial data (Findling et al., 2019), this work shows that, in discrete settings at least, particle
filters are tractable enough to fit using established likelihood-maximization approaches.
This insight opens the door for testing and refining a larger class of sampling-based models
which have been proposed as computational models of memory (Gershman & Daw, 2017;

Bornstein, Khaw, Shohamy, & Daw, 2017).
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5.1 JOINT FITTING OF GAZE AND CHOICE DATA

One theme throughout this dissertation has been the use of additional data modalities
(e.g. eye-tracking, fMRI) to directly measure the dynamics of attention allocation. Candi-
date models of attention described in Chapters 3 and 4 sought to predict trial-by-trial fluc-
tuations in gaze data, summarized as relative looking times either to features or dimensions.
Parameters of both the fRL+decay model and particle filter model were optimized based on
how well they could predict gaze. But this approach ignored the other source of data from
the Dimensions Task: participants’ choices. While not a systematic focus of investigation so
far, this does mean best fit parameter values could differ depending on which data streams
models are fit to.

In ongoing work, I am addressing this limitation by jointly fitting models to choice and
gaze data. This amounts to maximizing a likelihood function that takes into account both
trial-by-trial choices and relative looking times. The best-fit parameters obtained by this
procedure are optimized simultaneously for both choice and gaze prediction. A similar
approach has been applied before to integrate behavioral and fMRI data in the same com-
putational modeling framework (Turner et al,, 2013).

Recall Equation 4.7, which provided a recursive algorithm for exactly computing the
likelihood of the data under the particle filter. Joint fitting means considering both the

likelihood of gaze .. and choice ¢

&r(k) = plpy crlH, = #) > &rs()p(Hr = k|Hry = ) (s.1)

J

We can further factor the likelihood term in the product, since .. and ¢z are conditionally
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independent given a particular hypothesis:

ar(k) = plo | Hr = kplcrlHr = k)Y ara(p(Hr = k|Hr1 =7)  (52)

J

In other words, on each timestep of the algorithm, evidence in favor of a given hypothesis is
a product of the likelihood of the choice data and looking time data.
The joint probability of relative looking times @ and choices ¢ under a fRL+decay model

can be written as:
T

p(@nT’ CI:T|‘9) = Hp(ctv ¢t|€) (5~3)

i=1

By conditional independence given &, we have:

T T T

[12(16)p(2,16) = [ [ 2(c16) [ ] £(2.10) (5-4)

=1 =1 =1
Taking the log gives:

T T

log(] [ 2(c19)) + log([ [ (2,10)) = log 3 _p(cld) +1og 3 _p(20)  (5:5)

i=1 =1

The expression above is just a sum of the log-likelihoods of each data series, computed inde-
pendently.

Using the analytical expressions for the joint likelihood derived in this chapter, future
work will seek to integrate looking time and choice data into a single computational frame-

work.
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5.2 A NEURAL CIRCUIT MODEL OF REPRESENTATION LEARNING

§5.2.1 A COGNITIVE NEUROSCIENCE VIEW OF PARTICLE FILTERING

In this thesis, I have presented an algorithmic-level model of representation learning
based on sequential approximate inference. In the following section, I discuss how such
a model may be implemented in a neural architecture grounded in what we know about
the human brain (Figure 5.1). I am indebted to Ian Ballard for the scientific exchange that
shaped the ideas in this section (Radulescu, Niv, & Ballard, 2019).

Consider a particle that represents a compositional hypothesis about which features are
relevant (e.g “red square”). In the cognitive neuroscience literature, this kind of represen-
tation is known as a “rule” (Goodman et al., 2008; Badre, Kayser, & D’Esposito, 2010).
Connectionist models of the basal ganglia—prefrontal cortex circuitry (Collins & Frank,
2013; Cohen, Braver, & Brown, 2002; O’Reilly & Frank, 2006) describe how rules stored
in working memory can be selected via known corticostriatal circuitry (see O’Reilly and
Frank (2006) for anatomical detail). Anterolateral prefrontal cortical pools can represent
different rules. These different pools compete via mutual lateral inhibition. The outcome
of this competition is biased by the relative strength of each pools’ connectivity with the
striatum. Pools with stronger cortical-striatal connectivity will generate a stronger stri-
atal response, which in turn increases the strength of thalamic feedback onto these pools.
This recurrent circuit allows a pool representing a task rule to inhibit competing pools and
control behavior (Alexander, DeLong, & Strick, 1986). If an unexpected reward occurs,
dopamine release in the striatum strengthens the synapses from the most active cortical

pool to the striatum (Wickens & Kétter, 1995; Wickens, Reynolds, & Hyland, 2003). In
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(1)
A Attention

3)

Figure 5.1: A neural circuit model of representation learning. A: | propose that: (i) hypotheses about task structure

are the source of top-down attention (Arrow 1); and (i) attention sculpts the state representation by prioritizing some
features of the environment for reinforcement learning (Arrows 2 and 4). In turn, in accordance with previous models
of prefrontal-striatal interactions, learned values of states participate in the gating of which hypotheses are considered
(Arrow 3). B: A simple model showing how the interacting systems architecture in (A) could be realized in interacting
neural circuits. Yellow area corresponds to the lateral prefrontal cortex, blue to the basal ganglia, green to the sensory
cortex, and red to the dopaminergic midbrain. A prefrontal hypothesis that ‘red and square’ leads to reward biases top-
down attention to the ‘red’ and ‘square’ features in the sensory cortex, which in turn biases the state representation in
the striatum towards these features both during valuation (posterior corticostriatal synapses) and updating (prefrontal
corticostriatal synapses). In turn, values stored in the striatum influence prefrontal rule selection.
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this way, rule representations that lead to reward are more likely to win over alternative
representations in the future (Collins & Frank, 2013; Alexander et al., 1986). This model
describes how a reinforcement learning system could gate the representation of a hypothesis
about task structure into the cortex. This hypothesis can then guide “top-down” selective
attention during learning (Radulescu, Niv, & Ballard, 2019) (Figure 1.1).

Hypotheses about task structure can constrain feature-based reinforcement learning by
directing attention to specific component features and not others. For example, a hypoth-
esis that ‘red stimuli predict reward’” would increase the strength and fidelity of the repre-
sentation of color in the sensory cortex. If an unexpected outcome follows a red square, the
heightened representation of ‘red’ will cause a larger update to posterior corticostriatal pro-
jections from ‘red’ neurons than from ‘square’ neurons. As a result, reinforcement learning
will operate over a feature-based representation with biased attention to the color ‘red’.

If later in the task the hypothesis is updated to ‘red squares predict reward’, both red and
square features will be attended to more strongly than other features. In this way, hypothe-
ses can sculpt the state representation underlying reinforcement learning.

Reinforcement learning could, in turn, contribute to the selection of hypotheses via two
mechanisms. First, learning can adjust the frontal corticostriatal weights of “top-down”
projections from cortical pools representing alternative rules, as has been proposed in a re-
cent neural network model (Collins & Frank, 2013). Second, reinforcement learning over
features represented in the sensory cortex can contribute “bottom-up” to rule selection. For
instance, the rule ‘red squares predict reward’ will be influenced by simple reinforcement
learning linking ‘red’ with reward and ‘square’ with ‘reward. This way, when a rule is dis-

carded, reinforcement learning would support the selection of an alternative rule based on
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a common feature that has predicted past observations. This mechanism alleviates the need
to exactly remember previous trials and evaluate alternative rules against these memories,
thereby endowing the hypothesis testing system with implicit memory. In this chapter, I
instantiated and tested a model that only has explicit memory of a fixed number of difter-
ent episodes, but hybrid implicit-explicit mechanisms are also possible (Shohamy & Daw,
2015), for instance by computing the proposal distribution based on a mixture of memory-
based inference and reinforcement learning (Song, Cai, & Niv, 2019). By designating hy-
potheses as the source of top-down attention, this model provides a mechanistic account
of how reinforcement learning is influenced by both structured knowledge and attention.
This idea is closely related to recent work suggesting that working memory contents in lat-
eral prefrontal circuits act as the source of top-down attention to the constituent sensory
circuits (Kiyonaga & Egner, 2013). Working memory plays an important role in constrain-
ing reinforcement, and the model I present here predicts that learning is influenced both by
the number of hypotheses that can be simultaneously considered (Lloyd, Sanborn, Leslie,
& Lewandowsky, 2017), and the number of episodes that can be remembered at any given

time (Todd, Niv, & Cohen, 2009).

§5.2.2 NEURALLY PLAUSIBILITY OF PARTICLE FILTERING

A strength of particle filters is that they can approximate any given Bayesian model by
using a finite number of particles, each of which expresses a particular hypothesis about the
state of the world. For example, in the Dimensions Task, each particle represents a single
hypothesis about which feature is relevant. After an observation, the particle either samples

a new hypothesis or stays with the current one. This decision depends on how likely the

I02



observation is under the current hypothesis. A particle encoding the belief that ‘red leads
to reward’ would be more likely to stay with its current hypothesis after observing a red
square followed by a reward and more likely to switch to a new hypothesis after observing
a red square that followed by no reward. This update algorithm is computationally simple
because it incorporates only each particle’s belief about the world.

In addition to their computational simplicity, particle filters are an appealing model for
representation learning because they can include a prior that preferentially samples simpler
rules. Moreover, they capture the phenomenological report that people consider alternative
hypotheses (Armstrong, Gleitman, & Gleitman, 1983). Particle filters also closely resem-
ble a serial hypothesis testing model that has previously been shown to describe human
behavior in the Dimensions Task well (Wilson & Niv, 2012). In addition, they provide a
single framework for implementing representation learning over difterent types of mod-
els, including both probabilistic programming models and Bayesian nonparametric mod-
els (Lloyd et al., 2017; Sanborn et al., 2010).

Given an infinite number of particles, particle filters converge to the true posterior prob-
ability. Remarkably, recent work has demonstrated that the use of a single or very few par-
ticles can describe human behavior well. This is because humans face a practical problem:
rather than learning the true probability distribution over all possible rules, people need
only find a rule that explains enough observations to make good decisions (Lieder, Grif-
fiths, & Hsu, 2018). This could explain why behavior across an entire group may be Bayes
optimal but individual choices are often not (Courville & Daw, 2008). If each individual
tracks just one or a few hypotheses, only the group behavior will aggregate over enough

‘particles’ to appear Bayes optimal (Courville & Daw, 2008).
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Our neural model proposes that hypotheses are gated by corticostriatal circuitry that
is, in turn, influenced by reinforcement learning. This architecture could form the basis
of a particle filter algorithm. Specifically, particle filters sample hypotheses based on how
well each hypothesis accounts for previous observations. Feature weights learned via rein-
forcement learning could enable the sampling of hypotheses that have already explained
some observations. Unlike particle filter accounts of sensory integration, which propose
that individual spikes of feature-selective neurons represent particles (Huang & Rao, 2016;
Kutschireiter, Surace, Sprekeler, & Pfister, 2017; Legenstein & Maass, 2014; T. S. Lee &
Mumford, 2003), in our model particles correspond to distributed prefrontal representa-
tions of rules. The particle filter algorithm is a flexible mechanism for inference that could
apply to different timescales (from milliseconds to trials) and different types of problems
(e.g., perception, categorization).

Although corticostriatal connectionist models can exhibit properties similar to a Bayesian
structure-learning model (Collins & Frank, 2013), the corticostriatal gating mechanism
need not perfectly implement a particle filter, and the differences may be informative. For
example, in a task where the motor response mapping varies (e.g., reward sometimes fol-
lows the left-hand and sometimes the right-hand response), a corticostriatal gating model
would correctly predict that if recent right hand selections were rewarded, the subject is
more likely to respond ‘right’ regardless of the category of the current stimulus (Lau &
Glimcher, 2005). A particle filter implementing a probabilistic programming model of rep-
resentation learning would not predict this effect. A fruitful area for future research will be
to examine other ways in which constraints imposed by the corticostriatal architecture can

predict deviations from Bayesian inference.
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5.3 NATURALISTIC FEATURE SPACES FOR STATE INFERENCE

In closing, a note on a conjecture I made early on in the thesis: the observation space is
only constrained by the “primitive” features that an agent’s perceptual system has access
to during a reward learning task (Chapter 1). In the Dimensions Task, that space is con-
veniently defined by discrete stimuli and clear category structure. This design choice en-
ables precise model-building and testing. Going forward, assessing the validity of candidate
models in real-life scenarios challenges us to engage with decades-old questions in the psy-
chology of perception: how are real-world objects represented (Biederman, 1987; Spelke,
1990)? What dimensions define them, and to what extent are they separable (Shepard,
1991)? How are object features integrated into a coherent percept (Treisman & Gelade,
1980)? What are the semantic associations that underlie real-world scene understand-
ing (Greene & Oliva, 2009)? What symbolic representations rely on such associations (Goodman
et al., 2008; Ballard et al., 2018)? In future work, I hope to consider these questions in nat-
uralistic scenarios, in which humans can use their full prior knowledge of the world to in-

form their decisions (Radulescu, van Opheusden, Callaway, Griffiths, & Hillis, 2020).
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