
1 
 

 

INFORMATION SAMPLING, LEARNING AND 

EXPLORATION  

 

Andra Geana 

 

 

 

A DISSERTATION PRESENTED TO  

THE FACULTY OF PRINCETON UNIVERSITY  

IN CANDIDACY FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 

 

 

 

 

RECOMMENDED FOR ACCEPTANCE 

BY THE DEPARTMENT OF PSYCHOLOGY 

 

Advisor: Jonathan D. Cohen 

 

 

June 2015



2 
 

© Copyright by Andra Geana, 2015. All rights reserved.



 

i 
 

Abstract 

Our world, uncertain and rich in information, often presents us with many available 

choices, incomplete knowledge about most of them, and noisy feedback that we must 

make sense of. To make good decisions, we must extract information from our complex 

environments, form accurate representations of the available options, and perform 

efficient computations that help us choose the most goal-relevant actions. This thesis 

presents a series of studies investigating how humans learn information from the tasks 

they perform, and how they use that information to update representations, estimate the 

value of their actions, and adaptively adjust their behavior. Chapter 2 compared two 

conceptually different models of human learning strategies in an information-rich, 

probabilistic learning task, finding that humans are not Bayes-optimal when extracting 

the value of relevant features in noisy environments, and that it was possible to directly 

influence their performance by tailoring the information they received to their individual 

learning strategies. Chapter 3 delved further into the question of how people learn 

information about their available options, introducing the exploration-exploitation 

dilemma. Two experiments – one using a two-armed bandit task with a decision-horizon 

manipulation, and the other using a similar wheel-of-fortune design with an additional 

risk manipulation – suggested that people use exploration as a mechanism for acquiring 

information about unknown options, and that exploration strategies are affected by the 

decision horizon, risk and ambiguity. Chapter 4 examined the connection between 

information-seeking and exploration in terms of its effects on motivation. Five 

experiments showed that participants’ boredom ratings depended on task 

informativeness, as well as the perceived opportunity cost of performing a task, and that 
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higher boredom was correlated with increased exploration. A normative model was 

proposed, accounting for adaptive, boredom-driven exploration: when the environment 

has a global structure that needs to be learned, spending time locally maximizing reward 

must be balanced with the need for learning useful information; thus, boredom can occur 

when the current action (even if it is reward-maximizing) does not yield sufficient new 

information about the global environment structure. Overall, this work investigated the 

relationship between information, learning and exploration, and determined key factors 

that drive exploratory behavior in uncertain decision contexts, as well as the potential role 

of exploration as an adaptive information-sampling strategy.  

  



 

iii 
 

Acknowledgments 

First and foremost I would never have been able to get here without the help and 

guidance of my advisors, Jonathan Cohen and Yael Niv. So much of what I have learned 

during my time here, not only about science itself but about how to be a scientist, how to 

ask questions and how to interact with other researchers, I learned from them. I feel 

incredibly lucky to have worked with them, and will always be grateful for their advice 

and support that have brought me so far. I am extremely grateful as well to Alin Coman, 

whose encouragement and thoughtful feedback I could always rely on, and to Nathaniel 

Daw, for all his help and input that were invaluable to my modelling efforts. Many thanks 

as well to Jordan Taylor, for reading the first draft of this dissertation and providing 

insight that helped shape it into its final form.    

I have also received tremendous support from our postdocs, particularly Bob 

Wilson who mentored me through essentially every single project I have ever done 

during my graduate work, and who showed a supernatural amount of patience for 

answering all my questions and getting me back on track when I floundered. Bob is my 

hero. Angela Langdon, my erstwhile – and lately, recurring – officemate and writing-

coffee partner, has helped me so much through the writing process, and I am so glad to 

have had her and all our conversations and lunches. I would also like to thank Reka 

Daniel for her support and her friendship, and David Freestone, for so many helpful 

conversations and for sharing his invaluable Matlab expertise. Many thanks to everyone 

else in the Cohen and Niv labs as well, who have been wonderful colleagues and friends.  



 

iv 
 

I would also like to thank my friends outside the lab, and everyone in my cohort.  

Particularly, Courtney Bearns, who has been my sounding board and my dissertation 

buddy for a very long time, and has generously talked me down from many ledges, fed 

me and made us tea and frequently reminded me to keep breathing. I’d like to reiterate 

how lucky I feel that we were in the same cohort. Thank you for all the puppy gifs. 

Similarly, thank you so much Ana-Maria Piso, for always being there, my second pea in 

our very dinky pod. Our phone chats always helped brighten my day; please don’t forget 

you still owe me twenty-six ice creams. Many thanks to all my other friends who have 

supported me while working on this dissertation, either by talking to me about science, or 

by listening to me, by sending me care packages or writing me stories to read when I 

needed sanity boosters. You are all wonderful and I couldn’t have done it without you.  

It goes without saying that I will always, always be grateful for all the love and 

support from my family, who have always been there for me and whom I love very much. 

You are the most precious to me. Thank you.  

  



 

v 
 

Table of Contents 

 

Abstract…………………………………………………………………………………...i 

Acknowledgments……………………………………………………………………….iii 

General Introduction…………………………………………………………………….1 

Chapter 1: Background…...……………………………………………………………..5 

Chapter 2: Manipulation of Available Information Impacts Human Representation  

    Learning………………………………………………………………………………32 

Chapter 3:  Exploration Strategies, and the Interplay of Decision Time, Risk and  

Ambiguity.…………………………………………………………………………….51 

Introduction…………………………………………………………………………...52 

Study 3.1: Humans use directed and random exploration to solve the explore-exploit 

dilemma………………………………………………………………………………..54 

Study 3.2: Risk and ambiguity affect exploration in a sequential Wheel of Fortune 

task…………………………………………………………………………………….63 

Chapter 4: Information, Task Engagement and Human Exploration……………...74 

Introduction ……………………………………………………………………………75 

Study 4.1: Humans rate tasks as more boring when they can't acquire enough 

information…………………………………………………………………………….76 

Study 4.2: Humans are willing to take point loss to explore away from boring 

tasks………....................................................................................................................85 

Study 4.3: When more interesting tasks are available, humans rate bandit task as more 

boring, and show more exploration …………………………………………………...91 

An Information-Sampling Model of Boredom and Exploration………………………98 

Study 4.4……………………………………………………………………………...108 

Chapter 5: General Discussion.………………………………………………………116 

References ……………………………………………………………………………..122 



 

1 
 

 

General Introduction 

 

Making decisions in the real world is difficult – because the world is complex, 

uncertain and rich in information. We often have numerous alternatives to choose from 

(so making the choice itself is hard), we rarely have complete information about most of 

those alternatives (so it is difficult to know for sure which one is better), and often we get 

a lot of simultaneous feedback for an action, so we must figure out credit assignment and 

how to spread the information we’ve just earned among the options available. None of 

these are straightforward computations. But our brains – and in fact, many animal brains, 

as well – have evolved to help us with this kind of decisions. We are capable of complex 

learning, and given even a rich, noisy environment, we can extract sufficient statistical 

information from it to form reasonable representations of its structure. We can then use 

these representations to make choices and update our value estimates based on feedback, 

so as to make them even more accurate and in turn make even better choices. In short, 

when exposed to the complex world, we are capable of learning many of its useful 

statistics, and gearing our actions toward those that are most relevant to our goals.  

 

But learning to determine what is and is not relevant to our goals is itself a 

challenge. Given the quantity and breadth of information usually available, selecting 

what we want to learn more about and what we can safely ignore often entails complex 

computations about reward probabilities, choice histories, and expected future values. 

The types of information we experience (Knock et al. 2005), as well as the order of 
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information presentation (Ritter et al., 2007; Coenen, Rehder & Gureckis, 2013) 

determine what structure of the environment we learn, and a significant body of work, 

from psychology and neuroscience (Dias, Robbins & Roberts 1996; Kruschke 2006; 

Markant & Gureckis 2012) to computer science and machine learning (Sebastiani & 

Wynn 2010), has focused on pinning down the behavioral, computational and neural 

mechanisms involved in this type of learning. Studies have shown a wide array of 

possible strategies for parsing and sampling the large amounts of information available to 

us, but the exact mechanisms that underlie this process are not yet fully known. In 

chapter 2 of this work, I discuss some of these strategies in humans, and show that 

manipulating the available information can significantly impact learning, credit 

assignment, and our subsequent ability to choose the most rewarding options in the 

environment.  

Even with a good information sampling strategy in place, however, the question 

of selecting the option with the highest reward is not always straightforward – and not 

just because of the multitude of options usually available, and the potential difficulty in 

differentiating between them. When choosing between multiple options, organisms must 

at the same time decide between at least two goals: one is earning as much immediate 

reward as possible – such as money, in the case of people, or food, if we consider 

foraging animals – but another goal is refining the representation of the environment to 

make sure that they are indeed choosing the best option. In order to do the latter, it is 

necessary to sample information from more than one option. This sampling might come 

at the cost of foregoing some immediate reward, but in the long-term it might lead to 

discovering better sources of reward, and thus a higher overall reward. This is a 
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frequently encountered tradeoff that the literature commonly refers to as the explore-

exploit dilemma (Krebs, Kacelnik & Taylor 1978; Kaelbling 1996; Cohen, McClure & 

Yu 2007). Although in terms of local reward maximization, exploring lower-reward 

options might seem suboptimal, in the long term, the information learned from 

exploratory choices often makes up for its cost. In chapter 3 of the present work, I discuss 

two different types of human exploration strategies, and show that humans use both these 

strategies when dealing with different types of uncertainty in the environment. 

Indeed, information is so important, that it acquires value in and of itself, 

independent of reward. Actions that might yield less extrinsic reward (such as money, 

food, points in a game etc.), but contain information, can be seen as desirable under 

certain circumstances. Furthermore, prolonged exposure to environments that do not hold 

much information can become aversive (Hill & Perkins 1985; Patyn et al. 2008); indeed, 

a failure to properly engage our information processing systems could be an important 

factor underlying affective experiences such as boredom (Eastwood et al. 2012), which 

ultimately lead to demotivation and task disengagement. Under those circumstances, 

exploration arises as a frequent behavioral consequence: people are likely to abandon 

their current task, and switch to a different alternative in their environment. This raises 

the question of whether subjective experiences such as boredom might constitute a task-

related signal of decreased informational content, and bias us toward exploration as a 

mechanism for encountering new, better sources of information. Chapter 4 of this work 

examines this question, and shows that increased perception of boredom can arise from 

environmental structures in which there is little useful information, and that exploration 

follows as a mechanism for seeking better information content.  
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The overall scope of this work was to investigate the relationship between 

information, learning and exploration. I aimed to study the value of exploration as related 

to information acquisition, determine some of the key factors that drive exploratory 

behavior in uncertain environments, and examine whether, in certain circumstances, 

disengaging from a rewarding task to explore the environment could represent an 

adaptive information sampling strategy.   

 

 

 

 

 

 

Chapter 1: Background 
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1.1. Information Sampling and Credit Assignment in Complex Environments 

Most living organisms in our world are often faced with a wide variety of sensory 

input. A jungle songbird, for instance, lives in a constant symphony of sounds, and must 

learn their meaning. Most of these sounds are not vital to survival, and can be ignored 

(such as the sound of a nearby river, or distant cars from the highway), but others, such as 

the alarm calls of nearby birds or the mating calls of conspecifics, must be attended. A 

human analog is the cocktail party effect (Arons 1992). At a cocktail party, most input –

glasses clanking, music playing, strangers talking –is not important, but a friend’s voice 

may be among the cacophony, or you might be trying to locate a person of interest. 

Humans and other animals constantly face this type of situation: performing even the 

simplest of daily activities, we must contend with an abundant stream of incoming data in 

the form of faces, voices, colors, time commitments, social cues etc. Cognitive 

constraints make it impossible to attend to and process all environmental stimuli equally 

well. So learning to differentiate the relevant features from the background noise is 

crucial.  

Evolution can help by tuning neurobiology to innately relevant features. Frogs' 

auditory neurons, for instance, are sensitive to only certain frequencies (Singh & 

Theunissen 2003), and the auditory neurons of some species of songsbirds become highly 

specialized for the frequency ranges of viable mates (Margoliash 1986).  In most cases, 

however, animals do not seem to benefit from an innate mechanism to select the relevant 

features in their rich environments, and so they must learn to associate stimuli with 

outcomes, and then decide which stimuli are relevant. The literature refers to this issue as 

the "credit assignment" problem: the difficulty of attributing the outcomes in one's 
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environments to the specific stimuli or actions that actual generated those outcomes. 

Proper credit assignment is a key component of any learning process, as organisms 

cannot learn without building accurate representations of stimuli-outcome contingencies. 

One problem with solving credit assignment is that our daily environments are 

extremely rich. From a purely rational perspective, an ideal learner who has access to all 

the information in the environment should also use all that available information to learn 

all the true correlations and contingencies among the numerous cues (Kruschke, 2006). 

An ideal Bayesian observer, therefore, will use its entire history to compute the 

probabilities, regardless of the dimensionality of the problem; mathematically, this type 

of learning allows the agent to maintain an accurate representation of all the cues in its 

environment, and always choose the ones with the highest expected value. In practice, 

however, that framework breaks down. For organisms with limited time and limited 

cognitive resources, learning about every single cue is at best time-inefficient, and at 

worst computationally intractable, and thus the exhaustive ideal observer strategy is 

rarely the most effective option.  

The fact that animals still manage to successfully navigate their complex 

environments, despite being unlikely to use a full Bayesian ideal observer model, 

suggests that they have developed alternative strategies for learning the causal structure 

of their environment. Given the time and computational demands of most representation 

learning tasks, one desirable property of such alternative learning algorithms is the ability 

scale well to domains with many irrelevant cues. Theoretical and experimental results in 

machine learning show that parsing the space into smaller subsets of features and 

selectively focusing on some of those subsets significantly increases the speed of learning 
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without unduly harming generalization or accuracy (Blum & Langley, 1997), and work in 

the cognition literature suggest that people do indeed employ learning strategies that 

reduce the set of features to which they must attend (Shepard, Hovland & Jenkins 1961; 

Kruschke 2006).  

Information sampling and representation learning  

What are the computational strategies that humans use to learn a representation 

for a given task? It goes without saying that trial-and-error learning depends on the 

information that the learner can access, and not only what is learned, but also the speed of 

learning can be significantly affected by this experienced information (Nelson et al. 

2010). Indeed, work in machine learning and information theory has established how 

information in any given task might be optimally selected so as to maximally 

discriminate between competing hypotheses and accelerate learning (optimal 

experimental design, Sebastiani & Wynn 2000).  

Although human learning does not always mirror these optimal strategies,  the 

ability to choose which information to sample has been shown to improve learning: when 

participants were allowed to choose which piece of information they wanted to see next, 

their learning of category boundaries was better (Gureckis & Markant 2012; Markant & 

Gureckis 2014). Furthermore, even in the absence of this “active learning” option, the 

type of information presented can still impact what is learned, for instance in speech 

motor learning (Knock et al 2000), and the order in which information is presented can 

also make a significant difference (Ritter et al 2007). Additionally, different information 

sampling patterns can in fact predict significantly different decisions, even when the 

sampled information ends up being equivalent (Hills & Hertwig, 2010) – which suggests 



 

8 
 

that even in the same space of available information, search strategies and experienced 

information have a large influence on humans’ learning and ultimate decision policies. 

The work in the second chapter of this dissertation proposes a novel method for 

manipulating information presented to participants as tool for investigating the 

computational processes underlying representation learning.   
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1.2. Uncertainty, Information, and The Explore - Exploit 

Tradeoff 

Imagine you are driving home after having watched a big football game in a nearby 

city. The roads are reasonably crowded, since all the other fans are driving home as well 

– but you know that if you stay on the highway and take the exit you know in thirty 

miles, you will definitely be home in about an hour. On the other hand, as you survey the 

traffic situation you wonder if it’s not worth getting off the highway early, and trying one 

of the smaller side-roads that are sure to have less traffic. The choice here is clear: do you 

stay on the highway and take the well-known road home, or do you get off and try to find 

a shortcut, which might end up saving you time, but it might also end up getting you lost? 

This kind of scenario is not restricted to humans: every organism in a natural 

environment is frequently faced with multiple alternatives, and must choose how to 

allocate its time among them. In humans, the choice might be between deciding whether 

to take a well-known route home or look for a shortcut, or between ordering a favorite 

food or trying something new off the menu at a restaurant. In foraging animals, bees for 

instance, the choice might be between searching a nearby flower patch for nectar, or 

flying further from the hive in search of other patches (Gallistel 1990). In either scenario, 

choosing which action to perform and how long to spend on it influences the amount of 

benefits (food, money etc.) that an organism receives, the energy it must expend, and the 

risks it might face (Caraco 1980). The question that follows, then, is: with limited time 

resources and a wide variety of potential actions, how should we best choose to spend our 

time?   
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From a purely economic point of view, abandoning the known, well-establish 

highway route in favor of taking a completely unknown side-road might make us poor 

decision-makers (and drivers). We are foregoing a certain positive outcome (getting 

home at a known time), and instead allocating our time to a series of actions of unknown 

or questionable benefit. However, anyone who has ever faced this scenario knows that 

the decision is often not that straightforward.  

 

The Exploration - Exploitation Tradeoff  

Going back to the driving home example: is it better to take the highway and 

know for sure that you will be home in an hour, without getting lost? Or is preferable to 

try to find a faster shortcut on the back roads, though it is not as certain what potential 

benefits you will gain from the latter action? The foraging bee faces a similar choice: if it 

flies further from the hive, it might find a patch with better nectar, or a higher 

replenishing rate. But it might also find nothing, and thus spend its time and energy for 

no reward.  

These are both examples of what the literature refers to as the "exploration - 

exploitation tradeoff": the tradeoff between choosing a certain resource alternative (the 

highway route, the familiar nearby food patch), and searching the environment for other 

options, with uncertain benefits (calling a friend, more distant food patches). This issue is 

studied across fields, from animal cognition (Gallistel et al., 2007), to ecology (Caraco 

1980), economics (Banks & Sundaram 1994), or reinforcement learning (Kaelbling et al 

1996). Nevertheless, due to the complex nature of realistic environments, precisely 

analyzing exploration and exploitation in all of their different contexts is often 
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impossible, and many questions about exploratory patterns of behavior are difficult to 

answer.  

The literature on the exploration - exploitation dilemma is organized along two 

main directions. Ample theoretical work from economics, statistics, and machine learning 

deals with the formal, mathematical foundations of this problem: precise formalizations 

of the choice environments (Whittle 1980), computation of explicit and simulation-based 

optimal solutions (Gittins 1979; Whittle 1988;), the development of efficient 

computational algorithms that regulate the balance between exploration and exploitation 

(Auer et al. 2002; Yi, Steyvers & Lee 2009; Tokic 2010). However, despite these 

numerous analytic (algorithmic) approaches, no universal solution exists to date – as the 

current solutions are always constrained by assumptions that may or may not apply to 

real world situations of interest, and are not always practical (i.e., likely to be 

implementable by organisms). More recently, this problem has also raised interest in the 

cognitive neuroscience community, and a new research direction emerged to examine the 

question of how animals and humans actually negotiate the explore - exploit tradeoff, and 

what cognitive and neural mechanisms drive exploratory behavior (Aston-Jones & Cohen 

2005; Cohen, McClure & Yu 2007; Behrens et al 2007; Frank et al. 2009).  

 

How do organisms explore and exploit? Evidence of Adaptive Behavioral Adjustments.  

To reiterate the above definition, the exploration - exploitation tradeoff refers to 

the conflict between choosing an action with certain, known benefits, and searching the 

environment by choosing other options, with uncertain and less immediate benefits. As 

this type of situation occurs so frequently, it is not surprising that it has been the object of 
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experimental studies for several decades. Early animal studies, for instance, use time-

based reinforcement schedules (variable interval schedules, Ferster & Skinner 1957), and 

later, response-based reinforcement schedules (variable ratio schedules, Loveland & 

Herrnstein 1970) to study the phenomenon. In humans, participants could be asked to 

choose between different bets with varying win probabilities (Pratt 1964; Jepma & 

Nieuwenhuis 2011), to play different virtual slot machines (Daw et al. 2006; Behrens et 

al 2007; Steyvers, Lee & Wagenmaker 2009), play Go or similar games (Gelly & Wang 

2006), or to perform timing and other perceptual tasks (Frank et al. 2009). Any of these 

tasks can be seen from an exploration - exploitation perspective.  

One highly robust finding regarding explore/exploit behavior on a variety of 

choice tasks is that organisms can adjust their behavior to different task structures. 

Pigeons show markedly different response rates and response patterns when they are 

choosing between variable interval schedules and variable ratio schedules (Ferster & 

Skinner 1957). Rats show different exploration patterns when choosing between two rich 

bandits than when choosing between two scarce bandits, even if the relative bandit values 

are the same (Reed, Schachtman & Hall 1988). Rats and people playing non-stationary 

bandits modify their exploration rates if the environment variability changes (Otto et al. 

2010; Behrens et al 2007). Much of the early theoretical work on time allocation in 

animals focused on finding a law, or principle of behavior, to account for these different 

responses under different task conditions.  Herrnstein (1961) first developed the matching 

law to describe the global result that animals allocate responses and time to alternatives 

proportional to their reward (Herrnstein 1961; Baum 1974; Baum 1979). More recent 

work has also shown that matching holds in humans, as well, (Davison 1988; Logue, 
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Forzano & Tobin 1992), and that humans and animals can efficiently allocate their 

responses to a drifting reward rate, and they do so in real time (Heyman 1982; Gallistel 

2005, 2007; Daw et al. 2006; Rushworth & Behrens 2008), and that abrupt changes in the 

reward rate are optimally detected  and adjusted to (Gallistel, 2001; Courville, Daw & 

Touretzky 2006; Nassar et al. 2010). 

All these findings suggest that animals and humans are sensitive to the specific 

structures of their decision problems, and can successfully adjust their exploration - 

exploitation balance to respond to specific environmental changes and maximize overall 

reward. These results have been found across a variety of tasks; however, there is one 

particular type of problem that is particularly well-suited for studying the exploration - 

exploitation tradeoff: the multi-armed bandit problem. The next section describes this, 

and discusses the current theoretical framework for solving it optimally.  

 

Exploratory decision-making algorithms in the multi-armed bandit problem 

The exploration - exploitation tradeoff has generally been treated in the literature 

within the framework of bandit problems (Robbins, 1952). Having initially borrowed its 

name from an old term used to describe a slot machine (see fig. 1a for an illustration of a 

real "one-armed bandit"), the multi-armed bandit problem has gained popularity in 

several areas of research as one of the simplest non-trivial problems in which one must 

handle the tradeoff between actions which yield immediate certain rewards and actions 

(such as acquiring information) which might yield benefits later (Whittle, 1980).  

An n-armed bandit problem refers to a decision task in which there is a set of n 

response alternatives (referred to as 'bandits', see fig. 1b), with different reward rates. On 
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each trial, the decision maker must choose a bandit, after which they receive feedback 

about the amount of reward earned for that choice. The decision maker's task is to 

incorporate this feedback to make a series of choices among the different bandits that 

maximizes the overall reward. Its sequential nature is a key feature of the bandit problem, 

and it is what makes multi-armed bandits an ideal framework for the study of exploration 

- exploitation behaviors. Indeed, the very notion of time allocation (and the trade-off 

between choosing familiar options with known benefits, and searching unfamiliar options 

with unknown benefits) relies upon on the idea that the decision-maker has some limited 

amount of time and energy to invest, and is free to allocate between several response 

options as it sees fit, choosing each option as frequently as it wants.  

The structure of the bandits can vary depending on the generative process 

underlying the rewards from each bandit. Frequently, the rewards generated by a bandit 

come from an underlying distribution (Gaussian, binomial etc.) with certain mean and 

variance parameters. These parameters can remain constant over time (in which case the 

bandits are referred to as "stationary", cf. Gittins, 1989), or they can drift or change 

abruptly (making the bandits non-stationary). The bandits can sometimes be rich, with 

very high reward rates, or sometimes be scarce, with very low reward rates. Figure 1B 

illustrates several different types of bandits and their corresponding reward structures.  
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Figure 1: Bandit problems. A: “Original” one-armed bandit slot machine. B: Examples of 

different bandit structures (top – leapfrog bandit, Knox et al. 2011; bottom left – drifting 

bandits, Daw et. al 2006; bottom right – example of fixed bandits). C: The ε-greedy 

algorithm. D. The softmax algorithm.  

Different bandit payoff structures lead to different exploration - exploitation 

patterns. Tasks with non-stationary bandits, for instance, generate higher exploration 

rates than similar tasks with stationary bandits (Otto et al 2010). Binary bandits generate 

different choice patterns from Gaussian bandits, and rich bandits different patterns from 

scarce bandits (Caraco 1980). This once again speaks to the idea that organisms are 

capable of adapting their behavior to reflect the specific problem they are solving. It is 

then reasonable to consider the question of optimal allocation: is there a best way for a 

decision-maker to allocate its responses in a given context?  

Optimal Exploration in Bandit Problems  

The existence of a task-specific optimal policy for balancing exploration and 

exploitation to maximize expected payoff over time has been widely researched in bandit 
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problems (Zhang, Xu & Callan 2003; Bogacz et al. 2006; Steyvers, Lee & Wagenmakers 

2009; Lee et al. 2010). In real-world situations, it is impossible to obtain a closed-form 

optimal solution because the number of choice options is too high, and details about the 

time horizon and the specific reward structures of each option, and their stationarity, can 

never be fully known. However, constraining the environments by making a conservative 

set of assumptions makes it possible to identify several types of strategies that maximize 

total payoff.  

The first explicit solution to a multi-armed bandit problem was developed by 

Gittins and colleagues (Gittins & Jones 1974, Gittins 1979), for a finite number of 

stationary bandits (bandits whose reward rates never change, such a food patch that never 

depletes).  They modeled the multi-armed bandit problem as a Markov decision process 

(a systems that transition between states based on transition probabilities for each state) 

with an infinite time horizon (that is, the process goes on forever), and exponential 

discounting of future rewards. Thus, assuming n bandits, Gittins showed that it was 

possible to calculate allocation indices, vi, for each individual bandit Bi, as a function of 

only the decision time t and the state of the bandit at that time. These indices vi – now 

known as Gittins indices – were calculated by solving the problem of optimal time 

allocation between each bandit and a theoretical bandit with a standard fixed value λ.  

Following this computation, the strategy proposed by Gittins was to simply 

choose, at every decision time t, the bandit with the highest index. This makes it a 

“greedy” policy – as it always prescribes choosing the highest-valued option; the 

difference from other greedy policies lies in its optimality. Whittle (1980) used a dynamic 

programming approach to show that the Gittins policy is indeed optimal for stationary 
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multi-armed bandit problems. In a later paper, Whittle also extended the Gittins-index-

based optimal solution to so-called restless bandits -- that is, bandits whose underlying 

reward structures changes regardless of whether or not the decision-maker chooses to 

play them (Whittle, 1988).  

An alternative, but related, framework for computing optimal strategies in multi-

armed bandit problems was proposed by Lai & Robbins (1985). Their model quantifies 

the "regret" of a given decision policy as the difference between the actual reward 

obtained by employing that policy for the past n plays, and the maximum reward that 

could have been obtained by always playing the bandit with the highest reward. They 

computed a class of allocation indices for each bandit, referred to as "upper confidence 

indices", and offered a closed-form solution for the best possible regret that could be 

obtained after n plays. However, in order to compute the allocation indices, their strategy 

required the entire sequence of past rewards for each bandit, and the computational 

became very high as the time horizon increased. Auer and colleagues (2002) showed that 

it was possible to extend and improve this framework by setting better upper confidence 

bounds (UCB) on the regret. Their policies showed equal or better performance, were 

much faster and simpler to implement even for high numbers of bandits, and could be 

extended to account for non-stationary bandits (Auer & Ortner 2010).  

One problem with all these strategies that rely on calculating allocation indices is 

that their highly intense computational requirements make them imperfect candidates for 

real organisms' decision mechanisms. This mirrors a similar problem in learning 

comprehensive representations of the environment, described in section 1 of this chapter: 

algorithms that operate over the entire space of available information are far too complex 
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and time-consuming to make good candidates for actual human strategies.  It is here that 

cognitive psychology and neuroscience work diverged from theories inspired by the 

fields of economics, statistics and machine learning: as interest in the question of human 

performance on bandit tasks grew, it became increasingly more important to develop 

solutions to the problem that could be implemented in a fast, efficient manner and that 

afforded psychological plausibility. Yi, Steyvers and Lee (2009) used a particle filter 

model to solve the multi-armed restless bandit problem. Unlike the index-allocation 

policies described above, particle filter models, a class of algorithms closely related to 

sequential Monte Carlo methods, are simulation-based rather than explicit closed-form 

solutions to the bandit problem
1
. They have gained popularity in recent years, as part of a 

class of solutions that relies on Bayesian estimation of the bandit values (Doucet, de 

Freitas & Gordon 2001). Particle filters are particularly useful for restless bandits because 

they employ a sequential on-line inference method, that is, they estimate and update 

values based on prior observations and incoming available data. This method relies on 

having a set of beliefs about the environment ("particles") at each decision time-step, then 

updating the current set of particles based on incoming data. Particles that describe the 

environment well propagate through the decision process, while particles that don't get 

replaced. Overall, the set of all current particles describes an estimate of the underlying 

bandit generative processes, and, because only one set of particles needs to be maintained 

                                                           
1
 Particle filter models bear certain similarity in implementation to genetic algorithms, and indeed, 

recently, particle filter/genetic algorithm hybrids have been proposed (such as the ‘genetic filter’ Park et 
al., 2007); but the two types of strategies are generally considered different, most notably due to their 
sampling mechanisms: PFs  have uniform resampling and don’t usually dynamically adapt the number of 
samples, whereas GAs ‘crossover’ and ‘mutation’ operations make for more varied sampling. (Kwok , Fang 
& Zhou 2005) 



 

19 
 

at a given time, the computational requirements are far lower than in other sequential or 

explicit methods (Yi, Steyvers & Lee 2009).  

 

Animals Can Be Optimal Explorers on Bandit-Like Tasks  

So far, this section has presented the bandit problem, and described several 

different theoretical approaches to obtaining optimal solutions in multi-armed bandit 

problems. One immediate question that follows the optimality discussion is: can animals 

(including humans) actually optimally solve this type of problem? Krebs, Kacelnik and 

Taylor (1978) offer one early answer to this question, in a study that showed that foraging 

birds’ behavior in a simulated two-armed bandit problem approximated the relative 

exploration - exploitation rates consistent with an optimal Gittins policy. Similar results 

were found in human studies as well: Steyvers, Lee and Wagenmakers (2009) showed 

that humans could approximate an optimal model on a multi-armed bandit task. However, 

not all participants' behavior on their task was consistent with optimal performance, 

leading the authors to suggest that perhaps different individuals have different 

perceptions of the task structure. This again relates back to the representation learning 

framework described in section 1: depending on what participants learned about the task 

environment, their exploration/exploitation patterns could easily lead to suboptimal 

performance if their representations did not coincide with reality.  

Bandit problems have received significant attention over the past few decades, 

and they have been studied both theoretically, in fields such as economics, statistics and 

machine learning (Gittins & Weber 1989; Macready & Wolpert 1998; Tokic 2010), and 

empirically in psychology and neuroscience studies (Daw et al. 2006; Steyvers et al. 
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2009; Auer & Orten 2010). The theoretical work on optimal solutions to this problem has 

allowed for a more informed examination of the question of how real organisms negotiate 

time allocation and the exploration - exploitation trade-off. The theory described in this 

section provided several potential starting points for answering this question; the next 

section describes a series of cognitive neuroscience studies that propose various strategies 

for modeling human exploratory behavior. 

 

Modeling Human Exploration - Exploitation Behavior on Bandit Tasks  

The bandit problem described in the previous section is psychologically 

interesting because it captures the tension between exploration and exploitation present in 

many real-life decision-making contexts. Decision-makers must satisfy their goal of 

obtaining rewards, which requires exploitation, while simultaneously trying to learn 

about the available alternatives, which requires exploration. (Zhang, Lee & Munro, 

2009). Studying human performance on bandit problems addresses several questions of 

interest, including how people search for information, how they incorporate the 

information they get, and how they adjust their behavior to achieve their goals. 

There are countless empirical studies examining human behavior in bandit 

problems, and a variety of proposed choice models that might account for the way people 

allocate time and responses in complex environments. These various models differ in the 

way they incorporate past choices and outcomes into current decisions: they might 

assume that people maintain updated reward rates for all options (Tennenbaum, Griffiths 

& Kemp 2006), show graded forgetting of past experiences (Pan, Schmidt & Wickens 

2005), show strong trial-by-trial effects (Li, Levi & Klein 2004), and more (Steyvers, Lee 
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& Wagenmakers 2009). The models may also differ in their treatment of exploration, 

assuming different sources and mechanisms (such as internal random noise, externally-

generated noise, or directed information-seeking), and different underlying functions to 

describe exploration.  

 

ε-greedy and softmax: two popular choice models of human exploration  

One choice function frequently used to model exploration - exploitation behavior 

is known as the ε-greedy algorithm (Sutton & Barto 1998). This model assumes 

exploration is undirected -- that is, the decision-maker exploits the option likely to be the 

most rewarding most of the time (with probability 1–ε), while occasionally exploring a 

completely random choice (with probability ε/n, where n is the number of available 

choices; see figure 1c), according to the following rule:  

 

𝑃(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐵𝑖) = {
1 −

𝜀

𝑛
, 𝑖𝑓𝐵𝑖𝑖𝑠𝑡ℎ𝑒𝑚𝑜𝑠𝑡𝑟𝑒𝑤𝑎𝑟𝑑𝑖𝑛𝑔𝑏𝑎𝑛𝑑𝑖𝑡

𝜀

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

This algorithm can capture an exclusive strategy (if the value of ε is zero), or a fully 

random strategy (if the value of ε is n/(n+1)). What it cannot do, however, is modulate 

exploration differently for the different options.  

A different choice model, known as the softmax rule (equation 2, figure 1d), 

allows for separate exploration patterns for each option, by assuming that people choose 

each option proportionally to its relative reward. This algorithm is conceptually similar to 

a matching strategy: the relative response rate on each option is proportional to the 

relative reward of that option, scaled by a gain parameter. This gain parameter β 

essentially specifies the degree to which we balance exploration with exploitation. A gain 
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value of 0, for instance, would mean that the decision-maker is equally likely to choose 

any of the available options. The larger the value for β, the more the decision-maker is 

biased toward exploitation.  

𝑃(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐵𝑖) =
𝑒𝛽𝑉𝑁

∑ 𝑒𝛽𝑉𝑖𝑖
                (2)                                                              

Both the ε-greedy and the softmax choice functions have been widely used to 

model human exploration - exploitation behavior, though in multi-armed bandit 

problems, the latter has been found to afford more flexibility and thus be a better choice 

for human data (Daw et al. 2006), and so it is the choice function that I will be using to 

model human data in the following chapters.  

 

Information-Sampling and Exploration: Exploratory Decisions under Uncertainty 

It is reasonable to think that people's strategies for balancing exploitation and 

exploration are based on an interplay between reward magnitude and uncertainty (Caraco 

1980; Preuschoff, Bossaerts & Quartz 2006; Daw et al. 2006), as exploitation is aimed at 

maximizing reward, while exploration is a potential tool for minimizing uncertainty by 

sampling less-rewarding alternatives for information. Recently, an important body of 

work inspired by the economics literature has emerged in cognitive neuroscience to 

investigate how uncertainty regulates exploratory behavior, and how it relates to the 

neural underpinnings of decision-making on this type of problem. The following section 

discusses two frequent sources of uncertainty – risk and ambiguity – their impact on 

human decision-making, and their potential interaction.  
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Risk and Exploratory Decisions 

The intuitive idea that people prefer higher rewards to lower rewards does break 

down under certain scenarios. An investor choosing between opening a simple savings 

account (low expected reward but a known outcome) or investing the stock of a new 

company (higher expected reward but an uncertain outcome) might prefer the option with 

the lower expected reward. This suggests that, beside reward magnitude, there are other 

factors at play in people's decisions. In this particular example, the factor that modulated 

the investor’s preferences was risk. 

The impact of risk on people's decisions has been studied extensively in the 

economics literature for many decades. Early accounts of decision-making under risk 

relied heavily on utility theory (von Neumann & Morgenstern 1944), calculating the 

utility of choosing an option as the sum of each possible outcome of that choice, weighed 

by the probability of the outcome. This utility framework broke down under certain 

scenarios: people seemed to prefer certain options to risky options, even if the weighted 

sum of the rewards was equal, or even when it was worse for the certain options; this lead 

researchers to propose that people underweight risky outcomes (Kahneman & Tversky 

1986; Abdellaoui et al. 2007). The overwhelming finding from the risky decision-making 

literature is that people are generally risk averse. This was found to depend, to some 

extent, on the individual: Pratt (1964) offers a utility model of risky choice that first 

defines the idea of one agent being more risk-averse than another; later studies confirm 

that risk preferences differ among individuals (Wolf & Pohlman 1983; Mahoney et al. 

2011). Overall, however, risk aversion has been a robust finding that spans decades of 
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economic and psychological experiments (Bossaerts and Plott, 2004; Holt and Laury, 

2002; Preuschoff, Bossaerts & Quartz 2006) 

Risk-aversion was first linked with the issue of exploration and exploitation in an 

important ecology paper (Caraco 1980) that proposed that the degree of risk-aversion 

depended on the structure of the decision problem. Caraco suggested a foraging model 

that not only predicted that time allocation on an alternative would increase with reward 

magnitude, but that the amount of variance (or risk) in the reward would also play a role. 

He argued that different environmental conditions (such as scarcity) could generate 

different reactions to increased variability of the environment: resource-rich 

environments, for instance, would lead to increased risk-aversion, while resource-poor 

environments would make the decision-maker increasingly less risk-averse, as its need to 

obtain reward became more acute. This was an early model that incorporated sensitivity 

to higher variance into the decision strategy by choosing a utility function that was 

consistent with either risk aversion or risk-seeking, depending on the task environment. 

Ambiguity and Exploratory Decisions 

One prevalent interpretation of the widely-observed risk aversion is that people do 

not like uncertain outcomes (Preuschoff, Bossaerts & Quartz 2006). However, 

uncertainty in decision-making can also take another form, different from risk. That form 

is ambiguity. While in a risky choice, the decision-maker knows the possible outcomes, 

and their probabilities, and the uncertainty stems from the stochastic nature of the choice, 

in ambiguous choices, the decision-maker does not know the probabilities of the multiple 

possible outcomes (and sometimes, does not even know all the possible outcomes -Hsu et 

al. (2005); Bach, Seymour & Dolan (2009)). Ambiguity makes it impossible to directly 
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calculate the expected reward associated with a choice, because the outcome probabilities 

are unknown. This introduces a kind of uncertainty that is different from risk, a second-

order uncertainty (Bach et al. (2011)). 

Elsberg (1961) showed that ambiguity poses a challenge to classical choice 

theory, by showing that, when faced with uncertainty in their environment, people 

preferred risky outcomes to ambiguous outcomes, to such an extent that they made series 

of contradicting choices that violated the axioms of rational choice. Similar findings were 

replicated in later studies (Becker and Brownson, 1964; Curley and Yates 1985; Camerer 

& Weber 1992), leading to a general agreement in the economic literature that people are 

ambiguity averse. However, posing the problem in an exploration - exploitation 

framework reveals a different perspective: if the tension between information-seeking 

and reward-seeking is present, the adaptive strategy might in fact bias the decision-maker 

toward the ambiguous option, rather than away from it, as choosing the ambiguous option 

would in fact gain more useful information (Daw et al. 2006; Cohen, McClure & Yu 

2007). 

Under this framework, the key feature that would shift people from being 

ambiguity-averse to being ambiguity seeking is the utility of acquiring information. In 

single-trial tasks (all the economics papers mentioned above have this structure), there is 

no benefit from acquiring information from the ambiguous options. In a bandit problem, 

however, due to the sequential nature of the task, acquiring information about ambiguous 

bandits can in fact be beneficial, as it leads to more informed choices later on (Meyer & 

Shi 1995). Therefore, in a task involving sequential decisions, it might in fact be adaptive 

to explore ambiguous options (Cohen, McClure & Yu 2007). 
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As first hinted at by Caraco (1980), it is very likely that people incorporate 

different sources of uncertainty differently into their decision processes, which may bias 

them either toward exploration (seeking out uncertain options to gain information) or 

away from it. All the findings discussed above constitute ample evidence that there are 

different potential mechanisms at work in human exploration and that both risk and 

ambiguity play important roles. Human risk- and ambiguity-preferences are clearly 

differentiable (Hogarth & Einhorn 1990; Bossaerts et al. 2009; Levy et al. 2009), but the 

interplay between risk and ambiguity when it comes to the exploration-exploitation 

tradeoff has been mostly studied in the domain of organizational behavior (March 1991; 

Gupta, Smith & Shalley 2006), or financial decisions (Uotila et al. 2009). In cognitive 

neuroscience, the interaction of risk and ambiguity has been examined primarily in 

single-shot economic games with no notable exploration component (Huettel et al. 2006; 

Hsu et al. 2009; Levy et al. 2009).  

The work presented in the chapter 3 addresses some of these outstanding 

questions, and examines in depth people’s exploratory decisions under uncertainty, 

focusing both on the different mechanisms of exploration employed by humans playing a 

two-armed bandit task, and on shedding further light on the interplay of risk and 

ambiguity in exploratory decisions.  
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1.3. Information and Task Engagement: Exploration as an 

Adaptive Response to Boredom 

 

Failures of task engagement: Boredom, from an affective to a cognitive phenomenon 

Let us call for a moment on an earlier example: imagine you are driving home 

from the football game in a nearby city. Now imagine that you’ve been in the car for a 

while, and to pass the time as you make your way through highway traffic, you’ve been 

listening to the radio. It’s a station you like, and it plays songs you’re familiar with and 

enjoy listening to. Yet, after fifteen, twenty, twenty-five minutes of listening to the same 

station play the same kind of songs, you might feel like pressing the tuner button on your 

radio, and letting it browse other stations. This is not because you’ve suddenly begun to 

dislike rock or classical music or whatever the station is playing – rather, after a long 

time listening to the same variety of music, you simply want to listen to something else.   

From an economic point of view, the decision to press the tuner button and 

browse away from your favorite station might strange. You are actively going against 

your established preferences, and foregoing known benefits – a station that plays songs 

you know you will like – in favor of letting the radio cycle through a series of other 

options of unknown or questionable value. Yet if an economist walked in right now and 

asked you why you are making such a seemingly irrational choice, you would probably 

have no trouble answering. You were bored of listening to the same kind of songs for 

thirty minutes, and you wanted to listen to something else.  
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The notion of boredom might seem straightforward and intuitive to anyone who 

has ever had to take long drives, fill out taxes, wait in line at busy registers, or sit through 

two-hour business meetings, but it has intrigued economists, psychologists and ecologists 

alike for more than a century. Boredom is undoubtedly real and widely observable 

throughout history (as early as 1890, William James makes reference to a notion of 

“Tædium, ennui, Langweile, boredom… words for which every language known to man 

has an equivalent”), and across cultures (Sundberg et al. 1991, for instance found similar 

boredom behaviors in young adults spanning four continents). But despite its prevalence, 

little is understood about the origin and function of boredom, or about the mechanisms 

that underlie it. 

Historically, boredom has been studied in the context of affective disorders 

because of its role in anxiety, neurosis and depression (Bergler 1945, Fenichel 1951). 

Studies have linked the subjective experience of boredom, as well as a “boredom 

proneness” character trait, to personality and mood disorders (Vodanovich, Verner & 

Gilbride 1991), addictive behaviors (Blaszczynski, McConaghy & Frankova 1990), and 

even physiological symptoms (Farmer & Sundberg, 1986; Sundberg et al. 1991). In this 

clinical context, boredom is associated with negative outcomes such as higher school 

dropout rates, low achievement, and job dissatisfaction (Drory 1982, Watt & 

Vodanovich, 1999). This view, however, is increasingly being complemented by a more 

cognitive perspective. As the behavioral correlates of boredom easily lend themselves to 

cognitive interpretation (in the above example, for instance, getting bored while filing the 

reimbursement forms can affect a series of cognitive processes: we might pay less 

attention to the task, take longer to do it, make more errors, or switch frequently between 
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tasks), the drive has emerged to investigate the impact of boredom on human cognitive 

processes.  

Building on earlier work that correlated boredom with cognitive demand (London 

& Monello 1974; Pattyn et al. 2008), task monotony and difficulty (Hill & Perkins 1985) 

and effort to engage with the environment (Hamilton 1981; Harris 2000), a series of 

recent studies interpret boredom as a cognitive construct rather than a primarily affective 

state indicative of psychopathology. Notably, Eastwood et al. (2012) frame boredom as a 

failure to engage with the environment due to insufficient arousal (for both internal and 

external reasons), and suggest that the phenomenon is best examined in the context of 

attention, attentional failures, and executive control. Through this cognitive 

interpretation, boredom could be an adaptive mechanism, as some of its behavioral 

byproducts – such as higher distractability, the tendency to give up sooner, or increased 

randomness in performance (Wallace, Vodanovich & Restino 2003, Watt & Hargis 2010) 

– that are generally considered negative, might in fact be useful.  

Exploration as a behavioral consequence of boredom: A potentially adaptive response to 

insufficient information?  

The tendency to switch away from a task and increased randomness in 

performance are both good examples of behavioral correlates of boredom that might 

serve an adaptive function. As discussed in detail in section 1.2, the decision-making 

literature has established that making random choices, can be useful in a number of ways. 

When operating in an environment about which we do not have full knowledge (as is the 

case with most real-life situations), exploring it by occasionally selecting random options 
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can help us discover better strategies and often lead to more overall reward (Cohen, 

McClure & Yu 2007). Giving up on a task can also be adaptive, if the benefits we gain 

from the task have fallen below the costs involved in doing it (Wrosch et al. 2003) – and 

indeed it has been hinted that boredom might be a way to signal increasing opportunity 

cost (Charness, Kuhn & Villeval 2012; Kurzban et al. 2013).  

This notion of an adaptive role for boredom has been mentioned previously in the 

reinforcement learning literature by Schmidhuber (1997), who proposed a learning model 

that included a “boredom unit” that computed estimated future change in prediction 

errors in order to track how much information was left to learn. This unit penalized the 

value of an action if the sum of future prediction errors was small – meaning that learning 

had reached an asymptote. According to Schmidhuber’s proposed model, increased 

boredom occurred when there was little possibility for learning more from the current 

action – either because it had been fully learned, or because it was too random to allow 

learning –  and it led to an increased probability of switching away.  

This framework suggests that when we become bored with our current 

circumstances, we may in fact be driven to explore our environment more, abandon 

options that have become unsatisfactory and perhaps discover better strategies for gaining 

reward. Based on the existing theories about boredom arising as a consequence of 

insufficient information, the increased exploratory drive in this case could reflect that the 

information content of current option has fallen far enough that it is time to switch away. 

In some ways, this is similar in concept to the marginal value theorem in the foraging 

literature (Charnov, 1976). The MVT proposes that a foraging agent chooses when to 

leave a current patch and explore others based on a comparison between its current rate 
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of reward from the patch it’s in, and an estimate of the average (global) rate of all 

available patches. When the agent’s current reward dips below the overall rate for the 

environment, MVT dictates that it should leave and explore another patch, since the 

current one is not as valuable as it could be. The exploration that occurs as a consequence 

of boredom could be adaptive in a similar way, if the agent were tracking the amount of 

useful information derived from the current task, and decided when it was time to seek a 

new, richer source of information. 

A strategy close to this idea was proposed in the machine learning literature by 

Simsek & Barto (2005), who showed that simulated agents with the capacity for 

becoming bored were better learners in a complex grid world. Their “bored” agents 

explored the artificial environment discovering how certain actions led to certain 

outcomes, but after being exposed to the same action-outcome contingency too many 

times (i.e., that contingency had been learned well and there was no more information to 

be gained about it), they began to devalue it and specifically explore other actions. By 

this mechanism, they were able to discover more complex action sequences faster than 

agents who did not have this capacity for boredom, and their average reward rate was 

higher.  

These findings all indicate that not only can boredom be seen as an important 

component in a learning and decision-making task, but it can in fact serve a useful 

function. However, to date, these kinds of results have been proposed only theoretically 

(Schmidhuber 1997; Simsek & Barto 2006; Eastwood et al. 2012; Kurzban et al. 2013), 

and the precise link between information and boredom has not yet been studied in 

humans, nor has the connection between boredom and exploration been precisely pinned 
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down. Chapter 4 of the present work discusses several experiments investigating how 

information structure affects the perception of boredom in humans, how this perception 

of boredom depends on the other options available in the environment, whether boredom 

signals a decrease in informativeness of the current task and how exploration could be 

seen as an adaptive response to that signal.  
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Chapter 2: Manipulation of Available 

Information Impacts Human 

Representation Learning 

 

To study the computational processes by which people learn the relevant features 

in their environment, the present work proposes a novel method of causal model 

comparison. Participants played a probabilistic learning task that required them to 

identify one relevant feature among several irrelevant ones. To compare between two 

models of this learning process, I ran each model alongside the participant during task 

performance, making predictions regarding the values underlying the participant’s 

choices in real time. To test the validity of each model’s predictions, I used the predicted 

values to try to perturb the participant’s learning process: I crafted stimuli to either 

facilitate or hinder comparison between the most highly valued features. A model whose 

predictions coincide with the learned values in the participant’s mind is expected to be 

effective in perturbing learning in this way, whereas a model whose predictions stray 

from the true learning process should not. Indeed, results showed that in our task a 

reinforcement-learning model could help or hurt participants’ learning, while a Bayesian 

ideal observer model could not. Beyond informing us about the notably suboptimal (but 

computationally more tractable) substrates of human representation learning, this 

manipulation suggests a sensitive method for model comparison, which makes it possible 

to change the course of people's learning in real-time.   
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Introduction 

We live in a rich, complex environment, in which we are constantly bombarded 

with a wide variety of sensory input. Even an action as simple as walking down the street 

carries with it a large volume of low-quality information in the form of people we see, 

places we walk by, cars, colours, voices, noises, emotional content etc. Intuitively, one 

would imagine that given sufficient resources, it is best to always represent every aspect 

of the environment so that any detail can potentially be acted upon. However, the “curse 

of dimensionality” (Bellman, 1957) posits that task representations that involve 

unnecessary stimulus dimensions will not afford efficient learning and decision making, 

where efficiency is measured in the number of examples needed to learn the task. In 

particular, an increase in the number of dimensions of the problem (in our case, the 

dimensions of the environment that the brain may represent) implies that the learner 

needs to collect exponentially larger quantities of data to learn to solve the problem. If we 

want learning to be feasible it is therefore both computationally optimal and a practical 

imperative to represent tasks with as compact a representation as possible. 

What are the computational strategies that humans use to learn a representation 

for a given task? To address this question, I tested participants on a multidimensional 

trial-and-error choice task, in which only one dimension was relevant to predicting 

reward (Wilson & Niv 2012, Niv et al., 2015). To test the explanatory power of different 

models of learning dynamics, I developed a method that compares two models against 

each other in terms of their causal effects on behaviour. Specifically, I used each model 

to manipulate participants’ learning in real time, and asked which model was more 

effective in changing behavior. This is at the same time an intuitive measure of how well 
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a model captures participants’ strategies, and it constitutes evidence that it is possible to 

use model predictions to impact learning in real-time, by manipulating the stimuli that are 

presented to the participant.  

It goes without saying that trial-and-error learning depends on what information is 

available to the learner. Indeed, work in machine learning and information theory has 

established how information in any given task might be optimally selected so as to 

maximally discriminate between competing hypotheses and accelerate learning (optimal 

experimental design, Sebastiani & Wynn 2000). Although human learning does not 

always mirror these optimal strategies, judicious choice of information has been shown to 

improve learning, for instance of category boundaries (Gureckis & Markant 2012) or 

speech motor learning (Knock et al 2000). Moreover, the order in which information is 

presented is relevant to determining what is learned (Ritter et al 2007). I thus set forth to 

use our candidate models to manipulate the timing and availability of information in such 

a way as to aid or hinder participants’ learning trajectory.  

This kind of effort to manipulate learning, however, is heavily dependent on 

having a good model of how participants structure and update their representations of the 

environment. How to compare and select a ‘best’ model for a complex cognitive process 

is not trivial (Pitt, Myung & Zhang 2002, Cutting et al 1992): models that fit the data 

better on some common goodness-of-fit measures may not fit better on other such 

measures; models that posit very different processes may perform similarly in terms of 

average fit (Townsend 1990, Rust et al. 1995); and a model that seems to describe 

behaviour better might do so because of a more flexible function form or different 

numbers of parameters, and not necessarily because it better captures the underlying 
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cognitive processes (Busemeyer & Wang, 2000). I therefore developed an interventional 

method for model comparison. 

I used the two candidate models to predict in real time what hypotheses a 

participant might be testing, and to design stimuli that will make it easier or harder to 

distinguish between the competing hypotheses. The reasoning was that a model that does 

not capture the participants’ beliefs about the available stimuli would not be effective at 

such a manipulation of learning. In contrast, a model whose predictions are well-matched 

to the cognitive processes underlying participants’ behaviour should make it possible to 

manipulate learning in real time. Therefore, this work shows not only how differential 

information presentation can significantly alter what representation of the environment 

people learn, but also that it is indeed possible to examine people’s underlying learning 

mechanisms, by presenting them with helpful or unhelpful information based on 

representations inferred using different models, and testing which manipulation affects 

their learning.  

In particular, while participants played the multidimensional probabilistic learning 

task, I inferred their value representations in real-time using either a Bayesian or a 

reinforcement learning model. The comparison of these two models relates to a long-

standing question in cognitive psychology, namely, the extent to which humans resort to 

optimal Bayesian decision strategies, compared to suboptimal – but more intuitive and 

computationally more efficient – heuristics (Steyvers, Lee & Wagenmakers, 2009). 

Despite much work suggesting that the human brain is Bayes-optimal (Körding & 

Wolpert, 2004; Beierholm et al. 2009), and in line with our previous findings (Niv et al., 



 

37 
 

2015), the manipulation here was only effective when based on predictions of the 

reinforcement learning model.  

Our ability to manipulate the learning process both precisely and in real time 

consists of a proof of concept for the new proposed model-testing tool, and is a step in the 

right direction in terms of development of individualized tools to improve learning in 

general. 

Methods 

Participants 

25 participants (16 females) recruited from the Princeton University undergraduate 

community gave informed consent and were compensated $12 an hour plus a 

performance bonus of up to $5 depending on their final score in the task. The average pay 

was $15. Study materials and procedures were approved by the Princeton University 

Institutional Review Board. 

Task 

Participants played a probabilistic learning task. Each trial involved choosing one of three 

compound stimuli displayed on the screen (see figure 2a). Each stimulus comprised of 

three features defined on three dimensions: a color (red, yellow or green), a shape 

(triangle, square or circle), and a texture (dots, plaid or waves). No two stimuli could 

share the same feature, i.e., there was only one red stimulus, one triangle etc., per trial.  

Choosing a stimulus resulted in immediate feedback, in the form of either one or zero 

points. Participants were instructed to try to obtain as many points as possible.  
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The task was designed so that, of the three dimensions of a stimulus, only one dimension 

was relevant to determining reward. Within that dimension, one feature was the target 

feature—choosing the stimulus that contained this feature led to one point 75% of the 

time, and zero points 25% of the time. Choosing any other stimulus resulted in one point 

only 25% of the time. To maximize their score, participants therefore had to aggregate 

over previous choices and outcomes to learn which feature is the target feature. 

Participants were explicitly instructed about these aspects of the task structure in 

advance.  

The task consisted of 52 ‘games’. Participants were informed that the target feature 

would not change within a game, but would change between games. Ends of games were 

explicitly signalled on-screen. The first 12 games (referred to as the baseline phase, 

described below) included 30 trials each, while the remaining games (the manipulation 

phase) consisted of 36 trials each, for a total of 1800 trials. After each game, participants 

were asked how difficult they found the game (on a scale from very easy (1) to very 

difficult (9); figure 2b), and to identify the target feature in that game. They could select 

any of the nine features, as well as an “I don’t know” option. If they did select a feature, 

they were also asked to rate how confident they were about their choice.  

After the baseline phase, participants took a one-minute break, during which I used their 

baseline phase data to fit the free parameters of the two candidate models I would later 

test in the manipulation phase. The remaining 40 games of the task comprised of the 

manipulation phase, in which I manipulated stimuli according to predictions from each 

model, to either help or hurt participants’ learning (see below). 
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Figure 2: The Dimensions Task. A: Example trial - stimulus presentation, choice, positive feedback, new 

stimulus presentation. B: Query screens - difficulty ratings, identifying correct feature, confidence ratings. 

C: Simulations of model-based manipulation. The manipulation was effective (“Help” improves 

performance as compared to “Hurt”) only when stimuli were manipulated according to predictions from 

the same model that generated the choice data (top left, bottom right panels). 

Modelling 

The two models compared here represent two different ways of thinking about human 

representation learning. The first is a Bayesian model that assumes statistically optimal 

updating of the posterior probabilities of each feature being the target feature, and the 

second model uses reinforcement learning principles to update values via trial and error. 
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Both models compute the value of a compound stimulus by estimating values of 

individual features and combining them: the Bayesian model estimates, for each feature, 

the posterior probability that it is the target  feature, while the reinforcement-learning 

model learns the values of each feature based on prediction errors. In both models, 

current values of stimuli depend on the history of choices and rewards. 

Bayesian Model 

The Bayesian model tracks the posterior probability that each feature f is the target 

feature f*. At the end of each trial, the posterior is updated by combining the prior (i.e., 

the posterior from the previous trial) and the likelihood of the observed data if f were the 

target feature. The prior depends on the history of choices C and rewards R, 𝐷1,𝑡−1 =

{𝐶1:𝑡−1; 𝑅1:𝑡−1}, from the beginning of the game and up until the current trial (not 

inclusive). The likelihood depends on the reward probabilities imposed by the 

experimenter; for instance, the likelihood of a win if the chosen stimulus contains the 

target feature is 0.75.  

At the beginning of the game, the prior is initialized at 1/9 (all features are equally likely 

to be the target feature). After each trial, the posterior is updated according to:  

𝑃(𝑓 = 𝑓∗|𝐷1:𝑡) ∝ 𝑃(𝑅𝑡|𝑓 = 𝑓∗, 𝐶𝑡)𝑃(𝑓 = 𝑓∗|𝐷1:𝑡−1)                                    (1) 

The value of a stimulus S is then calculated as the probability of obtaining a 1 point 

reward for choosing that stimulus on the current trial t, 

 𝑉(𝑆) = 𝑃(𝑅 = 1|𝑆, 𝐷1,𝑡−1) = ∑ [𝑃(𝑅 = 1|𝑓 = 𝑓∗)𝑃(𝑓 = 𝑓∗|𝐷1,𝑡−1)] + 𝑃(𝑅 = 1|𝑓∗ ∉𝑓∈𝑆

𝑆)(1 − ∑ 𝑃(𝑓 = 𝑓∗|𝐷1,𝑡−1)𝑓∈𝑆 )                                                                                           (2) 
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where 𝑃(𝑅 = 1|𝑓 = 𝑓∗) = 0.75 for all features contained in S, and 𝑃(𝑅 = 1|𝑓∗ ∉ 𝑆) =

0.25.  The model can be considered an ideal observer because it maintains a full 

probability distribution over the identity of f* and updates this distribution in a 

statistically optimal way.  

To afford this model the same temporal locality as the reinforcement model (described 

below), this model also allowed some degree of decay for all feature posteriors toward a 

uniform value of 1/9 

 𝑃~(𝑓 = 𝑓∗) = (1 − 𝑑)𝑃(𝑓 = 𝑓∗) + 𝑑 ∗ 1 9⁄                                          (3) 

and used 𝑃~ instead of P in equations (1) and (2) above. Although suboptimal, the decay 

component has been shown to significantly improve the models’ fit to behavioural 

choices in our task (Niv et al. 2015). 

Finally, the model assumed that the probability of choosing stimulus 𝑆𝑖 on each trial is 

proportional to the value of the stimulus, according to the softmax probability choice 

function:  

𝑃(𝑐ℎ𝑜𝑜𝑠𝑒𝑆𝑖) =
𝑒𝛽𝑉(𝑆𝑖)

∑ 𝑒
𝛽𝑉(𝑆𝑗)3

𝑗=1

                                                                   (4) 

The positive-valued inverse-temperature parameter β sets the level of noise in the 

decision process, with large β result in near-deterministic choice of the highest value 

option, while small β result in high decision noise and more random decisions. In all, this 

model has two free parameters, β and the decay rate d.  

Reinforcement Learning Model 
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This model takes advantage of the fact that, in our task, features determine reward 

independently, and uses reinforcement learning to learn values for each of the nine 

features. The values of all features were initialized at zero at the beginning of each game; 

on each trial, values of the three features of the stimulus that was chosen were then 

updated according to 

𝑉𝑡(𝑓) = 𝑉𝑡−1(𝑓) + 𝜂(𝑅𝑡 − 𝑉𝑡−1(𝑆𝑐ℎ𝑜𝑠𝑒𝑛))∀𝑓 ∈ 𝑆𝑐ℎ𝑜𝑠𝑒𝑛                                     (5) 

where η represents the learning rate, and (𝑅𝑡 − 𝑉𝑡−1(𝑆𝑐ℎ𝑜𝑠𝑒𝑛))  is a prediction error – the 

discrepancy between the actual reward on the current trial and the reward that was 

expected based on choosing this stimulus.  

Based on previous findings (Niv et al., in press), this model also included a decay of the 

values of the unchosen features to zero: 

𝑉𝑡(𝑓) = (1 − 𝑑)𝑉𝑡−1(𝑓)∀𝑓 ∉ 𝑆𝑐ℎ𝑜𝑠𝑒𝑛                                                    (6) 

with d a free parameter determining the decay rate. As in the Bayesian model, action 

probabilities were determined by a softmax probability function on stimulus values 

(equation 4). The RL model thus had three free parameters, the learning rate η, the 

softmax inverse temperature β and the decay rate d. 

Model Fitting 

At the end of the baseline phase (described above), participants were given a one-minute 

break while the computer fit both models to their data. Free parameters of both models 

were set for each participant separately, and were selected so as to maximize the 

likelihood of the data from the baseline phase (12 games and a total of 360 trials), by 
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using the Matlab routine fmincon and fitting the data five times, initializing at different 

random starting points. Parameter values from the run that obtained the best likelihood 

for the data were then used to fully specify the model for the manipulation phase of the 

experiment, in which each model was used to track feature values in real-time.  

Real-Time Manipulation 

In the remaining forty games of our task, the aim was to help or hurt learning by 

manipulating stimulus presentation. Specifically, I manipulated how the available 

features (colors, shapes and textures) were combined into three different stimuli, so as to 

either make available or obscure information about which feature is more likely to be the 

target feature. This manipulation relies on the idea – common to both candidate models – 

that while playing the task, participants update values for each feature, with the goal of 

ultimately learning which is the most rewarding feature. These feature values carry 

predictions regarding the reward associated with each feature, and thus can be seen as 

‘hypotheses’ as to which is the target feature.  

For every manipulated trial, to help learning, the highest-valued feature in each 

dimension was selected, and each of the three stimuli presented to the participant was 

designed to include only one of these three highest-valued features. This manipulation 

facilitates hypothesis testing, allowing participants to test one high-value feature 

independently of the other two. Conversely, to hurt learning, the three highest-valued 

features (one in each dimension) were combined into a single stimulus, thus preventing 

the participant from assigning credit for the feedback to just one of the three competing 

features. Both types of manipulation can potentially impact the rate of learning in the 
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game, but only as long as the inferred values are close to the participants’ actual values 

(Figure 2c).  

In each manipulated game, I manipulated every other trial from the fourth to the thirtieth 

trial for a total of fourteen manipulated trials, using one of the two models and either 

helping or hurting learning throughout the game. Because this manipulation affects not 

only learning, but the likelihood to make the correct choice on the current trial, to 

measure learning I analysed choices only in non-manipulated (neutral) trials, in which 

stimuli were constructed so as to specifically not include all three highest-valued features 

in the same stimulus, nor separate them into three different stimuli. (Therefore, in non-

manipulated trials, one stimulus always contained exactly two of the highest-valued 

features –and these trials did not overlap with either the helping or the hurting 

manipulation.) 

Each of the forty games in the manipulation phase consisted of thirty-six trials, with 

fourteen manipulated and twenty-two neutral trials. The last six trials in each game were 

not manipulated so as to allow measurement of steady-state learning at the end of the 

game.  

Results 

To understand the dynamic process of learning a compact and sufficient task 

representation in a multidimensional environment, I tested human participants on a 

probabilistic 3-dimensional choice task. While they played the task, I used the real time 

trial-by-trial predictions from two competing models to manipulate the presented stimuli 
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so as to help or hurt learning. Success of the causal manipulation would attest to 

congruence between the model and participants’ learning strategies. 

As shown in Figure 3, the manipulation had a significant effect on learning only in those 

games in which stimuli were manipulated using the reinforcement-learning (RL) model 

(figure 3a), and did not alter learning in games in which stimuli were manipulated using 

the Bayesian model (figure 3b). For RL-manipulated games, average performance on the 

last six trials of games (all non-manipulated) in the Help condition (red line) was 

significantly better than in the Hurt condition (black line). 

 

 

Figure 3: Model-based manipulation of stimuli affects learning only when using predictions from the RL 

model, not from the Bayesian model. A: Learning curves for Help (red) and Hurt (black) conditions overlap 

when the manipulation used predictions from Bayesian model. B. When the manipulation used predictions 

from the RL model, learning curves for the Help condition show significantly better learning at the end of the 

game as compared to the Hurt condition. Blue line:data from the baseline phase. Similar effects of the 

manipulation are also seen in C. the overall number of learned games and D. the average score across games. 

Error bars: SEM.  
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A two-way Performance x Manipulation repeated-measures ANOVA yielded a 

significant interaction (F(1, 48) = 5.22, p = 0.02) with no main effects, and the average 

performance at the end of the game was significantly higher in the Help than the Hurt 

condition for RL-manipulated games (one-sided paired t-test, t(24) = 2.25, p = 0.01), but 

did not differ between conditions for the Bayesian-manipulated games (t(24) = -0.96, p = 

0.82).  

Participants did not learn all the games, that is, for some games, they could not identify 

the correct feature when probed at the end of the game (Figure 2b). The real-time 

manipulation had an impact on the total number of games learned (figure 3c): here too a 

two-way Model x Manipulation repeated measures ANOVA showed a significant 

interaction (F(1,48) = 7.23, p = 0.009) with no main effects. When the RL model was 

used to manipulate stimuli, the number of learned games differed significantly depending 

on whether the game was designed to help or hurt learning (F(1, 24) = 12.64, p < 0.01). 

On average, the Help condition resulted in an approximately 30% increase in the number 

of learned games. Conversely, when the Bayesian model was used to manipulate stimuli, 

there was no difference between the help and hurt conditions (F(1, 24) = 0.77, p = 0.73).  

A similar pattern was observed in the average score per game (figure 3d). For games 

manipulated using the RL model, the average score (number of correct choices) was 

higher in the Help condition than in the Hurt condition (paired t-test; t(24) = 2.72, p = 

0.011). In contrast, scores for the Help and Hurt conditions were similar when the 

Bayesian model was used to manipulate the stimuli (t(24)  = -1.91, p=0.07).  The impact 

of the stimulus manipulation was also evident in participants' difficulty (figure 4a) and 

confidence (figure 4b) ratings. For RL-manipulated games, participants rated ‘help’ 
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games as easier compared to the ‘hurt’ games (t(21) = -2.23, p = 0.03, paired t-test). This 

effect was not present in the games manipulated using the Bayes model (t(21) = 0.734, p 

= 0.47, paired t-test).  

 

A similar pattern was seen in the confidence ratings (figure 4b), where confidence in RL-

manipulated ‘help’ games was rated as significantly higher than confidence in the ‘hurt’ 

games (𝑡(21) = 2.57, 𝑝 = 0.01), but ratings in games manipulated using the Bayesian 

model were not significantly different across conditions (𝑡(21) = −1.26, 𝑝 = 0.22). 

 

Discussion 

Using a multidimensional choice task, the present work investigated the computational 

strategies by which humans determine what dimensions of the environment are relevant 

for obtaining reward, and which can be safely ignored. The assumption underlying this 

work is that naturalistic tasks require such a representation learning process: in any given 

scenario, only a subset of information is relevant to the task at hand, and, moreover, the 

particular environmental dimensions that are relevant to one task are not necessarily 

Figure 4: Difficulty (A) and 

confidence (B) ratings reflect that 

the manipulation was effective in 

RL-manipulated games, not in 

games manipulated using the 

Bayesian model. Error bars: SEM. 

Three subjects were excluded from 

this analysis, two because they 

consistently did not rate 

difficulty/confidence, and one who 

reported reversing the difficulty 

scale for most of the experiment  
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relevant for another. For instance, the color of cars is irrelevant for crossing the street, but 

relevant for hailing a taxi, and the identity of the shops across the street is irrelevant to 

both tasks (but of course not for the task of navigating to the coffee shop).  

To compare between qualitatively different accounts of how humans may learn what 

dimension of the environment is relevant for the current task, I showcased a method that 

compares two learning models by attempting to use each model in a causal, real-time 

manipulation of participants’ learning. That is, I used each model to predict what 

hypotheses participants might be testing at each point in time, and manipulated stimuli to 

either help or hinder comparison of these hypotheses. This method is related to the 

concept from educational computing of “intelligent tutors” (Beck, Wolf & Beal, 2000; 

Anderson et al., 2003), as it uses the same idea of feedback tailored to an individual’s 

ongoing learning process. However, the method we used here is novel not only in the 

way it specifically infers a formal model of the participants’ learning as they perform the 

task (as opposed to using their responses to measure how closely they adhere to the 

correct, ‘expert knowledge’ model, as most intelligent tutor systems do) – but it is also a 

novel way of doing model comparison, as this model-based manipulation can affect 

learning only to the extent that a model indeed captures participants’ underlying learning 

process.  

Results showed that when stimuli were manipulated based on a reinforcement-learning 

model, games designed to help learning resulted in faster and more complete learning 

than games designed to hurt the learning process. In contrast, manipulating games using a 

Bayesian model had no significant effect on learning. This method thus provides a 

stringent measure of how well each model captures people’s strategies, and at the same 
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time, the current findings provide evidence that it is indeed possible to impact 

representation learning in real time, by manipulating the stimuli that people have access 

to.   

This method is related to the framework of “optimal experimental design” in which 

experiments are designed so as to optimally elicit information about the process under 

investigation (Sebastiani & Wynn 2000, Atkinson, Doney & Tobias 2007). Normative 

statistical principles from Bayesian inference can, in some cases, be used to select an 

experimental design that will best resolve the details of participants’ underlying cognitive 

processes (e.g., set the free parameters of a model of the process under scrutiny; Rafferty, 

Zaharia & Griffiths 2014). One way to optimize the present manipulation would be to 

choose, on each trial, the stimulus configuration that would allow participants to glean 

the maximum (or minimum) amount of information regarding the identity of the target 

stimulus, assuming participants’ underlying cognitive processes matched each of the 

candidate models. This manipulation, while more normative than the one presented in 

this work, is more computationally intensive and, importantly, relies on further 

assumptions regarding the optimality of participants’ actions. In particular, if participants 

are not selecting stimuli in an effort to maximize information (e.g., because they are also 

maximizing reward), this alternative manipulation may not be more effective. It is due to 

this interaction between information acquisition and reward acquisition that I assessed 

performance only in non-manipulated trials – as the ‘help’ manipulation, while affording 

better information, made it more difficult to obtain reward on manipulated trials than did 

the ‘hurt’ manipulation.  
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Rather than assume that the highest valued features correspond to the hypotheses that the 

participant is comparing, another alternative is to infer these hypotheses using Bayesian 

inference. Such a method has previously been used in association with the dimensions 

task, and shown that recent choice history can effectively identify tested hypotheses 

(Wilson & Niv, 2012). However, in that work, inference was only optimal if one assumed 

that participants test one hypothesis at a time—an assumption that is incompatible with 

the current results. If participants were indeed focusing only on one hypothesis (feature) 

at any point in time, then neither of the manipulations would have affected learning.  

The current findings join others (Eckstein et al., 2004) in suggesting that human learning 

is not always Bayes-optimal, and in particular, that humans do not solve the difficult task 

of representation learning in a Bayes-optimal way (see also Wilson & Niv, 2012; Niv et 

al., in press). These findings stand in contrast to multiple demonstrations of Bayes-

optimality (Doya et al., 2006) in perceptual decision making (Gold & Shadlen, 2002; 

Knill & Pouget, 2004), motor control (Trommershäuser et al. 2003, 2005) multimodal 

integration (Körding & Wolpert, 2004), reasoning (Oaksford & Chater, 1994) and even in 

setting meta-learning parameters for reinforcement learning (Behrens et al. 2007, Yu 

2007). However, whereas Bayesian inference may be computationally feasible (and 

indeed, simple) in scenarios that can be reduced to a several-alternative forced-choice 

decision (Gold & Shadlen, 2002) or a choice between lotteries (Wu et al., 2009), 

representation learning in natural environments places much heavier computational 

demands on the learning system. In particular, the dimensionality of the environment is 

essentially unbounded (given that dimensions such as previous actions and events can be, 

and frequently are, relevant for task performance), and whereas feedback is often 
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available for one’s actions, the environment does not provide any supervision regarding 

one’s representations.  

To overcome these difficulties, results here suggested that humans might use a 

suboptimal but computationally more tractable strategy based on reinforcement learning. 

However, it is worth noting that the present work only compared two very different 

models, partly as a proof-of-concept for our novel model-comparison method. It is 

entirely possible – in fact, likely – that the feature-level reinforcement-learning model 

suggested here also falls short of fully capturing participants’ learning strategies. Future 

applications of this method will hopefully delineate more precisely the workings of 

representation learning in the human brain. 

Finally, the “dimensions task” lends itself easily to manipulation of presented 

information. Work on “active learning” (Cohn, Ghahramani & Jordan, 1995) in 

categorization and perceptual estimation tasks has used a related manipulation, 

effectively allowing participants to design their experiment optimally (Kruschke, 2008; 

Castro et al., 2008; Gureckis & Markant, 2009; Markant & Gureckis, 2014; Juni et al., 

2011). Some adjustments will likely be needed in order to apply this model-comparison 

method to other task structures, though there is reason to be optimistic as to the method’s 

wider applicability (Nelson et al. 2010).  

In sum, this chapter has described a real-time manipulation of information presented to 

participants, and has suggested that basing this manipulation on predictions of different 

models can allow for a new, sensitive and causal means of model comparison. Using this 

method and a reinforcement-learning model, the work here shows that human 
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representation learning can be improved or hampered. Beyond the implications for 

effective, individual-difference-sensitive model selection, such ‘access’ to participants’ 

mental strategies suggests exciting applications, particularly in the domain of education 

and tailoring the flow of information toward individual learning.  
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Chapter 3:  Exploration Strategies and 

the Interplay of Decision Time,  

Risk and Ambiguity  

 

In this chapter, I present two experiments that examined how information-seeking drives 

exploration. The first experiment
2
 tested participants on a two-armed bandit task with 

different ambiguity conditions, under different decision horizons. Results showed that 

people used two distinguishable types of exploration – random (characterized by an 

increase in decision noise) and directed (information-driven) exploration – and that the 

length of the decision horizon affects both. The second experiment tested a different set 

of participants on a 'wheel of fortune' task, designed to clearly separate risk and 

ambiguity and examine how they impact the two different exploration strategies. The 

results suggested that the presence of ambiguity in the environment drives people to 

explore in order to acquire more information and reduce the ambiguity. Conversely, a 

higher risk level in the environment increases exploration by increasing decision noise 

and making people less sensitive to the reward values of the available options. These 

findings imply that different sources of uncertainty impact exploration differently, and 

may shed light on the mechanisms behind people’s use of exploration to acquire 

information from the environment.  

 

                                                           
2
 The work I describe for this experiment has been published, in Wilson et al. (2014)– see 

Acknowledgments section for details, and Reference section for full citation  
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Introduction 

When you go to your favorite restaurant, do you always order the same thing, or do you 

try something new? Sticking with an old favorite ensures a good meal, but if you are 

willing to explore you might discover something better. This simple conundrum, deciding 

between something you know and something you do not, is commonly referred to as the 

exploration - exploitation dilemma (Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 

1998). Whether deciding on a meal, a vacation destination or a life partner, this problem 

is an important one to solve.   

All adaptive organisms face this fundamental tradeoff between pursuing a known reward 

(exploitation) and sampling lesser-known options in search of something better 

(exploration). Exploration can be most beneficial in the presence of environmental 

uncertainty: when the range and benefits of all reward options are not fully known, 

exploration can lead to the discovery of new, better resources and an ultimately higher 

overall reward. However, uncertainty can take many forms – most prominently, risk 

(known uncertainty) and ambiguity (unknown uncertainty) are two clearly differentiable 

sources of uncertainty that often appear together – and it is unclear how different sources 

of uncertainty impact people's exploratory behavior. Furthermore, theory suggests at least 

two strategies for solving the explore - exploit dilemma: a directed strategy in which 

choices are explicitly biased towards information seeking, and a random strategy in 

which decision noise leads to exploration by chance. The mechanisms and factors 

involved in each type of exploration are not yet fully known.  
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This chapter presents work investigating the extent to which humans use these two 

exploration strategies, and examining the influence of important environmental factors 

such as decision horizon, risk and ambiguity on human exploration.  

Experiment 3.1: Humans use directed and random exploration to solve the explore-

exploit dilemma  

In our variant of the two-armed bandit paradigm – that we refer to as the “horizon task” – 

participants made explore-exploit decisions in two contexts that differed in the number of 

choices that they would make in the future (the time horizon). Participants either were 

allowed to make either a single choice in each game (horizon 1), or six sequential choices 

(horizon 6) giving them more opportunity to explore. By modeling the behavior in these 

two conditions, it was possible to measure exploration-related changes in decision 

making and quantify the contributions of the two strategies to behavior. Results 

suggested that participants were more information seeking and had higher decision noise 

with the longer horizon, suggesting that humans use both strategies to solve the 

exploration-exploitation dilemma. It was thus possible to conclude that both information 

seeking and choice variability can be controlled and put to use in the service of 

exploration.  

Methods 

Participants  

31 Participants (20 women; mean age 19.7 years, min: 18 years, max: 24 years) were 

recruited from the Princeton student population. They received course credit for taking 
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part in the experiment and gave informed consent; the study was approved by the 

Princeton University Institutional Review Board.  

Procedure 

Participants played 320 games (in 4 blocks of 80 games) of our horizon task (see Figure 

5A). Each game lasted either 5 or 10 trials and the two game lengths were interleaved and 

counterbalanced such that there were 160 games of each length. In each game, 

participants made repeated decisions between two options. Each option paid out between 

1 and 100 points that was sampled (rounded to the nearest integer) from a Gaussian 

distribution with a fixed standard deviation of 8 points. The generative means of the 

underlying Gaussians were different for the two options and remained stable within a 

game. In each game, the mean of one option was set to either 40 or 60 points and the 

mean of the other was set 7 relative to the mean of the first, such that the difference 

between the two was sampled from 4, 8, 12, 20 and 30. Both the identity and the 

difference in means were counterbalanced over the entire experiment.  

Participants were instructed in the task via a set of illustrated onscreen instructions. These 

conveyed explicitly that the means of the two options were constant over a game and that 

the variability in the options was constant over the entire experiment. Participants were 

told to maximize the points they earned and that one option was always better on average. 

Choice and outcome history in each game remained onscreen inside each of the slot 

machines (Figure 5A). After a particular option was played, the reward on that trial was 

added to the slot machine, while the corresponding space for the unplayed option was 

filled with an ‘XX’.  
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The first four trials of each game were forced-choice trials, in which only one of the 

options (cued by a green square inside the next available space) was available for 

participants to choose. These forced-choice trials were used to manipulate the 

information participants had about the two options from experience (Hertwig et al. 2004) 

before their first free choice, while maintaining their active engagement in the task. The 

four forced-choice trials set up two information conditions: ‘unequal information’ (or [1 

3]) in which one option was forced to be played once and the other three times, and 

‘equal information’ (or [2 2]) in which each option was forced to be played twice. 

Crucially, this manipulation ensured that participants were exposed to a specified amount 

of information about each option regardless of how rewarding it was. Furthermore, the 

relative amount of information provided about each option was independent of the 

relative difference in their means.  

After the forced-choice trials, participants made either 1 or 6 free choices (Figure 5B). At 

the beginning of each game, the number of upcoming free-choice trials (i.e., the horizon) 

was indicated by the length of the slot machines (Figure 5A), which contained an empty 

space awaiting the outcome from each of the subsequent trials. 
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Figure 5: Two-armed bandit horizon task. A: Example trial. B: Structure of forced-choice 

and free-choice trials in short horizon (horizon 1) and long horizon (horizon 6). Orange 

highlighted cells represent the first free choice trials, the only ones used for data 

analysis.  

 

Model Fitting 

A simple logistic model was used to fit the behavior on the first free-choice trial. This 

model computes a value Qa , for each option, a, and makes probabilistic choices based on 

these values. In particular Qa is the weighted sum of the expected reward Ra , 

information Ia , and spatial location sa,  

Qa = Ra +αIa + Bsa 

where α denotes the information bonus and B the spatial bias. 
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Assuming that the values for each option are perturbed by logistic noise with variance σ d 

and the model chooses the option with highest perturbed value, then the probability of 

choosing option a over option b is  

pa = 1 1+ exp Rb − Ra +α(Ib − Ia )+ B(sb − sa ) σ d ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 

The expected rewards Ra and Rb were set as the observed mean of the outcomes of the 

example plays for options a and b respectively, which assumes that participants have a 

linear utility function and weigh each outcome equally in the decision.  

The information Ia was defined such that when option b was more informative than a in 

the unequal condition Ib − Ia = +1, and Ib − Ia = −1 when b is less informative than a. 

In the equal condition Ib − Ia = 0 . This choice of Ia allows us to interpret the 

information bonus as the indifference point of the choice curves in Figure 6A. Similarly, 

the location variable sa was defined such that sb − sa = +1 when b is on the right and a is 

on the left sb − sa = −1 when b is on the left, and a is on the right. By fitting this choice 

function to participants’ data, it was possible to estimate the information bonus α , the 

bias B, and the magnitude of decision noise σ, separately for each participant in each 

information and horizon condition.   

Results 

The probability of choosing one of the options, option A, on the first free-choice trial, 

was computed as a function of the difference in means of the samples observed on the 

forced plays. By convention, option A was defined differently in the two information 

conditions. In the unequal condition it was the more informative option (i.e., the option 

played only once in the [1 3] forced-choice trials). In the equal condition, because both 
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options are equally informative, option A was the option on the right hand side of the 

screen. The resulting empirical choice curves along with the average fits from the model 

are plotted in Figure 6A and B for the unequal and equal conditions respectively.  

In all conditions the probability of choosing option A on the first free choice increased as 

a function of the difference in mean between the two options. Furthermore, for that 

choice, increasing the horizon from 1 to 6 increased the probability of choosing the more 

informative option in the unequal condition. For example, in the horizon 6 condition, 

even when the mean of the more informative option was 8 points lower than the 

alternative (-8 on the x-axis), it was still chosen 50% of the time. This change in the 

indifference point – the point at which participants 11 were equally likely to choose either 

option – is indicative of directed exploration driven by an information bonus. That is, on 

the first free-choice trial in the horizon 6 condition, participants behaved as though the 

more informative option had greater value.  

In addition to the shift in the indifference point, there was also a change in the slope of 

the choice curves with horizon (Figure 6A and B). Curves in horizon 1 were steeper than 

those in horizon 6 for both information conditions. This change in slope is consistent with 

random exploration induced by an increase in decision noise. That is, participants’ 

choices on the first free choice trial became more random and hence less correlated with 

the difference in means as the horizon increased. The model fit confirmed these informal 

observations, as shown in Figure 6C-E. Consistent with the choice curves, there was a 

highly significant increase in information bonus between horizons 1 and 6 (t(29) = 5.05, 

p < 10-4 ). Likewise a repeated measures ANOVA found a significant increase in 

decision noise with horizon (F(1,119) = 65.97, p < 10-8 ) in addition to a small main 
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effect of information condition (F(1,119) = 5.06, p < 0.05) but no interaction between 

horizon and information condition (F(1,119) = 0, p = 0.96). Furthermore, the effect of 

horizon held for almost all subjects (Figure 6F-H) with 25 out of 30 showing an increase 

in information bonus in the long horizon condition, and 28 showing a similar increase in 

decision noise (observed in both of the information conditions). 

  

 

To test whether the change in information bonus with horizon was consistent with 

theories of optimal exploration, the optimal information bonus was computed for each 

horizon condition in the task by running the same fitting procedure on simulated choice 

data from the optimal model. The optimal information bonus, plotted as the green stars in 

Figure 6: A,B: Choice 

curves for long horizon 

(orange line) and short 

horizon (black line) in the 

unequal information 

condition (A), and the equal 

information condition (B). 

C-E: Participants showed 

more exploration for long 

horizon compared to short 

horizon, both in the form of 

directed exploration (higher 

information bonus, panel C) 

and random exploration 

(more decision noise, panels 

D and E). This consistently 

holds true for almost all 

participants (panels F-G: 

each data point is one 

participant).   
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Figures 6C and 6F, bears a qualitative resemblance to the estimates of the information 

bonus for 12 the human participants, although quantitatively, participants appear to 

exhibit a greater information bonus than the optimal value. It is worth noting that, in this 

task, optimal performance is associated with zero decision noise, which is clearly quite 

different from the behavior shown by humans (Figure 6D, E). 

Discussion 

This work investigated the extent to which humans use directed and random exploration 

to solve the exploration-exploitation dilemma. The results indicate that humans use both 

strategies, with both an information bonus and decision noise increasing between 

horizons 1 and 6.  

For directed exploration, results showed that, when the horizon is longer, humans exhibit 

an information bonus that effectively increases the value of the more informative option, 

making sampling that option more likely. From a theoretical perspective this result is not 

surprising. It is well known that information has real value for long horizons (Gittins & 

Jones, 1974; Gittins, 1979), and a carefully calibrated information bonus insures optimal 

or near-optimal exploration in many settings (Bubeck & Cesa-Bianchi, 2012). 

Experimentally, however, previous results on directed exploration have been mixed, with 

some studies finding evidence for this strategy (Meyer & Shi, 1995; Banks, Olson, & 

Porter, 1997; Frank et al., 2009; Steyvers, Lee, & Wagenmakers, 2009) and others failing 

to do so (Daw et al., 2006; Payzan, LeNestour & Bossaerts, 2011). It is possible that one 

reason for these mixed results is the subtle confound between reward and information 

that arises in sequential choice tasks and makes directed exploration both hard to observe 

and difficult to confirm. The horizon task described here removed this confound on the 
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first free-choice trial by manipulating reward and information before subjects made a free 

choice. This made it possible to unambiguously identify directed exploration on that trial.  

For random exploration, findings showed both an increase in decision noise between 

horizons 1 and 6 and a decrease in decision noise over the course of the horizon 6 games. 

Such noise-driven exploration has a long history in statistics (Thompson, 1933) and 

machine learning (Watkins, 1989; Bridle, 1990; Sutton & Barto, 1998) where its 

simplicity allows the strategy to be applied to situations in which the optimal information 

bonus is hard to compute. Thus, random exploration driven by decision noise may 

represent a reasonable adjunct to the theoretically optimal, but costly computations 

required to quantify the information bonus and may furthermore, even meliorate any 

losses when the information bonus is wrong. In this light, the use of random exploration 

by our participants may reflect an effort to compensate for their incorrect setting of the 

information bonus.   

While our results demonstrate the qualitative existence of directed exploration, and the 

influence of decision horizon on both directed and random exploration, we did not 

investigate how participants might be biased toward one exploration strategy over the 

other, or how the two might interact. More generally, investigating this potential 

interaction between random and directed exploration is a question of interest. 

Furthermore, the design here only takes into account ambiguity as the main source of 

uncertainty, and does not consider the impact of risk, or outcome variability, on either 

strategy.  
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The next section presents a different study that addresses these questions, and 

investigates how risk influences people's exploratory decisions in the presence of 

ambiguity.  

Experiment 3.2: Risk and ambiguity affect exploration in a sequential Wheel of 

Fortune task
3
 

It is likely that people incorporate risk and ambiguity differently into their decision 

processes. Several studies argue that this distinction is important enough for the brain to 

maintain separate representations of risk and ambiguity (Yu & Dayan 2005, Huettel et al. 

2006), that different neural substrates respond to risk (orbito-frontal cortex, striatum) and 

ambiguity (lateral prefrontal cortex), and that different neurotransmitters are released in 

the presence of risk (acetylcholine) and ambiguity (norepinephrine).  Despite this 

important distinction, there have not been many attempts to establish how risk and 

ambiguity independently influence the degree to which people explore, or whether they 

impact random and directed exploration differently. Many studies that examine the neural 

and behavioural responses to risk and ambiguity pay little attention to the role of 

exploration, and instead search for evidence that people have separate risk- and 

ambiguity preferences (Hsu et al. 2005, Huettel et al. 2006). Studies investigating 

people's exploration strategies, on the other hand, often focus heavily on the effect of 

relative reward magnitude, and either disregard the influence of ambiguity, or pool risk 

and ambiguity together under the broader factor of uncertainty (Behrens et al. 2007, Daw 

                                                           
3
 This work has previously been presented in poster format to the Society for Neuroscience conference 

(Geana, Wilson & Cohen - Washington, DC 2014), and the Reinforcement Learning and Decision-Making 
conference (Geana, Wilson & Cohen - Princeton, NJ, 2013). Part of this work has also been presented 
during a symposium talk at the CoSyNe conference in March 2014. Please see “References” section for full 
references.  
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et al. 2006).  To bridge this gap, I designed a task that permitted a clear separation and 

empirical manipulation of risk and ambiguity, and examined how these two factors 

impact exploratory behaviour.  

I used the horizon manipulation from experiment 3.1 –  that made it possible to 

distinguish between conditions in which exploration was adaptive (long horizon), versus 

non-adaptive (short horizon) – to test how risk, ambiguity and decision horizon interact to 

influence people’s exploratory choices in a probabilistic decision-making task in which 

participants chose between two wheels of fortune. The results showed that both decision 

noise and information-seeking are affected not only by the length of the decision horizon 

(which impacts the value of acquiring information), but also by the level of risk in the 

environment. Our findings suggest that the mechanisms underlying exploratory behaviour 

are sensitive to different kinds of uncertainty, and that risk and ambiguity might interact 

to modulate the mixture of random and directed exploration in people’s decisions.  

Methods 

Participants 

30 participants (16 females) were recruited from the Princeton University undergraduate 

community. All participants gave informed consent and were compensated either with 

course credit, or $12 an hour plus a performance bonus of up to $5 depending on their 

final score in the task. The average pay was $15. The experiment was approved under the 

rules of the Princeton University Institutional Review Board.   

Behavioural Task 

Participants played multiple games of a sequential decision task that required them to 
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choose between two virtual wheels of fortune (figure 7A). The rewards (number of 

points) that each wheel could pay out were written on slices of the wheel. On each trial, 

participants saw the two wheels and made a choice; the chosen wheel would spin a 

random number of times, and participants received a reward equal to the number of 

points written on the slice that landed under the pin. The task was split into games that 

consisted of either one trial or five trials, with a brief self-timed pause between games.  

The mean reward of each wheel was given by the mean of the numbers on the slices. 

Throughout the task, participants were exposed to a range of means from 35 to 65 points. 

Risk in this wheel of fortune task was operationalized as the variance of the numbers on a 

wheel, and could take five different values that ranged from no risk (all numbers were the 

same) to high risk (the variance of the numbers was high). Ambiguity was 

operationalized as the number of question marks on the wheel, and could be either zero 

(all the wheel slices remained uncovered) or four (four slices were covered by the 

question mark). One wheel, referred to as the ambiguous wheel, always had four of the 

reward values covered with a question mark, and the other wheel – the certain wheel – 

did not. When participants chose the ambiguous wheel to spin, and it stopped on one of 

the covered slices, that slice would become uncovered: the computer generated a value 

for it based on a Gaussian distribution that maintained the variance of the rewards on the 

wheel. That number of points was displayed on the slice, and it remained visible for the 

rest of the trials in that game.  

The decision horizon here was manipulated as the length of a game: each game consisted 

of either one choice between the two wheels (horizon 1), or five sequential choices 

(horizon 5) using the same pair of wheels. The number of choices left in a game was 
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always displayed on the screen (figure 7A). The wheels remained the same within a 

game, but they changed between games.  These changes were always signalled. 

 

Figure 7: Wheel of Fortune task. A: Sample task screen. The blue rectangle around the left wheel shows 

that it was chosen. The wheel stopped on the slice with the number '50', earning the participant 50 points 

for that spin. B. Example choice curve generated using model. The black curve is described by parameters 

β (slope) and ξ (centre), which in the choice model correspond to gain (inverse decision noise) and 

ambiguity bonus. The dotted blue line shows what the choice curve would be if the participant chose only 

based on reward, with no decision noise. Control tasks. C: to control for the computational demand of 

calculating means on wheels with different risk, I ran a version of the task in which the mean was displayed 

at the center of the wheel. D: to verify that the presence of ambiguity impacted how participants handled 

risk, I ran a version of the task in which there was no ambiguity 

Model and Analysis 

I modelled participants' behaviour by assuming that they assigned a value 𝑉(𝑊𝑖) to each 

wheel 𝑊𝑖, based on the mean of the uncovered slices, an estimate of the mean of the 

covered slices, and a fit ambiguity bonus:  
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𝑉(𝑊𝑖) = 𝜇𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑑 + 𝜇𝑐𝑜𝑣𝑒𝑟𝑒𝑑 + 𝜉               (1) 

and made their choices using a softmax function that assigns a choice probability 𝑃(𝑊𝑖)to 

each option, according to:  

𝑃(𝑊𝑖) =
1

1+𝑒𝛽∗∆𝑉𝑖
   (2) 

where β is the gain parameter that determines how sensitive the choice probabilities are to 

the values, and ∆𝑉𝑖 is the difference in value between the two means. The value of an 

option was modelled as the expected value of the rewards (both the known, uncovered 

slices in the wheel of fortune task, and the unknown, covered slices). In addition to mean 

reward, an ambiguity bonus parameter, ξ , was added to the value computation, to 

quantify how much reducing the ambiguity about that particular option is worth in units 

of value.  

The β and ξ  parameters define a choice curve for each participant (figure 7B) that 

estimates, for any given difference in mean reward between the two wheels, how 

frequently the participant chose the ambiguous wheel (i.e., explore). The gain parameter 

in the choice model was used to quantify decision noise, a measure of random 

exploration, in participants' behaviour. The ambiguity bonus parameter was used as a 

measure of information-seeking, or directed exploration.  

Results 

Participants' choice curves, collapsed across risk level, show that they were generally 

sensitive to the mean reward values of the two wheels, with their exploration (probability 

of choosing the ambiguous wheel) increasing as the mean of this wheel increased relative 
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to the unambiguous one (figure 8A, left panel). There was also an observed effect of 

decision horizon on exploration, with the choice curve for the long horizon (Horizon 5, 

orange line) being shifted to the left compared to those for the short horizon (Horizon 1, 

black line). This effect was not present in the control study 2, which removed ambiguity (figure 

8A, left panel; for details on the control task, see figure 7D). Overall average exploration on the 

first trial of a game was significantly higher in the horizon 5 condition than in the horizon 1 

condition (𝑃𝑒𝑥𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛1 = 0.38 ± 0.15, 𝑃𝑒𝑥𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛5 = 0.56 ± 0.19). This also holds true when 

separating the data by risk level (figure 8B). A two-way repeated-measures ANOVA showed a 

main effect of horizon on overall exploration, with exploration in Horizon 5 being consistently 

higher, for all risk levels but one. [F(4,58)=2.76, p = 0.03] 

 

Figre 8 

Plotting choice curves for each individual risk level showed a significant effect of risk on 

exploration: the choice curves became flatter as risk increases, and they shifted to the 

Figure 8. A: Choice curves show 

that probability of exploring is 

sensitive to the difference in 

mean between the ambiguous 

and the non-ambiguous wheel. 

Left panel: choice curve for 

horizon 5 (orange line) are 

shifted to the left compared to 

horizon 1 (black line). Right 

panel: choice curves overlap in 

control task with no ambiguous 

wheel. B: Overall percentage 

exploration is significantly 

higher in long horizon (orange 

bars) than short horizon (black 

bars), across risk levels. Error 

bars: SEM 
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right (figure 9A). This is equivalent to a change in both curve parameters, with decision 

noise (curve slope) increasing, and information bonus (curve center) decreasing. Figure 

9B shows that a similar pattern was found in the choice curves in control task 1 (mean of 

each wheel displayed at the center of the wheel – see fig 7C), but not in control task 2 (no 

ambiguous wheel – see fig. 7D). 

A one-way ANOVA showed a significant effect of risk level on both decision noise 

(figure 9C, left panel) and ambiguity bonus (figure 9C, right panel) in horizon 5 (F(4,24) 

= 5.62, p<0.01). There was also a significant linear trend (F(1,4) = 21.76, p = 0.01) 

indicating that as risk increased, decision noise increased proportionately, while 

ambiguity bonus decreased proportionately (F(1,4) = 64.75, p < 0.01); furthermore, the 

increasing decision noise and decreasing ambiguity bonus were negatively correlated 

(𝑟 = −0.93, 𝑝 = 0.01). Conversely, in horizon 1, the one-way ANOVA revealed no 

significant effects (F(4,145)=0.10, p = 0.98), and neither the linear trend analyses nor the 

correlation were significant for either of the two parameters (𝑟 = −0.39, 𝑝 = 0.51).  

 

Figure 9 A. Choice curves showing the probability of choosing the ambiguous wheel as a 

function of the difference in mean rewards, across risk levels, for decision horizon 5. B. Choice 
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curves from a control task in which both wheels were non-ambiguous superpose. C. Decision 

noise (left panel) increases as a function of risk, in horizon 5, while ambiguity bonus (right panel) 

decreases proportionately. D. Decision noise and ambiguity bonus in horizon 1. The linear trend 

here is not significant.   

Discussion 

To investigate the impact of different types of uncertainty on human exploration, the 

experiment described above used a repeated-choice wheel of fortune task which clearly 

separated reward, risk and ambiguity, and manipulated participants’ decision horizon 

between games.  

First, results showed that decision horizon impacts exploration patterns: participants’ 

choice curves were shifted to the left in the long horizon compared to short (reflecting 

higher information-seeking), and they explored more in the long horizon in all risk 

conditions. These findings are consistent with the idea that the degree to which ambiguity 

drives exploration is strongly correlated with the value of information (Cohen, McClure 

& Yu 2007, Behrens et al. 2007), and replicate earlier data (Wilson et al. 2014) regarding 

the effect of decision horizon on both random and directed exploration. These findings 

also strengthen the claim that people use exploration adaptively, increasing it when they 

have a longer window of opportunity in which to use the information they acquire by 

exploring.  

Furthermore, by including a risk manipulation, this experiment allowed an examination 

of the separate contributions that risk and ambiguity make to exploratory decision-

making. It revealed that higher risk levels were associated with a higher decision noise 

parameter in the choice function, suggesting that risk might influence the strength of 
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people's preference for the more rewarding option by modulating decision noise. A 

potential interpretation for the increase in decision noise with higher risk levels could be 

related to the increased computational demands involved in calculating the mean reward 

of a wheel, when these means are more broadly distributed. However, a control task run 

with identical risk levels (but no ambiguity) showed no significant effects on decision 

noise. This suggests that it is not simply the computational load that causes increased 

decision noise in higher-risk conditions. Rather, the presence of ambiguity (and thus the 

potential benefit of exploration) seems to be necessary for risk to affect exploration.  

Interestingly, the ambiguity bonus decreased with risk level, suggesting that people 

become less information-seeking when the environment becomes more variable. This 

effect, however, was only observed in the long-horizon condition, when information 

acquired by exploring could be usefully employed in future choices. This, along with the 

increasing decision noise in high risk conditions, indicates a potential trade-off between 

random and directed exploration, with more risky environments driving increased 

randomness and decreased information-seeking, while more ambiguous environments 

bias people toward information-seeking. This pattern was observed in most participants, 

and, while the experiment controlled for the hypothesis that it was solely due to increased 

computational load of higher-variance condition (control tasks 1 and 2), it is still possible 

that the tradeoff of random and directed exploration reflects an optimal strategy that takes 

into account computational demands. Specifically, it has been suggested (Wittman et 

al.2008) that, when the cost of explicitly computing action values becomes too high 

relative to the benefits earned from a simpler strategy (such as random exploration), it is 

more efficient to abandon the computationally intense strategy in favour of the simpler 
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one. Thus, the increasing decision noise that parallels a decreasing ambiguity bonus when 

the environment becomes riskier could reflect a cost-effective strategy that ensures that 

exploration still happens despite increased difficulty of computing its value.  

The current results are also consistent with findings in an infinite-horizon version of the 

bandit task, in which a similar tradeoff between random exploration and directed 

exploration is observed across the subject population for different environment hazard 

rates (Wilson & Cohen, 2014). Notably, those studies also found evidence of individual 

differences in the random/directed exploration balance in individual participants; 

furthermore, it has previously been suggested that the balance between exploration (of all 

types) and exploitation can also vary within a population, with different individuals 

biased toward different patterns of exploratory behavior (Badre et al, 2012; Frank et al, 

2009). While the current work does not address the question of individual differences in 

adjusting exploratory strategies in response to risk and ambiguity, it is entirely possible 

that those differences exist – particularly as they relate to individual risk preferences and 

trait impulsivity scores (Niv et al., 2002; Kayser et al, 2014). When examining how 

humans are adaptively adjust their random-directed exploration strategies, both internal, 

personality-related, and external environmental demands should be taken into account.   

In our wheel task, the decision to adjust between random and directed exploration 

strategies should also depend on how people represent variance, and how they infer the 

values of the hidden slices on the ambiguous wheel. Participants were instructed in detail 

with regard to what they should expect in terms of risk and relative reward between the 

two wheels. However, it is possible that their internal model did not entirely reflect the 

instructions they received. Participants’ internal representations here were described a 
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simple model that updated values based on the means of the two wheels, but more 

complex models that also update the inferred variance could shed further light on how 

risk impacts exploration. Previous studies have suggested ways in which risk (as 

variance) might impact quantities similar to decision noise (Smith et al. 2009; Heilman et 

al. 2010). However, to date, none have taken into account ambiguity and information 

seeking in the same computations – making this a critical future line of study.  

The work presented here provides evidence on the role of two separate sources of 

uncertainty in human random and directed exploration, and suggests a possible tradeoff 

between a low-demand, efficient strategy (favouring random exploration) and more 

intensive computation of the value of exploration (favouring directed exploration), as the 

risk level in the environment increase. The current findings suggest that both risk and 

ambiguity should be taken into account when modelling exploratory behaviour, and 

future work is required to describe a more precise mechanism of how these two factors 

interact to affect exploration. 
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Chapter 4: Information and Task 

Engagement:  

Humans use Exploration as an Adaptive 

Behavioral Response to Boredom 
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Introduction 

The notion of boredom might seem straightforward and intuitive to anyone who has ever 

had to fill out taxes, wait in line at busy registers, or sit through two-hour business 

meetings. However, despite its prevalence as a human phenomenon, little is understood 

about the origin and function of boredom, or the exact mechanisms that underlie it. 

Building on earlier work that correlated boredom with cognitive demand (Pattyn et al. 

2008), task monotony and difficulty (Hill & Perkins 1985) and effort to engage with the 

environment (Harris 2000), our current work suggests that the phenomenon is best 

examined in the context of attention, information-processing and executive control. In 

line with recent efforts in cognitive psychology (Eastwood et al 2012), we frame 

boredom as a failure to engage with the environment due to insufficient motivation, both 

internal (i.e., ‘this current task is not sufficiently interesting or informative’) and external 

(i.e. ‘this task does not bring enough benefits to make it worth staying engaged in it’). 

Under this framework, some of the behavioral byproducts of boredom that are generally 

considered negative – such as the tendency to give up sooner or increased randomness in 

performance (Wallace, Vodanovich & Restino 2003, Watt & Hargis 2010), can in fact be 

adaptive. In previous chapters of this work I have shown that, when operating in an 

environment about which we do not have full and complete knowledge (as is the case 

with most real-life situations), exploring it by occasionally selecting random options can 

help us discover better strategies and often lead to more overall reward (see studies 3.1, 

3.2). Furthermore, there is ample evidence in the literature (Payne, Bettman & Luce 

1995; Kurzban et al 2013) that giving up on a task can in fact be optimal if the benefits 

we gain from it have fallen below the costs involved in doing it, including the costs 
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associated with missed opportunities to identify and/or pursue more remunerative 

options.   

Therefore, boredom with current circumstances may reflect a drive to explore the 

environment, abandoning options that have become unsatisfactory and perhaps 

discovering better options for gaining reward. This notion of an adaptive role for 

boredom has been mentioned previously in the reinforcement learning (Schmidhuber 

1997) and machine learning literatures (Simsek & Barto 2005), in studies that suggested 

that simulated agents with the capacity for becoming bored were better explorers and 

more efficient learners in complex environments. 

This chapter describes a series of experiments that tested these hypotheses in people 

(rather than artificial agents, as has been the case previously), and investigated whether 

and how boredom correlates with the amount of information extracted from the 

environment, and how it impacts people’s exploration. I also propose the first normative 

model, to date, that considers boredom-induced exploration through an information-

sampling account, and shows how quitting on a “boring” task early can in fact be 

adaptive for long-term reward.  

Experiment 4.1: Boredom and Information: People rate tasks as more boring when 

they can't acquire enough information 

The work presented in this section examined how boredom correlates with the amount of 

useful information that can be gained by continued engagement in the current task – i.e., 

the amount of available information that people can use for learning the structure of the 

environment.  
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Using change in prediction error as a marker for learning (the higher the prediction 

errors, the more there is left to learn in the environment), I found that, in line with the 

previous theory from reinforcement learning, people report higher boredom self-ratings if 

they can derive no useful information from the task, compared to lower boredom ratings 

when they are still learning and improving their performance. When our participants 

played a simple computer game in an environment in which they already knew all the 

information (so there was nothing left for them to learn), or an environment that was 

completely random (so they could not learn its structure), they reported being more 

bored. In contrast, when they played the task in an environment in which they could 

acquire useful information as they played, they were more engaged. Thus, this work 

tested and confirmed a previous theory- and simulation-based framework on the 

relationship between information/learning and boredom, showing that it does indeed hold 

true in human participants, as well.   

Methods 

Participants were asked to predict numbers generated by a virtual machine (for a similar 

design, see Nassar et al.2010). On each trial, they made their predictions by adjusting a 

vertical slider (the "prediction slider", see fig 10A) between 0 and 100 to reflect the next 

value that the virtual machine would generate. After they adjusted the slider, they pressed 

the space key to confirm their prediction, and the machine generated the number for that 

trial; after that, participants could make their prediction for the next trial. Games in the 

task consisted of thirty trials, and changes between games were signaled to the 

participants; there were twenty-four games in total, with the task lasting approximately 

one hour.   
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The critical experimental variable was the difference between the participants’ prediction 

and the actual generated number, which was referred to as the Prediction Error (PE). 

Participants were rewarded based on these prediction errors: the smaller the error (i.e., the 

closer their prediction was to the actual number), the more points they received.  

 

Figure 10: Number prediction task. A: the progression of a trial, from the onset of the 

stimuli (number generating machine – red rectangle; prediction slider: blue rectangle), 

to the participant adjusting the slider, to the machine generating the number for that trial 

(53), and the boredom slider appearing on the screen, for the participant to adjust. B. An 

example of the last screen in a trial in the Certain condition. C: Example pattern of 

prediction errors in each of the three conditions. Gaussian(top panel) – PE is reduced as 

participant advances in the game. Certain (middle panel) – PE is zero throughout the 

game. Random (bottom panel): PE remains high regardless of position in the game.  
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The machine generated numbers according to an underlying distribution, which differed 

between conditions. In the “Gaussian” condition, numbers were generated from a 

Gaussian distribution with a fixed mean and standard deviation; however, each number 

was not displayed until after the participant recorded their guess. In the “Certain” 

condition, numbers were generated from a Gaussian, and displayed on the screen before 

the participant made their response (see figure 10B). In the “Random” condition, 

numbers were generated uniformly between 0 and 100, but again not displayed until after 

the participant recorded their guess. Therefore, the underlying distribution of the number-

generating machine was such that participants had to either learn the generative process 

to gradually reduce their prediction error (in the Gaussian condition), or they were 

already told the next number and did not need to learn anything to make perfect 

predictions (the Certain condition), or the numbers were randomly generated and 

participants could not reduce their prediction error (in the Random condition). Figure 

10C shows these three PE patterns.  

The purpose of this study was to test the relationship between informativeness in a task 

(operationalized as the ability to change prediction errors by continuing to do the task) 

and boredom. Therefore, in addition to predicting the upcoming number on each trial, 

participants were also asked to self-report their level of boredom several times throughout 

a game. Every fourth trial (for a total of ten times throughout the game) they were asked 

to self-report boredom by adjusting another slider (the "boredom slider") at the bottom of 

the screen (figure 10A). 
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Results 

As predicted, the “Certain” condition elicited the highest boredom average overall ratings 

in all participants (𝑀𝐶𝑒𝑟𝑡𝑎𝑖𝑛 = 80.39, 𝑀𝑅𝑎𝑛𝑑𝑜𝑚 = 63.14, 𝑀𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 41.27, repeated 

measures ANOVA, F(2, 60) = 5.03 , p = 0.01). The ratings for the Certain condition were 

also consistently higher than for the Gaussian and Random conditions in both early trials 

(first six games) versus late trials (last six games), as shown in figure 11B, and for the 

average ratings within a game. The Gaussian condition, by contrast, was consistently 

rated as the least boring; the Random condition was rated in-between the other two, 

though this effect did not reach significance.  

There was also a significant observed main effect of time on boredom ratings: for all 

three conditions, later ratings were significantly higher than earlier ratings, both within a 

game , and across the entire session in early versus late trials (figures 11A and 11B, two-

way repeated measures ANOVA, F(2,18) = 13.39 , p < 0.01).  

Absolute prediction errors were computed for each game (as the absolute value of the 

difference in participants’ prediction from the number generated on each trial) and the 

average change in prediction error in a game was computed the average difference 

between PEs on consecutive trials. These values were then binned for changes in PE, and 

the average boredom ratings corresponding to those games were calculated (regardless of 

which condition those games were in – although, as explained in the methods, the 

participants were only able to significantly reduce their PE in the Gaussian condition). As 

shown in figure 11C, there was a significant negative correlation between the change in 

prediction error and the boredom ratings (𝑅2 = 0.58, 𝑝 = 0.004)  
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Figure 11 

Discussion 

The current experiment showed evidence that the ability to change prediction error in a 

learning task correlates with boredom. This correlation was first suggested in theoretical 

reinforcement learning work by Schmidhuber (1997), and later tested in artificial 

multidimensional environments with boredom-capable learning agents (Barto & Simsek 

2005; Simsek & Barto 2006). To our knowledge, however, this is the first demonstration 

of such a correlation in human data, with a direct operationalization of boredom as 

people’s self-ratings.  

Figure 11: A: Average boredom ratings 

across trials within a game, for the 

Gaussian (red), Random (black) and 

Certain (blue) conditions. B: Average 

boredom ratings for early (first six) 

versus late (last six) games. C. Average 

game ratings of boredom inversely 

correlate with average change in 

prediction error within a game. Error 

bars: SEM 
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Our results suggest that the amount of information that can be learned from a task is 

linked to how boring the task is perceived: the Certain condition – i.e., the one in which 

there was no useful information to be learned by performing the task, because all the 

information was already given to participants – elicited the highest boredom ratings 

(figure 11), while the Gaussian condition, in which it was possible to improve predictions 

by learning the underlying number-generating distribution, was rated as the least boring. 

This is consistent with previous theories on ‘too much or too little information’ causing 

suboptimal levels of arousal (Csikszentmihalyi 1990; de Rijk, Schreurs & Bensing 1999), 

as well as with the notion of “desirable difficulty” – i.e., the notion that there a certain 

amount of effortful information-processing actually helps learning (Bjork, 1994; 

Richland et al. 2005). It was shown here that giving participants all available information 

and removing the need for them to learn anything lead to high boredom. that we  

The ratings in the Random condition started out closer to the Gaussian ratings (as can be 

seen in the average within-game ratings, fig 11A), but ended close to the Certain ratings. 

This is likely due to the fact that it took several trials for participants to acquire enough 

evidence to learn that the numbers were being generated randomly. Accordingly, the shift 

in boredom ratings within Random games from lower to higher about half-way through is 

consistent with the theory that too little information is as likely to elicit boredom as too 

much information , since the participants end the Random games reporting similar levels 

or boredom as in the Certain games. However, they reach those levels of boredom only 

after acquiring sufficient experience to confirm the distribution of numbers is random and 

that new trials hold no useful information that could help reduce their prediction errors. 
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It should be noted here that while the current task design makes similar predictions for 

participants’ boredom in the Random and Certain conditions, the former might require 

more “effort” – in terms of the cognitive demands of forming a representation of the 

underlying number distribution. It is likely that if that type of effort alone were aversive 

enough to elicit the high boredom ratings in the Random condition (rather than the lack 

of informativeness), the ratings in the Gaussian condition might also be higher – since 

participants also need to engage similar cognitive processes to learn the Gaussian 

distribution. However, it is difficult to quantify how the subjective effort of representing 

a random distribution compares to the effort of representing a Gaussian distribution. 

Furthermore, studies have suggested that people might in fact seek out more effortful 

tasks if it means avoiding idleness (Hsee, Yang & Wang, 2010, Navarro & Osiurak 

2015). In addition to that, the Certain condition entails a different type of effort, related to 

increased control demands of staying on task (Kurzban et al. 2013). This design does not 

permit an in-depth analysis of the different types of “effort” involved in this kind of 

learning task, and further work is needed to investigate exactly how effort interacts with 

the informativeness to elicit boredom.  

Interestingly, not only did participants rate the Certain condition as the most boring, but 

they also tended to find it aversive: post-task briefings included frequent comments on 

the dislike they felt as soon as they started a new game and realized it was a Certain 

game. This is consistent with Schmidhuber’s model that assumed a penalty for the 

inability to acquire new useful information, as well as with previous qualitative boredom 

models (Hill & Perkins 1985) that more frequently predict high aversion to contexts in 

which too much is known, rather than too little. It should be noted here that the latter half 
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of the Gaussian games was very similar to the Certain games in nature: by then, 

participants had obtained enough data to make a strong guess about the mean of the 

underlying number distribution, and they no longer adjusted their predictions by much. 

Thus, their change in PE resembled the Certain condition – yet their average ratings late 

in the game were still lower than the late-game ratings for the Certain condition. The 

most likely explanation for this is an anchoring effect, as the task design of incrementally 

adjusting the slider to reflect their boredom ratings probably prevented participants from 

making disproportionately large adjustments in the later trials of the Gaussian games. 

Finally, in addition to a significant effect of informativeness on boredom ratings, there 

was also a notable effect of time: within a game, average ratings increased from the first 

trials to the last trials, and across the entire session, later games were rated as 

significantly more boring than early games. Therefore, the longer participants spent 

playing the task, the more boring it became. This type of effect has been observed in 

many other experimental contexts (London & Monello 1974; Damrad-Frye & Laird 

1989), and most probably reflects novelty – that is, informativeness at the level of the 

task itself – as well as informativeness on a trial-to-trial basis, both of which diminish 

with the passage of time. It is, however, interesting to note that the effect of time seemed 

similar in all there conditions (the two-way repeated-measures ANOVA in figure 11A 

revealed no interaction). This suggests that this component of boredom-related effects 

may reflect primarily task-level effects, or other time-on-task effects (such as fatigue, or 

perhaps an increased perceived opportunity cost of staying with the task, as suggested 

previously by Kurzban et al. 2013; Bench & Lench 2013), above and beyond effects of 

information related to the individual trials of the task.  
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In summary, this study provided empirical evidence that participants’ self-reported 

boredom ratings are closely related to the possibility for information acquisition in their 

current task, an effect that is consistent with previous theoretical work suggesting that too 

much or too little information can be associated with an increased perception of boredom. 

However, the current task design did not include an explicit exploration component – 

while people could show some degree of “exploration” by, for instance, making 

inaccurate predictions in the Certain condition (the increased error rate in that condition 

is consistent with existing theories of boredom and vigilance/fatigue – see Patyn et al., 

2008), they could not truly switch away from their boring contexts by exploration. Study 

4.2 used a slightly modified design of the number prediction task to allow such 

exploration, and investigate whether low-information conditions that showed an effect on 

boredom perceptions here also influence participants’ exploratory behavior.   

Experiment 4.2: Boredom and Exploration: People are willing to take an income 

penalty to switch away from boring contexts 

This experiment further examined the extent of this increase in exploratory behavior in 

response to boredom. Using the same three information conditions that elicited 

differential boredom levels in participants in Study 4.1, I modified the number-prediction 

in order to allow participants to determine, on their own, whether they wished to persist 

in the task or change the task conditions.  This afforded a more direct examination of the 

relationship between informativeness and exploration, which could then be related to 

boredom by comparing the findings with those of Experiment 4.1. Results showed that 

the information-poor conditions, even when they were rich in reward, did not 
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successfully engage participants. This suggests that task informativeness might play a 

role in the value computations that drive exploration.  

Methods 

Participants played a variant of the number-prediction task presented in Study 4.1. Just as 

in the previous version, each trial required them to adjust a vertical slider between 0 and 

100 to predict the next number that would come up on the screen. The closer their 

prediction was to the actual number generated by the virtual machine, the more points 

they received. Also similarly to Study 4.1, the number generating process within a game 

stayed constant. However, unlike in our previous study, the games here did not have a 

fixed length. Rather, participants were told that a game could go on for up to one hundred 

trials, but they could choose to end it earlier and move on to a new game at any time by 

pressing the “reset” button to the right of the screen (figure 12). If they pressed the 

“reset” button, they would see a brief inter-game screen, and then start a new game with a 

new number-generating process. Participants were informed that the task would take 

approximately fifty minutes, regardless of how many games they went through in that 

period: the task finished at the end of the first game after the fifty-minute time period was 

up.  



 

88 
 

 

Figure 12 

There was no boredom slider as in Experiment 4.1, since the aim of this experiment was 

to measure exploration in the same three conditions in which our previous experiment 

had already found different boredom levels.  In all other respects, the task was the same 

as in Experiment 4.1: the “Gaussian” condition, the numbers were drawn from a 

Gaussian distribution with a fixed mean and standard deviation; in the “Random” 

condition, they were drawn from a uniform distribution; and in the “Certain” condition, 

they were again drawn from a Gaussian, but the upcoming number was displayed on the 

screen before each trial (see fig 10B). After a game ended (because the participant 

pressed the “Reset” button, or after 100 trials), the next game would be drawn from any 

of the three conditions, with equal probability.  

Results 

No participants chose to stay in any game for the entire duration of one hundred trials; all 

pressed the “reset” button to move on to a new game well before the total number of 

Figure 12: Experimental design, a 

variant of the number prediction 

task in Study 4.1. Participants had 

to predict the number that would 

appear inside the red rectangle on 

each trial. They used the mouse to 

drag the vertical blue slider on the 

left and make their predictions. At 

any point during a game, they could 

press the green RESET button on 

the right, to end the current game 

and move on to a new one.  
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possible trials in the current game had elapsed. There was a significant difference, 

however, in the average number of trials spent in a game before choosing to switch: most 

participants spent significantly longer on games in the Gaussian condition than in either 

of the other two conditions (repeated measures ANOVA, F(2,69) = 7.04, p < 0.01; fig 

13A). There was no significant difference on games in the Certain condition versus in the 

Random condition (paired t-test, t(23) = -1.29, p = 0.206). However, as shown in fig 13C, 

the probability of switching away after the first trial of a new game was significantly 

higher for the Certain games than either of the other two conditions (F(2,69)=9.22, 

p<0.01); as expected, the values for Random and Certain were statistically 

indistinguishable (t(23) = 0.11, p = 0.91).  

 

Figure 13: A. Average trial spent in game, in each of the three information conditions. B. 

Fit logistic probability of switching away from a game as a function of the trial in game. 

C. Probability of switching away after the first trial.  
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Finally, participants were more likely to want to switch away from all types of games 

later in the experiment than earlier: as shown in figure 13B, the average in-game stay was 

shorter for the last ten games than for the first ten games.  

Discussion 

The results of this experiment suggest that boredom carries a “penalty” – participants 

playing a number-prediction task similar to Study 4.1 were willing to take a point loss in 

order to quit boring games early, even though that strategy was not optimal. This is 

because performance was necessarily (and obviously) highest in the Certain condition, in 

which participants were told the answer on every trial.  Thus, the optimal strategy would 

have been to stay in the high-reward, Certain games until the end, and always switch 

away from the Gaussian and Random games until finding another Certain game. 

However, none of the participants showed that pattern of behavior, choosing instead to 

switch away from Certain games more frequently than from the other two conditions.  

Note that it was also optimal to quit Random games early: the information-sampling 

opportunities were almost as sparse as in the Certain condition, and since reward was 

proportional to the accuracy of the predictions, this was at the same time a low-reward 

and a high-boredom condition. As discussed in Study 4.1, participants’ willingness to 

stay for any amount of time in the Random games was likely due to the fact that they 

needed a few trials (i.e. data points) to confirm that they were indeed playing a Random 

game. Nevertheless, they switched away from Random games significantly sooner than 

from Gaussian games, around the same number of trials as from Certain games. The fact 

that participants showed similar patterns for the low-reward, high-boredom Random 

condition as for the high-reward, high-boredom Certain condition strongly suggests that 
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they were taking into account more than just the extrinsic reward (i.e. the number of 

points which ultimately translated to payment) when making their decisions.  

It is possible that participants’ would have been more likely behave in a reward-optimal 

manner if, instead of being told that they had to perform the task for a fixed time 

duration, they had been given a fixed number of trials, or a fixed number of games, on 

which to get as much reward as possible. This is suggested by observations that 

compelling people to do monotonous tasks for fixed periods of time without the option to 

quit leads to more errors (Patyn et al 2008).  It is also not clear, from this experiment 

alone, just how much they would have willing to give up to avoid boredom.  It is possible 

that the amount of reward they sacrificed in this task by switching away from the Certain 

games was not sufficiently high (as it amounted to approximately $1 - $2) to motivate 

them to submit to the boredom associated with the Certain trials for longer. However, 

pilot data suggests that even higher amounts of reward cannot fully compensate for the 

effects for boredom – we offered participants as much as $40 – about three times the 

normal amount – to do a boring, monotonous vigilance task that offered no useful 

information, and they still quit much earlier than optimal from a purely reward-based 

point of view. 

There are many observed instances of seemingly suboptimal behavior, in which humans 

and animals forego local maximization but are actually using a strategy that maximizes 

long-term reward (Krebs, Kacelnik & Taylor 1978; Stevyers Lee & Wagenmakers 2009). 

While under the current task design, quitting early in the Certain condition was not in fact 

optimal either locally or globally, the conditions used here were the same conditions that 

elicited a U-shaped curve of boredom ratings in Experiment 4.1, and quitting times 
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mirrored that curve. It is therefore possible that a sustained experience of boredom in the 

task overall caused participants to penalize even the high-reward conditions, leading them 

to suboptimal exploratory choices.   

In summary, Experiments 4.1 and 4.2 used a number prediction task to manipulate the 

degree of informativeness in different task conditions, and observe its effect on humans’ 

self-reported boredom (4.1) and exploratory behavior (4.2). Participants reported greater 

boredom in contexts that were less informative (4.1) and were willing to sacrifice 

monetary value to avoid those contexts. Other studies have suggested that boredom 

emerges not only as a consequence of the properties of the current task (such as 

informativeness, as tested here), but also as a consequence of the overall environment in 

which the individual performs the task. This interplay between local task structure and 

global environment structure is particularly relevant when examining how boredom 

might signal a decision-maker to switch from a current task to exploring the environment. 

The next section discusses an experiment examining the idea that boredom serves as a 

form of opportunity cost signal that weighs the current task against other available 

options. 

Experiment 4.3. Boredom and Opportunity Cost: People rate tasks as more boring, 

and show more exploration, when there are more interesting tasks available 

The notion that motivation and task engagement patterns can emerge from global 

properties of the environment (rather than the local task currently being performed) 

precedes the work in human cognitive boredom. As early as 1954, Fowler discusses “the 

facilitating effect of irrelevant sources of drive on exploratory behavior” in rats, 
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suggesting that the very awareness of diverse stimuli in the environment (even if those 

stimuli are not actually available for engagement) can prompt more switching between 

the available options and earlier leaving times when new options are made accessible. 

Motivation theories have also suggested the notion of an “optimal arousal” level, which 

organisms strive to achieve by balancing their engagement with various sources of 

arousal in the environment (Csikzentymihalyi 1990; Aston-Jones & Cohen 2005).  

More recently, Kurzban et al (2013), building on previous literature on motivation, 

proposed that the subjective experience of boredom results from a computation of 

opportunity cost. Under their theoretical framework, boredom could be a signal that 

maintaining attention on the current task is becoming increasingly effortful and 

unrewarding compared to other options in the environment. This idea of a cost/benefit 

analysis underlying motivation and boredom has also been suggested in other work 

(Larrick, Nisbett & Morgan 1993; Eastwood et al. 2012). However, given that the interest 

in quantitative, cognitive accounts of boredom has only recently gained momentum, this 

ideas has not yet been systematically examined in humans.  

The current experiment tested whether it was possible to change people’s perceptions of 

the “interestingness” of a task by manipulating the availability of other more or less 

attractive options in the environment. Results suggested that not only do people rate the 

same task differently based on their other available options, but while they are 

performing the task, their exploration levels are significantly higher when they are more 

bored.   
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Methods 

Participants 

40 participants recruited from the Princeton University undergraduate community gave 

informed consent and received course credit for participating in this experiment. Study 

materials and procedures were approved by the Princeton University Institutional Review 

Board 

Procedure 

Participants played a task that consisted of two parts (referred to as part A and part B, 

figure 14), played in order. They were told at the beginning of the experiment about both 

parts, and what each part would entail. They were also regularly reminded about part B 

while playing part A (they received three reminders, every five minutes, for the twenty-

minute duration of part A).  

All participants played the same task for part A: the two-armed bandit task described in 

Study 3.1 (figure 5A, chapter 3). They played seventy-two games of either horizon 1 (a 

total of five trials: four forced-choice trials, one free trial) or horizon 6 (a total of ten 

trials, four force-choice, six free trials), and were instructed to choose between the two 

options so as to maximize their score. Every few games, participants received a query 

screen that asked them to assess task-related factors such as difficulty, estimating the 

average number of points they received and other measures (see Appendix for the full list 

of questions). Among these questions, there were regular queries about their level of 

interest in the game, which they were asked to rate a total of six times while playing the 

bandit task (part A).   
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Part B differed between participants, and for each involved one of a set of tasks that had 

been previously rated as more or less interesting by a different sample of participants in a 

brief task-rating study. As noted above, participants were instructed from the start that 

they would be performing this second part after part A of the experiment was finished, 

and were reminded about it three times during part A. Each participant was assigned to 

one of four conditions, each of which involved a different task to perform during part B. 

10 participants watched “CrashCourse” YouTube video (previously rated as a highly 

interesting task); 10 participants counted the number of words in a two-page 

mathematical typography article (a task previously rated as highly boring); 11 

participants played a simple color-matching game (previously rated at medium levels of 

interestingness), and 9 participants played another round of a bandit task very similar to 

the one played in part A. Figure 14 shows the four possible conditions.  

 

Figure 14: Experimental paradigm for the opportunity cost study. Participants performed 

the bandit task (task A) for approximately 20 minutes. They had a break of ~1 minute, 

then performed a second task (B) which could be one of four options.  

At the end of both parts A and B, participants received a brief questionnaire that included 

the Boredom Proneness Scale (BPS, Farmer & Sundberg 1986), for a measure of their 

trait boredom proneness. For the full list of questions in the scale, see Appendix.  
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Results 

The ratings for the bandit task in part A, which all participants played for the first twenty 

minutes of the experiment, were significantly different between conditions. Depending on 

whether the task for part B was one rated as highly interesting (the YouTube video), 

highly boring (the word-counting task), or something in-between, participants rated the 

interestingness of the bandit task differently. A one-way ANOVA showed a significant 

main effect of condition (not including the control condition,  F(2,26) = 9.07 , p < 0.01 ), 

with participants who performed the bandit task before watching the video rating it as 

more boring than those participants who performed the task before counting the words in 

the mathematical typography article (paired t-test, t(1,15) = 5.21, p < 0.01). The ratings 

for the simple color game condition, as well the control, fell in the middle range (fig 

15C).  

Exploration in the bandit task was defined as in Study 3.1 – choosing the ambiguous 

bandit. Participants here replicated the results from studies 3.1 and 3.2 regarding the 

impact of decision horizon on overall exploration: figure 4a shows that the decision curve 

for the long horizon (red) is flatter and shifted to the right compared to the curve for the 

short horizon (black), which suggests higher exploration for the long horizon, both in the 

form of decision noise and of information bonus.  

Looking at the average exploration within the task revealed a significant correlation 

between the participants’ ratings of the task and amount of exploration: the higher the 

boredom rating, the more likely participants were to explore (figure 15D). This pattern 

was only observed in the long decision horizon, and not in the short horizon (F (1,33) = 

6.01, p = 0.02 for Horizon 6, F(1,33) = 1.88, p = 0.17 for Horizon 1), and it was observed 
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for both fit decision noise and the fit information bonus (which were both significantly 

higher in the long horizon with high boredom ratings, fig 15C).  

 

 

Figure 15: More exploration in long horizon (A). Higher boredom (per participant) 

correlated with higher exploration (B, D). Interestingness ratings of bandit task differ 

depending on second task (C). Error bars: SEM.  

 

Discussion 

The results of Experiment 4.3 indicate that it was possible to manipulate participants’ 

perceptions of the interestingness of the bandit task based solely on the context in which 

they were given the task. All participants played the same task for the same period of 

time, but those participants who had been told that after finishing the bandit task they 



 

98 
 

would watch a YouTube video rated it as significantly more boring than those who had 

been told that they would have to count the words in an article. This is consistent with 

previous findings regarding the effect of increased available stimulation on relative 

motivation (Fowler 1954), as well as the theoretical framework proposed recently by 

Kurzban et al (2013) that links the perception of boredom with opportunity cost.  

A second important result was the strong correlation between participants’ boredom and 

their exploratory behavior in the two-armed bandit horizon task: participants who rated 

the bandit task as more boring also showed significantly higher exploration of the 

ambiguous bandit (fig 15D). Increased exploration in response to a boring situation has 

previously been suggested in the literature (Fowler 1954; Litman & Spielberger 2003; 

Cohen, McClure & Yu 2007), but this is the first report of a correlation between a 

quantitative operationalization of boredom (as self-reported ratings) and a measure of 

exploration.  

Interestingly, the association between exploration and boredom was only observed in the 

long horizon condition (horizon 6). As discussed in chapter 3, the value of information 

acquired from directed exploration can only be optimally used in the long horizon 

condition (Wilson et al. 2014). Therefore, the fact that the correlation between boredom 

and exploration was only observed in horizon 6 suggests that this condition engaged a 

potentially adaptive, information-sampling-based mechanism that maybe have driven the 

increase in exploration as a consequence of higher perceived boredom.  

Experiment 4.1 provided evidence that the perception of boredom is related to 

informativeness in the task, operationalized as the utility of information acquired on each 
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new trial. Experiment 4.2 showed that the low-information contexts (such as the Certain 

and Random conditions), in addition to eliciting higher perceived boredom in 

participants, also elicited higher exploration. Experiment 4.3 suggested that the wider 

context of the situation in which the task is performed may also play a role (i.e., what else 

there is to do beyond the current task), and again showed that humans explore more in 

high-boredom situations. In the section that follows, I described a model that formalizes 

boredom in terms of an information-sampling process, and accounts for switching away 

from boring conditions (exploration) as a potentially adaptive response.  

4.4. An Information-Sampling Model of Boredom and Exploration 

The work described so far in this chapter established three important findings relating to 

task disengagement and subsequent exploration in the context of information sampling. 

First, I showed that humans’ levels of reported boredom correlate in a non-monotonic 

fashion with the amount of useful information they can extract from the environment 

(Experiment 4.1), such that when there is too much, or too little available information, 

they become more bored. Secondly, I showed that human’s perception of how boring a 

particular task is can be modulated based on what else is available in the environment 

while they are performing that task (Experiment 4.3). This strongly suggests that when 

people compute the value of staying with the current action, they take into account some 

measure of relative value between the local and global environments. Furthermore, I also 

showed that when boredom levels are high (due to low information content), people show 

more exploratory behavior and switching away from the current task – both in situations 

when that behavior is useful (Experiment 4.3.), and even when it is suboptimal 

(Experiment 4.2).  
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Some of these findings have previously been suggested in theoretical work in 

reinforcement learning, machine learning, and psychology (Schmidthuber 1997; Barto & 

Simsek 2004; Simsek & Barto 2005; Kurzban et al. 2013). However, to date, they have 

not been incorporated into a single integrated model that provides a unified, quantitative 

account for all the observed phenomena. Previous cognitive models of boredom are either 

entirely theoretical (Eastwood et al. 2012; Kurzban et al.2013), or they rely on qualitative 

predictions and unsystematic operationalization of boredom (Hill & Perkins 1985; 

Perkins & Hill 1986). This section, building on our experimental data and theoretical 

support from the machine learning and optimal foraging literatures, proposes a simple 

model that normatively accounts for how people’s observed task disengagement patterns, 

and subsequent increased exploration, can emerge as adaptive responses to certain types 

of information structures in the environment.  

Model Assumptions 

As some of the basics of this model were rooted in optimal foraging work, the model was 

envisioned to operate in an environment consisting of local reward patches that offered 

different reward rates, with the model agent free to either stay within a patch to reap 

reward (exploit), or switch away to search for other patches (explore). This structure 

resembled foraging environments (Charnov 1976; Pyke 1984; Kacelnik & Brunner 

2002), and therefore also lent itself easily to the use of dynamic programming and Gittins 

indices to calculate optimal policies for when the agent should switch away from a 

current patch (Gittins 1979).  
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The structure of each patch mirrored the experimental structure in studies 4.1 and 4.3, i.e. 

a stochastic environment in which the agent could earn rewards by making accurate 

predictions. In this framework (just as in the two number-prediction task studies), each 

patch had a hidden distribution with mean 𝜇𝑖 and standard deviation 𝜎𝑖. On each time 

step spent inside the patch, the agent had to make a prediction relating to this distribution. 

The agent’s reward 𝑟𝑖 was proportional to the accuracy of the prediction (for a similar 

task design, see Nassar et al.’s (2010) “estimation task”), according to 

𝑟𝑡,𝑖 = 𝜌 − 𝑃𝐸𝑡,                                                                              (1) 

where ρ represented the maximum amount of reward that an agent could earn (if its 

predictions were fully accurate), and 𝑃𝐸𝑡 represented the prediction error, computed as 

the difference between the agent’s prediction Pr and the actual number generated in the 

patch on time step t:  

𝑃𝐸𝑡 = 𝑃𝑟𝑡 − 𝑁(𝜇𝑖, 𝜎𝑖)                                                                     (2) 

Thus, the longer an agent spent in a patch, the better it could estimate the underlying 

patch distribution (as it experienced more data points from that distribution), and the 

more accurate its predictions could become. This marks an important difference to most 

foraging environments, as under our assumptions the patch actually became more 

rewarding with the passage of time, rather than depleting. In this way, the environment 

resembles a learning task more than a foraging one, and is closer to the reinforcement-

learning framework in which repeated trials in the same environment lead to increased 

performance (Sutton & Barto 1998).  
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An agent could spend as long as it wanted exploiting a patch, but each patch had a fixed 

chance of termination λ, meaning that on every time step the patch would end with 

probability λ, and continue with probability (1 – λ).   

One essential assumption of our model is that all local patches were connected under a 

higher-level, global structure. In other words, the underlying patch distribution 

parameters 𝜇𝑖 and 𝜎𝑖 came from a global distribution with a (fixed) grand mean 𝑀 and 

standard deviation 𝑆. This is a property of many real-life environments, in which humans 

sequentially sampling different “patches” learn about the local structure while 

simultaneously learning about an overarching global structure (Diuk et al 2013). For 

instance, when going apple-picking, we learn about the quality and availability of fruit in 

each individual tree we choose to pick from (so we could choose to move from a smaller, 

poorer tree to a better one), but at the same time we are also learning about the overall 

qualities of the orchard, so next time we go apple-picking me might choose an altogether 

different orchard.  

A more practical example, which reflects our model assumptions even more faithfully, is 

job training procedure after starting a new job. Many companies have started requiring 

their employees to rotate teams and responsibilities for a long training period after being 

hired; under this procedure, an employee has the chance to learn information about each 

different position he or she tries out, and the longer they spend in a position, the better 

(presumably) they become at it, and their returns increase while their need for learning 

about that position decreases. Sometimes, an employee might choose to switch out of a 

position early, if they feel that they are stagnating and no longer challenged, and move to 

a new project with new challenges. At the same time, while they are experiencing each 
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individual position, they are also simultaneously learning global information about the 

company culture, its goals, its management etc., and thus become better about knowing 

what to expect in their next position within the company.  

This was exactly the type of framework our present model assumed. Exploiting a local 

patch obtained increasing local reward (fig. 16A), but exploring many local patches helps 

the agent learn the global structure faster. There was also a global reward R associated 

with learning the global mean M. Depending on goals, therefore, it could be optimal to 

quit a local patch before its ending time (even though it was yielding a high reward) and 

move on to a lower-reward patch that contained better information about the global mean. 

This strategy resembles the idea of “early stopping” or “optimal stopping” in neural 

network training (Sarle, 1995; Prechelt, 1998): when there is a danger of overfitting, 

which would impair generalization, it is best to keep track of how much each new data 

point contributes to generalization error, and stop training (even if that means not making 

full use of the available training set) when the new data points start hurting generalization 

instead of helping.  

Our model tracked several quantities of interest as an agent exploited a patch with the 

above structure. First, at each time step it computed an estimate of the local mean for 

patch i at time t, 𝜇𝑖,𝑡, as the average of all data points 𝑥𝑖,𝑡 observed in that patch up to the 

current time: 

𝜇𝑖,𝑡 =  
∑ 𝑥𝑖,𝑡𝑡

𝑛
                                                                (3) 

which can also be written in terms of the prediction error PE and a learning rate of 1/n, as  
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𝜇𝑖,𝑡 =  𝜇𝑖,𝑡−1 +
1

𝑛
∗ 𝑃𝐸𝑡                                                                (4) 

(Given the structure of the task, the optimal prediction at any time step was the current 

estimate of the mean, 𝜇𝑖,𝑡 , and our model assumed that the agent would always predict 

that mean) 

In addition to tracking the mean estimate for the patch, the model also tracked a variance 

estimate of the local patch,  

𝜎𝑖,𝑡
2 = 𝜎𝑖,𝑡−1

2 +
1

𝑛
(

(𝑛−1)∗𝑃𝐸2

𝑛
− 𝜎𝑖,𝑡−1

2 )                                                     (5) 

which allowed computation of how informative each new data point was, in terms of how 

much it could reduce variance about the local patch. As the above equation shows, the 

informativeness of each new data point decreased proportionally to 1/n (see fig 16b).  

The model also tracked an estimate of the global mean and variance 𝑀 and 𝑆, in terms of 

the history of visited patches. Each final mean estimate, 𝜇𝑖, for the distribution within a 

patch served as an additional data point for inferring the grand mean 𝑀 , in the same way 

that each within-patch data point served to estimate 𝜇𝑖 (and the variance of the global 

distribution was similarly computed using the 𝜇𝑖 values).  

Crucially, the model assumed that upon first entering a new patch, the initial prediction 

regarding the distribution of that patch (essentially, the prior, before any data points from 

that patch were observed) was set to the current estimate of the global mean M. This 

provided a way to quantify the value of information in each patch, in terms of expected 

reward, as the estimated improvement in initial predictions on future patches. That is, the 

better the estimate of the global mean, the better the agent could do, on average, when 
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entering a new patch.  This is because the mean for each patch was drawn from a 

distribution centered on the global mean, and thus the optimal initial guess (prior) for a 

given patch was the global mean.  Thus, at each time step t, the value of acquiring one 

extra data point in the current patch i could be estimated in terms of how much it 

improved future predictions (i.e. how much closer it moved them to M), relative to how 

much sampling a new patch would improve future predictions; that is: 

𝑉𝑖,𝑡 =
1

𝑁(𝑛−1)
∗ 𝑃𝐸𝑖,𝑡 −

1

𝑁−1
∗ 𝑃𝐸𝑖+1,𝑡                                                     (6) 

where N was the current number of patches exploited so far, n the current data points 

observed in the current patch, 𝑃𝐸𝑖,𝑡 the next estimated prediction error within the current 

patch, and 𝑃𝐸𝑖+1,𝑡 the next estimated prediction error assuming that the agent explored a 

new patch.   

This relative value between staying (exploiting) and switching (exploring) depended 

therefore on the current position within the game (n), the current position within the patch 

(N), and the two variance estimates for the patch mean ( 𝜎2) and the global mean ( 𝑆2), 

as those variance estimates were used to compute the two prediction errors of interest in 

the above equation. Given a fixed number of available patches, the assumption that the 

agent could not return to a patch once it switched away, and values for the rewards ρ, R 

and the termination probability λ, our model used dynamic programming to compute the 

value of the two possible actions – staying and switching – at each time point in the 

game, based on the states defined by the four quantities: n, N,  𝜎2, and  𝑆2. 
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Results 

Figure 16 shows our model results. Compared to an agent that exhausts all available trials 

in a patch, our “information-sensitive” agent that leaves a patch depending on the relative 

informativeness of an extra data point within the patch versus a data point in a new patch 

showed faster learning of the global mean (i.e., learned it in a shorter number of trials, 

figure 16C). Under certain model parameters (see appendix for details on parameter 

calibration), it also earned higher overall reward, and it most cases it at least matched if 

not surpassed the average reward rate of a foraging model that only took into account 

reward (fig. 16D).  

In addition to leading to faster learning of the global environment structure, taking into 

account the relative value of information had another adaptive consequence, in the form 

of faster change detection in variable environments. Figure 16E shows that, in 

environments with a non-zero hazard rate, our model was able to detect and adjust to 

changes in distribution parameters faster than the model that did not take into account 

information. (This effect was mitigated at very high hazard rates, which translated into 

almost random environments – in those cases, learning was nearly impossible given that 

distribution parameters changed on almost every trial.) Furthermore, in non-stationary 

environments, our model also earned higher average reward (fig. 16F).  
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Figure 16: Information-sensitive model tracks reward-relevant information content of 

current action, relative to global available information content. Poor information content 

bias it toward switching away (exploration). A: Reward in a patch increased with time 

spent in that patch. B. Informativeness of each new data point decreased with time spent 

in patch. C, D: Simulations showed that quitting patches earlier caused model to learn 

global mean faster (C, red line) and earn higher reward rate (D) than a model that 

exhaustively exploited increasing patch reward. Dotted blue line in C represents global 

mean. The simulation included 10 runs, of 100 patches with a maximum of 100 trials 

within a patch. Error bars: SEM. E, F: Model is also capable of faster change detection 

if hazard rate is non-zero.  
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When looking at model predictions for the optimal time to switch away from a patch, as a 

function of both mean estimated variance of the global mean and, and as a function of 

time in game (though the two measures are somewhat correlated), the model predicted 

longer dwell times later in the game, when the uncertainty about the global mean had 

been significantly reduced.  

Discussion 

The model proposed in this section represents a first normative account for some of the 

phenomenology associated with boredom in a cognitive framework. Specifically, it 

provided a potential explanation for why boredom levels (defined as task disengagement 

and the increased desire to switch away) could be influenced by the quality of the 

information content of the current task (as suggested in Studies 4.1 and 4.2), as well as by 

a relative computation of the benefits of the local versus the global environments (Study 

4.3). It also offered an account of why exploration could arise as an adaptive response to 

decreased informativeness of the current action (as shown in Studies 4.2 and 4.3).   

This model assumed that when learning to choose between different reward alternatives, 

agents should take into account the value of information gained from staying with the 

current options, relative to the average value of switching away to explore other options. 

The tradeoff in this framework stemmed from the comparison of how much reward could 

be generated locally in the patch, compared to how much future reward could be 

generated by getting more information about other patches. Exploiting a patch until it was 

terminated would result in rich local reward – however, given the finite-time assumption 

of the model, choosing to maximize locally could actually result in a lower global reward 
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due to failing to learn the global mean. Depending on the model parameters, the optimal 

strategy would instead dictate earlier quitting times for early patches (i.e. for the patches 

that are most informative to learning the global mean), and progressively later quitting 

times as the variance estimate around the global mean decreases.  

This formulation closely parallels the marginal value theorem (MVT; Charnov, 1976) 

developed in the context of optimal foraging theory. However, our model considers 

information instead of reward. Under our set of assumptions, information can in fact gain 

value, if looked at in terms of its usefulness for gaining future reward (an idea also 

discussed at length in chapter 3).  Model results here showed that quitting a current high-

reward but low-information patch can in fact still lead to higher overall reward than 

staying in the uninformative patch; this, however, is highly dependent on the environment 

structure (such as, the number of available time-steps, as well as the difficulty of the 

learning problem) and on how well the agent has learned the environment. Primarily, 

these findings apply to the pre-asymptotic portion of the learning process, when gaining 

information from exploring patches can contribute to forming better representations of 

the environment and ultimately to better strategies for gaining reward. (However, given 

the complexity and breadth of learning processes in the real world, there are sufficiently 

many scenarios in which humans must deal with pre-asymptotic learning for prolonged 

periods of time, that the relevance of this theoretical model for real-world scenarios does 

not suffer.)  

The current model explained boredom and exploration from an information-sampling 

perspective. This is consistent with previous theories, and it qualitatively captures the 

general direction of results from our first three studies investigating the link between 
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boredom and exploration. However, none of the previous studies presented in this section 

followed the assumptions of this basic model, and therefore the model cannot make 

predictions for those participants’ behavior. The last section of this chapter discusses an 

experimental design with all the assumptions from this model, and shows that 

participants’ data qualitatively matches model predictions.  

Experiment 4.5 Boredom as an Adaptive Mechanism for Exploration 

The following experiment was designed to test model predictions from the model 

outlined in section 4.4. The main prediction from the model, given the task structure 

presented to the subjects, was that they would quit high-reward, low-information patches 

early when the value of gaining information from new patches was higher (i.e., near the 

beginning of the task, when they had not learned much about the global environment 

structure), but spend longer and longer in patches as the usefulness of new information 

decreased.   

Methods 

Participants 

20 participants were recruited from the Princeton community. They gave informed 

consent, and were compensated for their time at a rate of $12/hour, plus a bonus of up to 

$5 for better performance. Experiment design and materials were approved by the 

Princeton IRB.  

Procedure 

Participants played a game in which they controlled a virtual archer that made his way 

through enemy territory toward a castle (fig 17, below). The underlying structure of this 
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task was similar to the number-prediction tasks in Studies 4.1 and 4.2, but it reflected the 

properties of the environment prescribed by the model in section 4.4. The archer’s 

ultimate goal was to defeat an “evil overlord”, and it would learn to do so by first facing 

several waves of the overlord’s “minions” on the way to the castle. The way to defeat the 

overlord (and the minions) was to anticipate where on the screen they would appear, and 

fire an arrow at the right spot. If the arrow was well-aimed, it would hit the minion, the 

minion would disappear, and the participant earned one point reward. (This mirrored the 

number-prediction game: participants could move the archer up and down on the screen 

as though they moved a slider, and once they settled on a position, they pressed the space 

key to face the minion for that trial. If their prediction – i.e., the position where they 

chose to shoot an arrow – was accurate, they were rewarded.) A hit and miss counter was 

available on the bottom left of the screen. 

 

Figure 17: Archer game design. Example of one trial. A: Player adjusts position of 

archer, and presses space key when ready. B. After space key press, minion comes on 

screen. C. Archer fires a straight arrow from its current position. If the arrow hits the 

minion, the player earns one point reward.  
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The archer had to confront seven waves of minions before facing the overlord; each wave 

consisted of a maximum of thirty-five minions, which would come out one by one, from 

the right of the screen (fig 17A). Participants could adjust the archer’s firing position on 

each trial, to better anticipate the minions upcoming location. At the end of seven waves, 

the archer would have to confront the overlord, and it would have only one shot to either 

defeat it (i.e., aim the arrow accurately enough to hit it), or be defeated by it (i.e. miss). A 

reward of 30 points was also available to the participants for defeating the overlord.  

Before encountering each minion in a wave, participants had two options. First, they 

could choose to stay and confront that minion – in which case they would adjust the 

archer’s firing position to their best prediction of where the minion would come from. 

However, they also had the option of “running away”, by pressing the large “RUN” 

button at the top left of the screen. If they chose to run, the wave of minions would end, 

and participants would see a screen that announced a new wave (with a new distribution 

of locations). They would then have the same two options for each minion in the new 

wave.  

Each wave of minions contained information necessary for learning about the overlord, in 

that the average location of each wave was drawn from a global distribution whose mean 

was the location of the overlord. However, not all the minions in a wave were equally 

informative – the informativeness of each data point decreased, as shown in figure 16B – 

and not all waves were equally informative, as the later ones reduced variance less than 

the earlier ones. Importantly, participants were told that they had only one hundred and 

fifty arrows to use on the minions – this operationalized the finite number of steps in our 

model – so they would have to decide how to use those arrows in a way that would give 
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them the best shot of defeating the overlord, when it came. The model prediction would 

be that they would use fewer arrows on the earlier waves of minions, to make sure they 

get enough relevant information about average locations – and that once they had learned 

more, they could use arrows more liberally to earn points.  

 

Results 

Participants learned the task, as evidenced both by their increasing accuracy in targeting 

the minions, within a wave (figure 18A) and by the increasingly accurate first location 

estimate – i.e., change of hitting the first minion – in later waves compared earlier waves 

(significant linear trend, F(1,6) = 9.42, p = 0.02, figure 18B).  

No participants attempted to defeat all minions in a wave. However, participants’ average 

number of minions attempted within a wave increased in later waves compared to earlier 

waves (figure 18C). This equates to earlier quitting times earlier in the game. Average 

likelihood to “run” (i.e. quit the current wave and move on to the next one) increased, for 

all participants, as a function of the number of minions they had confronted in the current 

wave (i.e the number of time steps they had spent there, fig. 18D). Likelihood to run also 

increased as a number of minions actually defeated in the current wave (figure 18D, 

black line).   

Participants’ likelihood to run was negatively correlated with the informativeness of each 

new minion for learning about the overlord (figure 18E, where informativeness is 

calculated according to equation (6) in section 4.4 of this chapter). However, it was 

positively correlated with the amount left to learn about the overlord (figure 18F, where 
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“amount left to learn” was calculated in terms of the future predicted reductions in 

uncertainty about the location of the overlord that each new minion wave could bring, see 

section 4.4 for details).  

 

Figure 18: archer task results. Participants showed learning both within-game (A) and 

between games (B). C. Participants spent longer in a game, as quantified by average 

number of attempted minions, in later waves compared to earlier waves. D. Participants 

were more likely to choose to “Run” (i.e. end the current game and get a new minion 

wave) if they had attempted more minions, but also if they had defeated more minions. 

The likelihood of choosing to Run was inversely correlated with the informativeness of 

each new minion (E), but positively correlated with the amount left to learn about the 

overlord (F).  
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Discussion 

Results from the archer task show that, in an environment that follows the assumption of 

our information-sampling model from section 4.4, participants show behavior 

qualitatively consistent with model predictions. Specifically, all participants chose to 

explore more (i.e. “Run”) earlier in the game than later (fig. 18C), and their probability of 

exploration was correlated with the information content of a wave, as well as the general 

information state of the environment (fig. 18 E,F). From a “naive” perspective, this 

finding is counterintuitive:  participants chose to spend slightly more time on a given task 

(i.e., wave of minions) as the experiment progressed;  that is, they appear to have become 

less bored as overall time-on-task increased, a reversal of the usual observation.  

However, this was predicted by the theory, insofar as the relative worth of information 

vs. immediate reward shifted over the course of the task, with the value of information 

(presumed to drive boredom) diminishing over time.  

That raises the question, then, of why participants in Experiments 4.1 and 4.2 showed an 

almost opposite trend, getting more bored as time passed. An exact comparison is not 

possible given the differences in the task structures (Experiment 4.1 did not allow 

participants to switch away, while in Experiment 4.2 there was no overarching global 

mean to make quitting a local patch early a tool for better future generalization), and the 

archer task also took less time to complete than the number prediction task (almost half 

as long), which likely accounts for at least some difference in overall boredom perception 

(Danckert & Allman, 2005; London & Monello, 1974; Watt, 1991), though experiment 

4.4 did not explicitly assess boredom ratings. However, participants’ consistent tendency 

to switch away from a boring context not only when switching away is normative (as in 
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experiment 4.4) but also when it is not (Experiment 4.2) suggests the possibility of a 

global, built-in prior that people might have over the average value of information in 

different tasks. This is consistent with theories of intrinsic motivation stating that the 

drive to explore arises from an innate need to interact efficiently with the environment 

(Deci & Ryan, 1985; White, 1959), as well as with the notion of “flow” and the optimal 

arousal theory of motivation, according to which organisms seek to balance an internal 

need for optimal levels of stimulation (Fowler, 1954; Carrol, Zuckerman & Voegel, 

1982).  

In line with optimal performance, participants’ accuracy in later games improved on the 

first trial of a game (before they get any actual data points from the current minion wave), 

indicating that they generalized the knowledge about the structure of previous games to 

make better predictions in the current one. This behavior is consistent with previous 

findings that humans can indeed learn about both local and global structures 

simultaneously (Diuk et al. 2013), and it is consistent with our proposed model. Further 

investigation is needed to establish whether individual participants who explored more on 

early waves were significantly more accurate in later waves than participants who 

explored less – which would make an even stronger claim regarding the adaptive role of 

exploration in this type of environment.  

Developing a normative account of the observed phenomenology associated with 

boredom has been an important goal of the work presented in this chapter. Our theoretical 

model explained why the failure to extract further information from the current task could 

lead to boredom, and why in turn the behavioral consequence of the increased boredom 

would be increased exploration (i.e., switching away). Furthermore, it explained our 
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findings of how people switched away from highly extrinsically-rewarding tasks if they 

gained no information (Study 4.2). Building on ideas from optimal foraging and 

reinforcement learning, the model in section 4.4 proposed that it is optimal to track not 

just reward, but also the amount of information derived from an action, with the goal of 

simultaneously learning accurate representations of both the global and local 

environments. This last experiment was designed to test to what extent people’s behavior 

follows our model predictions, and preliminary results showed that participants at least 

qualitatively match the information-sampling strategies proposed by the model.   

The link between exploratory behavior and boredom has been suggested many times in 

both human and animal literature (Fowler 1954; Vodanovich & Kass 1991; Cohen, 

McClure &Yu 2007). Our model represents a first attempt to provide a normative account 

for how boredom might emerge as a consequence of insufficient information-sampling 

opportunities, and how exploration – even as it moves us away from high-reward options 

– might constitute an adaptive strategy that ensures we continue to learn useful 

information. Our experimental findings, together with this theoretical framework, make 

an important contribution toward the future study of boredom and exploration, and raise 

important considerations regarding experimental design and the notions of reward, 

opportunity cost and information. 
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Chapter 5: General Discussion  
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Our daily lives regularly confront us with decision problems in which we have numerous 

alternatives to choose from (such as picking which restaurant to have dinner at on a 

Friday night, or which movie to watch), and, often, incomplete information about most of 

the available options. It is therefore essential that our decision-making processes entail an 

information-sampling component, to allow us a good understanding of the relative value 

of each option compared to others we could choose, as well as allow us to detect and 

adaptively respond to potential changes in the values of our decision options. The work 

presented here has discussed a comprehensive framework for how information sampling 

strategies can significantly impact the types of learning humans do, determine the 

efficiency of people's learning and exploration in different contexts, and even relate to 

behavioral consequences of affective phenomena such as boredom.  

 

Chapter 2 showed that manipulating the way in which information is presented to 

participants can either speed up or impair their learning of the statistical structure of their 

environment: the availability of the sampled information, as well as the order in which 

specific information was experienced, played a significant role in how well participants 

learned our complex probabilistic task. These results are consistent with previous 

findings regarding the impact of sequential information accessing in uncertainty 

reduction (Jacoby et al. 1994; Nelson et al. 2010; Markant & Gureckis 2013), as well as 

with previous studies that suggest that humans and animals can use near-optimal 

information-acquisition strategies (Wilde 1980; Dall et al 2005) and adaptively adjust 

their information sampling strategies based on different environmental demands (Payne 

et al 1988; van Aahmen et al. 2003).  
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In Chapter 3, I discussed exploratory behavior as a mechanism for (potentially optimal) 

information acquisition, and showed how information acquisition strategies can change 

depending on environment parameters such a decision horizon, risk, and ambiguity. 

Experimentally, previous results on directed exploration (exploration aimed at gaining 

information) have been mixed, with some studies finding evidence for this strategy 

(Meyer & Shi, 1995; Frank et al., 2009;  Lee, et al., 2011; Zhang & Yu, 2013) and others 

failing to do so (Daw et al., 2006; PayzanLeNestour & Bossaerts, 2011). We believe that 

one reason for these mixed results is the subtle confound between reward and information 

that arises in sequential choice tasks and makes directed exploration both hard to observe 

and difficult to confirm. In both experiments 3.1 and 3.2, we removed this confound on 

the first free-choice trial by manipulating reward and information before subjects made a 

free choice. This allowed us to unambiguously identify directed exploration on that trial. 

Due to its structure, the wheel of fortune task in experiment 3.2 could also be used to 

examine later trials in which the relative information between the two options has 

remained unchanged (i.e., if the wheel spin did not reveal any of the 'covered' slices).  

 

Chapter 4 addressed exploration from an alternative angle, as the tendency to switch 

away that stems from finding the current task too boring. Under this framework, the 

resulting exploratory behavior can in fact be adaptive, if boredom is interpreted as a 

failure to adequately satisfy the participants' information acquisition needs. In line with 

recent directions in the study of boredom, the work in chapter 4 treated the phenomenon 

as cognitive state-related, rather than an affective trait (as also suggested by Speier, 

Vessich & Valacich 2003; Patyn et al. 2008; Eastwood et al. 2012), and conducted in-



 

121 
 

depth analyses of the various task-related factors that would lead to the subjective 

experience of boredom in our participants. Results found that the ability to change future 

prediction errors by learning about the structure of the task, as well as the perceived 

opportunity cost of doing the current task (relative to other sources of stimulation 

available in the environment) significantly impacted our participants' boredom ratings. 

These results are consistent with the idea that humans need constant access to a certain 

amount of information in order to maintain a satisfactory level of adaptive behavior 

(Kuhltam 1991, Zakay 2014), and that that information comes in the form of optimal 

levels of variability in the environment (Kidd, Piantadosi & Aslin 2012; Garner 2014). 

Furthermore, they are consistent with recent findings that the subjective experience of 

'momentary happiness' results from a combination of obtained reward and prediction 

error relating to that reward (Rutledge et al. 2014), and further strengthen the notion that 

boredom could emerge from a computation that combines extrinsic value (as reward) and 

intrinsic value (information, as related to prediction error).  

 

Building on that, I proposed a quantitative model that described the value of information 

sampling in terms of future reward, and showed how, if the information available in the 

current task was insufficient, it would in fact be more rewarding in the long-term to 

switch away even from a locally rewarding task. The idea that boredom can lead to useful 

exploration has been previously suggested in the literature (Vodanovich & Kass 1990; 

Cohen, McClure & Yu 2007), and  theoretical work in machine learning has shown that 

artificial agents in simulated environments can learn faster and learn more complex 

actions if they are capable of boredom (Schmidhuber 1997; Simsek & Barto 2005), but 
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those findings had not previously been tested in human participants. Furthermore, while 

previous studies have suggested the need to develop a cognitive model of boredom (Hill 

& Perkins 1988; Perkins & Hill 1989; Eastwood et al. 2012),  to our knowledge, the 

model in section 4.4 is the first instance of providing an explicit, normative account for 

exploration as an adaptive response to  boredom induced by insufficient information-

acquisition opportunities.   

 

Finally, it should be noted that, in the entire body of work shown in this dissertation, I 

discuss information acquisition as a purely experience-based phenomenon: all 

participants had to actually explore an available option in order to learn about its reward 

structure. While this is often the case in the real world, direct experience is also not the 

only way in which information can be gained. It is also possible to learn about available 

alternatives without directly sampling them, for instance, from description (such as 

reading newspaper reviews of different restaurants or movies), or from witnessing 

someone else's actions and noticing what rewards they obtain. There is ample evidence 

that obtaining information by description rather than experience, produces significantly 

different behavioral patterns (Hertwig et al. 2004, Newell & Rakow 2007, Ludvig & 

Spetch 2011), and that learning by example or instruction also produces different results 

than learning by direct trial-and-error (Love 2002; Murata et al. 2002). It is therefore 

entirely possible that different means of information acquisition would lead to different 

learning patterns (for instance, children learning tool-use by example behave differently 

than those learning by trying it themselves - Brown & Kane 1988, Zhao & Liu 2007), 

prescribe different optimal strategies (for instance, the value of exploration changes 
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significantly when it is possible to learn about non-current options without actually 

sampling them – Smith et al. 2009) and even differently impact people's subjective 

experiences such as boredom. Examining information-acquisition from description, 

instruction or example is outside the scope of the present work – but, as the real world 

likely presents us with information through a combination of these different methods, 

further research into the function and efficiency of exploration in different informational 

contexts would be desirable.  
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Appendix 

 

Experiment 4.2 - Boredom Proneness Scale 

(Sundberg & Farmer 1986) 

The statements can be answered using a true-false response (the original format 

used) or with a 7-point format from "1" (highly disagree) to "7" (highly agree) 

used in recent research.  

 

     _____ 1. It is easy for me to concentrate on my activities. 

     _____ 2. Frequently when I am working I find myself worryingabout other things. 

     _____ 3. Time always seems to be passing slowly. 

     _____ 4. I often find myself at "loose ends", not knowing what to do. 

    _____ 5. I am often trapped in situations where I have to do meaningless things. 

    _____ 6. Having to look at someone's home movies or travel slides bores me 

tremendously. 

    _____ 7. I have projects in mind all the time, things to do. 

    _____ 8. I find it easy to entertain myself. 

    _____ 9. Many things I have to do are repetitive and monotonous. 

    _____ 10. It takes more stimulation to get me going than most people. 

    _____ 11. I get a kick out of most things I do. 

    _____ 12. I am seldom excited about my work. 

    _____ 13. In any situation I can usually find something to do or see to keep me 

interested. 

    _____ 14. Much of the time I just sit around doing nothing. 

    _____ 15. I am good at waiting patiently. 

    _____ 16. I often find myself with nothing to do, time on my hands. 
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    _____ 17. In situations where I have to wait, such as a line I get very restless. 

    _____ 18. I often wake up with a new idea. 

    _____ 19. It would be very hard for me to find a job that is exciting enough. 

    _____ 20. I would like more challenging things to do in life. 

    _____ 21. I feel that I am working below my abilities most of the time. 

    _____ 22. Many people would say that I am a creative or imaginative person. 

    _____ 23. I have so many interests, I don't have time to do everything. 

     _____ 24. Among my friends, I am the one who keeps doing something the longest. 

    _____ 25. Unless I am doing something exciting, even dangerous, I feel half-dead and 

dull.  

    _____ 26. It takes a lot of change and variety to keep me really happy. 

    _____ 27. It seems that the same things are on television or the movies 

all the time; it's getting old. 

  

    _____ 28. When I was young, I was often in monotonous and tiresome 

situations. 
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Experiment 4.3 – Full list of questions  

These questions were given to subjects in the interval between two games, in part A of 

the task – i.e, while they played the bandit task. The first two questions were the 

questions of interest, and they were given to all subjects every nine games (a total of 

seven times throughout the bandit task). The other five questions represented distractors, 

and were mixed randomly in the other inter-game intervals.  

Questions:  

 Please rate how difficult you are finding this task, on a scale from 1 (not difficult 

at all) to 10 (extremely difficult) 

 Please rate how interesting you are finding this task, on a scale from 1 (not 

interesting at all, very boring) to 10 (extremely interesting) 

 How many points do you think you have obtained in this task so far? (Please enter 

a number in the box below) 

 Please rate your estimated performance in this task, on a scale from 1 (I think I’m 

not performing well at all) to 10 (I think I’m performing extremely well) 

 How long do you think you’ve been playing this task? (Please enter the number of 

minutes in the box below) 

 What is the average number of points you think you obtained in a game, so far? 

(Please enter the number in the box below)  

 Please rate how well you think you have learned this task, on a scale from 1 (I 

have not learned it at all) to 10 (I have learned it extremely well) 


