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SUMMARY

Orbitofrontal cortex (OFC) has long been known to
play an important role in decision making. However,
the exact nature of that role has remained elusive.
Here, we propose a unifying theory of OFC function.
We hypothesize that OFC provides an abstraction of
currently available information in the form of a label-
ing of the current task state, which is used for rein-
forcement learning (RL) elsewhere in the brain.
This function is especially critical when task states
include unobservable information, for instance,
from working memory. We use this framework to
explain classic findings in reversal learning, delayed
alternation, extinction, and devaluation as well as
more recent findings showing the effect of OFC
lesions on the firing of dopaminergic neurons in
ventral tegmental area (VTA) in rodents performing
an RL task. In addition, we generate a number of test-
able experimental predictions that can distinguish
our theory from other accounts of OFC function.
INTRODUCTION

Many studies have shown that orbitofrontal cortex (OFC) is

important for learning and decision making (see reviews by

Murray et al., 2007; Wallis, 2007; Padoa-Schioppa, 2011; Rush-

worth et al., 2011). Despite this progress, the exact role that the

OFC plays in decision making is unclear. Even without an OFC,

animals and humans can learn, unlearn, and even reverse

previous associations, although they do so more slowly than

their healthy counterparts. What role can the OFC be playing

whose absence would cause such subtle, yet broadly perme-

ating, deficits? We suggest that the OFC represents the animal’s

current location within an abstract cognitive map of the task

(formally, the current state in a state space).

Our hypothesis links OFC function to the formal theory of

reinforcement learning (RL). In recent years, RL has successfully

accounted for a diverse set of findings from behavioral results in

classical conditioning (Rescorla and Wagner, 1972) to the firing

patterns of midbrain dopaminergic neurons (Schultz et al.,
1997). At the heart of RL models is the concept of a ‘‘state

representation,’’ an abstract representation of the task that

describes its underlying structure, the different states of the

task, and the (possibly action-dependent) links between them.

RL provides a set of algorithms by which one can learn a value

for each state, VðsÞ, that approximates the total discounted

future reward that can be expected when the current state is s.

These values aid decision making in the service of harvesting

reward and avoiding punishments.

In most RL models, it is assumed de facto that the animal

magically knows the true state representation of the task. How-

ever, it is clear that an integral part of learning a new task is

learning to represent it correctly (Gershman and Niv, 2010,

2013; Gershman et al., 2010; Wilson and Niv, 2011). The state

representation can be as simple as the two states needed to

model a Pavlovian conditioning experiment in which a single

stimulus predicts reward (e.g., the states ‘‘light on’’ and ‘‘light

off’’) or as intractably huge as the state space of a game of chess.

The states can be tied to external stimuli (as in light on/off), or

they can include internal information that is not available in the

environment and must be retained in memory or inferred, such

as one’s previous actions or the context of the task (e.g., infor-

mation about the opponent’s style of play in chess). More

formally, one way to distinguish between simple and complex

tasks relates to whether states are fully or partially observable

to the animal given perceptual information. In fully observable

decision problems, states correspond to easily detectable fea-

tures of the environment, making these problems much simpler

to solve than partially observable problems, which are notori-

ously difficult to solve optimally (Kaelbling et al., 1998).

We hypothesize that OFC is critical for representing task

states in such partially observable scenarios. We propose that

OFC integrates multisensory perceptual input from cortical and

subcortical areas, together with information about memories of

previous stimuli, choices, and rewards, to determine the current

state—an abstract label of a multitude of information akin to the

current ‘‘location’’ in a ‘‘cognitive map’’ of the task. Importantly,

although state representations most likely exist elsewhere in the

brain as well, we hypothesize that the OFC is unique in its ability

to disambiguate task states that are perceptually similar but

conceptually different, for instance, by using information from

working memory. Thus, impaired OFC function does not imply

a complete loss of state information but rather that perceptually

similar states can no longer be distinguished—an OFC-lesioned
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Figure 1. Reversal Learning

(A) Experimental results showing the mean errors to criterion in initial

discrimination learning and final reversal for control and OFC-lesioned

animals. Adapted from Butter (1969).

(B) Model simulations of the same task.

(C) State representation of the task used tomodel control animals, in which the

state depends on both the action and outcome on the last trial.

(D) Stimulus-bound state representation modeling OFC-lesioned animals.
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animal can still learn and perform basic tasks using RL, albeit

using only observable (stimulus-bound) states based on current

perceptual information. As a result, basic learning and decision

making are possible without the OFC, but behavior becomes

more and more impaired as tasks become abstract, and more

of their states are partially observable.

RESULTS

Here, we show how our theory can account for a number of

experimental findings. First, we consider the archetypal ‘‘OFC

task’’ of reversal learning as well as delayed alternation, extinc-

tion, and devaluation before turning to neural findings that

more directly reveal the contribution that the OFC might make

to RL.

Reversal Learning
Perhaps the most classic behavioral deficit associated with OFC

dysfunction is impaired reversal learning (Teitelbaum, 1964; But-

ter, 1969; Jones and Mishkin, 1972; Rolls et al., 1994; Dias et al.,

1996; Meunier et al., 1997; McAlonan and Brown, 2003; Schoen-

baum et al., 2002, 2003a; Chudasama and Robbins, 2003; Bohn

et al., 2003; Izquierdo et al., 2004; Kim and Ragozzino, 2005). We

illustrate our theory through a simulation of Butter (1969),

although we stress that the model similarly accounts for reversal

learning deficits in other animals and preparations.

In Butter (1969), monkeys displaced a plaque on either their

left or on their right in order to receive food reward. Only one

location was rewarded in each block, and its identity was

reversed once the monkey reached a criterion of 90% correct.
268 Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc.
Reward contingencies were reversed five times. Figure 1A

summarizes the results—whereas initial learning was spared,

OFC-lesioned animals were impaired on reversals relative to

sham-lesioned controls.

To model behavior in this task, we used a simple Q-learning

algorithm (Sutton and Barto, 1998; Morris et al., 2004) that learns

Qða; stÞ, the value of taking action a in state st. This q value is

updated every time an action is taken and a (possibly zero)

reward rt + 1 is observed according to

Qnewðat; stÞ=Qoldðat; stÞ+aðrt + 1 �Qoldðat; stÞÞ;
where a is a learning rate parameter and ½rt + 1 �Qoldðat; stÞ� is the
prediction error. We omit the value of the subsequent state from

the prediction error (cf. Sutton and Barto, 1998) because, in this

task, trials involve one state with no sequential contingencies.

This renders our learning rule identical to Rescorla and Wagner

(1972). Using the learned values, the probability of taking action

a in state st is given by the softmax or Luce rule

pðajstÞ= expðbQða; stÞÞP

a
0
expðbQða0 ; stÞÞ;

where b is an inverse-temperature parameter that affects the

tradeoff between exploiting and exploring, and the sum in the

denominator is over all possible actions. Unless mentioned

otherwise, in all simulations we used a = 0.03 and b = 3.

Our model proposes that all animals learned with this same

model-free algorithm, but that the crucial difference between

sham- and OFC-lesioned animals was in the states, st, about

which they learned values. In particular, in concordance with

the true structure of the task, for sham-lesioned animals, we

modeled the task with two different states: state 1, in which

choosing ‘‘right’’ yields reward and choosing ‘‘left’’ does not,

and state 2, with the opposite reward contingencies (Figure 1C).

In each state, the animal must learn values for the right and left

actions. After an action is selected, the state transitions

according to the chosen action and its outcome, and the next

trial begins.

It is easy to see that such a state representation leads to

rapid learning of reversals. When the reward is on the right, the

model will be in state 1, and because a ‘‘right’’ choice from this

state is most likely to be rewarded, the model develops a strong

preference for the right action in this state. Similarly, after the

reversal, the model transitions to state 2 and learns a strong

preference for ‘‘left’’ from this state. Reversing back to the initial

contingencies will not necessitate new learning, given that the

action propensities learned in state 1 are left unaltered. If re-

wards and choices are deterministic, then the model will only

take one trial to reverse its behavior after such a rereversal. In

the face of decision noise, mistakes can occur at a rate deter-

mined by b.

The two states in the above model are defined by memory

of the action and outcome of the last trial but are perceptually

identical. Thus, according to our hypothesis, when the OFC is

lesioned, these two states are no longer distinguishable, and

the task reduces to one state (Figure 1D). As a result, the reversal

of behavior after a reversal of reward contingency requires ‘‘un-

learning’’ of the preference that was acquired in the previous
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Figure 2. Delayed Alternation

(A) Experimental results showing the fraction of trials on whichmonkeys chose

the correct option for control and OFC-lesioned animals.

(B) Model simulations on the same task.

(C) State representation used to model control animals, in which the state

depends on the last action.

(D) Stimulus-bound state representation modeling the OFC-lesioned animals.
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block, and, although initial learning is similarly slow for both the

intact and the lesioned models, the lesioned model takes

much longer to learn subsequent reversals (Figure 1B).

In general, the two states of our model of reversal learning

can be seen as representing the two phases of the task (‘‘reward

more likely on left’’ and ‘‘reward more likely on right’’). Thus, our

representation generalizes to probabilistic reversal learning

tasks (e.g., Tsuchida et al., 2010) in which the animal (andmodel)

must infer what state it is in by using actions and outcomes from

multiple previous trials (Gershman et al., 2010).

Delayed Alternation
The same reasoning can be applied to model the effect of

OFC lesions on delayed alternation tasks (Mishkin et al., 1969;

Miller and Orbach, 1972; Butters et al., 1973; Mishkin and

Manning, 1978). In particular, we model Mishkin et al. (1969). In

this task, monkeys made a series of choices between two

options, one of which was paired with a reward. The rewarding

option on the current trial was determined by the action on the

previous trial such that reward was always made available for

the action opposite to that on the previous trial. Thus, the

monkeys had to learn to alternate their responses, which, due

to a 5 s delay between trials, required memory of the last action.

Control animals learned this task easily, ultimately performing at

around 90% correct. However, monkeys with OFC lesions failed

to perform better than chance even after 2,000 trials of training

(Figure 2A).

We modeled the behavior of control animals with the state

representation in Figure 2C, in which the current state is deter-

mined by the choice on the last trial (option A or B).With this state

representation, the model learns the task easily (Figure 2B), and

performance is only limited by the degree of ‘‘random’’ respond-

ing mediated by the inverse-temperature parameter b. To model

OFC-lesioned animals, we again removed states that require
memory, resulting in only one (default) state. With this state

representation, the model can never learn to solve an alternation

task; hence, performance remained at 50% correct in the

lesioned case.

A crucial result is that even OFC-lesioned animals could

learn the alternation task if the delay was removed (Miller and

Orbach, 1972). Thus, the ability to learn about the value of alter-

nation was unimpaired when a stimulus-bound two-state repre-

sentation could be constructed but grossly impaired when a

short delay required a memory-based state representation to

be constructed. This suggests that value learning itself is unim-

paired in OFC-lesioned animals and that the deficit lies in encod-

ing of latent variables within the state representation.

Extinction
Our model also captures deficits in extinction that are caused

by OFC lesions and makes a number of easily testable experi-

mental predictions about postextinction phenomena (Bouton,

2004). In extinction, a previously trained association between

an outcome and a certain state or action is changed such that

the outcome is no longer available. Theories suggest that extinc-

tion does not cause unlearning of the original association but

rather results in learning of a new, competing association (Bou-

ton, 2004; Redish et al., 2007). Consequently, similar to the

model of reversal learning, we modeled extinction with a two-

state system (see also Gershman et al., 2010).

In particular, we consider the experiment in Butter et al. (1963).

Here, monkeys were trained to press a lever for food reward.

After 30 min of reinforced pressing, an extinction phase

began—rewards were no longer available, and the extinction

of responding was measured as the number of presses in suc-

cessive 10 min blocks. The results, shown in Figure 3A, clearly

demonstrate slower extinction for OFC-lesioned animals.

As previously, we modeled control animals (Figure 3C) with

a two-state model—the animal is in state ‘‘P1’’ if the previous

lever press was rewarded and in ‘‘P0’’ if it was not. These states

naturally distinguish the two contexts of reinforcement and

extinction. We considered two possible actions—either the ani-

mal presses the lever (P) or it does not (N). In our simulation,

pressing the lever led to 1 U of reward during conditioning and

to -0.2 U in extinction (representing the cost of performing the

action). Not pressing always yielded 0 reward. Again, OFC-

lesioned animals were modeled as having an impoverished state

representation that included only one memory-free state

(Figure 3D).

The simulation results are shown in Figure 3B. As in the exper-

imental data, extinction in the two-state model was fast, given

that extinction transitioned the animal into the P0 state, wherein

new action values for P and N were learned (starting from low

initial values). On the other hand, the one-state model of the

OFC-lesioned animals could only learn to stop pressing the lever

by changing the action value for P from a high value to a low one,

which necessitated more trials.

As with reversal learning, in the case of probabilistic reinforce-

ment, animals would need to integrate outcomes from multiple

trials in order to infer which state or context (conditioning or

extinction) theywere in. For an exposition of how this kind of inte-

gration might be achieved, see Gershman et al. (2010).
Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc. 269
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Figure 3. Extinction

(A) Experimental results. Lever press rates were normalized to the maximum

response rate in conditioning. Adapted from Butter et al. (1963).

(B) Model results.

(C) State representation used to model the control group in which the state

depends on the last outcome.

(D) State representation used to model the OFC lesion group with only a single

state.

(E) Model predictions for extinction (ext) and spontaneous recovery (re).

(F) Model predictions for reacquisition. init, initial learning; reacq, reacquisition.
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Postextinction Predictions
To assess the effectiveness of extinction and investigate what

was learned during extinction, researchers often retest behavior

after the extinction phase is completed. In particular, four classic

effects— spontaneous recovery, reinstatement, rapid reacquisi-

tion, and renewal (Bouton, 2004)—have been taken as evidence

that extinction training does not normally lead to permanent

modification of the original association.

Our two-state model also exhibits these effects because the

original associations between stimulus and reward are main-

tained in the P1 state and can be recovered when this state is

reactivated. However, our one-state model predicts different

results for OFC-lesioned animals because there the original

association is, in fact, erased during extinction. For example,
270 Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc.
consider spontaneous recovery. Here, conditioning (cue or

action / outcome) and extinction (action / no outcome) are

performed. Then, after days or even weeks, animals undergo a

test phase in which no outcome is available, and the propensity

to perform the action is measured. Animals typically show recov-

ery of responding at test to response levels that are greater than

those at the end of extinction, withmore recovery for longer wait-

ing times between extinction and test.

Our two-state model accounts for this behavior if we assume

that the passage of time causes the animal to be unsure whether

it is in P1 or P0 at the start of testing. If a state is selected

at random (for instance, with probability proportional to the

time since it last occurred), then, on average, animals will

respond more in the testing phase than at the end of the extinc-

tion phase. In contrast, when the OFC is lesioned (that is, in the

one-state model) extinction truly does extinguish the original

association, and, thus, our model predicts no spontaneous

recovery (Figure 3E).

The model’s predictions are even starker for rapid reacquisi-

tion (Napier et al., 1992; Ricker and Bouton, 1996), in which

reconditioning of a stimulus / outcome association occurs

more rapidly after extinction than in the original learning. The

two-state model predicts this phenomenon, given that recondi-

tioning will return the animal to the P1 state in which the old

action preferences remain. However, we predict that OFC-

lesioned animals will not show rapid reacquisition and may

even show slightly slower reacquisition than original learning if

there is a small cost associated with the response (Figure 3F).

Devaluation
The above tasks are predominantly explained with model-

free RL (Daw et al., 2005). However, OFC is also thought to be

important for model-based RL, in which animals use a learned

model of reward contingencies to compute values. A proto-

typical example of such a model-based task is reinforcer deval-

uation (Colwill and Rescorla, 1985; Balleine and Dickinson,

1998). In this paradigm (Figure 4A), animals are trained to

perform actions or associate cues with an outcome. When the

outcome is devalued outside the context of the experiment, for

example, by pairing its consumption with indigestion-inducing

poison, actions that were trained with the devalued food are

reduced at test, even if the test is performed in extinction condi-

tions (that is, with no additional experience of the contingency

between these actions and the devalued outcome). Such

behavior indicates a capacity to ‘‘simulate’’ the consequences

of actions within a cognitive model of the task and, thus, realize

that a once valuable action would now lead to an unwanted

outcome and, hence, should no longer be chosen. These mental

simulations (Daw et al., 2005) involve taking imaginary paths

through the states of the task, and we propose that these imag-

ined (but not externally available) states are encoded in OFC.

Consistent with this proposal, OFC lesions impair performance

in devaluation experiments, causing lesioned animals to respond

equally to devalued and nondevalued cues (Gallagher et al.,

1999; Pickens et al., 2003; Izquierdo et al., 2004; but see Ostlund

and Balleine, 2007).

We illustrate this effect through the results of Pickens et al.

(2003), reproduced in Figure 4B. Here, rats were first taught
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(A) First, animals are trained to associate a light

with food. Then, the food is devalued by pairing it

with an indigestion-inducing poison, LiCl. In a

control condition, the food and LiCl are unpaired

during devaluation. Finally, the extent of devalua-

tion is indexed by measuring responding to the

light.

(B) Experimental results from Pickens et al. (2003)

showing relative responding to the food cup when

the light is turned on for sham- and OFC-lesioned

animals in the paired and unpaired condition.

(C) State representation of the devaluation task.

(D) Model results showing the relative value of the

light for the sham- and OFC-lesioned models.
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to associate a light cue with food. Subsequently, the food was

devalued by pairing its consumption to the injection of lithium

chloride. Then, a testing session measured the amount of time

spent at the food cup when the light was presented. In order to

establish a baseline level of responding, in a control condition,

lithium chloride was administered in the second stage but was

not paired with the food. Sham-lesioned animals showed

reduced responding to the light in the paired condition relative

to the unpaired condition, as if they were imagining the (never

experienced) chain of events light / food / poison. OFC-

lesioned animals showed no such change in behavior, as if

they were incapable of such model-based reasoning.

We modeled the behavior of sham-lesioned animals using

the state representation shown in Figure 4C. We assumed that

sham-lesioned animals used a mixture of model-based and

model-free learning to compute values. The model-free (MF)

component learned a value, VMFðsÞ, for each state s using stan-

dard temporal-difference prediction error learning. Specifically,

when the model transitioned from state s to state s’, it computed

a prediction error

d= r +VMF

�
s
0�� VMFðsÞ;

which was used to update the model-free value of state s

VMFðsÞ)VMFðsÞ+ad;

where a = 0.1 was the learning rate, and we assumed that

the reward, r, was +1 during the initial learning phase and �1

after devaluation. Thus, the model-free component learns a

positive value for the light state (given that it only ever experi-

ences the light paired with food) and, in the devaluation stage,

a negative value for the food state. In contrast, the model-based

(MB) component uses the low value of the food state to update,

even absent direct experience, the value of the light state

through imagined simulation

VMBðlightÞ=VMFðfoodÞpðfoodjlightÞ;
where VMBðlightÞ is themodel-based value of the light, VMFðfoodÞ
is the model-free value of the food state, and pðfoodjlightÞ is the
Neuron 81, 267–279,
estimated (learned) probability of the

light state leading to the food state (set

to 0.9 in our simulations). The total value
of the light was a combination of the model-based and model-

free values as in Daw et al. (2005),

VðlightÞ= zVMBðlightÞ+ ð1� zÞVMFðlightÞ;

where we used z = 0.2 as the mixing fraction. According to this

model, when the food is devalued, sham-lesioned animals

compute a low value for the light (Figure 4D). However, the

OFC-lesioned model lacks model-based planning abilities (z =

0) and, thus, shows no effect of devaluation.

This line of reasoning can also be used to explain other recent

findings that are thought to reflect the role of OFC in model-

based RL, such as sensory preconditioning (Jones et al.,

2012), identity unblocking (McDannald et al., 2011), and

Pavlovian overexpectation (Takahashi et al., 2009). In each

case, OFC-dependent behavior or learning requires a form of

mental simulation with the appropriate imagined (but not exter-

nally available) states.

Insights into the Role of OFC from Dopamine Firing
Patterns
If the OFC is involved in RL, then, in addition to changes in

behavior, lesions to the OFC should cause changes in the neural

substrates of RL. Moreover, if our hypothesis is correct, then the

changes in neural firing patterns should be consistent with the

loss of non-stimulus-bound states but the preservation of all

other RL processes. Motivated by this idea, in Takahashi et al.

(2011), we investigated the effects of unilateral OFC lesions on

prediction error signals in the ventral tegmental area (VTA)

(Schultz et al., 1997).

In this experiment, described in detail in Takahashi et al. (2011),

after a light came on, rats initiated a trial by entering an odor port,

where they were presented with one of three odors. One odor

indicated that the left fluid well would be paying out a reward on

this trial (henceforth, a forced left trial), a second odor indicated

that the rat must go right to get a reward (forced right), and the

third odor indicated that both wells were paying out (free choice).

Critically, the amount and delay of the reward offered at each

fluid well changed every 60 trials as shown in Figure 5A. In the
January 22, 2014 ª2014 Elsevier Inc. 271
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first block of trials, one well paid out one drop of juice after a

short delay, whereas the other paid out one drop after a longer

delay. In the second block, these reward contingencies were

reversed. In the third block, the two wells offered a big reward

(two drops of juice) and a small reward (one drop of juice), and

these contingencies reversed again in the fourth and final block

of the session. The experiment was repeated with similar ses-

sions daily.

State Representations of the Task
We modeled both the rats’ behavior and the firing of dopami-

nergic VTA neurons. The true generative state representation

of the task (that is, the representation that accords with the

experimenter-defined reward contingencies) is depicted in Fig-

ure 5B. A trial begins when the rat moves to the odor port (indi-

cated by the ‘‘odor port’’ state). Then, an odor is presented,

signaling a forced left (‘‘left’’ state), free choice (‘‘free’’), or forced

right (‘‘right’’) trial. In forced right trials or free choice trials, if the

rat chooses to go to the right fluid well, then it arrives at the ‘‘right

port’’ state. Over time, the state changes to ‘‘right reward 1,’’

which denotes the time of juice delivery in blocks in which a small

or short reward is delivered as well as the time of the first drop of

juice if a big reward is to be delivered. The state continues to
272 Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc.
transition to ‘‘right reward 2,’’ the time of

the second drop in big reward trials,

‘‘wait right,’’ a state that represents the

unpredictable delay before reward on

long reward trials, ‘‘right reward 3,’’ which

is the reward delivery time in long reward

trials, and finally the ‘‘end’’ state. In

contrast, if the rat chooses to go to the

left fluid well on a right trial, then the task

transitions (without reward) to the end

state, signifying the end of the trial. A

similar sequence of states occurs for the

left reward arc. Through repeated experi-

ence with the task, it is reasonable to

assume that rats learned this correct rep-

resentation of the task contingencies or at

least the breakdown of the task into fairly

well-delineated states. Thus, we assumed

this representation when modeling the

sham-lesioned group.

Although a straightforward description

of the task, some states in this sequence
are not directly tied to fully observable stimuli. For instance,

the ‘‘right port’’ state does not correspond directly to the physical

right port, given that going to that same physical port on a forced

left trial will not lead to this state. Moreover, we assume that

the two physical food ports are relatively indistinguishable from

the vantage point of a rat waiting for reward with its nose in the

port. Of course, remembering the previous odor and action will

uniquely identify the state. However, this is precisely the type

of information that we hypothesized would be missing from the

state representation if OFC function was compromised. We

also assume that temporal information is not available externally,

and, thus, OFC-lesioned rats cannot distinguish reward states

that are only separated by the passage of time. Altogether, these

assumptions define the OFC-lesioned state representation de-

picted in Figure 5C, which involves a single ‘‘reward port’’ state

and two rather than four states in the reward arc (‘‘reward 1’’ rep-

resenting the first drop of juice, and ‘‘reward 2’’ representing the

second drop on big trials, externally distinguishable from reward

1 because it is immediately preceded by a drop of juice).

Prediction Errors
Our goal was to understandOFC-lesion-induced changes in pre-

diction error signals recorded from dopaminergic neurons in the
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Figure 6. Firing of Dopaminergic VTA Neurons at the Time of Unexpected Reward Early and Late in a Block

Unlike in Takahashi et al. (2011), where neural responses were averaged over the different types of unexpected reward delivery, here we divided the data into the

four different cases, indicated by the green annotations in Figure 5A: the short reward after the long to short transition between blocks 1 and 2 (long/ short), the

arrival of the first (long/ big1) and second (long/ big2) drops of reward after the long to big transition between blocks 2 and 3, and the second drop of the small

to big transition between blocks 3 and 4 (small / big2). Early, first two trials; late, last five trials.

(A) Experimental data for sham-lesioned controls (n = 30 neurons; error bars represent SEM).

(B) Experimental data for the OFC-lesioned group (n = 50 neurons; error bars represent SEM).

(C) Model predictions for the sham-lesioned animals.

(D) Model predictions for OFC-lesioned animals.

(E) Model predictions for the small / big2 transition when taking into account the variable third drop of juice.
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VTA (Schultz et al., 1997). These signals convey the difference

between predicted and actual outcomes (Sutton and Barto,

1998; see the Supplemental Information for a detailed descrip-

tion) and, in theory, should depend strongly on how the task is

parsed into states.

There are two points in a trial in which we can expect pre-

diction errors—the time of reward (if the reward obtained is

different from the expected reward) and the time of odor pre-

sentation (where prediction errors are due to the difference

between the reward predicted after sampling the odor in com-

parison to the prediction before odor onset). Indeed, although

behavior in both groupswas equated because of the lesion being

unilateral, Takahashi et al. (2011) observed small but clear

differences between the firing of dopaminergic neurons on the

side of the lesion in sham- and OFC-lesioned animals, the

specific pattern of which was captured by our model. Here, we

look more closely at these differences at the time of reward.

Results at the time of the odor are presented in the Supplemental

Information.

Figure 6 shows the firing of VTA neurons at the time of un-

expected reward. These rewards are unexpected at the start

of a block, after reward contingencies have changed unexpect-

edly, but, given learning with the correct state representation,

should be predicted by the end of the block. Thus, we compared

the first two (early) trials to the last five (late) trials of a block in

order to test for effects of learning (see the Supplemental Infor-

mation for additional details).
Sham-lesioned animals (Figure 6A) showed a decrease in

prediction error firing between early and late trials in all cases

(p < 0.05). Importantly, there was no effect of transition type on

the difference between early and late prediction errors. These

findings are consistent with the predictions of the intact RL

model (Figure 6C).

In contrast, in the OFC-lesioned animals, the difference

in firing between early and late trials was wholly absent

(p = 0.74) in the ‘‘long’’ to ‘‘short’’ transition at the beginning

of the second block (Figure 6B). The lesioned model predicts

the lack of elevated prediction errors at the beginning of this

block. This is because the lesioned model cannot learn different

predictions for reward on the left and right ports but, rather,

learns to predict the average reward in the block. For the

lesioned model, both blocks involve early reward on a seemingly

random half of the trials and delayed reward on the other half.

However, the model does predict positive prediction errors on

block switches in which the average reward, over both options,

increases. This can be seen in the data for the ‘‘long’’ to ‘‘big’’

transition from block two to three, both for the first drop (previ-

ously delayed on half the trials and now surprisingly reliably early)

and the second drop (which did not appear before and now ap-

pears on half the trials).

The lesioned model also predicts no change in prediction

errors for the ‘‘small’’ to ‘‘big2’’ transition at the beginning of

the fourth block, a prediction seemingly not borne out in the

data. However, in Takahashi et al. (2011)’s experiment, on
Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc. 273
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some trials in the fourth block, an extra third drop of water was

added to ‘‘big’’ trials if the rat appeared to be losing interest in

the task. Although the timing of this manually applied third

drop was not recorded, examination of the spike raster plots in

which the response of individual neurons to each drop is clearly

visible (for an example, see Figure S1 available online) shows the

third drop in 13 of the 14 examples. Adding this third drop indeed

changes the average available reward, aligning the lesioned

model’s predictions with the experimental results (Figure 6E).

Therefore, a prediction of the model is that, without the third

drop, this difference in firing between early and late trials for

the ‘‘small / big2’’ transition would disappear.

Importantly, these neural results are inconsistent with promi-

nent ideas according to which the OFC contributes to RL by

directly encoding expected value. As detailed in Takahashi

et al. (2011), an inability to learn or represent values would

predict that dopaminergic firing at the time of reward would

not change throughout a block, because obtained rewards

would be completely unpredictable—a prediction clearly incon-

sistent with the data. Observed differences in firing at the time of

the odor are also inconsistent with this idea that OFC encodes

value (Figure S2). Altogether, the behavioral and neural results

suggest that, rather than representing values per se, the OFC

is involved in representing unobservable states, which are often

essential for learning or calculation of accurate values.

DISCUSSION

We have proposed a role for the OFC in encoding the current

state in a cognitive map of task space and shown how this role

would manifest in associative learning and decision making

tasks known to depend on the OFC. Specifically, we have pro-

posed that the OFC is necessary for disambiguating states

that are not perceptually distinct. Our theory explains classic

findings in reversal learning, delayed alternation, extinction,

and devaluation, along with neural results from a recent lesion

experiment (Takahashi et al., 2011) and makes easily testable

experimental predictions about postextinction phenomena in

animals with OFC lesions. Now, we turn to discuss the implica-

tions of our theory and relate it to other results and models of

OFC function.

Neural Activity in OFC
According to our theory, we ought to be able to see state-

related signals in the activity of OFC neurons. Thus, the question

arises: what is the neural signature of a state representation

for RL? We propose two conditions that should be satisfied

by a brain region encoding states: (1) representation—all the

variables that comprise the current state, as it is defined for

the purpose of RL, are encoded in the brain area—and (2) spec-

ificity—irrelevant variables that are not part of the current state

are not encoded in the area. The first condition ensures that all

relevant variables are at least present in the area, whereas the

second condition rules out areas whose encoding is not task

specific. Our theory predicts that neural representations in the

OFC would satisfy these two conditions across tasks and,

specifically, that variables that are not necessarily perceptually

available (such as memory for previous actions or outcomes)
274 Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc.
would be represented in the OFC, but only if they are required

for the current task.

Representation

Although no experiments have explicitly tested these neural

predictions, several results are consistent with the first condi-

tion—in particular, in tasks in which relevant variables are not

externally available. For instance, our model implies that both

the previous choice and the previous outcome should be

encoded in OFC in reversal learning tasks, which has been found

(Schoenbaum and Eichenbaum, 1995; Sul et al., 2010; the latter

also found these variables in dorsolateral prefrontal cortex

[dlPFC] and anterior cingulate cortex [ACC]). In a probabilistic

RL task, Hampton et al. (2006) showed that fMRI activation in

ventromedial prefrontal cortex close to OFC was correlated

with the underlying task state in a Bayesian model.

A related experiment is the ‘‘shift-stay’’ paradigm (Tsujimoto

et al., 2009, 2011), in which monkeys choose between two

options with a strategy cue, presented at the start of a trial, in-

structing them as to whether the rewarded response is to

‘‘stay’’ with their last choice or ‘‘switch’’ to the other option.

Such a task is readily solved with two states that combine the

last choice and strategy. Intriguingly, Tsujimoto et al. (2009,

2011) found neural correlates of these variables in OFC.

Similarly, in delayed match-to-sample tasks, OFC encodes

the remembered sample, a critical component of the state

(Ramus and Eichenbaum, 2000; Lara et al., 2009; the latter study

is especially interesting becasue it included ‘‘distractor’’ drops of

water that did not elicit OFC firing), and, in fMRI studies, OFC ac-

tivity has been associated with context-dependent disambigua-

tion of navigational routes (Brown et al., 2010) and task rules

(Nee and Brown, 2012).

Specificity

Addressing the specificity condition is more difficult, due to it be-

ing hard to know exactly what state representation an animal is

using in any given task. However, one could look for differences

in OFC representations in tasks with similar stimuli but different

underlying states. If OFC encodes the states of the task, even

subtle changes in the task should lead to changes in OFC firing.

This was indeed shown in two tasks by Schoenbaum and Ei-

chenbaum (1995) and Ramus and Eichenbaum (2000) (reviewed

in Schoenbaum et al., 2003b). In the first task, four of eight odors

predicted that a response at a nearby fluid well would be re-

warded. In the second task, eight odors were used in the same

apparatus, but reward on a given trial was not predicated on

odor identity but, rather, on whether the odor on the current trial

was different from that presented on the previous trial. In both

cases, the odor was relevant for performance. However, in the

first task, the identity of the odor was critical for predicting

reward, whereas, in the latter task, whether or not the odors on

consecutive trials matched was critical. Intriguingly, approxi-

mately 77% of OFC neurons were odor selective when odor

identity was relevant, whereas only 15% of OFC neurons were

odor selective in the task in which match, but not identity, pre-

dicted reward. Furthermore, in that latter task, 63% of OFC neu-

rons encoded whether the odor was a match or a nonmatch.

Simmons and Richmond (2008) also demonstrated that small

changes in a task can cause significant changes to OFC repre-

sentations. In their task, monkeys were rewarded after
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The environment provides rewards and sensory stimuli to the brain. Rewards,

represented in areas such as the lateral habenula (LH) and the pedunculo-

pontine nucleus (PPTN) are used to compute prediction error signals in ventral

tegmental area (VTA) and substantia nigra pars compacta (SNc). Sensory

stimuli are used to define the animal’s state within the current task. The state

representation might involve both a stimulus-bound (externally observable)

component, which we propose is encoded in both OFC and sensory areas,

and a hidden (unobservable) component, which we hypothesize is uniquely

encoded in OFC. State representations are used as scaffolding for both

model-free and -based RL. Model-free learning of state and action values

occurs in ventral striatum (VS) and dorsolateral striatum (DLS), respectively,

whereas model-based learning occurs in dorsomedial striatum (DMS) as well

as VS.
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one, two, or three correct trials in a row, a number selected

randomly after each reward. In a ‘‘valid cue’’ condition, back-

ground color indicated to the monkey the number of trials before

the next reward, whereas, in a ‘‘random cue’’ condition, there

was no relation between background color and number of trials

to reward. As a result, the outcome of the previous trial was

informative for reward prediction only in the random cue con-

dition, because after a rewarded trial, the next trial would be

rewarded only on one-third of the cases (a one-correct-trial

requirement), whereas, after an unrewarded trial, the next trial

would be rewarded on one-half of the cases (a two-correct- or

a three-correct-trial requirement). Indeed, far fewer neurons

encoded the last reward in the valid cue condition (25%), where

it was not informative regarding task state, than in the random

cue condition (50%). Furthermore, we predict that OFC encod-

ing of background color should be different across the two

conditions in this task.

Subdivisions of the OFC
The OFC is not a single, homogeneous region—connectivity

analyses suggest a division into distinct medial and lateral

networks in monkeys (Carmichael and Price, 1996), humans

(Croxson et al., 2005; Kahnt et al., 2012), and rats (Price,

2007). Recent results implicate medial OFC in encoding eco-

nomic value and lateral OFC in more complex functions, such
as credit assignment and model-based RL (Noonan et al.,

2010; Rudebeck and Murray, 2011a, 2011b; Noonan et al.,

2012). It seems likely that our theory pertains more to the lateral

than the medial OFC, although the lesion studies we discussed

typically targeted the entire OFC. Thus, more work is needed

in order to precisely localize the representation of task states

within OFC subregions.

Interspecies Differences in OFC
We have not distinguished between rats and monkeys, treating

what is defined as ‘‘OFC’’ in these very different species as

essentially the same area. However, it is important to note that

there are large differences in anatomy across species, and

OFC in rats has a very different cytoarchitecture than OFC in

monkeys and humans (Wise, 2008; Wallis, 2012). These stark

anatomical differences have lead some researchers to question

whether many of the frontal structures found in primates,

including OFC, have analogs in the rat (Wise, 2008; but see Pre-

uss, 1995).

Interestingly, despite these differences, there are strong inter-

species similarities at the level of connectivity (Carmichael and

Price, 1996; Price, 2007), neural activity, and function. This is

particularly true for OFC, perhaps more so than any other pre-

frontal region (Preuss, 1995). For example, lesions to OFC cause

similar deficits in reversal learning (Teitelbaum, 1964; Butter,

1969; Jones and Mishkin, 1972; Rolls et al., 1994; Dias et al.,

1996; Meunier et al., 1997; McAlonan and Brown, 2003; Schoen-

baum et al., 2002, 2003a; Chudasama and Robbins, 2003; Bohn

et al., 2003; Izquierdo et al., 2004; Kim and Ragozzino, 2005),

extinction (Butter, 1969; McEnaney and Butter 1969), and deval-

uation (Gallagher et al., 1999; Gottfried et al., 2003; Izquierdo

et al., 2004) across species, and neural firing in different species

in these tasks is also very similar (Thorpe et al., 1983; Schoen-

baum and Eichenbaum 1995; Critchley and Rolls, 1996a,

1996b; Schoenbaum et al., 1999; Gottfried et al., 2003; O’Doh-

erty et al., 2002; Morrison and Salzman, 2009). We suggest

that OFC encodes the current task state in all of these species.

Animals such as rodents are perhaps limited in the complexity

of the state that can be represented in their relatively small

OFC, whereas humans, who have a much more developed

OFC, are able to deal with highly complex tasks that involve

many hidden states.

Interaction with Other Brain Areas
Figure 7 illustrates how our theory of OFC fits into a larger model

of RL in the brain. In particular, we propose that OFC encodes

task states, drawing on both stimulus-bound (externally avail-

able) and memory-based (or internally inferred) information.

These states provide scaffolding for model-free RL in a network

involving ventral striatum (encoding state values VðsÞ) and

dorsolateral striatum (encoding state-action values Qða; sÞ).
This system is trained by prediction errors computed in VTA

and substantia nigra pars compacta, where reward input from

areas such as the lateral habenula, hypothalamus, and peduncu-

lopontine nucleus is compared to predicted values from the

ventral and dorsolateral striatum. State information in OFC is

also critical for model-based RL (Sutton and Barto, 1998; Daw

et al., 2005), which makes use of learned relationships between
Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc. 275
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states in order to plan a course of action through mental simula-

tion of imagined states.

In parallel, we propose that a purely stimulus-bound state

representation encoded in sensory areas can also be used for

learning and decision making. These stimulus-bound states

are the sole basis for RL when OFC is lesioned but may also

be used for learning in intact animals. For instance, concurrent

use of a suboptimal stimulus-bound state representation could

account for some erroneous credit assignment seen even in

sham-lesioned control animals, as evidenced in Walton et al.

(2010).

Other Areas that Might Encode Task States
Several other areas have been proposed to encode task states.

Perhaps chief among these is the hippocampus. Like OFC,

lesions in hippocampus cause deficits in spatial reversal learning

(Teitelbaum, 1964) and prevent postextinction renewal (Ji and

Maren, 2007). However, this is true only when states are defined

according to spatial location. Hippocampal lesions seem to have

no effect on nonspatial reversal learning, whereas OFC lesions

generally affect all types of reversal (Teitelbaum, 1964).

On the basis of neural recordings that showed that choices,

stimuli, and rewards were encoded in neurons in the dlPFC,

Seo et al. (2007) proposed that dlPFC encodes task states.

Indeed it seems clear that dlPFC satisfies the representation

condition; however, this area is less able to satisfy the specificity

condition, given that dlPFC seems to encode combinations of

task relevant and task irrelevant stimuli. An intriguing possibility

is that dlPFC encodes a reservoir of candidate state variables

from which OFC constructs the current state with the variables

found to be most relevant to the current task (Otto et al., 2009).

There is also clearly related literature on rule-based behavior

that does not explicitly mention state representations. Indeed,

the outcome of learning with a sophisticated state representa-

tion is a set of action values that essentially determine rules for

the task by specifying the most rewarding action in each state.

Such rule-based behavior has long been thought to depend on

dlPFC (Banich et al., 2000; MacDonald et al., 2000; Petrides,

2000), and recent imaging studies have further localized this

function to the inferior frontal sulcus and inferior frontal junction

(Brass et al., 2008). However, it is important to distinguish be-

tween a state, which is an abstract representation of the current

location in a task, and a rule, which specifies a mapping from

conditions to actions. These two functions may be associated

with different brain areas, consistent with neuroimaging results

in which tasks involving the implementation of explicit rules

invoke dlPFC activity (Banich et al., 2000; MacDonald et al.,

2000; Petrides, 2000), whereas tasks requiring nontrivial assign-

ment of reward in a complex state space elicit activations in the

lateral OFC (Noonan et al., 2011). Furthermore, Buckley et al.

(2009) found differential effects of lesions to the OFC and the

dlPFC in a monkey analog of the Wisconsin card sorting task—

OFC lesions diminishedmonkeys’ ability to learn new reward as-

sociations, consistent with an impaired representation of state,

whereas dlPFC lesions decreased the ability to use a previously

learned rule.

Finally, one might argue that the encoding of state information

is too general a function to be ascribed to a single brain region
276 Neuron 81, 267–279, January 22, 2014 ª2014 Elsevier Inc.
and that these representations are widely distributed, perhaps

over the entire prefrontal cortex. However, this seems at odds

with the specificity of deficits that occur as a result of OFC

lesions (Buckley et al., 2009)—if the encoding of state were

more distributed, then one might expect that lesions to other

prefrontal areas would cause similar deficits. Furthermore, the

OFC might be uniquely well placed to integrate disparate pieces

of information, including sensory information and latent variables

such as memories, in order to compute the current state

because of its afferent connectivity, which is different from that

of other prefrontal areas. For instance, the OFC is the only

prefrontal area to receive sensory input from all sensory modal-

ities; it has strong connections to areas such as dlPFC, ACC, and

the hippocampus, and it has strong reciprocal connections with

subcortical regions such as striatum and amygdala, which are

critical to the representation of reward (Carmichael and Price

1995a, 1995b; Murray et al., 2011).

Relation to Other Theories of OFC Function
Over the years, many hypotheses of OFC function have been put

forth. For example, that the OFC inhibits prepotent responses

(Ferrier, 1876; Fuster, 1997) or that it represents bodily markers

for affective state (Damasio, 1994). Here, we discuss two popular

recent accounts that also relate OFC function to RL.

OFC Encodes Economic Value

Perhaps the dominant theory of OFC function in the past few

years has been the idea that OFC encodes economic value (Pa-

doa-Schioppa and Assad, 2006). Interpreted in the language of

RL, this essentially implies that OFC encodes state values, VðsÞ.
Recent studies have begun to cast doubt on this account. In

particular, some patterns of firing in OFC neurons are hard to

interpret as a pure value signal. For instance, OFC neurons

have been found to encode variables such as spatial location

(Roesch et al., 2006; Feierstein et al., 2006; Furuyashiki et al.,

2008), satiety (de Araujo et al., 2006), uncertainty (Kepecs

et al., 2008), and taste (Padoa-Schioppa and Assad, 2008).

Indeed, our own results, specifically the preservation of VTA

firing at the time of the odor after OFC lesions (Takahashi

et al., 2011), are inconsistent with the view that OFC provides

values to the computation of prediction errors in dopamine

neurons.

A more recent idea is that, rather than storing learned values,

OFC computes values in a model-based way to enable flexible

economic decision making and choices among many different

options in many different situations without explicitly storing

a previously learned value for each (Padoa-Schioppa, 2011).

This account fits well with our theory. In particular, although it

is not yet clear whether OFC itself is involved in computing

model-based values, we propose that the OFC provides the

state information that allows these computations to occur and

is thus essential to such economic decision making.

OFC Takes Part in Solving the Credit Assignment

Problem

Our theory is closely related to a recent proposal that OFC (in

particular, lateral OFC) acts to solve the credit assignment prob-

lem; i.e., to decide which reward should be attributed to which

action for learning (Walton et al., 2010; Noonan et al., 2012).

This idea shares many properties with our state-representation
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hypothesis, given that correctly keeping track of the current state

allows credit to be assigned appropriately. However, in our

theory, credit assignment itself is not damaged by the loss of

the OFC, but, rather, the states to which credit is assigned are

changed. This subtle distinction is an important one because

it points to a key difference between the theories: our theory

predicts that OFC lesions will not appear to cause a deficit

in credit assignment in tasks in which stimulus-bound states

suffice. Moreover, the credit-assignment hypothesis suggests

that past actions should always be represented in OFC for credit

assignment, whereas we predict that past actions will only be

encoded when they are important for determining the states of

the task.

More generally, our theory accounts for the role for OFC in a

wide range of tasks, not only reversal learning, delayed alterna-

tion, and extinction, but also devaluation, sensory precondition-

ing, and so on. Indeed, it predicts involvement in any situation

where task states are not stimulus bound. As such, our theory

provides a unifying account of OFC function that can be tested

(and disproved) in a variety of different tasks.
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