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When presented with a set of stimuli, some people may attend to, and 
therefore learn most about, concrete visual details, whereas others 
may attend to abstract semantic concepts associated with those stim-
uli. Evidence suggests that such variations in attention and learning 
may reflect stable individual predispositions1–3. We hypothesize that 
the expression of these predispositions is modulated by global vari-
ations in neural gain. Specifically, we propose that high gain focuses 
attention and learning on dimensions of the environment to which 
one is predisposed to attend, whereas low gain broadens attention, 
thereby weakening the constraint of prior dispositions on attention 
and learning.

By what mechanism can gain exert these effects on attention? Neural 
gain can be thought of as an amplifier of neural communication: when 
gain is increased, excited neurons become even more active and inhib-
ited neurons become even less active4 (Fig. 1a). Existing evidence 
suggests that the locus coeruleus–norepinephrine (LC-NE) system 
serves to modulate neural gain throughout the brain5–10. We used a 
simple neural network model in which different neural representa-
tions compete through mutual inhibition to demonstrate that apply-
ing a high global level of gain to all network units can make strong 
neural representations even more dominant while further weakening 
weaker competing representations. Accordingly, we hypothesized that 
high gain results in processing that is more narrowly focused on the 
most strongly represented features of perceived information.

To test our hypotheses, we used a task that quantifies the degree of 
learning about perceptual versus semantic features of stimuli (Fig. 1b), 
together with a standard trait questionnaire that assesses predis-
positions to attend to and learn about perceptual versus semantic  
dimensions of stimuli3. In general, we expected participants to exhibit 
better learning for the type of features (perceptual or semantic) to 
which they are predisposed. Notably, we hypothesized that this rela-
tionship would be modulated by neural gain.

Although it is impossible to directly measure gain in human par-
ticipants, pupil diameter, which is easily measured noninvasively, has 

been suggested to track levels of neural gain5. Converging evidence 
suggests that baseline pupil diameter is correlated with tonic levels of 
LC-NE activity in rats, cats and monkeys5,11, as well as with human 
behaviors that are predicted to be associated with tonic LC-NE activity 
in a variety of experimental tasks and manipulations6,7,12,13. Although 
baseline pupil diameter between individuals can be used to monitor 
changes in gain in individuals, phasic pupil dilations normalized to 
baseline diameter are better suited for between-subject comparisons, 
as they are better dissociated from factors that can confound between-
subject baseline measures. Because phasic responses are inversely 
related to baseline pupil diameter and tonic LC-NE activity5, pupil 
dilation responses provide an inverse measure of tonic gain.

To test neural predictions of our gain-modulation hypothesis 
concerning the relationship between pupil diameter and the match 
between individual predispositions and learning performance, we 
used functional magnetic resonance imaging (fMRI). First, increased 
gain implies that neural signals are enhanced, which in turn predicts 
that interactions between connected parts of the network should 
increase. Indeed, gain modulation has been proposed as a mechanism 
for flexible control of network functional connectivity14–16. This sug-
gests that global fluctuations in neural gain should be associated with 
global fluctuations in the strength of functional connectivity and that 
these fluctuations in functional connectivity should correlate with 
changes in pupil diameter. To test these predictions, we measured 
the degree to which fluctuations in functional connectivity within 
brain areas were correlated between areas, as well as with changes in 
pupil diameter.

Second, our neural network modeling of the effect of gain on learn-
ing suggested that the link between gain and focused learning should 
be mediated by a more tightly clustered pattern of neural interactions 
through which processing is selectively focused on particular input 
streams. In contrast, when gain in the model was low, widely dis-
tributed interactions mediated the concurrent processing of multiple 
stimulus features. Accordingly, we predicted that within-participant 
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Attention is commonly thought to be manifest through local variations in neural gain. However, what would be the effects of 
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baseline pupil diameter would correlate throughout the experiment 
with the degree to which functional connectivity was clustered, as 
measured using graph-theoretic analysis17, and that the degree of 
clustering would, in turn, correlate with a bias in learning perform-
ance toward the type of features that individual participants were 
predisposed to process.

RESULTS
A model of neural gain and predispositions in learning
First, to formalize our hypothesis about the effect of gain on atten-
tion and learning, we constructed a simple neural network model of 
the task that learned a stimulus-reward relationship from examples 
(Fig. 1c,d). The input to the network consisted of two separate streams 
of information, each representing one dimension (for example, visual 
or semantic). One feature in each dimension was associated with a 
monetary reward and the other was not. We simulated a predisposi-
tion to attend to one dimension more than to the other by making 
connection weights in one stream stronger than those in the other 
stream. We then examined the degree to which the network learned to 
associate the reward-predicting feature in each stream with a reward 
output as a function of both the predisposition of the network and 
the level of gain.

With low gain, inputs from both the strong and weak streams prop-
agated to the subsequent layers (Fig. 1c) and the relationship with 
reward was learned for both types of features (that is, predisposition 
did not significantly bias learning; Fig. 1e). In contrast, when gain was 
high, inputs in the strong stream dominated representations in the 
middle layer (Fig. 1d) and learning of the input-reward relationship 
tended to proceed only on strongly represented features (that is, learn-
ing was biased toward features that the network was predisposed to 
represent; Fig. 1e). Thus, the simulations indicate that increased gain 
can focus learning on those features that the network is predisposed 

to represent. The simulations also revealed that gain affects com-
munication patterns in the network: multiple input streams interact 
with lower gain (Fig. 1c), whereas weak input streams have less of 
an effect on other parts of the network with higher gain, with the 
result that network connectivity is more tightly clustered and separate  
subnetworks are formed (Fig. 1d).

Pupil responses and adherence to predispositions
To test for the predicted relationship between pupil responses (as 
an index of neural gain) and the influence of attentional predisposi-
tions on learning, we asked participants to choose between pairs of 
multidimensional images (comprised of visual and semantic features) 
and rewarded them according to their choices. Unbeknownst to the 
participants, one visual feature and one semantic feature predicted 
monetary reward in each stimulus set (Fig. 1b). For example, in 
one stimulus set, office-related images, but not food-related images 
(semantic features), yielded reward and, similarly, grayscale images, 
but not color images (visual features), yielded reward (rewards were 
additive so that a grayscale office-related image yielded twice the 
reward). Throughout 18 games, each with different semantic and vis-
ual dimensions and unique stimuli, we measured participants’ visual 
and semantic performance separately using trials in which stimuli 
differed on either the visual or the semantic features, but not both.

In addition, we assessed each participant’s predisposition to process 
either the visual or semantic features using the Index of Learning 
Styles (ILS) questionnaire3. The ILS questionnaire contrasts a sens-
ing learning style that indicates a predisposition to process and learn 
about sense-related data, such as visual features, with an intuitive 
learning style that indicates a predisposition to learn about abstract 
concepts, such as semantic categories.

We found that a more intuitive (and less sensing) learning style was 
correlated with better performance on the semantic trials than on the 
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Figure 1 The effect of gain on attention and learning. (a) Input-output function of a neuron with low and  
high gain. High gain amplifies the effect of input on output, causing stronger excitation and inhibition.  
(b) Experimental design of the visual and semantic learning task. In each trial, participants were  
presented with a choice between two images (objects or words). Participants were rewarded according  
to their choices, with counterfactual rewards also being displayed. In this particular game, to maximize  
reward, participants had to learn by trial and error that office-related images provided a higher reward  
than food-related images (semantic features), and that grayscale images provided a higher reward than  
color images (visual features). Each trial involved two new stimuli. (c,d) Simple reward-learning neural  
network. Arrows denote excitatory connections, round edges denote inhibitory connections. Darker fill  
color indicates more activity and thicker lines indicate stronger weights in examples with low (c) and  
high (d) gain. With high gain, activity of strongly represented features (type 1) block activity of weakly  
represented features (type 2) at the middle layer (circled), so the mapping between type 2 features and  
reward cannot be learned. This condition effectively separates the second input stream from the rest of the  
network. (e) Simulated learning of mapping between the reward-predicting features and reward. The relative  
strength of learning for the two features is shown as a function of the ratio between the input weights (varied between 1/2 and 2/1), for different levels 
of gain. The higher the gain, the more learning performance depends on the relative weight of each input stream.
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visual trials (r = 0.28, P = 0.05, one tailed; Fig. 2a and Supplementary 
Fig. 1), consistent with a predisposition to attend to and learn about 
semantic versus visual features of the stimuli. Notably, the degree 
to which task performance matched individual predisposition was 
strongly anticorrelated with mean pupil dilation response across indi-
viduals (r = −0.96, P < 0.01; Fig. 2b,c). Given the inverse relationship 
between pupil response and gain discussed above, our finding suggests 
that the association between task performance and individual predis-
position was itself associated with high gain. These behavioral results 
were fully replicated in a second experiment in which a different group 
of participants performed the same task while being scanned using 
fMRI (Fig. 2d,e). Moreover, in both experiments, mean pupil dilation 
response did not correlate with overall task performance (behavioral 
experiment: n = 35, r = −0.13, P = 0.44; imaging experiment: n = 30,  
r = 0.04, P = 0.82), mean reaction times (following log transform; 
behavioral experiment: n = 35, r = 0.17, P = 0.33; imaging experiment: 
n = 30 participants, r = 0.06, P = 0.77), or with answers to debriefing 
questions regarding interest, motivation and attention (Supplementary 
Table 1). These results suggest that the relationship between pupil 
responses and adherence to one’s learning predisposition cannot be 
explained in terms of fluctuations in overall level of arousal or attention 
to the task. Further analysis confirmed that the decrease in correlation 
between ILS score and task performance for participants with higher 
pupil response (lower gain) was not simply a result of a more limited 
range of ILS scores for these participants (Supplementary Fig. 2).

Pupil diameter and fMRI indicators of gain
We next examined the fMRI data for evidence of fluctuations in gain 
in individual participants and tested whether these correlate with 
pupillary indices of gain. Increased gain entails that neural activation 
is driven toward maximal or minimal levels (Fig. 1a). Thus, large 
baseline pupil diameter should be associated with more extreme 
fMRI activations. Indeed, we found that the fMRI blood oxygen  

Figure 2 Relationship between learning 
performance and ILS scores. (a) Difference in 
learning about semantic and visual features 
in the behavioral experiment as a function of 
sensing-intuitive score on ILS questionnaire. 
Negative values indicate better visual 
performance (y axis) and a sensing learning style 
(x axis), whereas positive values indicate better 
semantic performance and an intuitive learning 
style (n = 35 participants). (b) Correlation  
between ILS sensing-intuitive score and  
visual-semantic performance difference on  
the task (as shown in a) as a function of  
mean pupil dilation response. To examine the 
degree to which task performance matched  
ILS score in participants with different levels  
of pupil response, we divided participants  
into five bins according to mean pupil dilation. 
Each data point represents a group of seven 
participants. To illustrate, data points from the 
individual members of the group with lowest 
mean pupil response appear in black in a.  
(c) Pupil diameter normalized by its value at 
trial onset (time 0), averaged within participants 
across trials and then across participants  
(gray indicates s.e.m. across participants;  
n = 28 participants). Pupil dilation response 
was computed as the difference between the 
peak pupil diameter during the 4 s that followed 
trial onset and the pre-trial baseline diameter, 
normalized by the pre-experiment resting 
diameter. As expected, baseline pupil diameter 
and pupil response were anticorrelated in all 
participants (mean r = −0.77, range = −0.89 
to −0.54, t27 = −28.9, P < 10−21). Although 
baseline diameter is thought to be a more  
direct indicator of tonic LC-NE function,  
the normalized pupil dilation response can 
serve as an inverse index that is comparable between individuals. (d,e) Replication of behavioral results in the fMRI experiment with a different group of 
participants (n = 30 participants). Each data point in e represents a group of six participants.
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level–dependent (BOLD) signal was farther from the mean when 
baseline pupil diameter was large (mean absolute deviation from the 
mean = 8.36) than when it was small (mean absolute deviation = 8.02; 
t29 = 3.79, P < 10−4, paired t test comparing 10% of trials with highest 
pupil diameter to 10% of trials with lowest pupil diameter).

An additional prediction that stems from the assumed relation-
ship between pupil diameter and gain is that the magnitude of pupil 
dilation in response to task-relevant stimuli should correlate with 
the magnitude of the BOLD response to task-relevant stimuli, but 
not to task-irrelevant stimuli5. To test this prediction, we included 
random, task-irrelevant, auditory stimuli that participants were 
instructed to ignore. As predicted, both low baseline pupil diameter 
and high pupil dilation response were associated with stronger BOLD 
responses to task-relevant stimuli, but not to task-irrelevant stimuli 
(baseline diameter: t27 = −5.04, P < 10−5; dilation response: t27 = 2.56,  
P < 0.05; Fig. 3).

Pupil diameter and global fluctuations connectivity
The neural network learning model described above suggests that 
global changes in gain should be associated with global changes in 
the strength of functional connections. To examine this suggestion 
in a more general setting, we simulated the effects of gain on func-
tional connectivity (unit-to-unit correlations) in large (1,000 units) 
randomly constructed networks that were not designed to perform 
any particular task (Fig. 4). This simulation also suggested that high 
gain should be associated with stronger mean functional connectivity 
(r = 0.99, P < 10−13; Fig. 4a–c).

Thus, we first examined whether our fMRI data was character-
ized by global fluctuations in the strength of functional connections. 
We measured functional connectivity while participants performed 
the learning task and assessed the extent to which fluctuations in 
functional connectivity in different brain areas were correlated with 
each other. To do this, we arbitrarily divided each participant’s brain 
into 32 boxes that contained roughly similar volumes of gray matter 
(27.1 ± 2.6 cm3; Fig. 5a). We then measured the mean strength of 
functional connectivity in each box during each game (quantified as 
the mean absolute correlation of the time series of the fMRI signal 
among pairs of voxels in the box). Finally, we correlated the time 
series of mean functional connectivity values over games for each 
pair of boxes. Mean functional connectivity strength across games was 
positively correlated for 96% of all box pairs and the mean correlation 
coefficient was 0.72 (range = 0.27–0.95 across participants, t29 = 10.85, 
P < 10−10; Fig. 5b). Notably, this correlation did not simply reflect a 
common global signal component, as the mean gray-matter signal was 
regressed out of the data before the functional connectivity analysis.  

Figure 4 Simulation of the effect of global 
changes in gain on functional connectivity 
strength and clustering. Recurrent neural 
networks were composed of 1,000 fully 
connected units with random connection 
weights. Unit-to-unit correlations were 
computed across 500 trials for each level of 
gain for each of 100 networks. (a) Distribution 
of correlation coefficients for each of  
15 different levels of gain. Higher gain  
resulted in stronger functional connections 
(correlations or anti-correlations). (b) Mean  
correlation coefficient increases as a function  
of gain (s.e.m. was too small to observe). 
Different simulations in which each unit was 
only connected to a minority of other units 
(10%) or in which correlations were measured 
between the mean activity of groups of ten  
units yielded qualitatively similar results.  
This suggests that our results are robust to 
network density and measurement granularity. 
(c) Correlation between the global gain 
parameter and the frequency of correlation 
coefficients as a function of correlation coefficient. Stronger correlations were more prevalent (and weaker correlations were less prevalent) when gain  
was higher. (d) Clustering coefficient of the networks’ functional connectivity graphs as a function of gain. Clustering coefficient tended to increase  
with gain. s.e.m., in lighter shade, is barely visible.
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Thus, even though our measurements of functional connectivity in 
different boxes involved strictly disjoint brain areas, we found very 
strong correlations in fluctuations of these measurements throughout 
the brain.

Although this result is strongly suggestive of global modulation of 
neural signaling, it is nevertheless possible that global fluctuations in 

local functional connectivity reflect correlated local instabilities of the 
MRI scanner. Such a confound could be dismissed if the measured 
fluctuations in functional connectivity were also to covary with the 
separately attained measures of baseline pupil diameter. Indeed, we 
found that when baseline pupil diameter was highest (indicative of 
high gain), high functional connectivity measurements were more 

prevalent, whereas weaker functional con-
nectivity was more prevalent when baseline 
pupil diameter was lowest (low gain) (Fig. 6a).  
Accordingly, baseline pupil diameter was 
positively correlated with mean functional 
connectivity strength (mean r = 0.27 across 
participants, t27 = 2.98, P < 0.01), and, simi-
larly, pupil responses were anticorrelated with 
mean functional connectivity strength (mean 
r = −0.24 across participants, t27 = −3.63,  
P < 0.01). In particular, baseline diameter 
was positively correlated with the number 
of functional connectivity measurements 
stronger than ±0.17 and anticorrelated with 
the number of weaker functional connectivity  
measurements (Fig. 6b). Notably, this non-
monotonic relationship between functional 
connectivity strength and its correlations 
with baseline diameter was predicted by 

Figure 6 Pupil diameter and whole-brain 
functional connectivity. (a) Distribution of 
functional connections by connection strength 
(n = 28 participants). The distribution is shown 
separately for all games (gray shading), for the 
third of each participant’s games in which the 
participant’s baseline pupil diameter was  
lowest (solid line) and for the third of games in 
which pupil diameter was highest (dashed line). 
Insets: magnification of boxed areas to show 
differences between lowest and highest pupil 
diameter games. (b) Game-by-game correlation 
between baseline pupil diameter and frequency 
of functional connectivity measurements  
as a function of functional connectivity value. 
The y axis indicates whether large pupil 
diameter was associated with more  
(positive values) or fewer (negative values)  
voxel pairs. For each participant, we computed 
the distribution of functional connections  
during each game and then computed the 
correlation across games between baseline  
pupil diameter and the number of voxel  
pairs in each bin of the distribution. The curve 
shows the correlations averaged over participants (gray indicates s.e.m.). Larger pupil diameter was associated with more strong functional connectivity 
measurements (absolute strength >0.17) and fewer weak functional connectivity measurements (between −0.17 and +0.17).
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Figure 7 Pupil diameter and local functional 
connectivity. (a,c) Proportion of boxes in 
which mean functional connectivity strength 
was positively correlated with baseline pupil 
diameter (a) or negatively correlated with pupil 
dilation response (c) for each participant. 
(b,d) Mean correlation between within-box 
functional connectivity strength and baseline 
pupil diameter (b) or pupil dilation response 
(d) for each participant. The solid horizontal 
lines indicate the group means and the dashed 
horizontal lines indicate s.e.m.
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our simulation of the effects of gain on functional connectivity in  
randomly connected neural networks (Fig. 4b).

To verify that the relationship between functional connectivity and 
pupil diameter was not specific to particular brain regions, but rather 
was manifest throughout the brain, we examined this relationship 
separately in each of the 32 boxes. Functional connectivity strength 
was positively correlated with baseline pupil diameter in 70% of the 
boxes (22 of 32 boxes per participant on average; Fig. 7a) and the 
mean correlation coefficient was 0.19 (t27 = 3.19, P < 0.01; Fig. 7b). 
Notably, baseline pupil diameter was not correlated with the mean box 
fMRI signal (mean r = −0.004, t27 = −0.35, P = 0.73), indicating that 
the relationship with functional connectivity strength did not reflect 
pupil-related variations in signal strength. Furthermore, the relation-
ship between baseline diameter and functional connectivity strength 
was fairly consistent throughout the brain: for every box, functional 
connectivity was positively correlated with baseline pupil diameter in 
at least half of the participants. As expected, functional connectivity  
strength was also anticorrelated with pupil dilation response in 75% 
of the boxes (Fig. 7c) and the mean correlation coefficient was −0.20  
(t27 = −3.54, P < 0.01; Fig. 7d). Thus, our results suggest that the 
strength of functional connectivity fluctuates in a similar manner 
throughout the brain and that these fluctuations are tracked closely 
by both pupil diameter indices.

Pupil diameter, neural clustering and task performance
The results of our learning neural network model also suggest that, 
with high gain, functional connectivity should be tightly clustered 
rather than evenly distributed. To examine this in a more general 
setting, we constructed a functional connectivity graph for each of 
the random 1,000-unit networks described above. Each of the graphs’ 
nodes represented a unit, and two units were connected by an edge if 
the correlation of activity between them was in the top 1% of all such 
correlations. The clustering coefficient18 of such a graph indicates 
the degree to which functional connectivity is tightly clustered in the 
network. As expected, higher gain was associated with higher cluster-
ing coefficients (r = 0.99, P < 10−12; Fig. 4d).

To test the degree to which functional connectivity was tightly 
clustered in the brain, we then constructed a functional connectivity 
graph for each participant and each game (18 graphs per partici-
pant). The graphs were constructed in the same manner as those for 
the simulated networks, except that, in this case, each of the graphs’ 
nodes represented a voxel (Supplementary Figs. 3 and 4). As pre-
dicted, we found a significant game-by-game correlation between 
the clustering coefficient of these graphs and baseline pupil diameter 
(mean r = 0.14 across participants, t27 = 1.82, P < 0.05, one tailed;  
Fig. 8a). That is, when participants’ pupil diameter indicated high 
gain, their neural functional connectivity tended to be more tightly 
clustered. Moreover, we found a similar correlation when the analysis 
was restricted to prefrontal cortex, an area that is not involved in pri-
mary visual processing (mean r = 0.14 across participants, t27 = 2.05, 
P < 0.05), suggesting that the relationship between pupil diameter and 
clustering was indeed a result of global fluctuations in gain and not 
of differences in activation to the visual stimuli.

Finally, to the extent that functional connectivity clustering reflects 
the effects of gain on attention, we expected the degree of clustering 
to be associated with the degree to which learning was focused on 
stimulus features to which the individual was predisposed to attend. 
Consistent with this prediction, we found a significant game-by-game 
correlation between the clustering coefficient and a shift in learning 
performance toward the type of feature that the ILS scores indicated 
as preferred by each participant (mean r = 0.08 across participants, 

t29 = 2.2, P < 0.05). Concordantly, ILS score was correlated with the 
relationship between clustering coefficient and task performance  
(r = 0.35, P < 0.05; Fig. 8b). Thus, when participants’ neural func-
tional connections were more tightly clustered, task performance 
more strongly reflected individual predispositions.

DISCUSSION
We investigated the relationship between global, brain-wide fluctua-
tions in neural gain and the effect of individual priors or attentional 
predispositions (so-called learning styles) on trial-and-error learning 
behavior. More specifically, we used pupil-diameter measures as a 
proxy for global levels of neural gain to test the hypothesis that pre-
dispositions constrain learning more strongly when gain is higher. 
In two experiments, the degree to which learning performance fol-
lowed individual predisposition was strongly correlated with pupil 
response. In support of our interpretation of this correlation, we 
found that brain function was characterized by global fluctuations in 
the strength of functional connectivity, as would be expected from 
global modulation of gain, and that these fluctuations were tracked 
by pupillary indices of gain. We also found that these pupillary indi-
ces were correlated with the degree to which functional connectivity  
is clustered, as was predicted by our neural network modeling. Finally, 
we showed that increases in such clustering were associated with a 
shift in the content of learning toward the type of information that 
individual participants were predisposed to process. Taken together, 
these results provide strong converging evidence in favor of the 
hypothesis that high gain constrains the type of information that is 
learned from multidimensional sensory input in accordance with 
one’s prior processing dispositions.

The finding that local fluctuations in functional connectivity are 
globally correlated across the brain, and that these fluctuations are cor-
related with pupillary indices, supports existing theory that implicates 
the LC-NE system in global modulation of neural gain4,5. We note, 
however, that the relationship between gain and functional connectivity  
may not be as simple as portrayed here, as a result of factors such as 
saturation of neural activity, network dynamics and spiking dynamics. 
Nevertheless, our results, viewed in the context of existing evidence 
and theory, conform to the expectation that gain and functional con-
nectivity should covary. In addition, our clustering analysis findings 
extend this theory by suggesting that high gain is associated with a 
shift from a widely distributed pattern of neural processing to a more 
tightly clustered pattern dominated by the strongest input streams.
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Our results provide a neural-computational framework in which 
past findings concerning the relationship of stress and norepine-
phrine levels to cognitive function can be understood. A large body 
of psychological research in humans suggests that stress (which is 
associated with high levels of norepinephrine) reduces the breadth 
of attention19,20. Another set of studies found that stress and nore-
pinephrine shift rat and human behavior from a flexible mode of 
behavior to a more rigid habitual mode in which previously estab-
lished stimulus-response associations are followed21–24. Stress and 
norepinephrine have also been linked to diminished performance 
in tasks requiring cognitive flexibility25,26. Our findings suggest an 
explanation of these previously observed phenomena in terms of the 
influence of the LC-NE system in globally modulating neural gain. 
Increased gain narrows attention by strengthening already strong neu-
ral representations at the expense of competing weaker representa-
tions. This, in turn, favors previously established patterns of behavior, 
which are subserved by well-established neural circuits and tend to 
form stronger representations.

We attempted to identify the effects of neural gain, a computational 
concept defined in terms of the input-output function of neural units, 
on behavior and on whole-brain fMRI metrics. This constitutes a 
promising approach by which low-level principles of neural function 
may be linked via computational modeling to system-level neural and 
behavioral phenomena. However, the disadvantage of our approach 
is that it necessarily relies on a broad set of assumptions. Specifically, 
in making our predictions, we assumed that changes in pupil diam-
eter would track changes in neural gain. Furthermore, our fMRI pre-
dictions were based on the assumption that the BOLD signal would 
reflect the neural effects of gain simulated by changes in firing rates 
in our computational models. This last assumption is particularly 
tenuous, as several studies have found dissociations between spiking 
activity and the BOLD signal specifically under conditions that are 
thought to involve changes in neuromodulation27–29. Nevertheless, we 
present a diverse set of behavioral and imaging results that precisely 
match the predictions made by our neural network simulations of the 
effect of gain on neural activity, connectivity and behavior. This set of 
converging results, in addition to evidence from past studies, provides 
substantial support for our underlying assumptions.

The focusing effect of neural gain on processing may at first glance 
seem to conflict with previous accounts suggesting that tonically high 
gain reduces task-focused attention5. However, although our find-
ings suggest that increased gain focuses attention on predisposed 
dimensions of sensory stimuli, these need not be related to the task at 
hand. Rather, if distracting stimuli are salient enough to evoke strong 
neural representations, our theory predicts that high gain would be 
associated with increased attention to distracters and with reduced 
task-focused attention. Our findings also fit well with a previous sug-
gestion30 that phasic norepinephrine responses, which are stronger 
in low gain states (low tonic LC-NE activity), facilitate behavioral 
flexibility in response to unexpected target stimuli.

Several of our results draw on graph-theoretic methods that have 
increasingly been used to analyze both structural and functional brain 
imaging data31,32. The strength of these methods lies in their ability 
to capture, by simple quantitative measures, characteristics of net-
works that are comprised of a very large number of elements. Most 
previous studies employing graph-theoretic analyses have investigated 
stationary aspects of neural processing networks, but a few recent 
studies have begun to examine how measures of functional brain net-
work topology vary with behavior33–35. The latter, however, analyzed 
relatively small networks (<120 nodes). In contrast, we used graph-
theoretic measures to examine how the topology of high-resolution 

whole-brain networks (>20,000 nodes) varies with behavior. Our 
results indicate that such an analysis can provide meaningful insights 
into the way sensory information is processed and learned.

In conclusion, our findings suggest that processing predispositions 
can influence learning, but that these priors are not always binding. 
Rather, brain-wide fluctuations in neural gain induce different modes 
of neural communication that modulate the breadth of attention and 
the extent to which processing and learning are constrained by prior 
dispositions. The adaptive value of modulating this aspect of process-
ing in accord with situational variables is clear. The questions now are 
what drives these changes in gain and how does the brain determine 
what mode of processing is suitable at any given moment.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
learning neural network model. We modeled learning of stimulus-reward map-
ping from examples using a three-layer neural network. The network consisted 
of a four-node stimulus input layer, in which the stimulus was represented using 
two types of features (for example, in the case of our task, semantic and visual 
features of the stimulus), a representation middle layer and a reward output 
layer in which activity represented the expected reward (Fig. 1c,d). As in our 
task, there were two possible features in each type, one of which was associ-
ated with a reward output. Our aim was to examine how associative learning 
changes as a function of gain and of the network’s predisposition to represent 
either of the stimulus features more strongly. Thus, each stimulus consisted of 
a binary input vector in which one input feature of each type was set to 1 (and 
the rest were set to 0) and the weights associated with each input reflected the 
degree to which the network was predisposed to represent that type of feature. 
In addition, middle layer units inhibited each other (weight = −1) to simulate 
competition for attention between different representations. Unit i activation was  
computed as

a f w ai
j

ij j=












∑

where wij is the connection weight from unit j to unit i, and f(x) is the sigmoid 
activation function

f x
e x( ) =

+ − ⋅
1

1 gain

The parameter gain reflected the level of neural gain in the network and had the 
same value for all units. To determine how much inhibition each middle layer 
unit should exert, the activation level of each unit was first computed on the 
basis of the input from the input layer. The resulting values were then used to 
compute the magnitude of lateral inhibition in the middle layer, and activation 
levels were recomputed.

We ran the simulation with 15 different values of gain between 0.1 and 20, and 
with 16 different settings of predisposition to one of the input streams for each 
level of gain. Network predisposition to represent feature 1 relative to feature 
2 was varied between 1/2 and 2/1, and input-to-middle layer weights were set 
accordingly, under the constraint that both weights sum to 1 (for example, for a 
ratio of 1/2, weight 1 was set as 0.33 and weight 2 was set as 0.67).

On each run, each of the four possible stimuli and its associated reward out-
put were presented to the network. The network’s task was to learn to associate 
between the reward-associated features and a reward output, and we examined 
the extent to which that was learned for each of the input streams. Learning 
proceeded as follows: weights from the middle layer units to the output unit 
(woi) were initialized to 0 and the output unit activation (o) was computed 
according to equation (1). Then, the difference between the target (t) and actual 
output activation was used to update the weights to the output unit using the  
delta rule37
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where f′(x) is the derivative of the activation function, which in this case is

′ = ⋅ −f x f x f x( ) ( )( ( ))gain 1

The learned weights woi reflected the degree to which the network learned 
to associate each of the stimulus features with the reward output. We therefore 
used the ratio between these weights to represent the bias in learning perform-
ance toward either of the reward-associated features. It is easy to see that the only 
term that differentiates between the update equations of the two weights is ai, 
the activation of the respective middle layer unit. Indeed, the ratio between the 
learned weights followed the ratio between the activation of the two middle layer 
units. Each run was repeated 100 times, with a random ordering of the stimuli, 
and the resulting weight ratios were averaged.

(1)(1)

(2)(2)

(3)(3)

(4)(4)

Randomly constructed neural network model. To examine the effects of gain 
on functional connectivity in a general setting, we constructed a recurrent neu-
ral network of 1,000 fully connected units. Weights were randomly sampled 
from a uniform distribution between −0.01 and 0.01. On every trial, activations 
were randomly sampled from a uniform distribution between 0 and 1, and then 
updated in a random order using equation (1) until each unit was updated five 
times. The same gain was used for all units. The end state was considered as the 
activation pattern of that trial. For each level of gain, we conducted 500 trials 
and computed the degree to which each pair of units was correlated across tri-
als. The full unit-to-unit correlation matrix was used to compute the clustering 
coefficient as described below for the fMRI data. We repeated the simulation  
100 times, each time with a different randomly determined weight matrix. The 
gain parameter was limited to values which did not result in consistent wide-
spread saturation (that is, so that on average most units are neither above 95% nor 
below 5% of the maximal activation). We tested the relationship between gain and 
mean unit-to-unit correlation in two additional alternative settings: when each 
unit is only connected to a minority (10%) of the other units, and when correla-
tions are measured between groups of ten units instead of between single units. 
Results were qualitatively similar and are therefore not shown.

Participants. 36 naive participants (mean age = 25.1 years, age range =  
18–61 years, 22 females) performed the behavioral experiment and 35 naive par-
ticipants (mean age = 20.5 years, age range = 18–30 years, 25 females) performed 
the fMRI experiment. Participants were from the Princeton University area, and 
gave written informed consent before taking part in the study, which was approved 
by Princeton University’s institutional review board. Participants in the behavioral 
experiment received monetary compensation according to their performance on 
the task ($0.06 per reward point, $13.5–16.2 total, mean $14.88). fMRI partici-
pants received monetary compensation for their time, as well as a bonus according 
to their performance ($0.04 per reward point, $8.04–10.72, mean = $9.47).

Stimuli. The experiment involved 18 stimulus sets, half of which consisted of 
images of objects and the other half consisted of images of words. Words were 
generated using the Processing programming environment36, and object images 
were collected from various sources on the internet using the Creative Commons 
search interface (http://search.creativecommons.org/) and edited using Adobe 
Photoshop CS5 (Adobe Systems). To minimize luminance-related changes in 
pupil diameter, all stimuli were made isoluminant with the background, to best 
approximation. Word colors were adjusted to be isoluminant using the flicker-
fusion procedure38 on the display systems that were used in each experiment. 
More complex images, which consisted of many colors, were adjusted by scaling 
all colors so as to equate the mean estimated luminance with the background. For 
this purpose, luminance of each color was estimated based on its RGB values as 
0.2126·R + 0.7152·G + 0.0722·B (http://www.w3.org/Graphics/Color/sRGB). The 
mean deviation of luminance in images was 29% (range 0% to 76%). Given that 
within-image variance and deviation of the display system from the sRGB stand-
ard might cause slight differences in luminance perception, all of the analyses  
based on pupil dilation response were repeated using pupil responses to word 
stimuli only, which did not suffer from these sources of variance. The results of 
these analyses were similar to those reported here and are therefore not reported 
for the sake of brevity.

Stimuli were presented using MATLAB software (MathWorks) and the 
Psychophysics Toolbox39 on a computer monitor (behavioral experiment) or 
using a projector outside the MRI scanner that displayed the stimuli onto a 
translucent screen located at the end of the scanner bore (fMRI experiment), 
which participants viewed through a mirror attached to the head coil. To com-
pare BOLD responses to task-relevant and task-irrelevant stimuli, we played 72 
task-irrelevant auditory stimuli (phonemes), which participants were instructed 
to ignore, at random times during the inter-trial intervals in the fMRI experi-
ment (four stimuli per game). The phonemes were obtained from http://www.
wikipedia.org/ and were, at most, 1 s long.

Behavioral task. Participants chose between pairs of stimuli and received 
 monetary reward according to their choices. On each trial, participants had  
3 s to choose between two stimuli, after which the reward was presented for 2 s. 
Inter-trial interval was varied randomly (uniformly) between 6 and 10 s. We used 
a relatively long inter-trial interval to allow enough time following each trial for 

http://search.creativecommons.org/
http://www.w3.org/Graphics/Color/sRGB
http://www.wikipedia.org/
http://www.wikipedia.org/
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the pupil dilation response to evolve40. To minimize inter-subject variability, all 
participants encountered the same stimulus sets in the same order. For the same 
reason, as well as to speed up learning, participants were presented with both 
the reward for their choice above the chosen stimulus, and (slightly dimmed) 
the reward that they could have received if they had chosen the other stimulus  
(Fig. 1b). No stimulus appeared more than once.

Participants were instructed that stimuli had some properties that predict 
reward. They then underwent a short training session with a few example trials 
before starting the task. Unbeknownst to the participants, each stimulus set had 
one visual feature (bright background, blurry texture, etc.) and one semantic 
feature (food, sea related, etc.) that was rewarded, and these differed from game 
to game. For example, in a particular game, choosing a grayscale image or an 
image of food led to reward while choosing a color image or of office equipment 
did not. Rewards for the two features were additive, such that choice of a stimulus 
that possessed both rewarding features resulted in two reward points.

Each of the first two trials included one stimulus that possessed the rewarding 
visual and semantic features, and therefore yielded two reward points, and one 
stimulus that possessed neither of the rewarding features, and therefore yielded 
no reward. In the following ten trials, stimuli differed on either the visual (five 
trials) or the semantic (five trials) dimension, but not both. These trials allowed 
us to measure performance on the visual and semantic dimensions separately. 
Performance was computed as the proportion of trials in which the more highly 
rewarding stimulus was chosen. One fMRI participant was excluded from the 
analysis due to lack of cooperation, as evidenced by performance that was lower 
than chance and frequent eye closing. Performance of all other participants was 
better than chance. Following completion of the task, participants completed the 
ILS questionnaire3. Finally, participants filled out a standard debriefing question-
naire in which they were asked to rate on a scale of 1 to 5 how interesting they 
found the experiment, how motivated they were to earn as much as possible, and, 
in the imaging experiment, how difficult it was for them to maintain attention 
during the task.

eye tracking. A desk-mounted ASL model 504 eye-tracker (Applied Science 
Laboratories) was used to measure participants’ left pupil diameter at a rate of 
60 samples per s while they were performing the behavioral task with their head 
fixed on a chinrest. An ASL Long Range Optics unit was used to measure pupil 
diameter during the fMRI experiment. Pupil diameter data were processed to 
detect and remove blinks and other artifacts. At the beginning of the experi-
ment, a measurement of pupil diameter at rest was taken for a period of 45 s. 
All subsequent pupil dilation responses were normalized by the pre-experiment 
resting pupil diameter. For each trial, baseline pupil diameter was computed as the 
average diameter over a period of 1 s before the beginning of the trial (at the end 
of the inter-trial interval, at which point pupil activity from the trial itself should 
have subsided). Pupil dilation response was computed as the difference between 
the peak diameter recorded during the 4 s following trial onset and the preced-
ing baseline diameter (Fig. 2c). Baseline pupil diameter and dilation response 
measurements in which more than half of the samples contained artifacts were 
considered invalid and excluded from the analysis. Only participants with at least 
30 valid trials were included in the across-participant analysis of mean pupil dila-
tion (n = 35 for the behavioral experiment, n = 30 for the imaging experiment). 
Only participants for whom at least six games included six valid trials each were 
included in the game-by-game analysis of baseline pupil diameter (n = 28 for the 
imaging experiment).

fmRI data acquisition and preprocessing. Functional (EPI sequence, 34 slices 
covering whole cerebrum, resolution = 3 × 3 × 3 mm with 1-mm gap, repetition 
time = 2.0 s, echo time = 30 ms, flip angle = 90°) and anatomical (MPRAGE 
sequence, 256 matrix, repetition time = 2.5 s, echo time = 4.38 ms, flip angle = 8°,  
1 × 1 × 1-mm resolution) images were acquired using a 3T Allegra MRI scanner 
(Siemens). Data were processed using MATLAB and SPM8 (Wellcome Trust 
Centre for Neuroimaging, University College London). Functional data were 
motion corrected, and low-frequency drifts were removed with a temporal 
high-pass filter (cutoff of 0.0078 Hz). Data from four participants whose head 
moved by more than 2 mm or 2° were excluded from further analysis, leaving 30 
participants. Images were normalized to Montreal Neurological Institute (MNI) 
coordinates. No spatial smoothing was applied. Brains were segmented into gray 
matter, white matter and cerebrospinal fluid. Mean gray matter, white matter and 

cerebrospinal fluid fMRI signals and movement parameters were regressed out 
of functional data. Cerebrum and frontal lobe MNI coordinates provided with 
xjView (http://www.alivelearn.net/xjview8/) were used to restrict analysis to gray 
matter in these areas.

To further validate the results of the regional and whole-brain functional con-
nectivity analyses, we repeated these analyses with alternative preprocessing in 
which stimulus and outcome presentation events (convolved with SPM’s canoni-
cal hemodynamic response function) were regressed out of the data, mean gray 
matter signal was not regressed out, and the analysis was restricted to voxels that 
were activated in response to task stimuli or outcomes (P < 0.001 uncorrected), 
as determined by a general linear model that included regressors for stimulus and 
outcome presentation and for movement parameters. Results were qualitatively 
similar to the original analysis (Supplementary Figs. 5–7).

general linear model analysis. Two general linear models were used to compare 
the way the fMRI BOLD signal response to task-relevant and task-irrelevant 
stimuli varied with baseline pupil diameter and pupil dilation response. Each 
model included regressors for task-relevant stimuli onset, task-irrelevant stimuli 
onset, and, for each of these, a parametric regressor that reflected the trial-to-trial 
variability of either the baseline pupil diameter or the pupil dilation response. 
In addition, regressors that reflect head movement parameters were included 
in both models.

Regional functional connectivity analysis. To divide gray matter voxels into uni-
formly sized regions, we partitioned each brain recursively into 32 boxes. First, the 
median x coordinate was used to split all voxels into two boxes. Then, each of the 
resulting subsets of voxels was divided by its median y coordinate into two boxes. 
The same procedure was then repeated recursively with the median z coordinates, 
with the median x coordinates and, finally, with the median y coordinates, result-
ing in 32 boxes of voxels. Mean functional connectivity strength was measured 
for each box in each game as the mean absolute correlation between all voxel 
pairs in the box. We then computed the across-games correlations of boxes’ mean 
functional connectivity strength, both between the boxes, and with the baseline 
pupil diameter and the pupil dilation response.

whole-brain functional connectivity analysis. To assess pupil-diameter related 
changes in global functional connectivity, we first computed a full voxel-to-voxel 
correlation matrix (21,386–29,254 voxels per participant) for each of the 18 games 
for each participant, using the time series of all cerebral gray matter voxels. We 
then constructed a 2,000-bin histogram of correlation (connectivity) strengths 
using the values of each matrix. Game-by-game correlation between the pupil 
measurements and the number of functional connections were then computed 
for each bin separately to assess whether there were fewer or more connec-
tions of this strength when gain increased (as assessed by pupil measurements).  
We also calculated the correlation between the pupil measurements and the mean 
functional connection strength.

Functional-connectivity clustering analysis17. For each functional-connectivity 
correlation matrix, we constructed a functional connectivity graph in which each 
voxel was represented by a vertex and two vertices were connected if the absolute 
value of the correlation between their respective voxels was in the top 0.05% of all 
voxel-voxel correlations. The 0.05% threshold was chosen so as to limit comput-
ing time to an acceptable level, resulting in 233,929 to 431,794 connections per 
graph. To quantify the degree to which functional connectivity was clustered, we 
computed each graph’s clustering coefficient18, defined as the number of closed 
triplets of vertices divided by the number of all connected triplets of vertices. The 
same analysis was repeated for frontal lobe gray matter voxels alone. Images of 
connectivity graphs were produced using custom-made software in the Processing 
programming environment36.

Statistical analysis. Statistical analysis was carried out using MATLAB. All corre-
lations values reported are Pearson correlation coefficients. Averaging of correla-
tion coefficients was preceded by Fisher r-to-z transformation and followed by 
Fisher’s z-to-r transformation, so as to mitigate the problem of the non-additivity 
of correlation coefficients41. Group-level significance of within-participant 
 correlations was tested statistically by converting the correlation coefficients to 
z values, and then using a t test to determine whether the mean of this set of 

http://www.alivelearn.net/xjview8/
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values is significantly different from 0. Significance of across-participant Pearson 
correlation coefficients was computed using the Student’s t distribution. All tests 
were two tailed except where indicated otherwise.

37. McClelland, J.L. & Rumelhart, D.E. Explorations in Parallel Distributed Processing:  
A Handbook of Models, Programs and Exercises (MIT Press, Cambridge, Massachusetts, 
USA, 1988).

38. Lambert, A., Wells, I. & Kean, M. Do isoluminant color changes capture attention? 
Percept. Psychophys. 65, 495–507 (2003).

39. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
40. Hoeks, B. & Levelt, W.J.M. Pupillary dilation as a measure of attention: a quanti-

tative system analysis. Behav. Res. Methods Instrum. Comput. 25, 16–26  
(1993).

41. Fisher, R.A. On the “probable error” of a coefficient of correlation deduced from a 
small sample. Metron 1, 3–32 (1921).
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