A model of mood as integrated advantage


Bennett, D., Davidson, G., & Niv, Y. (Forthcoming). A model of mood as integrated advantage.


Mood is an integrative and diffuse affective state that is thought to exert a pervasive effect on cognition and behavior. At the same time, mood itself is thought to fluctuate slowly as a product of feedback from interactions with the environment. Here we present a new computational theory of the valence of mood—the Integrated Advantage model—that seeks to account for this bidirectional interaction. Adopting theoretical formalisms from reinforcement learning, we propose to conceptualize the valence of mood as a leaky integral of an agent’s appraisals of the Advantage of its actions. This model generalizes and extends previous models of mood wherein affective valence was conceptualized as a moving average of reward prediction errors. We give a full theoretical derivation of the Integrated Advantage model and provide a functional explanation of how an integrated-Advantage variable could be deployed adaptively by a biological agent to accelerate learning in complex and/or stochastic environments. Specifically, drawing on stochastic optimization theory, we propose that an agent can utilize our hypothesized form of mood to approximate a momentum-based update to its behavioral policy, thereby facilitating rapid learning of optimal actions. We then show how this model of mood provides a principled and parsimonious explanation for a number of contextual effects on mood from the affective science literature, including expectation- and surprise-related effects, counterfactual effects from information about foregone alternatives, action-typicality effects, and action/inaction asymmetry.


Last updated on 01/06/2021