Publications by Author: Botvinick, Matthew M

Solway*, A., Diuk*, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., & Botvinick, M. M. (2014). Optimal Behavioral Hierarchy. PLoS Computational Biology , 10 (8), e1003779. PDFAbstract
Human behavior has long been recognized to display hierarchical structure: actions fit together into subtasks, which cohere into extended goal-directed activities. Arranging actions hierarchically has well established benefits, allowing behaviors to be represented efficiently by the brain, and allowing solutions to new tasks to be discovered easily. However, these payoffs depend on the particular way in which actions are organized into a hierarchy, the specific way in which tasks are carved up into subtasks. We provide a mathematical account for what makes some hierarchies better than others, an account that allows an optimal hierarchy to be identified for any set of tasks. We then present results from four behavioral experiments, suggesting that human learners spontaneously discover optimal action hierarchies.
Diuk, C., Schapiro, A., Córdova, N., Ribas-Fernandes, J. J. F., Niv, Y., & Botvinick, M. M. (2013). Divide and conquer: Hierarchical reinforcement learning and task decomposition in humans. Computational and Robotic Models of the Hierarchical Organization of Behavior (Vol. 9783642398, pp. 271–291). PDFAbstract
The field of computational reinforcement learning (RL) has proved extremely useful in research on human and animal behavior and brain function. However, the simple forms of RL considered in most empirical research do not scale well, making their relevance to complex, real-world behavior unclear. In computational RL, one strategy for addressing the scaling problem is to intro-duce hierarchical structure, an approach that has intriguing parallels with human behavior. We have begun to investigate the potential relevance of hierarchical RL (HRL) to human and animal behavior and brain function. In the present chapter, we first review two results that show the existence of neural correlates to key predictions from HRL. Then, we focus on one aspect of this work, which deals with the question of how action hierarchies are initially established. Work in HRL suggests that hierarchy learning is accomplished by identifying useful subgoal states, and that this might in turn be accomplished through a structural analysis of the given task domain. We review results from a set of behavioral and neuroimaging experiments, in which we have investigated the relevance of these ideas to human learning and decision making.
Diuk, C., Tsai, K., Wallis, J., Botvinick, M. M., & Niv, Y. (2013). Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia. Journal of Neuroscience , 33 (13), 5797–5805. PDFAbstract
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G., Niv, Y., & Botvinick, M. M. (2011). A neural signature of hierarchical reinforcement learning. Neuron , 71 (2), 370–379. PDFAbstract
Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.
Diuk, C., Botvinick, M. M., Barto, A. G., & Niv, Y. (2010). Hierarchical reinforcement learning: an fmri study of learning in a two-level gambling task. In Neuroscience Meeting Planner.
Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition , 113 (3), 262–280. PDFAbstract
Research on human and animal behavior has long emphasized its hierarchical structure-the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely considered to reflect prefrontal cortical functions. In this paper, we reexamine behavioral hierarchy and its neural substrates from the point of view of recent developments in computational reinforcement learning. Specifically, we consider a set of approaches known collectively as hierarchical reinforcement learning, which extend the reinforcement learning paradigm by allowing the learning agent to aggregate actions into reusable subroutines or skills. A close look at the components of hierarchical reinforcement learning suggests how they might map onto neural structures, in particular regions within the dorsolateral and orbital prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement learning might provide a complement to existing psychological models of hierarchically structured behavior. A particularly important question that hierarchical reinforcement learning brings to the fore is that of how learning identifies new action routines that are likely to provide useful building blocks in solving a wide range of future problems. Here and at many other points, hierarchical reinforcement learning offers an appealing framework for investigating the computational and neural underpinnings of hierarchically structured behavior.