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Abstract 

Schemas are rich and complex knowledge structures about the typical unfolding of events in a 

context. For example, a schema of a lovely dinner at a restaurant. Schemas are central in 

psychology and neuroscience. Here, we suggest that reinforcement learning (RL), a 

computational theory of learning the structure of the world and relevant goal-oriented 

behavior, underlies schema learning. We synthesize literature about schemas and RL to offer 

that three RL principles might govern the learning of schemas: learning via prediction errors, 

constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction 

through learning a simplified and abstract representation of the world. We then suggest that 

the orbito-medial prefrontal cortex is involved in both schemas and RL due to its involvement in 

dimensionality reduction and in guiding memory reactivation through interactions with 

posterior brain regions. Finally, we hypothesize that the amount of dimensionality reduction 

might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of 

the orbito-medial prefrontal cortex. More specific and detailed representations might engage 

the ventral and posterior parts, while abstraction might shift representations toward the dorsal 

and anterior parts of the medial prefrontal cortex. 
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Introduction 

Imagine entering a restaurant. You immediately know the likely sequence of occurrences and 

the relevant set of behaviors. You will be seated at a table and given a menu. After placing your 

order, you will receive a delicious meal, and maybe a glass of fine wine. This will be followed by 

paying the bill and leaving the restaurant. The general knowledge of what typically occurs in an 

event and in what order, as well as the appropriate behavior, is referred to as the “schema” of 

the event1–4. While schemas are widely used in psychology and, more recently, in neuroscience, 

they also remain notoriously elusive and ill-defined2,5. Importantly, we still lack a satisfying 

computational account of how schemas are learned through experience and with respect to 

goals, how schemas guide behavior, and how they influence perception, attention, learning, 

and memory. 

Reinforcement learning (RL) offers a computational theory of how we learn the 

structure of our environment and the relevant behaviors through experience6. RL algorithms 

have been powerful in accounting for behavioral and neural findings in simplified 

environments7,8. However, these algorithms suffer from a “curse of dimensionality:” they scale 

poorly to rich high-dimensional everyday life events6,9. Thus, RL and schemas can be thought of 

as two ends of a spectrum: at the one end, highly rich and ecological knowledge structures that 

lack a satisfying computational account. At the other end, a detailed account that is 

dissatisfying in the complexity of the phenomena it explains. Here we bring these seemingly 

disparate fields of research together. 

We are motivated by recent neuroscientific research that has emphasized the 

importance of the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) for both 

schemas and RL. Within the RL framework, the medial orbitofrontal cortex and ventral part of 

the medial prefrontal cortex (mOFC/vmPFC) are thought to represent a “cognitive map” of the 

current task1 13–17. In RL, this map partitions the task into specific contexts termed “states,” 

each including information relevant to guiding behavior in that context. In parallel, memory 

research on schemas suggests that the mPFC (which includes the mOFC/vmPFC) represents 

 
1 Another prominent view within the RL literature proposes that the mOFC/vmPFC represents economic value that 
guides decisions10,11; for additional theories about these brain areas, see e.g.,12. 
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schemas and mediates the influence of schemas on memory (e.g.,5,18–22). This co-localization 

prompted us to explore common mechanisms that might underly RL and schemas. 

Below, we synthesize research on schemas and RL to propose that RL (and 

complementary algorithms) may provide a computational framework for learning schemas. We 

focus on three core computational principles that could underly schemas: (1) learning a 

summary of the environment through prediction errors, (2) grouping of states through 

hierarchical RL and latent cause inference, and (3) dimensionality reduction through learning of 

abstract state representations. We begin with a brief description of schemas and RL 

mechanisms, and show how these are related. We then postulate that the mPFC is involved in 

both RL and schemas as it mediates dimensionality reduction and guides memory retrieval 

through communicating with posterior brain regions. We conclude by postulating that graded 

recruitment along the ventral-dorsal and anterior-posterior axes of the mPFC might reflect the 

amount of dimensionality reduction required in a current situation. 

 

A (very) brief introduction to schemas 

Schemas are learned knowledge structures that organize knowledge of what typically occurs in 

a context2,4,23–25, including associative knowledge of relationships and co-occurrences between 

units (e.g., menu and food in a restaurant). They contain knowledge of commonalities extracted 

over multiple experiences,2 and as such, are by definition devoid of details of specific episodes. 

Here, we predominantly discuss schemas that are extended in time (similar to the notion of 

‘scripts’3 or ‘event schemas’26) and thus include knowledge of the temporal structure of an 

event. 

Schemas can guide behavior as they include knowledge of context-appropriate actions. 

For example, the knowledge that upon receiving a menu, one should read it and place an order. 

Finally, schemas can be thought of as hierarchically organized “modules” that can be 

recombined: both the restaurant schema and that of having dinner at home can include a 

module of sitting at the table and eating, and the schema of an airport can include a restaurant 

as a module. Thus, schemas can be a part of other schemas, as well as include other schemas. 

Despite decades of research on the influence of schemas on cognition1,4,5,25, it is not 
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completely clear how schemas are learned and how they influence perception, action, learning, 

and memory22,27,28. Computational models of semantic networks, concepts and category 

learning24,29–35, characterize some aspects of extracting general knowledge about the co-

occurrence of entities and the hierarchical structure of conceptual knowledge, but do not seem 

to capture fully the scope and richness of schemas. Particularly relevant is the fact that schemas 

are learned through experience that is dynamic in time. For this, we turn to the framework of 

RL. 

 

A brief introduction to reinforcement learning 

Reinforcement learning (RL) provides a set of algorithms for goal-oriented learning and 

behavior. The goal is typically conceptualized as maximizing reward while minimizing costs or 

punishments6. Through trial and error over multiple instances, an RL agent learns the sequence 

of actions most suitable for achieving maximal reward in an environment.  

In RL theory, tasks are divided into a series of discrete time points or contexts, termed 

“states”. For instance, a visit to a restaurant can be divided into the states of standing at the 

entrance, sitting down, having a menu in hand, etc. Each state has an associated action policy –  

the probability of taking each action at that state. A state (or state-action pair) can also be 

associated with a value, which denotes the (possibly discounted) sum of future rewards 

expected when in that state (and, for state-action pairs, taking that action). Tasks can be 

divided into states at different levels of coarseness, and similarly, policies can be defined as 

single actions or high-level action groupings (see below). 

In addition to learning what actions lead to long-term reward in each state, in a 

sequential task that extends over time, the agent can learn the probability of transitioning 

between different states contingent on different actions, that is, the probabilities of different 

sequences of states36–38. Generally, learning in RL occurs when one encounters a prediction 

error: a situation in which the actual outcome is different from the predicted one39–41. 

Prediction errors include both reward prediction errors, which refer to obtaining more or less 

reward than expected, and state prediction errors, which refer to transitioning to a different 

state than expected. When encountering a prediction error, the agent adaptively updates their 
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expectations so that these align better with the observed outcome. In this way, through 

experience, the agent can learn a world model, which includes the representation of states, 

transitions between them, and the distribution of rewards in each state, and mentally simulate 

actions within the learned world model to determine which action is best in what situation 

(termed “model-based RL”36). Alternatively, in “model-free RL,” the agent can learn the optimal 

policy directly from trial and error using reward prediction errors, without learning a world 

model.  

From this description, it is already clear how schemas might be mapped to a 

representation of a task in model-based RL, including the world model and the policy. In what 

follows, we unpack that mapping (Figure 1). 
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Figure 1. Three reinforcement learning principles contribute to schema learning. Circles represent states/time 
points in the schema or the episode, with different shades and colors representing different features of states.  
Top: Prediction errors, namely, the difference between the schema-based predictions (top) and the evidence from a 
specific episode (bottom), drive schema update (middle). This eventually converges to the typical unfolding of 
events. The episode and schemas to be updated are selected through latent cause inference, illustrated by the green 
circles ‘selected’ from the grey ones in the stream of experience. Middle: dimensionality reduction, implemented via 
schema-guided attention, mediates the elimination of episodic details that differ across episodes (symbols), and the 
inclusion of goal-relevant information as well as repeating, but not necessarily goal-relevant information (purple 
shades). Bottom: the hierarchical structure of schemas is learned via identifying subgoals (yellow) that chunk sub-
schemas.  
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Are schemas learned through prediction errors? 

Since RL algorithms use prediction-error driven learning, the first question we ask is whether 

schemas are also learned and updated via prediction errors (Fig. 1, top). The alternative is that 

a summary of the typical and repeating structure of the world is learned by tracking the 

frequency of occurrences (termed “unsupervised learning”32). In this frequency hypothesis, 

learning does not require a prediction and an update following an error; instead, each 

experience leads to an update of associations between contiguous events. 

The discovery of “blocking”42,43 led animal-learning theorists to shift from assuming that 

contiguity (i.e., co-occurrence) is sufficient for associative learning to considering prediction 

errors as driving learning. In blocking, a neutral stimulus (e.g., light) previously associated with a 

motivationally relevant outcome (e.g., an electric shock or food) prevents a co-occurring 

neutral stimulus (e.g., tone) from also becoming associated with the same outcome. The idea is 

that because the first stimulus fully predicts the outcome, there is no prediction error when the 

outcome occurs, and thus learning about the association with the newly added stimulus is 

“blocked”40,41. In humans, a wealth of research shows that reward prediction errors drive 

learning39,44,45 and facilitate long-term memory46–49. 

Since schemas include state-transition probabilities, to establish that prediction errors 

drive schema learning, one can test whether state prediction errors lead to updating of the 

schema and to changes in behavior. Recent work in rodents suggests this by showing blocking 

of learning of simple stimulus-stimulus associations, thereby establishing that learning of 

“neutral” associations requires prediction errors50,51. Computational models that learn via state 

prediction errors have been shown to explain choice data of humans and animals in studies that 

involve frequent changes (reversals) of either transition probabilities or the full state 

structure52–56. Studies also show that participants trained on state transitions exhibit enhanced 

memory of items that violated these transitions57–61 and reduced memory for items that cued a 

future state that was (surprisingly) not transitioned to62,63. This is consistent with updating a 

model of the world through prediction errors.  

These studies, which focused on simplified tasks that trained participants on few 

associations and over a few trials or sessions, provide evidence that initial learning of schemas 
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might be driven by state prediction errors. In contrast, consolidated and well-learned semantic 

knowledge is thought to be stable and less amenable to change, largely supported by cortical 

structures (whereas newly-acquired knowledge is supported by the hippocampus, see Box 1), 

and more abstract and including fewer specific episodic details.64–68 It is therefore not clear that 

previous findings from simplified tasks generalize to updating of complex and well-learned 

schemas, as work in humans shows that complex semantic knowledge can both impair and 

enhance learning and memory of new associations69–77. 

One example of this complexity is that in everyday life, cues and outcomes are not as 

clearly defined as in many of the studies mentioned here, but rather dynamically evolve in time, 

and span multiple temporal scales78–80. Indeed, viewers of continuous sport games also 

remembered events that elicited prediction errors better81,82. In another study that directly 

targeted the updating of memories, Sinclair and colleagues83 used rich movie-clip stimuli to 

elicit predictions of action outcomes that had been learned over a lifetime of experience, for 

example, a baseball batter hitting a home run. They then violated these predictions by stopping 

the movie before the expected outcome and presenting another, semantically related movie 

clip. In a subsequent memory test of the original clips, participants demonstrated memory 

intrusions, recalling details from the related clips as if they were in the original clip, and more so 

for movies that were stopped prematurely during encoding83,84. These intrusions might reflect 

memory update of the original movie clips that was enhanced by violations of everyday life 

expectations. Of course, in everyday life, experience never stops. Rather, surprise occurs when 

events unfold in an unexpected way. In sum, emerging literature suggests that schemas might 

indeed be learned and updated via prediction errors, similar to learning in RL. 

 

Schema hierarchies might be learned, and instantiated, via hierarchical RL and latent cause 

inference mechanisms 

Schemas are hierarchically organized: each schema can be composed of subschemas and might 

be a subschema of another, larger schema. Hierarchical RL algorithms85–92 might provide a 

blueprint for how such a schema hierarchy is acquired (Fig. 1, bottom). Learning via RL 

algorithms can become prohibitively slow in complex environments. Hierarchically grouping 
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states and actions into larger units can alleviate this scaling problem. In such “temporal 

abstraction”,86,93 a temporally extended task is divided into subunits, called “subtasks”. A 

subtask is defined by a set of possible start states, a subtask-specific action policy and a set of 

termination states (also called “subgoals”) in which the subtask will cede control back to the 

overarching decision policy89,91–95. For example, ‘adding salt’ can be a subtask that starts upon 

tasting bland food, continues with a policy that includes reaching for the salt shaker, grasping it, 

and shaking it over the food, and ends when the subgoal is reached: there is salt on the food. 

Subtasks can be used across tasks89,96,97 (e.g., ‘adding salt’ is used by ‘dining at a restaurant’ and 

‘eating at home’). The term “subgoal” distinguishes the termination state of the subtask (food is 

salted) from the overall goal of the task (having a full stomach). In some algorithms, reaching a 

subgoal leads to a pseudo-reward signal89,98,99. Pseudo-rewards allow standard RL reward-

maximizing algorithms to discover the optimal policy for the subtask.  

An important question in hierarchical RL is: how are subgoals selected? In terms of 

schemas, this is the question of how to segment continuous experience into discrete event 

schemas26. Hierarchical RL offers more than one mechanism89,91,92,95. Some mechanisms rely on 

exploring an environment while keeping track of sequences of states and actions that co-occur 

frequently (i.e., statistical learning100–104), and use states right before a transition to another 

sequenceas subgoals86,88,105. Other algorithms introduce Bayesian inference to maximize the 

discovery of optimal hierarchies given the structure of the environment92,95 and the cost of 

planning91. These algorithms rely on repeated experience to construct a hierarchical model of 

the world.  

Another idea is that salient events trigger the creation of a subgoal. Salient events 

create an intrinsic reward signal and engage motivation-related neural systems, much like 

rewards106–112. Research on event segmentation that focuses on how ongoing and continuous 

experience is chunked into discrete events26,113,114 has shown that salient changes, termed 

“event boundaries,” cause humans to segment their experiences in memory. For example, 

events that span a boundary are remembered as happening farther apart in time from each 

other, and memory of their temporal order is often worse than that of events not separated by 

a boundary115–117. This suggests that event boundaries, like subgoals, structure our experiences 
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into discrete, segmented units. Interestingly, this structuring of memories has been shown for 

reward prediction errors as well118, consistent with salient prediction errors creating subgoals. 

A mechanism that relies on salient changes to create subgoals does not require 

repetition (i.e., statistical learning). A change of context, perceptual details, or internal state, 

can trigger segmentation even in the first instance113,114,116,119. This discrete event 

representation can form a base that future instances will join to build an event schema. This 

proposal resonates with recent behavioral work suggesting that schema memories can be 

created rapidly120 (see Box 1). Such rapid extraction of structure can facilitate goal-oriented 

learning and behavior in new situations96,121,122, with later learning refining the initial 

structure123,124. 

Latent cause inference might be the computational process by which salient changes 

trigger the instantiation of an existing (sub)schema or the initiation of a new one. Latent cause 

inference is a computational theory of how observations are grouped into clusters (“latent 

causes”) according to similarity9,28,96,125. The latent cause underlying the current observations 

can be inferred using Bayesian inference by combining prior beliefs about the probability of 

various latent causes (e.g., the latent cause responsible for recent observations is most likely to 

underlie the next one) with evidence from current observations. Thus, external observations 

that are sufficiently different from past ones prompt the creation of a new latent cause126,127. 

This new latent cause then supports learning a new state-transition model and submodels and 

their respective policies, potentially through RL mechanisms. Recent theoretical work has 

begun to explore how salient changes such as event boundaries trigger the inference of a new 

latent cause28,114 or instantiate a relevant event schema28. 

 

 

Box 1: Rapid learning in the hippocampus shapes new schemas 

The idea that event boundaries can become subgoals could mean that first instances of events 

– in which subgoals are created – might be highly influential in shaping our models of the 

structure of the world. This is in contrast to the idea that structure is extracted solely through 

incremental and relatively slow learning103,128. In RL, the initial values with which a model is 
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initialized bias learning and can be hard to overcome6. To avoid this, in many algorithms, the 

rate of updating (called the learning rate) is high at the beginning of a task and decreases with 

time. Indeed, Shteingart et al.129 showed that the first experience is highly influential on choices 

in future trials. This behavior was best explained by assuming maximal updating on the first trial 

(i.e., learning rate of 1). Other studies showed relatively quick learning of regularities130–132 and 

generalization based on such regularities120 in a single lab session. The hippocampus, known to 

be involved in rapid learning67,128,133,134 and in event segmentation113,135–137, also mediates 

learning the structure of the environment131,138–149. Thus, converging behavioral and neural 

evidence suggest that rapid initial learning largely shapes our schemas.  

----- end of Box 1----- 

 

Dimensionality reduction through selective attention might mediate schema learning 

Schemas summarize information across multiple multidimensional episodes. One option is that 

schema learning simply averages across features in all dimensions, such that features that 

repeat across episodes persist, while features that change average out. Alternatively, schema 

learning might involve goal-sensitive dimensionality reduction, whereby dimensions that 

include repeating goal-relevant features (e.g., the prices of dishes) are prioritized, while goal-

irrelevant dimensions that include unique episodic features (e.g., the color of the host’s shirt) 

are down-weighted. 

In RL, an optimal representation of a state focuses on only goal-relevant information in 

the environment6,150,151. The process by which an agent learns what dimensions of the 

environment are important to a given task has been termed “representation learning”9, and 

often involves dimensionality reduction. The idea is that through experience, we can learn what 

dimensions of our environment are relevant to our goals and therefore should be attended to, 

and what dimensions are irrelevant and thus can be ignored. Research has shown that indeed 

learning the relevant (i.e., reward-predicting) dimensions of a state guides attention to these 

dimensions, which in turn prioritizes learning predictions associated with these dimensions9,152–

158. These studies suggest that goal relevance and selective attention might mediate 

dimensionality reduction during schema learning. 
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However, repetition of features might result in learning of goal-irrelevant dimensions as 

well. Indeed, people are faster to identify a stimulus that appears in a location where, in other 

trials, regularities existed in a stream of symbols159–161, suggesting prioritized attention to that 

location despite it being goal-irrelevant. Similarly, processing of item pairs that are semantically 

congruent and encountered repeatedly in daily life  (e.g., restaurant and menu) is typically 

enhanced (reduced reaction times and increased accuracy) compared to incongruent pairs that 

are rarely encountered (e.g., spinach and train), even if congruency is task irrelevant162 and 

pairs are presented only briefly163,164. Task-irrelevant congruence also enhances long-term 

memory165. However, the prediction of a feature in a goal-irrelevant but repeating dimension 

comes at the expense of later memory of unique episodic details62,63,166 (see also167). Together, 

these findings suggest that attentional mechanisms might prioritize the learning of repeating 

information, goal-relevant or not, potentially at the expense of down-weighting episodic 

details. This might be adaptive because it allows flexible behavior when the world 

changes2,153,168 (similar to cognitive maps; Box 2).. For example, learning that in restaurants the 

cashier is typically next to the bar – even if mostly irrelevant because we usually pay with a 

server – can be useful if we are ever asked to pay at the cashier.  

 

Box 2: schemas versus cognitive maps 

Similarly to schemas, a cognitive map is a representation that organizes aspects of an 

experience, which can be used to flexibly guide behavior168–171. We suggest that schemas are 

broader than cognitive maps, and can include additional types of information1,24,30,32,140. Most 

conceptualizations of cognitive maps represent information through some notion of distance, 

which can be physical or mental169,170. Indeed, while cognitive maps have been studied 

extensively in spatial navigation, recent research extended the notion of cognitive maps to non-

spatial maps130,141,147,172–176. This work still focused predominantly on relationships that can be 

mapped to distance measures and used such distances to identify neural correlates. Distance is, 

by definition, symmetric. However, hierarchical semantic relationships that may be important 

in schemas are not necessarily symmetric: menus are found in restaurants, but restaurants are 

not found in menus. Thus, hierarchical information cannot be mapped to a distance measure in 
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a straightforward way. Interestingly, some frameworks propose that even spatial navigation 

might rely on strategies or computations that are not based solely on distance140,177–180.  

 

---- end of Box 2 ----- 

 

Orbito-medial PFC involvement in schemas and states: dimensionality reduction and the 

guidance of memory reactivation in posterior brain regions. 

There is wide agreement that the orbitofrontal (OFC) and medial prefrontal cortex (mPFC) are 

involved in both RL and schema-related processes. However, the functions these regions play 

are a topic of intense debate5,11,12,14,16,22,65,181,182. In this section, we relate the conceptual ideas 

we laid out above to potential neural substrates, focusing on the medial part of the OFC and 

ventromedial PFC (mOFC/vmPFC) and the mid-mPFC (the area dorsal to the mOFC/vmPFC on 

the medial wall, but ventral to the most dorsal part of the mPFC), using “mPFC” to collectively 

refer to these areas. We summarize evidence that the mPFC represents both states in RL and 

schemas, offer that low-dimensional representations in the mPFC that can activate  detailed 

memories in posterior brain regions might underlie these representations,22 and postulate that 

the amount of dimensionality reduction in the mPFC determines the involvement of subparts 

along its ventral-lateral and anterior-posterior axis. 

A prominent theory suggests that the mPFC and OFC represent a map of task 

states14,16,183–186. Recent work indeed found in the mOFC/vmPFC representations of states and 

the relationships between them for conceptual spaces172,176, sequential structures15,130,187,188, 

and social knowledge173. Some theories suggest that the mOFC/vmPFC is particularly needed 

when states cannot be determined based on perceptual input alone but are latent (like latent 

causes above) and require the retrieval of information from memory16,183. Empirically, 

multivoxel activation patterns in mOFC/vmPFC are consistent with Bayesian inference of the 

current (latent) state when this inference requires integrating retrieved prior memories and 

current observations13. Another study successfully classified from mOFC/vmPFC states that 

included information from the current and the previous trial, and thus relied on memory15. The 

mid-mPFC also mediates the retrieval and recombination of memories needed to make choices 
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about novel stimuli189,190.  

 Schemas hold knowledge of what typically occurs in an event, and therefore require 

retrieving information from memory. Consistent with the mPFC representing latent states that 

rely on memory, it is also involved in mediating schemas5,21. For instance, lesions to the 

mOFC/vmPFC impair the appropriate deployment of schema knowledge20,191–193. Moreover, 

recent studies showed that activation patterns in the mid-mPFC were more similar for events 

that belonged to the same schema (e.g., different examples of visiting a restaurant) compared 

to different schemas (visiting a restaurant versus an airport), even when similarity was 

computed across video and audio stimuli, suggesting a schematic representation beyond 

perceptual features18,194–196. Together with the finding above that mPFC representations follow 

Bayesian inference13, these findings strengthen the proposal that schemas are instantiated via 

Bayesian latent cause inference22. 

 

The mPFC might represent schemas and states through dimensionality reduction 

Studies show dimensionality reduction in the mPFC across paradigms18,195 (Fig. 2). For instance, 

in an RL task, mid-mPFC activation was correlated with predicted rewards computed based on 

attending to one relevant task dimension out of three available155 (Fig. 2a). More directly, Mack 

et al.197 used a categorization task and principal component analysis (PCA) to extract the 

number of orthogonal components that account for variance in mOFC/vmPFC multivoxel 

activity patterns and showed more compression through learning, especially for categorizations 

that required fewer dimensions (Fig. 2b). Other studies exposed participants to item-scene 

associations, with some items sharing the same scene194,198,199. After consolidation, the neural 

representations of items that shared the same scene, but not different scenes, showed stronger 

similarity to each other in the mid-mPFC, as if specific episodes (each item-scene pair) were 

grouped based on a shared feature (the scene), while the details of each episode were reduced 

(Fig. 2c). Similar results were obtained when grouping episodes based on similar attentional 

goals200. Finally, studies showing a lack of episodic details in the mPFC also suggest 

dimensionality reduction during schema instantiation (Fig. 2d).18,195 

Consistent with our proposal that dimensionality reduction prioritizes both goal-
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relevant and repeating but goal-irrelevant dimensions, evidence suggests that the mPFC 

represents both types of information16,183,186,201,202. In particular the mPFC has been shown to 

represent task structure even when it is goal-irrelevant173,188,202,203. For example, the 

mOFC/vmPFC represented a map of a two-dimensional social hierarchy, even in a task that 

asked participants to make inferences only based on one dimension173. In general, 

mOFC/vmPFC neural representations of items that share a dimension (e.g., the context of 

learning) are more similar than representations of items that do not share a dimension even 

when participants perform an unrelated task204,205. The mPFC also showed differential activity 

during encoding of semantically congruent vs. incongruent information not only when 

participants were asked to judge congruency,206,207 but also when they judged grammatical 

correctness of word stimuli (i.e., semantic congruency was goal irrelevant).208–210   

Interestingly, temporal order seems to be a consistently important dimension in mPFC 

schematic representations. Indeed, scrambling the order of events in a schema disrupts mPFC 

representation18 (Fig 2d). In rodents, lesions to the mPFC impair temporal memory211. In 

humans, mPFC lesions specifically impair schema knowledge, while sparing category 

knowledge20; arguably, the temporal order of events is a critical aspect of the former but not 

the latter. Representation of sequential order in the mPFC might be supported by strong 

anatomical connections to the hippocampus212–215, widely thought to represent temporal and 

sequential information123,216–219, as mPFC-hippocampal functional connectivity supports 

learning and memory of sequential information131,220. Such representations of temporal order 

are consistent with representation of schemas because, like the transition probabilities 

between states in model-based RL, sequence information is an essential part of a schema. 
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Figure 2. Examples of dimensionality reduction in the mPFC. a. Participants learned that one of three 
category-dimensions is relevant for obtaining reward. A model that biased attention towards that category 
during choice and learning best explained behavior, suggesting a dimensionality-reduced representation of the 
task. Activity in the mPFC correlated with values as estimated by that dimensionality reduced representation 
(adapted from Leong, Radulescu et al., 2017). b. Participants categorized bugs based on one, two or three 
dimensions. PCA was used to extract the dimensions of vmPFC multivoxel activity patterns, and dimensionality 
reduction (‘compression’) was quantified as the number of PCA components that explained 90% of the variance 
in vmPFC activity patterns, with fewer components interpreted as stronger compression. As participants 
learned the categories, the simpler the categorization the stronger was the compression observed in the vmPFC 
(top right plot), suggesting that dimensionality reduction in vmPFC tracked the dimensions of the categories 
(adapted from Mack et al., 2020). c. Participants encoded associations between trial-unique objects and several 
shared scenes. During retrieval, greater neural similarity was observed in the mPFC between objects that had 
appeared with the same scene compared to those that appeared with different scenes during encoding. This 
similarity only emerged following a period of consolidation (“remote”), and potentially reflects loss of distinct 
details (adapted from Tompary and Davachi,2017). d. Participants watched movie clips showing different 
instances of schemas. MPFC representations generalized across instances of schemas (e.g., all café clips), as 
indicated by increased similarity within the same schema compared to across schemas (top right, adapted from 
Reagh et al., 2023). This suggests reduced dimensions and lack of specific details of each instance in the mPFC. 
Similar representations were also found across visual vs. auditory modalities, but not when the order of events 
was compromised (left, adapted from Baldassano et al., 2018), suggesting the modality dimension is reduced in 
mPFC schema representations while sequential information is preserved.  
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Gradients of dimensionality reduction and memory reactivation along mPFC axes 

One potential role of schema and state representations in the mPFC is to guide the retrieval of 

knowledge via memory reactivation in posterior brain regions5,22,153. For instance, mPFC neural 

activity precedes hippocampal and ventral-temporal activity during memory retrieval221–224. 

Mid-mPFC activity also correlates with the persistence (across time) of ventral-temporal and 

hippocampal representations of items experienced within the same context225. More directly, a 

recent study showed that the extent of schema representation in the mPFC correlated with the 

strength of the representation of specific instances of that schema (i.e., a specific movie 

belonging to that schema) in a posterior medial cortical region196. Lesion studies demonstrate 

causality: in a rodent reversal-learning task that required resolving interference to infer the 

correct state, mPFC lesions impaired hippocampal representations that mediated interference 

resolution226. In humans, mOFC/vmPFC lesions impair the evaluation of retrieved 

memories227,228, which can result in confabulation – retrieval of memories that are irrelevant to 

a specific context or schema192,229. Additionally, the mPFC might route the involvement of 

cortical vs. hippocampal systems based on how memories relate to the current schema5,21:  

connectivity with posterior cortical regions mediates memory of schema-consistent 

information, while connectivity with the hippocampus mediates memory of schema-

inconsistent information19,21,23,206,207,230–234.  

 The findings reviewed above were reported in different loci in the mPFC. Here, we 

hypothesize that the level of dimensionality reduction, or the degree to which memories are 

schematized and lack specific details, might underlie the gradual involvement of subregions 

along the anterior to posterior and the ventral to dorsal axes of the mPFC2. Our proposal is 

motivated by gradual changes in the anatomical structure and connectivity along the mPFC. 

There is a wide agreement on a gradual transition from agranular to granular cortex along the 

posterior-anterior axis of the mPFC235–237. Along the ventral-dorsal axis, studies in humans and 

monkeys generally show different connectivity profile of mid-mPFC vs. mOFC/vmPFC212–215 

(more below), and a recent study found that these changes are gradual238. 

 
2 The medial to lateral axis in the OFC, with some focus on the lateral OFC, has been discussed elsewhere, 
suggesting that while vmPFC/mOFC is involved in latent states that require memory retrieval, the lateral OFC is 
involved in representing states based on observable information 16,182,201) 
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 We thus propose that abstract representations might recruit more anterior parts of the 

mPFC, while detailed memories might recruit the posterior mPFC and its connectivity with the 

hippocampus. Research suggests that the anterior part of the PFC is involved in representing 

future or counterfactual states and actions, but not current ones239–243. Studies on prospective 

planning and predictions also show a gradient of predictions in mPFC, whereby predictions of 

the far future are represented more anteriorly and  predictions of the near future are 

represented more posteriorly78,80. Potentially, the farther we prospect to the future, the more 

abstract and less concrete and detailed are our thoughts244–246, and therefore they are 

represented more anteriorly. This might be true also for counterfactual thoughts compared to 

actions and events that have materialized. Finally, studies reporting dimensionality reduction in 

abstract tasks in the mOFC/vmPFC find a more anterior cluster of voxels155,197 compared to 

studies addressing retrieval of autobiographic memories of specific events247.  This aligns with 

the connectivity of the more posterior (and ventral) part of the mPFC and the hippocampus,212–

215 which is critical for the encoding and retrieval of detailed memories, potentially through the 

allocation of distinct representations that serve to disambiguate similar stimuli248–252 and 

states253–255. 

 Specificity versus abstraction might also underlie graded involvement from ventral to 

dorsal mPFC, supported by differences in functional connectivity. For instance, identity-specific 

expected value representations have been found ventral to general (scalar) expected value 

representations in the mPFC256,257. Further, while retrieval of specific autobiographical 

memories tends to involve a ventral cluster of voxels247, a study addressing rule learning that 

required abstraction across multiple episodes showed a mid-mPFC activation258. While the 

mOFC/vmPFC is connected to the hippocampus (important for detailed memories), the mid-

mPFC is connected with the posterior medial cortex,215,238,259 which has been shown to 

represent events over large timescales, potentially abstracting away more specific details196,260–

262. Of note, the studies mentioned here employed a variety of learning protocols and stimuli, 

so they are not all directly comparable. Nevertheless, they are in line with our proposal that the 

extent of dimensionality reduction underlies differential involvement of mPFC subregions, and 

the change in connectivity patterns along mPFC axes. 



 20 

Other proposals for mPFC function include the evaluation of retrieved memories228, 

representing confidence228,263, or signaling the match between prior schemas and perceptual 

information21. In our view, recent studies that examined multivoxel activity patterns support 

state or schema representations, because these studies show different representations for 

memories retrieved with similar levels of confidence, values, or match to prior 

memories15,196,199,256,264. Potentially, multiple codes exist in the mPFC: different populations of 

neurons might represent different states and schemas, that in turn activate memories 

represented by different neuron populations in posterior brain regions21,65, whereas the overall 

level of activity in the neurons can signal value, match with prior memories or other monitoring 

signals. 

 

Conclusion 

We outlined how reinforcement learning, state representations, and event schemas might be 

related. We proposed that schemas might be learned via reinforcement-learning related 

mechanisms such as prediction errors, hierarchical decomposition of tasks, and dimensionality 

reduction. We then hypothesized that dimensionality reduction might underlie the involvement 

of the medial prefrontal cortex in both schemas and reinforcement learning and postulated 

that the extent of abstraction might determine the locus of involvement along medial 

prefrontal axes. Broadly, we hope to facilitate better integration of the fields of learning and 

memory46,265,266 that will advance our understanding of human cognition and the brain. 
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