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Abstract: 

 The orbitofrontal cortex is implicated in state representations, value signaling, 

and value-based decision making. Previous research on the orbitofrontal cortex (OFC) 

has suggested that it encodes task-relevant economic values, but it remains unknown 

whether those values are included as part of the task structure or as a separate entity. 

Based off a recent finding that OFC encodes a cognitive map of task structure, we 

predict that relevant economic values will be encoded as part of the task representation, 

and as such, will be decodable from OFC activity using neuroimaging techniques. In 

this study, behavioral measures from a complex decision-making task support the given 

neural hypothesis and prepare future researchers to scan this experiment using fMRI. 

Assuming these predictions hold true, the common characterization of OFC as a value-

signaling region operating under a goods-based model would be challenged and 

replaced by a new characterization of OFC as a structure representing task space. 

Introduction: 

 How do humans decide between various options? How do we incorporate the 

value of upcoming rewards into our representation of the task at hand? These questions, 

and the endeavor of answering them, require us to decipher the role of the orbitofrontal 

cortex (OFC) – a brain region in ventral frontal cortex involved in learning and decision 

making. To begin addressing these questions, we start by understanding foundational 

concepts about the process of learning brought forth by psychologists and early 

neuroscientists. Rescorla and Wagner proposed that learning only occurs when events 

violate an animal’s expectations (1972). Sutton and Barto developed the concepts of 

reinforcement learning (RL), or the process of learning what to do and how to map 
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situations to actions in order to maximize a reward signal (1998). Central to RL theories 

is the concept of the ‘reward prediction error’ – a signal carried by dopamine neurons 

that encodes the discrepancy between expected and actual outcomes and can be used to 

learn the subjective value of different options for different task states (Schultz et al., 

1997; Niv, 2009). These task states are integrated and encoded in neural activity as an 

“abstract representation of the task that describes its underlying structure, the different 

states of the task, and the links between them” (Wilson et al., 2014). These concepts of 

learning have provided a foundation for more recent inquiries into the neural basis for 

learning and decision making.   

 As RL theory suggests, “value is derived from knowledge of the states that define 

a task and the transition functions that link them together” (Schoenbaum et al., 2011). 

Accordingly, OFC is thought to play a role in RL, as it represents information regarding 

the features of expected outcomes – including the current value of immediately relevant 

rewards – using a state-based framework. When considered alongside the amygdala, 

OFC activity has been shown to encode the current value of reward representations 

attributed to predictive cues and to update the relative reward magnitude more 

frequently than the amygdala (Gottfried et al., 2003; Saez et al., 2017). Others have 

suggested that the OFC’s role is to guide responses for delayed rewards, with a lesser 

role in guiding immediate rewards (Roesch et al., 2006). Neural activity in OFC has 

been shown to modulate with recent reward history such that time-discounted rewards 

are encoded independently from absolute reward values in OFC (Saez et al., 2017; 

Roesch et al., 2006). While the exact function of OFC is not yet agreed upon, taken 

together, these results provide that OFC is involved in representing rewards and 

outcomes.  
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The OFC is a highly interconnected region, and its connectivity with the 

hippocampus has been considered in two key studies. The first of these studies found 

that OFC links events to reward values while hippocampus links events to their context 

(Farovik et al., 2015). In particular, neural ensembles in OFC represent distinct value-

based schemas and spatial contexts that define the mappings of stimuli to actions with or 

without rewards. These schemas are suggested to allow for more rapid memory 

consolidation in neocortex (Tse et al., 2007). The second of these studies found that the 

hippocampus contributes low-level features of expected outcomes and inferred or 

abstract properties of structure - such as task state - to OFC encodings (Wikenheiser et 

al., 2017). These contributions from the hippocampus might aid OFC in its 

representation of a cognitive map of task space (Wilson et al., 2014, Schuck et al., 

2016). While OFC itself does not support cognitive functions such as response 

inhibition, credit assignment, prediction errors or value signals, many of these functions 

are supported by the cognitive map represented in OFC (Stalnaker et al., 2015). These 

studies provide a wider view of OFC’s role as an interconnected region, while others 

take closer look at functional subregions in OFC. 

Many studies have shown that OFC is not a functionally, or even structurally, 

homogeneous region. In a lesion study, Noonan et al. found that monkey analogues to 

medial OFC (mOFC) and lateral OFC (lOFC) have distinct functions (2010, 2012). In 

particular, mOFC is involved with reward-guided decision making while lOFC is 

concerned with reward-guided learning (2010). In their 2012 meta-analysis, Noonan’s 

group looked at mOFC, lOFC and ventromedial prefrontal cortex (vmPFC), and 

suggested that lOFC is responsible for credit assignment, while vmPFC and mOFC are 

responsible for evaluation and choice maintenance over successive decisions, in addition 

to reward-guided decision making. Choice perseveration has long been considered a 

yael
Highlight
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major effect of lesions to either OFC subregion, but more recent findings show that 

lOFC lesions cause animals to stop choosing previously successful options instead of 

perseverating on those options (Noonan et al., 2012; Rudebeck & Murray, 2011). In 

another study, mOFC was found to be critical for discriminating ambiguous states by 

abstracting away unnecessary information, adding unobservable information, and 

crafting a task state (Bradfield et al., 2013). Other experimenters have divided the OFC 

into a medial-caudal region and a rostro-lateral region, which are thought to be involved 

in reward-identity representations independent and dependent of predictive stimuli 

respectively (Klein-Flügge et al., 2013). 

 OFC has also been shown to play a computational role in value-based decision 

making. OFC activation has been found to reflect the difference in subjective value 

between available options (FitzGerald et al., 2009). Further, OFC activation alternates 

between states associated with the value of two alternatives, suggesting that subjective 

decision-making involves dynamic activation of OFC states (Rich & Wallis, 2016). A 

functional imaging study has shown that OFC computes Bayesian log-transformed 

posterior distributions over latent - or unobservable - causes (Chan et al., 2016). 

These findings have been complimented by a body of work suggesting that OFC 

represents economic values of offered and chosen goods (Padoa-Schioppa and Assad, 

2006). In their foundational study, the experimenters found that offer value and chosen 

value were amongst the three variables that accounted for almost 80% of OFC neural 

responses. This finding was the basis for their theory that OFC neurons operate under a 

goods-based model, such that economic choice is a choice between goods, as opposed to 

a choice between actions (Padoa-Schioppa and Assad, 2006; Padoa-Schioppa, 2011). 

They found that, in OFC, values of different goods are individually computed at the 

time of choice and are independent of the sensorimotor contingencies of the choice 
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(Padoa-Schioppa, 2011). Upon further inspection, the value representations in OFC 

adapt to different behavioral conditions and to the range of available values in a given 

condition (2009). Their results suggest that OFC instantaneously provides preference 

transitivity in the form of menu invariance, as well as computational efficiency in the 

form of range adaptation (Padoa-Schioppa, 2009; Padoa-Schioppa and Assad, 2008). 

In their 2017 study, Padoa-Schioppa and Conen make a case for a neural circuit in OFC 

as the locus for economic decisions. These conclusions from Padoa-Schioppa and 

colleagues have culminated in a major theory in the debate on OFC function, but it is 

not the only theory. 

An influential alternative theory proposes that the OFC represents a cognitive 

map of the task state representation (Wilson et al., 2014, Schuck et al., 2016, Schuck et 

al., 2017). In agreement with Bradfield et al. (2013), Wilson and colleagues suggested 

that OFC is necessary for representing task states in partially-observable scenarios. 

Partially-observable scenarios are those in which components of states are not 

perceptually distinct from one another or are not readily observable to the subject at the 

moment of judgment. From their meta-analysis, Wilson and colleagues also determined 

that the state representations encoded in OFC are memory based, and that OFC does 

not directly encode expected value, but rather represents the partially-observable task 

states which are then used for calculating or learning values. Critically, OFC only 

encodes the partially-observable task states and components that are relevant to the task 

at hand. 

To test Wilson et al.’s theory of OFC, Schuck et al. (2016) aimed to decode 

partially-observable task states from human OFC using functional magnetic resonance 

imaging (fMRI) during a decision making task. This study found that several task-

relevant state components could be reliably decoded from OFC activity patterns, 
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including those that were unobservable in the current trial. They further found that 

different neural activation patterns in OFC were related to the identity of different task 

states, and that more similar task states had more similar neural activation patterns. 

From these results, Schuck et al. proposed a new interpretation of Padoa-Schioppa and 

Assad’s (2006) goods-based model: the value signals in OFC comes from the 

relationship between expected rewards and partially-observable components of the task, 

rendering relevant economic values part of the task state. The present study seeks to 

support this proposal in humans through neuroimaging techniques. 

In this study, we aim to address the following question: how does the human 

OFC encode economic values - or rewards - relative to the task state representation 

during decision making? We hypothesize that economic values will be encoded in OFC 

activity as part of a task-state representation only when those values are relevant for the 

decision making task at hand. To test our hypothesis, will use a decision making task 

with an ambiguous behavioral stimulus and block-wise relevant or irrelevant rewards. 

While is not in the scope of this study to scan the human OFC using fMRI, it is our 

intent to establish behavioral trends that support our neural hypothesis and prepare a 

stimulus that is ready to be scanned. In a future neuroimaging study with this stimulus, 

we would expect to be able to decode the task state representations from OFC activity 

during the task and find that it contains task-relevant economic values.  
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Chapter 1: General Methods 

This study used a behavioral stimulus with a 16-state space (Figure 1), adapted 

from Schuck et al. (2016). Each state contained four components: current image 

category, current image age, previous image category, and previous image age. The 

categories consisted of face images and house images. All images were equally sized and 

shown in grayscale. Participants were tasked with judging the images as either old or 

young, indicating their judgment with keypresses. Of the four state components, three 

were partially-observable and the fourth – current image age – was fully observable. In 

order to track which category to judge, participants needed to keep these four 

components in working memory. In future imaging research with this task, we expect 

that the three partially-observable components of each state, in addition to the task 

structure, will be decodable from human OFC using fMRI. The fourth component – 

current age – was not decoded above chance in Schuck et al. (2016), presumably due to 

its observable nature, so we would expect that finding to carry over into future work 

with this task. 
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Figure 1: Task State Space – Each circle represents a single state of the 16-state space. 
Capital letters indicate category (face or house), lower-case letter indicate age (old or 
young). The category and age inside the parentheses reflect the previous state, which 
impacts the judgment in the current state. The category and age outside the parentheses 
reflect the current state. The +5 and +10 rewards are displayed on the screen between 
Exit and Enter states, while the screen remains blank during transition for the +0 
rewards.  

 The task was structured into blocks (Figure 2a) and mini-blocks (Figure 2b). 

The blocks contained 20 (training) or 49 (experimental) trials with a consistent reward 

schema. The mini-blocks contained a series of stimuli of the same category – faces or 

houses – and were between two and six trials in length. In Block 0 (training), 

participants were acquainted with the stimuli images and practiced making the key-

press age judgments. They viewed single images of either a face or a house assembled 

into mini-blocks of the same category. After 20 trials, participants with an error rate 

under 20% continued on to the experimental blocks, and participants with an error rate 

above 20% looped back for another round of training trials. 
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Figure 2a: Task Block Structure – eleven blocks of the behavioral task. Block 0 is a 
training blocks with single images. Block 1 is a training block comprised of composite 
images. Blocks 2-9 are the experimental blocks with composite images and rewards 
during transitions. Block 10 uses choice probes during transitions.  

 

Figure 2b: Task Mini-block Structure – a sample series of trials at the beginning of an 
experimental block using composite images from the task. 
 
 For the subsequent blocks, the stimuli changed from single images of either a face 

or a house to composite images of a face and a house superimposed on top of each other. 

With the two-dimensional stimuli, subjects continued to make age judgments, but it was 

essential that they tracked which category they were judging. At the beginning of each 

block, an instruction screen indicated which category to judge first. As is shown in 

Figure 2b, if the instructions read “start by judging faces”, then the participant would 

make their age judgment on the face dimension of the composite image. As long as the 
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judgment stayed the same, the participant would continue judging the same category. If 

the first judgment was “old”, then the participant would judge faces until they were 

presented with a young face. After indicating their switched judgment with a key press 

response, the participant would switch categories to judge houses. If the first house 

presented after the category switch – or transition – was young, then they would keep 

judging houses until they saw an old house, at which point they would switch back to 

judging faces. Put more simply, the task rule was to continue judging a category until 

the judgment changed, then to switch to judge the other category. It is important to 

note that a participant ignores the category dimension that she is not judging. 

Accordingly, the dimension not being judged is referred to as the irrelevant dimension, 

while the category being judged assumes the relevant dimension. 

A mini-block, as shown in Figure 2b, contained Enter, Internal, and Exit trials 

with the same relevant dimension. The Exit trials were that in which the participant 

would switch their age judgment. The Enter trials were the first trials of the relevant 

dimension and could be either at the beginning of the task or following an Exit trial 

from a previous mini-block. The trials between the Enter and Exit trials were called 

Internal trials.  

In Block 1, participants practiced implementing the task rule as they judged the 

composite images. As in all blocks, incorrect age judgments were followed by an error 

message that reminded the participant which category to judge next. If an error was 

made one trial before an Exit trial, the error message indicated the switch in the trial 

after next. This block did not have any rewards. In the following experimental blocks 

(Blocks 2-9), rewards were shown on the screen during 50% of mini-block transitions. 

In half the blocks, the reward points were indicative of the age judgment of the 

incoming Enter trial (CLUE blocks). In the other half of the blocks, the reward points 
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had no relationship with the age of the incoming Enter trial (NO CLUE blocks). In 

order to collect the points, participants had to correctly judge the age of the Enter trial. 

The reward point values were +5 and +10. The indicative (relevant) rewards were 

associated with same-age transitions – in which the age of the Exit trial matched the age 

of the Enter trail – or different-age transitions – in which the age of the Exit and Enter 

trials did not match. Regardless of the relevancy of the rewards, the reward point values 

were evenly distributed across each block, and there were equal numbers of high- and 

low-value rewards shown. The associations between the high-value (+10) and low-value 

(+5) rewards and the same- or different-age transitions were counterbalanced across 

participants, as were the order of relevant and irrelevant blocks. In older versions of the 

task, the reward associations were probabilistic (p = 0.80), but in the final version, the 

associations were deterministic, yet shown in only half the transitions between mini-

blocks. 

The choice block - Block 10 - used a modified structure featuring choice trials on 

50% of the Enter trials. On a choice trial, participants were shown two composite 

images side by side and asked which image they would rather see next. After eight 

blocks of experience with the reward relationships, the choice probes were aimed to 

determine if subjects understood which Enter trial image would correspond with the 

high-value reward. For example, a subject for whom the high-value reward was 

associated with different-age transitions would presumably choose the choice trial option 

that had a different age from that of the Exit trial. Like the previous experimental 

blocks, Block 10 contained 49 trials, but it uniquely included approximately 4.88 choice 

trials. 
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Chapter 2: Experiment 1 

Introduction 

 To begin to address the question of how the human OFC encodes economic 

values with regard to the state representation, we started with a low-level behavioral 

question. Using the task described above, we sought to understand how the reward cues 

during mini-block transitions impacted participant reaction times (RT’s). This inquiry, 

broadly referred to as the effect of reward cues on screen, was carried out as a behavioral 

pilot experiment. We expected that reward cues would decrease RT’s relative to 

unrewarded Enter trials in the relevant blocks. In the irrelevant blocks, we expected that 

the reward cues would not predict the age of the incoming Enter state, such that the 

irrelevant rewarded RT’s would be consistent with the irrelevant unrewarded RT’s. 

Additionally, we predicted that both reward values (+5 and +10) in the relevant 

condition would evoke RT’s that would be similarly faster than the baseline established 

by the unrewarded Enter trials.  

Methods 

The task was simplified from its original form in Schuck et al. (2016) in two 

ways to better address the reward cueing effect. First, the relationship between the 

reward value and the age of the Enter trail following reward presentation was explicitly 

stated in on-screen instructions. For relevant blocks, participants were informed at the 

start of the block which transition type – same-age or different-age – corresponded with 

the high-value reward (+10) and which with the low-value reward (+5). Similarly, for 

the irrelevant blocks, participants were informed of the random relationship between 

reward value and age of the incoming Enter trial. This explicit instruction of the reward 
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relationships replaced an implicit learning schema in which participants were expected 

to derive the relationships themselves over the course of the experiment using 

probabilistic rewards. We expected that this simplification would reduce the load on 

working memory and require less critical thinking to determine the relationships on the 

part of the subjects. 

Second, this modified version of the Schuck et al. (2016) task used a fixed key 

mapping schema instead of a random alternating key mapping schema. Whereas the 

original task employed an age-response key mapping that was re-drawn on each trial, 

with this change, participants always knew which key corresponded to which age 

judgment for the duration of the experiment. The key mapping was counterbalanced 

across participants. The fixed mapping also allowed for participants’ predictions about 

the age of the next trial to be more salient in their RT’s. In particular, during a 

transition, an engaged participant would know which key to press to make the correct 

age judgment as soon as she saw a relevant reward. Considering this, we expected that if 

subjects were tracking the task structure, they would have faster RT’s on an Enter trial 

following a relevant reward. Additionally, the fixed mapping minimized the complexity 

of the task by removing the variable of the mapping. 

 To test our predictions about the effect of a reward cue on screen, we collected 

behavioral data from Princeton University undergraduate participants (n = 9, 5 

females). The participants were 19.89 years old (sd = 1.37 years) on average, and were 

compensated with a $12 base pay, in addition to a performance bonus scaled to the 

number of reward points collected during the experiment. The bonus conversion rate 

was 1 point to $0.01, and the bonuses ranged from $3.75 to $4.50. No participants were 

initially excluded.  
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Results 

 Participants performed the task with high accuracy, with an average error rate of 

4.89% (sd = 2.26%). The primary measure of this experiment was participant RT’s, 

while error rate was also considered. Across the experimental blocks, the group data 

revealed a small reward effect for the relevant rewarded trials over the relevant 

unrewarded trials, yet there was a similar RT differential for the irrelevant rewarded 

trials and the unrewarded trials (Figure 3a). When broken down by reward value 

(Figure 3b), we saw that the RT’s were clustered for irrelevant trials, with the +10 

RT’s being slightly faster than the unrewarded RT’s and +5 RT’s. In the relevant 

condition, the +5 RT’s were almost significantly faster than both the +10 and the 

unrewarded RT’s (Welch Two Sample T-Test, p = 0.0527). This was a surprising 

result as only one reward value evoked a reward effect while the other did not. In fact, 

the relevant high-value rewards were the slowest on average for any condition in the 

experiment. 
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Figure 3a: RT’s by Condition – (left) group RT averages over experimental blocks 2-9. 
Error bars represent standard error computed across reward value conditions (reward 
vs. no reward). While the relevant rewarded RT’s are faster than the other RT 
subdivisions, there is also a reward effect in the irrelevant condition. Figure 3b – RT’s 
by Condition, Reward Value – (right) RT’s by Condition, Reward Value – group RT 
averages over experimental blocks, broken down by condition and reward value. Error 
bars represent standard error across participants. There is a clear reward effect in 
relevant +5 RT’s, but not for relevant +10 RT’s. 
 
 While the existence of a reward effect, even for one reward value, suggested our 

hypothesis could hold water, we wanted to understand the basis of the RT discrepancy 

between +5 and +10 trials. To start, we broke the experiment into Blocks 2-5 

(FirstHalf) and Blocks 6-9 (LastHalf). Using the same analyses, FirstHalf showed a 

reversed trend from what was expected and what was seen from the whole-experimental 

data (Figure 3c). The relevant RT’s were tightly clustered, and the +5 irrelevant RT’s 

were significantly faster than the +10 RT’s (p = 0.006671), which were slower than 

baseline. Further analysis did not reveal a clear cause for this reversed trend, but it is 

possible that participants were paying more attention to the relevant rewards – 

accounting for the clustering – but were not yet comfortable with the reward-transition 

relationships to predict the age of the incoming Enter trial. Perhaps on the irrelevant 

trials, with less focus, the participants had a wider range of RT’s because they knew 

they had no relationship to the Enter trial age.  
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Figure 3c: [Blocks 2-5] RT’s by Condition, Reward Value – (left) FirstHalf group RT 
averages show reversed trend from Figure 3b, with a split reward effect in the irrelevant 
condition and clustered relevant RT’s. Figure 3d: [Blocks 6-9] RT’s by Condition, 
Reward Value– (right) LastHalf group RT averages show reward effect for +5 only. 
 
 In the LastHalf data, the trends matched the whole-experiment data (Figure 3d). 

We saw tighter clustering for the irrelevant trials, which matched our prediction, but 

again there was only a reward effect for the relevant +5 RT’s as compared to baseline (p 

= 0.02363). The +10 RT’s were, on average, above baseline. We postulated that the 

predicted behavior became more visible in the later blocks because participants learned 

to use the relevant reward cues to predict the next judgment over the course of the 

experiment. Under this theory, they also would have learned not to pay attention to the 

irrelevant reward cues, which would account for the clustering at baseline for that 

condition in the LastHalf data. 

 To measure whether participants were learning over the course of the 

experiment, we looked at the average error rates over the 9 experimental blocks (Figure 

4a). By comparing the relevant condition error rates to the baseline error rates 
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established by the irrelevant condition, we saw that there was a higher error rate on 

average for the second half of the experimental blocks than for the first half (3.57% for 

blocks 2-5; 3.94% for blocks 6-9; p = 0.5427). These error rate trends do not support 

the idea that participants learned over the experimental blocks. However, it is important 

to note that performance was high with this modified task, making the error rates 

relatively low across the experiment, suggesting that learning was not a crucial element 

of this experiment. Participants are nearing a performance ceiling, so the small change is 

error rates across the experiment - in either direction - were unlikely to account for the 

RT behavior between the relevant reward values.  

 

Figure 4a: Error Rates for Relevant and Irrelevant Blocks – (left) group error rate 
averages over experimental blocks 2-9 by condition. The average error rate for the last 
four blocks of the experiment were insignificantly higher than that of the first four 
blocks. Figure 4b: Reaction Times Over Experimental Blocks – (right) group RT 
averages over experimental blocks 2-9. This downward trend in RT’s suggests learning 
over the course of the experiment. 
 
 In addition to error rates, we also considered the average RT’s over all the 

experimental blocks (Figure 4b). This analysis showed significant change over the eight 

experimental blocks (p = 0.03686 for Block 2 to Block 9). Unlike the ceiling effect 

found in the error rate analysis, the decrease in RT’s across blocks provided evidence for 

learning during the experiment. This could explain the reversal of RT trends from the 
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first four blocks to the last four blocks, yet it does not account for the difference in 

reward effects for the relevant reward values. To better address that particular concern, 

we looked next at subject-by-subject data. 

 

Figure 5a: [One Subject] RT’s by Condition, Reward Value - Exemplary subject RT 
data across experimental blocks 2-9 with clear reward effect in relevant condition for 
both reward values. The irrelevant rewarded RT’s are below baseline, but still 
significantly slower than the relevant rewarded RT’s (p = 1.04e-08 for +5’s, p = 
0.003748 for +10’s) 
 
 Figure 5a shows RT data from a single subject that closely resembles the 

expected behavioral results. While three of the nine participants produced results that 

exhibited a clear reward effect for both relevant reward values, three other participants 

had little to no reward effect, and three more participants had one relevant reward value 

with RT’s well above baseline. This variety in the data calls into question the validity of 

the hypothesis, but the notion that one third of subjects were able to make judgment 

predictions using the reward cues gave us reason to believe that the reward signal we 

were seeking with this task was present and needed to be drawn out more clearly. After 
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excluding the three participants with one reward value above baseline, RT and error 

rate trends were re-analyzed. Figure 5b shows the error rates over the experimental 

blocks with three subjects excluded. As compared to the relevant condition in Figure 4a, 

the peaks were distributed differently across the blocks, but were not significantly 

different over the eight blocks (p = 0.3123). Perhaps a more informative measure, 

Figure 5c exhibits RT’s over the experimental blocks with three subjects excluded. This 

exclusion does not significantly affect the overall negative trend of the RT’s over the 

course of the experiment, as compared to Figure 4b (p = 0.4134). Figure 5d shows the 

average RT analysis by reward value and condition after the exclusion, which appears 

more similar to the expected behavioral trends. The irrelevant RT’s were more closely 

clustered than in the full group data, and both relevant reward values show a reward 

effect of faster RT’s – although the magnitudes are disparate. By removing subjects 

from the dataset that were not tracking the task structure, some of the unexpected 

behavioral results – particularly the opposite directions of the relevant reward effects – 

were accounted for. However, the difference in reward effect magnitude remains 

unaccounted for. 

 

Figure 5b: [6 Subject] Error Rates Over Experimental Blocks – (left) group average 
error rates over experimental blocks with 3 subjects excluded. Figure 5c: [6 Subject] 
Reaction Times Over Experimental Blocks – (right) group RT averages over 
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experimental blocks with 3 subjects excluded. Neither figure is significantly different 
with the exclusion of three subjects. 
 

 

Figure 5d: [6 Subject] RT’s by Condition, Reward Value – group RT averages after 3 
exclusions by condition and reward. This data shows reward effect in both relevant 
reward values. 
 
 Participants were evenly distributed between the two reward-transition 

relationships. For different-age transitions paired with the high-value reward (+10), the 

relationship was called HVDifferent. For same-age transitions paired with the high-

value reward (+10), the relationship was called HVSame. Importantly, in the above 

exclusion of participants, equal numbers of each reward-transition relationship were 

preserved. To address the reward effect magnitude phenomena, we proposed that one of 

these relationships could have been more challenging to learn and implement than the 

other. In particular, we predicted that a task rule of similarity would be computationally 

easier to learn than a task rule of difference, as switching age judgments in the transition 

requires more cognitive power than continuing with the same age judgment. 
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Accordingly, we expected that the HVDifferent condition would be harder to learn 

considering the judgment switch. 

 To test this theory, we split the participants (n=9) by their reward transition 

relationships - HVDifferent and HVSame - and compared RT’s between the groups. 

Figure 6a shows the Enter trial RT’s following relevant high-value rewards by block for 

the HVDifferent (triangles) and HVSame (circles) groups. A comparison of the two 

revealed that the reward transition relationship did not significantly impact the relevant 

high-value rewarded Enter trial RT’s (p = 0.2066).  

 

Figure 6a: Relevant Enter RT’s by Block Following High-Value Reward – HVDifferent 
(HVD – triangles) and HVSame (HVS – circles) Enter RT’s after high-value (+10) 
reward on relevant blocks. The two reward transition relationships do not elicit 
significantly different RT’s. 
 

We expected that we might find slower RT’s for the HVDifferent relationship 

group, but this analysis suggests that one relationship is not significantly harder to learn 
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than the other. Next, we considered the Enter trial RT’s following low-value (+5) 

rewards in the relevant condition for both HVDifferent and HVSame relationships 

(Figure 6b). Again, the reward transition relationships do not produce significantly 

different RT’s between the groups (p = 0.178). 

 

Figure 6b: Relevant Enter RT’s by Block Following Low-Value Reward – HVDifferent 
(HVD – triangles) and HVSame (HVS – circles) Enter RT’s after low-value (+5) 
reward on relevant blocks. The two reward transition relationships do not elicit 
significantly different RT’s. 
 
 These quantitative analyses do not produce any compelling evidence for one 

relationship being more challenging to learn than the other relationship. In a final effort 

to understand why the relevant +5 Enter RT’s were uncharacteristically faster than the 

relevant +10 Enter RT’s, we compared the relevant Enter RT’s to see if the low-value 

(+5) RT’s for both relationships were faster than the high-value (+10) RT’s for both 

relationships. Surprisingly, this relationship was not significant (p = 0.2863). 
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Additionally, the relationship between the HVSame and HVDifferent groups when 

considering both high- and low-value rewards was not significant (p = 0.2177). Lastly, 

we considered if the act of switching judgments produced significantly slower RT’s than 

the act of staying in the same age judgment. For this analysis, we compiled the RT’s for 

the HVSame group following a high-value reward and the HVDifferent group following 

a low-value reward, as in both of these cases, participants stayed with the same 

judgment. These RT’s were compared to RT’s from the HVDifferent following a high-

value reward and the HVSame group following a low-value reward, in which 

participants switched their age judgment. The switching versus staying paradigm did 

not significantly account for the differences in RT’s (p = 0.617). 

 To conclude these analyses, the singular reward effect for relevant +5 rewards 

cannot be accounted for by the reward transition relationships, exclusion of confused 

participants, or learning over the experimental blocks. Due to the small sample size of 

this experiment (n = 9), we attributed this trend to behavioral noise and sought to 

collect more data in hopes to see a stronger behavioral signal reflecting a reward effect 

for both relevant reward values. 
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Chapter 3: Experiment 2 

Introduction 

 Our inquiry into the behavioral effect of reward cues on screen provided some 

support for our theory that participants were using the reward cues to predict the age on 

the incoming Enter trial. As the data from Experiment 1 was noisy, we felt it necessary 

to run another experiment to increase the sample size, while also changing the task 

slightly to answer another important question about the reward cues. In this 

experiment, we asked whether the reward cues on screen during a transition were used 

to predict the age of the incoming Enter trial or to indicate a category switch. 

Experiment 1 was based on the principle that reward cues, when present, would help 

participants to anticipate the next age judgment. Experiment 2 provided a necessary 

sanity check of that assumption. This step was necessitated by the possibility that 

participants were not fully tracking the task structure, such that the presence of a 

reward cue on screen would indicate a category switch, allowing them to make a faster 

age judgment on the subsequent trial. We predicted that the reward cues would provide 

information about the next age judgment in relevant experimental blocks instead of 

indicating a category switch.  

Methods 

 To test this hypothesis, no-reward outcomes were added to all trials without 

reward cues in the task adapted from Schuck et al. (2016). These no-reward outcomes 

were in the form of a cyan-colored “--” cue on the screen following a trial. They 

indicated that there was no reward for the given trial. As 50% of Exit trials were 

followed by reward cues, these no-reward cues were presented in the remaining 50% of 
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Exit transitions, and after all other trials in experimental blocks 2-9, such that every trial 

in these blocks had some outcome. The rest of the task structure was consistent with 

Experiment 1.  

 The addition of no-reward cues minimized the possibility that subjects could use 

the reward cues as an indicator of a category switch, because all trials were followed by 

cues, not just the trials in which the category changed. With regard to Exit transitions, 

the addition of no-reward cues equalized the information provided in each trial, 

preventing the Exit trials from being visually distinct, as they were in Experiment 1. 

This allowed us to compare the RT’s for Enter trials following no-reward cues and 

reward cues without any confounds of additional information from the task state. We 

expected that, in the relevant condition, the Enter RT’s following a no-reward cue 

would be approximately equivalent to the no-cue Enter RT’s from Experiment 1. 

Beyond that, we expected that the Enter RT’s following a relevant reward cue would be 

significantly faster than the relevant no-reward Enter RT’s. These forecasted behavioral 

results would support our hypothesis that participants used reward cues to predict the 

age of the incoming Enter trial. However, if we observed that the RT’s following no-

reward cues were statistically similar to the RT’s following reward cues, this would 

support the conclusion that the reward cues primarily indicated a category switch.  

 In this experiment, Princeton University undergraduates and community 

members (n = 10, 7 female) completed the task for monetary compensation. The subject 

group had an average age of 21.89 years (sd = 5.16 years). They were paid $12.00 plus 

an addition performance bonus of $0.01 for each 1 point collected in the experiment. As 

before, in order to collect the reward points, participants needed to correctly judge the 

age of the Enter trial following the reward. The bonuses ranged from $2.75 to $4.55. 

On average, the group had an error rate of 4.99% over experimental Blocks 2-9 (sd = 
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0.23%). The percentage of missed trials – or trials in which no response was made in 

the requisite 2.5 second response period – was 0.38% over the experimental blocks. 

Results 

 The experiment primarily addressed how participants used reward cues. With 

the data from Experiment 1 as a baseline comparison, we posited that the reward cues 

would either be used to predict the age of the incoming Enter trial, or to indicate a 

category switch between mini-blocks. The group data across the relevant experimental 

blocks revealed faster RT’s for the Enter trials following a reward cue, as compared to 

the Enter trials following a no-reward cue (Figure 7). Consistent with our hypothesis, 

the no-reward RT’s were significantly slower than the rewarded RT’s in the relevant 

condition of Experiment 2 (p = 3.286e-14). When compared to Experiment 1 – which 

differed only in terms of the no-reward cues – the rewarded relevant RT’s between 

experiments one and two were comparable, and the no-reward RT’s were comparable 

with the no-cue RT’s. From this data, we can infer that participants were not using the 

reward cues for information about a category switch because the no-reward condition 

elicited comparable RT’s to the no-cue condition from the first experiment, but without 

the transition-indicating capability. This supports the premise on which the first 

experiment was founded – that participants used the reward cues to predict the age of 

the incoming trial. This result suggests that the noisy data from Experiment 1 might 

reveal the expected trends. A larger sample size is needed to establish the expected trend 

of relevant reward effects. 
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Figure 7: Relevant Enter RT’s from Exp. 1 and 2 – Comparing RT’s from Experiment 
2’s Enter trials following a no-reward “--” cue and following a reward cue to 
Experiment 1’s Enter RT’s following a reward cue and no cue. The comparable RT’s 
between no-reward and no-cue, as well as the faster RT’s following reward cues, suggest 
that participants did not use the reward cues to indicate a category switch and instead 
used them to predict the incoming age judgment. 
 
 While the primary aim of this experiment was to understand the role of the 

reward cue in Enter trial RT’s, the high degree of similarity between these tasks allowed 

for this data to compliment Experiment 1’s RT trends. We analyzed the RT’s and error 

rates for this experiment as was done in for the previous experiment. To start, we looked 

at the behavioral effect of a cue on screen. The average group data showed that trials 

following reward cues had faster RT’s in both the relevant and irrelevant conditions, as 

compared to trials following no-reward cues (Figure 8). The no-reward RT’s of both 

conditions were consistent with one another, providing a steady baseline allowing for 

inter-conditional comparisons. In the relevant condition, the difference in RT’s was 
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significant for both reward values (p = 2.553e-11 for +5 versus no-reward; p < 2.2e-16 

for +10 versus no-reward). In the irrelevant condition, only one reward value was 

significantly faster than baseline (p = 0.02166 for +5 versus no-reward; p = 0.9806 for 

+10 versus no-reward). Regardless of significance from baseline, the relevant reward 

values were significantly faster than the irrelevant reward values (p = 4.322e-05 for +5; 

p = 5.044e-08 for +10).  

Visualized again in Figure 9a, the same average group data showed a clear 

reward effect between the relevant and irrelevant conditions, such that the relevant 

rewards elicited faster RT’s while the irrelevant rewards brought about RT’s consistent 

with the no-reward RT’s (Figure 9a). In figure 9b, the group data is broken down by 

condition and reward value. We saw trends consistent with the original hypothesis: only 

relevant rewards had faster-than-baseline RT’s because participants could predict the 

incoming age judgment based on the reward value and the given reward-transition 

relationship. In particular, both relevant reward values had a reward effect in the 

expected direction. The relevant baseline, or no-reward RT’s, were similar to the RT’s 

for both irrelevant reward values and the irrelevant no-reward RT’s. Whereas in 

Experiment 1, the relevant +5 reward value produced faster RT’s than the relevant +10 

reward value, both relevant reward values in this experiment produced RT’s that were 

significantly faster than baseline and that were consistent with one another. In fact, this 

data shows that the +10 relevant reward elicited slightly faster RT’s than the +5 reward 

value. These behavioral trends support our hypothesis, but we needed to conduct a more 

rigorous analysis to determine if these trends were consistent across participants. 
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Figure 8: Relevant and Irrelevant Enter Trial RT’s – group RT averages by condition 
and reward value on Enter trials in experimental blocks. Irrelevant rewarded RT’s are 
faster than baseline, but relevant rewarded RT’s are significantly after than irrelevant 
rewarded RT’s. These reward effects are comparable between reward values. 
 

+0 rel +5 rel +10 rel +0 irrel +5 irrel +10 irrel

Relevant and Irrelevant Enter Trial RTs

RT
 (m

s)

0
20

0
40

0
60

0
80

0



  
 

33 

   
Figure 9a: RT’s by Condition – (left) group RT averages by condition over 
experimental blocks 2-9, showing a clear reward effect in relevant condition. Figure 9b: 
RT’s by Condition, Reward Value – (right) group RT averages by condition and 
reward value over experimental blocks 2-9. This data shows reward effects in both 
reward values of the relevant condition with clustering in the irrelevant condition. 
 

Subject-by-subject analysis revealed two major behavioral trend classifications 

from the RT data. First, four of the ten participants produced data that showed a clear 

reward effect in the relevant condition only, with consistent RT’s across outcomes in the 

irrelevant condition. These participants were able to track the task structure successfully 

in order to derive predictive information from the relevant reward cues and ignore the 

irrelevant reward cues. Exemplary data from one subject is displayed in Figure 9c. The 

second major behavioral trend classification encompassed four subjects that did not 

track the task structure as well as expected. In particular, these subjects displayed clear 

relevant reward effects, with rewarded RT’s being faster than no-reward RT’s, but they 

also showed a reward effect in the irrelevant condition. We could infer from this data 

that these participants were not able to implement the instructions regarding CLUE 

(relevant) versus NO CLUE (irrelevant) blocks as well as expected. Notably, three of 
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the four in this classification exhibited the uncharacteristically fast RT’s for the 

irrelevant +5 reward value. These RT’s were comparable with the relevant reward value 

RT’s. The fourth participant in this group had uncharacteristically fast RT’s for the 

irrelevant +10 reward value instead.  

 

Figure 9c: [One Subject] RT’s by Condition and Reward Value – exemplary RT data 
from a participant showing clear reward effect in the relevant condition and RT 
clustering in irrelevant condition. 
 

The three subjects with fast irrelevant +5’s were part of the HVSame condition, 

while the subject with the fast irrelevant +10’s was in the HVDifferent condition. For 

the HVSame condition, the +5 rewards were shown in different-age transitions, and for 

the HVDifferent condition, the +10 rewards were shown in different-age transitions. 

Considering these relationships, it is possible that participants actively learned the 

different-age transition relationship and used it to infer the same-age transition 

relationship instead of learning both rules and implementing them in parallel. While 

this is a speculative exercise, these assumptions would provide that the different-age rule 

400

600

800

1000

1200

irrelevant relevant
Condition

RT
 (m

s)

Reward Amount
0

10

5

[One Subject] RT's by Condition, Reward Value



  
 

35 

is easier to learn than the same-age rule, which is consistent with the reward-transition 

dynamics in Experiment 1.  

To conclude the subject-by-subject analysis, the remaining two participants 

showed uncommon patterns of deviation from the expected behavioral trends. One 

participant had mirrored RT’s across conditions, such that the relevant and irrelevant 

+10 reward values elicited below-baseline RT’s, and the +5 and no-reward RT’s in both 

conditions were clustered together. The other participant had a clear reward effect for 

the relevant +10 reward value, yet the relevant +5 RT’s were slower than baseline. This 

trend echoes the single-reward-value reward effect observed in Experiment 1. 

Considered together, seven of the ten participants had a clear and equal reward effect for 

the relevant reward values. As compared to Experiment 1, the salience of this essential 

behavioral trend was much more pronounced and widespread across participants. While 

it is possible that individual variance from our small sample sizes drove the variation in 

behavioral trends, we looked to the difference in the tasks to account for the contract in 

trend clarity. The data from this experiment, however, does not support the notion that 

the no-reward cues would impact performance significantly. Instead, the data shows that 

on Enter trials following no-reward cues, the RT’s were the same as on no-cue Enter 

trials from Experiment 1. Perhaps neural data would represent the impact the no-reward 

cues had on the task structure and the salience of rewards more accurately than RT 

data. Regardless, in further experimentation with this task, we would seek to make the 

CLUE (relevant) and NO CLUE (irrelevant) block instructions more clear and more 

visible. We expect that change could reduce the behavioral result of participants 

reacting faster to irrelevant rewards. 
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Figure 10a: Error Rates by ID – (left) average error rate for each participant by reward-
transition relationship. HVDiff/HVSame category (cyan) was a participant that had 
both conditions in the last four experimental blocks in lieu of irrelevant blocks due to a 
malfunction in the stimulus code. HVDifferent participants had insignificantly higher 
error rates. Figure 10b: Reaction Times by ID – (right) Average RT’s for each 
participant by reward-transition relationship. HVSame participants had insignificantly 
slower RT’s. 
 

As in Experiment 1, we analyzed the error rates in order to understand how 

participant performance improved or worsened over the course of this experiment. We 

started with a subject-by-subject error rate analysis. Figure 10a shows the error rates for 

each participant. Notably, the four subjects with the unexpected behavioral trend 

classification had below-average error rates. Their accuracy, we can assume, was not 

impacted by their lack of understanding of the instructions. The HVDifferent condition 

produced higher error rates than the HVSame condition, however not significantly (p = 

0.671). In Figure 10b, HVDifferent had faster RT’s than HVSame (p = 0.6648), so 

between the two measures, one reward transition condition does not appear to be more 

challenging than the other.  

To verify that one reward transition relationship was not more difficult than the 

other, we looked specifically at the Enter RT’s following relevant high-value rewards. 

Figure 11a shows that the HVDifferent and HVSame groups did not have significantly 

different RT’s over the experimental blocks (p = 0.2066). Figure 11b shows the same 
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analysis on the Enter RT’s following relevant low-value rewards, and again, the groups 

did not have significantly different RT’s over the experiment (p = 0.178). From this 

assessment, we concluded that the reward transition relationships did not 

disproportionately impact one group over another. 

 

 

Figure 11a: Relevant Enter RT’s by Block Following High-Value Reward – (top) 
HVDifferent (HVD – triangles) and HVSame (HVS – circles) Enter RT’s after high-
value (+10) rewards on relevant blocks. The two reward transition relationships do not 
elicit significantly different RT’s. Figure 11b: Relevant Enter RT’s by Block Following 
Low-Value Reward – (bottom) HVDifferent (HVD – triangles) and HVSame (HVS – 
circles) Enter RT’s after low-value (+5) rewards on relevant blocks. The two reward 
transition relationships do not elicit significantly different RT’s. 
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Next, we looked at the error rates over the experimental blocks. Figure 12a shows 

the average group data as it generally increased over the course of the experiment. It is 

important to note that in the verbal instructions delivered prior to the experiment, 

participants in this experiment were told to take small breaks between blocks to “stand 

up and shake it out” in order to maintain focus in the final blocks of the experiment. 

While the error rates did reach an experiment high around 5% in the final three blocks, 

the plateau in error rates exhibited in those last three blocks might be the result of a 

concerted effort to maintain focus at the end of the experiment. Also of note, the error 

rates were higher across this experiment than in the first experiment. As the only 

change to the task was the no-reward cues, it appears that these cues made the task 

more challenging. While the primary finding of this experiment supports the notion that 

the reward cues were used for more than a reminder of the category switch during a 

transition, this comparison suggests that the no-reward cues reduce the clarity or 

simplicity of the task structure by providing the same outcome on all the Enter and 

Internal trials and on half of the Exit trials. Figure 12b shows an inverse relationship 

2 3 4 5 6 7 8 9

20
0

40
0

60
0

80
0

10
00

12
00

Block

RT
 (m

s)

101 HVS

103 HVS

105 HVS

107 HVS

100 HVD

102 HVD

104 HVD

106 HVD

108 HVD

Relevant Enter RT's by Block Following Low−Value Reward



  
 

39 

between the error rates of the relevant and irrelevant blocks. These differences, however, 

were not significant and could likely be attributed to random subject variation, not a 

systematic difference in conditions (p = 0.697). 

 

Figure 12a: Error Rates Over Experimental Blocks – (left) average error rate over 
experimental blocks 2-9. The last three blocks have the highest error rates, and these 
error rates are slightly higher than those in Exp. 1. Figure 12b: Error Rates for Relevant 
and Irrelevant Blocks – (right) average error rate over experimental blocks 2-9 by 
reward condition. The inverse effect between irrelevant and relevant error rates is likely 
due to noise as it is not significant. 
 
 Overall, the behavioral results from Experiment 2 support our hypothesis that 

participants used the reward cues to predict the age of the next trial, and the 

overarching behavioral hypothesis that relevant rewards elicit faster reaction times than 

non-rewarded trials and irrelevant rewarded trials. Taken together, these findings 

provide a foundation of support for our larger neural hypothesis that the human OFC 

encodes task-relevant values as part of the task structure. We will next look at fMRI 

data collected while participants played an earlier version of this task in order to see how 

brain activation is affected by this task structure.  
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Chapter 4: fMRI analysis 

 Using an earlier version of the Shuck et al. (2016) task, Schuck conducted an 

fMRI experiment with human participants. The following is unpublished imaging data 

from that scanning experiment. Importantly, the task used for these scans did not 

include economic values in the form of rewards. Additionally, this version of the task 

had random age-judgment key mapping, and subjects indicated their response using 

two buttons on a controller held in their right hand. The rest of the task structure 

matched the task outlined in the present work.  

The scanner used for this experiment was a 3T Siemens Magnetom Skyra 

(Seimens). The voxel size was 3x3 mm, and the slice thickness was 2 mm with a gap of 

50%. The acquired sequences had 46 axial slices each, with a TR of 2.4 seconds, TE of 

27 milliseconds, FOV of 196 mm and a flip angle of 71 degrees. Slices were oriented 30 

degrees backwards relative to the anterior-posterior commissure axis. 

In this post-hoc analysis, we asked how the category – face or house – of the 

stimuli’s attended dimension affected brain activation. Face images have been shown to 

activate the fusiform face area (FFA) in extrastriate visual cortex above baseline 

(Kanwisher et al., 1997), and house or building images have been shown to activate the 

parahippocampal place area (PPA) above baseline (Epstein et al., 1999). Considering 

these findings, we predicted that the participants’ brain activation would increase at 

FFA when the attended dimension was a face image and would increase at PPA when 

the attended dimension was a house image. Additionally, we expected that when the 

attended dimension of the stimuli was a face, PPA would not activate significantly 

because of the selective attention focused on the face image. Although the face and the 

house images were equally visible in every composite image, we predicted that FFA 

would not activate significantly when the house was the attended dimension.  
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Figure 13 shows statistical brain images from 6 subjects attending to either faces 

or houses. From the face attended stimuli, bilateral FFA activation was clear, while PPA 

activation was not significant (Figure 13a). From the house attended stimuli, we 

observed bilateral PPA activation with a greater degree of activation in the right 

hemisphere over the left hemisphere, with no significant FFA activation (Figure 13b). 

These imaging results are consistent with our hypothesis that participants’ selective 

attention to the attended dimension of the composite images drives activation for that 

dimension only. Additionally, this analysis provides a sanity check that subjects running 

through a version of the 16-state space task are representing the task structure to the 

extent of attending to the appropriate dimension. Future imaging studies with this task 

should be able to rely on this sanity check and should structure their scanning to focus 

on reward encoding in OFC. 

    

Figure 13a: Brain Activation for Face Attended Stimuli – (left) average brain activation 
over 6 subjects for all experimental trials in which the face image was the attended 
dimension. We expected FFA activation from the attended face images, and this data 
shows bilateral FFA activation. Figure 13b: Brain Activation for House Attended 
Stimuli – (right) average brain activation over 6 subjects for trials when house images 
were the attended dimension. We expected PPA activation from the attended house 
images, and this data shows strong PPA activation in both hemispheres, with slightly 
more activation in the right hemisphere.  
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Chapter 5: Discussion 

The present work provides a foundation of behavioral results in support of our 

neural hypothesis and prepares future researchers to scan this task to decode OFC’s 

activity. We predicted that reward cues would decrease RT’s in the relevant condition 

and have no effect on RT’s in the irrelevant condition. Despite behavioral noise – likely 

stemming from our small sample sizes – our reaction time analyses showed faster RT’s 

evoked by both low- and high-value relevant rewards, as predicted. In the irrelevant 

condition, both reward values were clustered with the no-reward RT’s, signaling the 

lack of a reward effect. Our average group data – particularly from Experiment 2 – and 

the majority of individual participant data provided support for our behavioral 

hypothesis. These behavioral trends, complimented by post-hoc fMRI analysis, 

suggested that our participants were successfully tracking the task structure and using 

the relevant reward cues to predict the subsequent age judgment. While we recognize 

that behavioral results cannot provide direct support to a neural hypothesis, these trends 

support our behavioral hypothesis, which, in turn, supports our prediction that task-

relevant economic values are encoded in the task state representation in human OFC. 

Future functional imaging research using this task should be tailored to decoding 

the task state representation from OFC activity. Additionally, we suggest incorporating 

the no-reward cues from Experiment 2 into the task for scanning, as this version of the 

task produced stronger behavioral results. We predict that the task’s relevant rewards 

values - +5 and +10 – will be included in the task state representation, as suggested by 

Schuck et al. (2016). Hence, with an fMRI experiment, we expect that these relevant 

reward values would be decoded as part of the task state representation. Evidence 

supporting this hypothesis would also support a characterization of OFC as a region that 

encodes partially-observable task states and uses them to calculate or learn values. This 
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characterization could possibly replace the characterization of OFC as a value signaling 

region under the goods-based model (Padoa-Schioppa & Assad, 2006). 

More broadly, this research aims to understand how rewards impact human 

decision making. While the goods-based theory of OFC function would suggest that 

rewards impact decision making in a value-only space (Padoa-Schioppa & Assad, 

2006), these results and neural predictions would imply that rewards are one of many 

factors that impact decision making in a larger task space. Future research in this vein 

will provide insights into neuroeconomics and will create a better understanding of how 

we flexibly use rewards in every-day decisions. There are still unanswered questions 

about the OFC, but we hope this study brought the field one step closer to 

understanding the role of the human OFC. 
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