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Abstract 1

Reinforcement learning algorithms are notoriously inefficient in high-dimensional

environments, and yet people manage to solve these complex problems with ease.

One way in which our brains are thought to make such high-dimensional problems

tractable is by using selective attention to reduce the dimensionality to only those

features that are relevant for the task. Prior work has demonstrated that in reward-

based learning, there is a bi-directional relationship between learning and attention,

but how the brain decides where to employ attention over the course of learning is

debated. Drawing on ideas from theoretical and experimental work, we propose that

internal confidence computations may arbitrate between different attention strategies.

To test this hypothesis, we used a high-dimensional reinforcement learning task in

which efficient learning and concomitant maximization of reward requires narrowing

of subjects’ attention to the relevant dimension. Our results demonstrate a clear

link between confidence and the breadth of attention during learning. We also

incorporated our hypotheses into two novel computational models that predict

trial-by-trial attention during the task. While neither of our models performed better

than the value-based model to which we compared them, our results do not disprove

the idea that confidence modulates the distribution of attention during learning.

Rather, they suggest that models which allocate attention purely based on value miss

an important component of how subjects actually distribute their attention, and that

more thought needs to be given to the role of confidence, as well as perseverance and

hypothesis-testing.

1This section contains text that is based closely on, or identical to, text found in my junior paper
(2017).
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Chapter 1

Introduction

1.1 Learning to Learn1

In challenging situations, maximizing learning is often as much about determining

which pieces of information are relevant as it is about cramming more information

into the brain. But how do we figure out what is important to learn about and what is

not? We live in a multi-dimensional, highly complex world in which we are constantly

inundated with sights, sounds, and other sensations. While some of these stimuli are

important, others must be filtered out so as not to overwhelm us. This is especially

true in learning and decision-making situations, as we attempt to determine which

stimuli should influence our future choices. Relevant (reward) signals often co-occur

with irrelevant stimuli, making learning more challenging. While it might be optimal

to learn about every feature of every stimulus, and make decisions based on that

wealth of information, we do not have the neural capacity to do so (Feng et al., 2014;

reviewed in Desimone and Duncan, 1995). Thus, it is important to understand what

strategies our brains use to learn efficiently in a complex world.

1This section and the following sections in this chapter contain text that is based closely on, or
identical to, text found in my junior paper (2017).
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1.2 Reinforcement Learning

One of the most popular theories of neural learning is reinforcement learning

(RL), a trial-and-error based model adapted from computer science. Reinforcement

learning models of decision-making aim to maximize long-term reward and minimize

punishment, using previous experience as a guide to gauge future outcomes (Schultz

et al., 1997; Sutton and Barto, 1998, Niv and Schoenbaum, 2008). In RL paradigms,

stimulus values (corresponding to future expected reward) are learned through

making choices and receiving feedback. If there is a difference between the expected

value of a choice and the actual reward/punishment received (a quantity known as

reward prediction error), values are updated to reflect that information.

Reinforcement learning is particularly popular as a model because many studies

have shown a neural substrate for the type of error-driven learning that characterizes

RL (Montague et al., 1996, Schultz et al., 1993; Schultz et al., 1997). Reward

pathways in the midbrain-basal ganglia circuit are thought to encode prediction

errors through dopamine release: positive prediction results in greater bursts of

activity from dopamine neurons while a negative prediction results in decreased

activity (Schultz et al., 1993).

Despite its attraction as a neurobiologically plausible model, RL fails to account

for learning in complex, multidimensional environments (Sutton and Barto, 1998;

Bellman, 1957). As the dimensionality of the problem increases, RL models

break down, becoming less and less efficient – a trend referred to as the curse of

dimensionality (Sutton and Barto, 1998). Recent work in representational learning

has indicated that the brain may solve this curse of dimensionality by selecting a

smaller subset of dimensions that are relevant for learning, thereby reducing the

complexity of neural computations and decisions (Gershman and Niv, 2010; Jones

and Canas, 2010; Niv et al., 2015; Leong et al., 2017)
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1.3 Dimensionality Reduction and Use of Selective

Attention

Determining which (and how many) dimensions of the task are relevant is key for

good performance. If too few dimensions are chosen, the learner misses out on

information that could be relevant to reward. If too many dimensions are chosen,

learning is inefficient and the learner wastes resources trying to pay attention to and

remember irrelevant stimuli. In the computer-science field of RL, this dimension-

reduction problem is formalized as learning state-spaces, which correspond to the

internal representation of the current task, and selective perception is used to reduce

the state-space (McCallum, 1996).

Exactly how the brain learns to do dimensionality-reduction is still not fully

understood, but a key factor is thought to be selective attention (Dayan et al.,

2000; Nosofsky, 1994; Rehder and Hoffman, 2005; Roelfsema and van Ooyen,

2005). Selective allocation of attention reflects the narrowing of dimensions that the

brain is learning about, and might allow the brain to successfully employ simpler

computations like RL, which is intractable in large state-spaces (reviewed in Dayan

and Niv, 2008; O’Doherty, 2012). Various groups have proposed a mechanism

whereby people learn over time what features of a stimulus to attend to, and that

attention in turn regulates future learning and biases learning towards those relevant

dimensions (Jones and Canas, 2010; Niv et al., 2015). But in a situation where there

is uncertainty about the value of different features, how should attention be allocated

to maximize learning and reward?

Recent work suggests that when humans learn in an uncertain environment, the

most optimal learning strategies are too computationally demanding, and human

performance is better reflected by suboptimal strategies based on selective attention

(Wilson and Niv, 2011). Work in the animal learning literature has led to two
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different theories about how attention should impact learning. In one view, attention

should be directed to stimuli about which least is known (Pearce and Hall, 1980).

In the other view, attention should be directed to those features most predictive of

reward (Mackintosh, 1975). Both strategies have found experimental support, and

many recent studies have focused on finding a way to reconcile the two strategies

into one comprehensive theory of selective attention during learning (Rehder and

Hoffman, 2005; Haselgrove et al., 2010; Dopson et al., 2010, Leong et al., 2017).

1.4 Role of Confidence

Some insight into this problem has come from the field of machine learning (ML),

where a similar tradeoff between learning strategies exists. In ML, various algorithms

are used to determine how to best solve the tradeoff between exploration (collecting

more information) and exploitation (making the best decision given the current

information) (Tokic, 2010). In humans, attention can be thought of as a mechanism

that is used to solve the explore/exploit problem for high-dimensional state-spaces.

One way in which this tradeoff has been dealt with in ML is by using confidence

bounds to establish criteria on when to explore and when to exploit (Auer, 2003).

Computations of statistical confidence bounds reflect the reliability of and the

uncertainty about the current knowledge of the environment (Auer, 2003).

When allocating attention during learning, it is unknown how the brain chooses

which strategy will be most beneficial for maximizing long-term reward. However,

this type of statistical computation, incorporating both data values and the reliability

of those values, could be an ideal way for the brain to do so. It has been hypothesized

that this statistical information is precisely what the brain uses when it calculates

confidence (Kepecs et al., 2008; De Martino et al., 2013). While confidence is often

thought of as a subjective, metacognitive feeling, Kepecs et al. have shown that

4



self-reported confidence is highly consistent with models of statistical confidence,

and thus might reflect the brain’s underlying computations (2008).

1.5 Hypothesis

We propose that the neural computations which manifest as subjectively felt

confidence might be a way in which the brain chooses which strategy to utilize when

distributing attention. How attention changes as people become more confident in

their knowledge of a task is so far an unexplored area. Will they continue to seek

out as much information as possible, even once they have more information about

which features are most rewarding? Or, as they become more confident, will they

begin to more narrowly confine their attention to the features that they believe are

most relevant? Our research seeks to explore these questions, and to understand

how confidence affects attention during learning. The answers will contribute to

understanding how our brains solve high-dimensional learning tasks that cannot be

accounted for by simple reinforcement learning models.

5



Chapter 2

Task Design

2.1 Overview

In order to investigate the relationship between learning, attention, and confidence,

we utilized a high-dimensional, trial-and-error learning task. Subjects played a game

where efficient learning, and thus maximization of reward, required selective attention

to certain features and dimensions. Throughout the game, a self-report probe was

used to assess subjects’ confidence, and, as a measure of attention, an eye-tracker was

used to measure where subjects were looking on the display screen.

2.2 Dimensions Task 1

The “Dimensions Task” is a multi-armed bandit task previously developed by the Niv

lab to study reinforcement learning paradigms (Niv et al., 2015; Leong et al., 2017).

In the game, nine different images (3 faces, 3 landmarks, and 3 common tools) are

arranged on the screen into a grid of compound stimuli (Figure 2.1). Each stimulus is

1This section contains text that is based closely on, or identical to, text found in my junior paper
(2017).
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a column composed of one image from each image category. The same nine features

appear in every trial, arranged in different orders.

Figure 2.1: Schematic of the “Dimensions Task”. On each trial, the subject was
presented with three compound stimuli, each composed of a face, a landmark, and a
tool. The participant chose one of the stimuli, received feedback on their choice (green
rectangle indicating reward, red rectangle indicating no reward), and continued to the
next trial. On some trials the subject was presented with a confidence probe that
asked them to rate on a sliding scale how confident they were in their knowledge of
the target feature. Each trial was initiated after a brief period of fixation on a white
cross in the middle of the screen, included to stabilize eye tracking.

On each trial, subjects choose one of the compound stimuli and receive feedback

on their choice in the form of a point reward (indicated by either a green or red

outline around the chosen stimulus). In any given round of the game, only one of

the three “dimensions” (faces, landmarks, or tools) determines reward. Within the

relevant dimension, one “target” feature is more highly associated with reward (p =

.75), while the other features in that dimension are associated with a lower probability

of reward (p = .25). When a stimulus (one of the three columns) is chosen, reward

is based solely on the feature of the relevant dimension. This probabilistic reward

scheme means that even if a subject selects the stimulus containing the target feature,

there is a chance the choice will not be rewarded. Similarly, even if the subject chooses

7



a stimulus that does not contain the target feature, there is still a possibility that the

feedback will be positive.

Rewards are maximized when subjects learn the target feature and then choose

the stimulus which contains that feature. Subjects play the game multiple times (6

rounds of three games, each game consisting of 20 trials), and the relevant dimension

and target feature change at the end of each game.

2.3 Confidence Measure 2

We wished to look at confidence as an internal computation that could direct shifts

of attention allocation. Many different strategies have been used to study confidence,

with the method choice depending highly on the experimental model being used. A

study by Kepecs et al. found that subjective reports of confidence, measured on a

scale from 1 to 5, were both highly correlated with statistical predictions of confidence,

and were a strong predictor of choice accuracy (2008). As a statistical computation

of confidence is precisely what we propose may underlie the shifts in attention, and as

subjectively reported confidence was found to be a good analogue of the underlying

computations the brain may perform, we chose to measure confidence using a similar

self-reporting model.

In our task, subjects are asked to rate how confident they are that they know

which feature is most predictive of reward (which feature is the target feature).

The confidence probe appears only once every three trials, at the end of the trial.

Confidence is measured on a sliding scale, with the low (left) end labeled less

confident and the high (right) end labeled more confident (See Figure 2.1). The

sliding confidence bar begins at the low end, as subjects – lacking any information

about the task features – should begin with little confidence in their knowledge of the

2This section contains text that is based closely on, or identical to, text found in my junior paper
(2017).
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target feature. Subjects are able to quickly adjust their confidence rating (or leave

it at the same level) using dedicated key strokes that move the reported confidence

level either higher or lower on the bar compared to their previous trial.

We adjusted the design to a sliding scale bar rather than a 1-to-5 report as in

Kepecs et al., because using dedicated motor responses that simply move the indicator

position on the bar left or right is less likely to distract subjects from their main

task and allows us to measure a greater distribution of confidence (continuous rating

rather than a small number of discrete positions). Positions along the bar correspond

to points along the continuous interval 0 to 1.

In the Dimensions Task, we ask subjects to rate their confidence immediately

following the trial. We chose to place the measure of confidence here and focus

on confidence after the outcome, rather than during reward anticipation as others

have done, for multiple reasons. First, by placing the measure of confidence at

the end of the trial, confidence judgments are less likely to be influenced by which

stimulus the subject just chose. There is also a logistical impediment to placing the

measure of confidence in between choice and feedback – the intrusion might affect

how attention is distributed during feedback, both because the stimulus display will

be interrupted (subjects won’t have continuous viewing of the stimuli) and because

subjects are made more aware of their own cognition about confidence. Importantly,

we are asking subjects to report confidence in their knowledge of which feature is

the target feature, rather than their confidence that the choice they have made is

correct. While measuring confidence in this way is less likely to give us a measure

that relates confidence to choice accuracy, it is more likely to give us a good measure

of the subjects’ overall confidence that they know which feature is the target feature.

However, there is still some danger that asking subjects to report their confidence

between trials will either 1) distract from the main experiment, disrupting their

attention and interfering with their memory for past trials, or 2) affect their
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performance by causing them to think more about their own judgments instead of

concentrating on learning. To control for this, we chose to probe for confidence only

once every three trials. We also ran a pilot study that incorporated confidence probes

but differed in no other way from a previous version of the Dimensions Task. No

significant differences were observed in performance of subjects in the games with

and without the confidence reports.

2.4 Tracking Eye Gaze

Through visual attention, humans are able to selectively send only the most relevant

information in a scene to higher-level cortical areas for further processing (Yi &

Chun, 2005; Reviewed in Baluch & Itti, 2011; Desimone & Duncan, 1995). Selective

attention has been highly implicated in both learning and memory processes (Jones &

Cañas, 2010; Uncapher & Rugg, 2009; Reviewed in Chun & Turk-Browne, 2007). Eye

movements, which provide a highly direct and continuous measure of visual activity,

are a good proxy for how much subjects are attending to various elements in their

environment (Duc et al., 2008; Borji et al., 2013). In this task, eye tracking allows

us to measure– with good spatial and temporal precision– which features/dimensions

subjects are attending to as they play the Dimensions Task.

We used an EyeLink 1000 Plus system (SR Research) to track the eye gaze of

subjects as they performed the Dimensions Task. Subjects were seated approximately

60cm away from the screen. A chin and forehead rest was used to keep subjects’ heads

at a stable position throughout the duration of the task, aiding in the accuracy of the

eye-tracker. The system had a sampling rate of 500 Hz.

Eye-tracking data was pre-processed using an in-house MATLAB code that

extracted the proportion of time fixation was directed towards each feature (φF )

or dimension (φD) of the task. Features were defined by a rectangular area of

10



interest (AOI) corresponding to the space that feature occupied on the visual display.

Similarly, dimensional attention was defined by a rectangular AOI that encompassed

all features within that dimension.

11



Chapter 3

Behavioral Results

3.1 Participants

24 subjects participated in the principal study. Subjects were recruited from among

the Princeton University community. Three subjects were not included in the analysis

– either due to technical malfunctions during the experiment (2 subjects) or failure to

follow task instructions (1 subject) – leaving a total of 21 participants. An additional 6

subjects participated in a pilot version of the study. All subjects were compensated for

their time. Study procedures were approved by the Princeton University Institutional

Review Board.

3.2 Behavioral Results

Evaluating Learning

Subjects each played 18 total games of the Dimensions Task, divided into six runs

of three games each. Games were twenty trials long. The beginning and end of each

game were clearly indicated to the subject through on-screen messages. Subjects were

informed that the relevant dimension and feature changed in between each game.

12



Through trial and error, subjects were able to learn which feature was the “target”

feature (Figure 3.1). By the final trial of each game, subjects chose the stimulus

containing the target feature on average 72% (SE 2.31) of the time. Each game

was followed by a feedback screen where subjects could indicate which feature they

believed was the target feature. If a subject correctly chose the target feature, the

game was marked as “learned”. If they chose the wrong feature or indicated that they

did not know, the game was marked as “unlearned”. On average, subjects learned

60.32% (12 out of 20) games. Feedback reports from participants were generally

consistent with end of game performance (Figure 3.1D).

Figure 3.1: Behavioral Results. A. Average learning over the course of the game.
Plotted is the average percent of correct choices made on that trial, across subjects
and games. A correct trial was one in which the participant chose the stimulus
containing the target feature. Dashed line shows chance performance. B. Percentage
of games in which subjects chose the correct stimulus on 0 – 6 of the last 6 trials
of each game C. Same as A, but performance separated by whether the game was
“learned” or “unlearned”. D. Same as B, but separated by whether the game was
“learned” or “unlearned”. In learned games, subjects consistently chose the correct
stimulus, with perfect performance (6 out of 6 trials correct) 71.05% of the times. In
unlearned games, performance on the last six trials was near chance (correct choice
on 30.3% of trials).
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Trial-By-Trial Analysis

The Dimensions Task is a very rich game in terms of the complexity of the

task itself and in terms of the information that can be gathered/inferred from the

way subjects play the game. On each trial, subjects choose one of three stimuli,

each composed of three different features. Shown below are twelve trials from the

beginning of one game of the Dimensions Task, highlighting the stimulus chosen

on each game and whether the choice was rewarded (Figure 3.2A). This example

game demonstrates the difficulty of ascertaining the subject’s thoughts about the

identity of the target feature solely on the basis of choice. In the first three trials,

when Bill Gates, the Taj Mahal, and the wrench all appeared in the chosen stimulus

multiple times, it is difficult to know whether the subject was testing three different

hypotheses or concentrating on only one. Following the first unrewarded trial, in

which the only feature consistent with the past three rewarded trials was Bill Gates,

the subject appears to switch hypotheses, from Bill Gates to the Taj Mahal. The

subject continues to choose the stimulus containing the Taj Mahal for several trials,

despite being consistently unrewarded, making it uncertain whether a hypothesis was

being tested or whether that landmark appeared in the chosen stimulus by chance.

From this complexity, it is evident that chosen stimuli are not a clear measure of

which features a subject is most interested in or is learning most about.

Below the subject’s choices are plots of several other variables of interest over the

same twelve trials of the game (Figure 3.2 B,C). These variables, including confidence,

value, attention, and information, have all been proposed to have an effect on how

subjects learn during the game and will be examined in more detail below.

Evaluating Confidence

In the dimensions task, subjects rated their confidence every three trials on a

continuous scale from 0-1. In order to obtain a trial-by-trial comparison of confidence

14



Figure 3.2: Example Sequence of Dimensions Task. Subject behavior and latent
variables for the first twelve trials of one game of the dimensions task. A. Stimuli
chosen by one subject on the first twelve trials of the dimensions task. Shading
around choices indicates whether that trial was rewarded (green) or not rewarded
(red). (Inset-left) Reference locations of each feature in the grid. B. Value (Wf ),
attention(φF ), and information (IF ) for each feature (See section 3.3 for details). Each
square on the grid corresponds to the feature in the same location in the reference
grid (inset, above). Darker shading indicates a higher value/greater attention/more
information for that feature. White markers indicate features in the stimulus chosen
by the subject in that trial (filled = rewarded, open circles = unrewarded). Prior to
first trial, all features have equal value, as shown in leftmost grid. (Top) Value of
each feature according to the RL w/ Decay model. All features start at zero value.
(Middle) Proportion of time on that trial spent looking at each feature. All features
start out with φF = 1/9. (Bottom) Information score for each feature. All features
start with a score of zero. C. Subject’s confidence ratings across the same twelve
trials. Filled, blue markers indicate trials on which confidence was explicitly probed.
Hollow circle markers are interpolated confidence scores.

to other metrics, we linearly interpolated confidence scores across trials within a game.

Before the game started, subjects were assumed to have a confidence score of zero, as

they had no knowledge of how any of the features related to reward. Setting initial

confidence to zero allowed us to infer confidence over the first two trials of the game,

when confidence had not yet been explicitly measured.

15



In the Dimensions Task, subjects did not all treat the confidence scale in the

same way. For instance, the subject whose confidence scores are shown in Figure

3.3D never indicated being more than 80% confident, even in learned games when

they consistently chose the correct stimulus. Other subjects quickly reported being

100% confident in their knowledge of the target feature, even when later in the game

they identified a different feature as being the target feature. To control for this

variability in use of the confidence scale, and to better compare confidence scores

across subjects, we z-scored all of the confidence measures. Z-scores reflect how many

standard deviations away from the mean a data point is, and thus serve as a more

standardized measure for comparing across subjects who might have different general

distributions of scores across the same interval, as is the case in our data. Within

a subject, z-scoring the confidence reports did not affect the shape of the data or

relative differences between scores (Figure 3.3 C,D).

On average, we found that confidence tended to increase over the course of the

game, with subjects becoming more sure of their knowledge of the target feature as

the game went on (Figure 3.3A). As expected, confidence was generally higher for

learned games compared to games where the subjects did not learn the target feature

(Figure 3.3B). Interestingly, even for unlearned games, where on average subjects

were guessing at no more than chance levels in the last six trials, confidence was still

significantly higher than at the beginning of the game.

This could be attributed to two different factors. First, it is possible that in a few

games, subjects mistakenly believed they had correctly identified the target feature.

This would lead to high confidence even though the game itself was unlearned. A

second explanation would be that as subjects learn more about the different features

in the game, and each feature’s possible reward value, they feel more confident in

their knowledge, despite not knowing exactly which feature is most rewarding. For

instance, after fifteen trials, a subject may have tested and discarded several different
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Figure 3.3: Confidence increases over time in both learned and unlearned
games. A. Average confidence over the course of the game. Reported confidence
values were interpolated and z-scored by subject, then averaged. B. Same as A, but
separated by learned and unlearned games. C. All confidence reports for one subject.
Each line represents one game. The darker line is the same game shown in Figure
3.2. Reports were highly variable across games. D. Same as C, but showing original
confidence scores, prior to transform through z-scoring. Shape of the data and relative
differences within subject are unaffected by z-scoring.

hypotheses. Although they have not identified the correct feature, and thus continue

to perform at close to a chance level, their greater amount of information about the

various features may give them a feeling of greater confidence.

Evaluating Attention

We are interested in studying how confidence affects the way in which we distribute

our attention as we learn about features in our environment. In the Dimensions

Task, we measured attention using an eye-tracker that captured where subjects were

looking at any given moment, from the time the subject started playing to the end

of the final game. To capture task-relevant information, we confined our analysis to

attention only during trials (moments when the stimuli grid was on the screen) and
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only to stimulus features and dimensions (ignoring moments when subjects looked

at blank areas of the screen surrounding the grid or off the screen entirely). Within

each trial, time was further broken up into a “choice” period and a “learning” period.

The choice period extends from the time the stimulus display appears to the time

they receive feedback about their choice. The learning period starts the instant they

receive that feedback and lasts for the duration of the outcome period until the

stimuli disappear from the screen and the inter-trial interval begins. Past analysis

indicates that attention is distributed differently during choice and learning (Leong et

al., 2017). This breakdown allowed us to examine if there was any differential effect

of confidence on attention across the two periods.

Figure 3.4: Attention narrows over the course of games. Attention bias was
computed as the standard deviation of dimensional attention weights for that trial.
Shaded region and error bars indicate SEM. A. Average attention bias across all
subjects and games. B. Attention bias, separated by learned and unlearned games.
C. Attention bias during choice and learning. Average attention during the choice
period was focused more narrowly than during the learning period, across all trials
of the game.
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We measured subjects’ attention bias (how strongly they attended to one

dimension rather than the other two) by computing the standard deviation of φD –

the vector of attention weights corresponding to the proportion of time subjects

were looking at each of the three dimensions. A low standard deviation implies

that attention was distributed relatively uniformly across all three dimensions,

whereas a high standard deviation indicates attention was directed to a smaller

set of dimensions. Replicating the results of Leong et al., we found that attention

narrowed as the game progressed (Figure 3.4A), consistent with subjects identifying

and prioritizing attention to the relevant dimension.

Further supporting the idea that subjects narrow their attention as they identify

the target feature, attention bias was stronger near the end of learned games compared

to unlearned games (Figure 3.4B). Interestingly, in comparing learned and unlearned

games, attention in the first few trials was narrower for unlearned games. This

stronger early bias could indicate subjects mistakenly latching onto a feature early

in the game, only to realize later they are incorrect, and subsequently broadening

their attention as they explore other options. In contrast, if subjects took more time

to accumulate information about the reward probabilities of different features, their

attention would initially be broader, but they would subsequently be more likely

to have identified the correct feature and thus to have narrow attention for that

feature/dimension by the end of the game.

Interaction Between Confidence and Attention

The distance in attention bias between learned and unlearned games suggests that

having better knowledge of the target feature is associated with narrower attention.

But what causes the interaction between learned games and narrow attention? Or,

in other words, what determines when a participant will narrow (or broaden) their

attention? As a subject does not, while playing, know whether the game is correctly
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learned or not, he must make judgments on the basis of some internal variable. In

looking at both attention bias and confidence, there is a similarity in trends when

comparing learned versus unlearned games over the course of the task. This suggests

that confidence could be the basis on which decisions about attention distribution are

made.

Figure 3.5: Interaction Between Confidence and Attention. A. Distribution
of confidence scores (left) and attention bias (right), across all all trials, games, and
subjects. Both confidence scores and the standard deviation of dimensional attention
(φD) were standardized through z-scores in order to compare across subjects. Both
distributions are roughly bimodal, with one cluster of lower peaks and one cluster
of higher peaks. B. For every trial, attention bias (standard deviation of φD) was
calculated for both the choice and learning periods, and then binned according to
whether the subject had low, medium, or high confidence on that trial. Confidence
bins were determined by subject, with the lowest 1/3 of that subject’s confidence
scores in the “low” bin, the highest 1/3 of their scores in the “high” bin, and the
rest in the “medium” bin. Because confidence binning was by subject, there are no
consistent cut-offs for which raw confidence scores correspond to which bin.
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If a subject’s confidence affects the way they distribute their attention during

learning, we would expect to see similarities not just in their average trends over time,

but also in the shape of the two distributions, as is indeed the case (Figure 3.5A).On

a trial-by-trial basis, we would also expect to see a correlation between confidence

and how distributed attention was on that trial. To look at this, we binned attention

bias based on the confidence score for the corresponding trial (Figure 3.5B). We

found that lower confidence is associated with a lower standard deviation of attention

weights, corresponding to a wider distribution of attention. Similarly, high confidence

is associated with more biased attention, indicating a narrower focus. These results

hold for both attention during the choice period and attention during the learning

period.

3.3 Latent Variables

Overview

Investigating the relationship between confidence and attention is particularly

complicated given the number of other variables entangled in the analysis. In

particular, the latent variables of value and information are likely to be implicated

in how subjects determine their own confidence levels and how they allocate their

attention during learning.

Computational Modeling of Value

Reinforcement learning has proved to be a powerful tool for understanding how

people learn in low-dimensional environments. Through trial-and-error feedback,

subjects learn to associate values (corresponding to future expected reward), with

different features. Previous studies have shown that value is an important predictor

of both choice and attention during the Dimensions Task, and that attention has
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an effect on the learning of values (Niv et al., 2015; Leong et al., 2017). Niv et

al., found that a computational model incorporating reinforcement learning with an

added decay for unchosen stimuli best explained subjects’ choice behavior, better

even than Bayesian optimal models. Here, we adopt this fRL + decay model in order

to examine the effect of value on the distribution of attention, and its relationship to

confidence. The principal aspects of the model are summarized below (See Niv at al.,

2015 for full details).

In the fRL + decay model, reinforcement learning is used to learn value weights

for each of the nine features. The model assumes that subjects linearly combine the

values of features within a stimulus to obtain a compound stimulus value:

V (S) =
∑
f∈S

W (f). (3.1)

Following choice, the weights of features within the chosen stimulus are updated

according to a modified temporal difference learning algorithm:

W new(f) = W old(f) + η[Rt − V (Schosen)] ∀f ∈ Schosen, (3.2)

whereas the weights of features not in the chosen stimulus are decayed to 0:

W new(f) = (1− d)W old(f) ∀f /∈ Schosen (3.3)

In these equations, η and d are subject-specific rate parameters, and Rt is the reward

on that trial (either 0 or 1). On each trial,a softmax decision rule is used to determine

which stimulus is most likely to be chosen, based on the compound weights of each

stimulus.

p(chooseSi) =
eβV (Si)

3∑
j=1

eβV (Sj)

(3.4)
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Here β is the softmax inverse temperature parameter. The inverse temperature

parameter determines the noisiness of the choice, with a high value indicating a more

deterministic decision and a low beta indicating a noisier, more random choice. The

values of free parameters are fit for each subject using trial-by-trial choice behavior

and asking to what extent the model explains participants’ choices. The best fit

parameters assigned to each subject can then be used to compute predicted feature,

dimension, and stimulus values over the course of the Dimensions Task. Figure 3.2B

shows an example of feature values computed over the course of the first twelve trials

of one game. The values of features that were in a rewarded stimulus became higher

(darker colors), while the values of unchosen features gradually decay. Unrewarded

trials can lead to more rapid decreases in feature value, especially when the value of

a feature in the chosen stimulus was high. All feature weights start out at zero.

Information Score

Another latent variable we were interested in looking at was information. The

Pearce and Hall theory of attention suggests that attention should be directed to novel

information, or to areas in the environment about which least is known. Evaluating

this claim requires some metric of how much knowledge, or “information”, subjects

have about each feature.

One major takeaway from selective attention theory is that subjects do not gather

information about every feature equally. Although different theories disagree about

which elements of a scene or environment are most likely to be attended to, there

is broad consensus around the claim that whichever features are attended to most

during learning are subsequently better processed by the brain (Cowan & Wood,

1997; Reviewed in Desimone & Duncan, 1995; Buschman & Kastner, 2015). Thus,

knowledge of their reward value is more likely to be stored by the subject. Accordingly,

we computed an “Information” metric representing the cumulative time spent looking
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at each feature over the course of the game so far. The measure should be a proxy

for how much knowledge has been accumulated by the subject about each feature,

and allows us to make distinctions about “low-information” versus “high-information”

features. Figure 3.2B shows an example of information scores (If ) for all nine features,

computed over the first twelve trials of one game. Darker colors indicate higher scores,

consistent with subjects having looked at that feature comparatively more often over

the course of the game. While information is derived from trial-by-trial attention, the

two measures are not identical, especially as the game progresses.

3.4 Regression Analysis

In order to quantitatively assess the contribution of confidence to the distribution

of attention, we fit a generalized linear mixed-effects regression model to the data

(Table 3.1). Reaction time (RT), confidence, maximum value, and trial number were

tested as possible predictors of attention bias (the standard deviation of dimensional

attention φD). Shuffled trial order, which logically should have no impact on attention

bias, was included as a control. To help account for subject-specific variation, subject

number was incorporated into the model as a random-effects variable.

With the exception of the shuffled trial order, all tested predictors were found

to have a significant contribution (p < .001) to attention bias (Table 3.1, Figure

3.6). Reaction time had the single greatest effect, followed by confidence, and then

maximum value, as can be seen by the regression coefficients of the GLME model

(Figure 3.6). When reaction time (which might be expected to vary with confidence)

was not included in the analysis, the effect of confidence was even greater (data not

shown).

The results of this regression analysis demonstrate the contribution of confidence

to the breadth of attention. Even when maximum value, reaction time, and trial
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number were included in the regression as possible predictors, confidence still had

a significant effect on attention bias. This, together with our earlier findings about

the interaction between confidence and attention, substantiates our hypothesis that

confidence is involved in allocating attention during learning. To explore exactly how

confidence affects that process, and how it relates to theories about what governs

attention decisions, we turn to computational modeling.

Predictors Estimate SE tStat pValue

(Intercept) -0.1493 0.0334 -4.459 8.36e-06
RT -0.1929 0.0114 -16.914 5.33e-63
Confidence 0.1308 0.0163 8.020 1.22e-15
Max Value 0.0598 0.0169 3.521 4.32e-4
Trial # 0.0113 0.0024 4.799 1.63e-06
Shuffled Trials 0.0026 0.0019 1.386 0.166

Table 3.1: Linear Regression of Attention Bias A generalized linear mixed-effects
model was used to analyze the contribution of various possible predictors to attention
bias (standard deviation of φD). Reaction time (RT), confidence, the maximum value
of the nine features, trial number, and shuffled trial order (random permutation of
trial number) were included as possible predictors. Subject number was included
in the regression as a random-effects variable. In order to compare across subjects,
all continuous predictors (RT, confidence, max value) and the standard deviation of
attention were z-scored (within subject) prior to being included in the analysis. The
table displays the output of the GLME model, including the regression coefficient
(“Estimate”) for each possible regressor, as well as the associated standard error,
t-statistic, and p-value.
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Figure 3.6: Regression Coefficients of GLME Model. Coefficients of a linear
regression to predict attention bias. Reaction time, confidence, maximum value, trial
number, and shuffled trial order were included as predictors. Reaction time, which
had a negative effect, is shown here as its absolute value for the purposes of comparison
with other predictors. Asterisks above the plot indicate significance (p < .001). Full
statistics can be found in Table 3.1.

26



Chapter 4

Computational Modeling of

Attention

4.1 Predicting Attention Across Dimensions

Previous studies indicate that there may be a bidirectional interaction between

learning and attention. People not only use selective attention to restrict the

dimensionality of learning, but they also learn over time which dimensions of a task

are relevant for attention. How people decide where to allocate their attention, and

how this changes over the course of learning, is an open question. To gain insight

into this ambiguity, we tested two novel computational models, each of which makes

different claims about how confidence modulates the way attention is distributed

during learning.
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Modeling Attention

Uniform Attention:

One of the simplest models of attention is a parameter free model that assumes

uniform attention to all dimensions. Under the uniform attention model, attention is

distributed equally across the three dimensions on every trial.

φD = [1/3 1/3 1/3]. (4.1)

This model, while useful as a baseline comparison, is unlikely to be a good reflection

of subjects’ attention. Indeed, as the model would suggest that subjects neither

update their attention in response to task changes nor use attention to narrow the

number of features/dimensions they are learning about, it stands in direct opposition

to most claims about the utility of selective attention during learning (Wilson and

Niv, 2011; O’Doherty, 2012; Dayan et al., 2005, Leong et al., 2017). However, the

model still serves as a simple, zero-parameter standard against which to compare the

performance of our more complex models that seek to explain why and how attention

changes during learning.

Value-Based Attention:

This model, from Leong et al., 2017, predicts that attention will track feature

values, with greater attention being given to dimensions with more highly valued

features. All feature values were initialized at zero and then updated through a

reinforcement learning paradigm. Following the reinforcement learning with decay

model presented in Niv et al., 2015., on each trial, the values of features in the chosen

stimulus were updated according to a reward prediction error while the values of

unchosen features decayed toward zero. Both update and decay were scaled according

to subject-specific rate parameters (η and d). To obtain the prediction of attention

for the next trial, the maximum feature value in each dimension was passed through
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a softmax function with inverse learning parameter β. The output of the softmax was

a vector of three attention weights that sum to 1. The attention weights correspond

to the percentage of time subjects are predicted to spend looking at each dimension.

(See Section 3.3 for a more thorough summary of fRL + decay, and related equations.)

Biased Value and Information:

Building off the classic explore-exploit paradigm, this model formalizes the idea

that there should be a trade-off in strategies of attention distribution, and that this

trade-off should depend on a subject’s confidence. According to Mackintosh’s classic

theory, attention should be directed to features that are most predictive of reward

(1975). In this view, rewarding features are more likely to be attended to both because

of their greater reward-linked saliency and because greater attention to, and thus

greater learning for, those features is likely to result in greater future reward. This

corresponds to the exploit portion of the explore-exploit paradigm, when organisms

try to maximize future reward by choosing features that, according to their current

knowledge, are most rewarding. Such a strategy, however, contains the potential

pitfall that the feature currently thought to be most predictive of reward might not

truly be the most rewarding in the long run. Thus, in order to maximize total reward,

an organism should be sure to acquire enough information to maximize its chances

of identifying the most rewarding feature, even if in the short-term that is likely to

result in fewer rewards. Consistent with this exploratory pattern, the Pearce and Hall

theory suggests attention should be directed to features about which least is known,

allowing for the accumulation of new evidence (1980). Consequently, if a feature’s

relationship to reward is already reliably established, it should receive less attention

because that attention is not likely to result in as much learning. In the framework of

the Dimensions Task, these two opposing theories can be conceptualized as a trade-

off between attending to highly-valued features and attending to features with low

information.
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What governs the balance between the two strategies is an open question. If

attention to low information features does correspond with a more exploratory

strategy, and attention to high value features does correspond to a more exploitative

strategy, then what determines which strategy (or possibly, to what extent each

strategy) is used during different phases of the learning process?

Theoretical findings indicate that confidence could be an ideal arbiter between the

two, as confidence reflects both the reliability of and uncertainty about the current

knowledge of the environment (Auer, 2003). Accordingly, low confidence, indicating a

lack of certainty or reliability in the reward environment, would bias attention toward

gathering more knowledge about features whose reward predictability is less well

known. High confidence, indicating greater certainty, would bias attention towards

exploiting the high-valued features already seen as reliably predicting reward.

Adding to this theoretical support, our regression results indicate that confidence

has a significant effect on the distribution of attention during the Dimensions Task,

suggesting it is involved in the process of attention allocation. Here, we propose a

hybrid model in which confidence directly biases the balance between the two different

selective attention approaches described above.

In our model, the distinction between attention to highly-valued features versus

attention to low-information features is formalized by assigning to each feature a

hybrid score Xf that includes a contribution from both the feature’s value Wf and

information If weights:

Xf = α(1− If ) + (1− α)Wf . (4.2)

The parameter α biases the relative contributions of value and information to the

total score for each feature and is modulated by confidence according to the sigmoid:

α =
1

1 + eλ(Confidence−θ) . (4.3)

30



The center θ and slope λ of the sigmoid are treated as free parameters that together

indicate how early and how rapidly each subject tends to switch between favoring the

low-information regime and the high-value regime as their confidence increases. The

resulting hybrid score (Xf ) for each feature is used in place of the value weights in

computing predicted attention. As in the Value-Based Attention model, the score of

the maximal feature in each dimension is used as input to the softmax, which then

produces predicted probabilities for each of the three dimensions:

φDi
=

eβX(Di)

3∑
j=1

eβX(Dj)

. (4.4)

Feature values are extracted from the same reinforcement learning paradigm described

in the Value-Based Attention model, giving the additional free parameters η for

learning rate and d for decay.

When confidence is high (suggesting the presence of at least one feature that is

reliably rewarding), our model predicts that subjects will be in a more exploitative

phase and attention will be directed to features with a high value. When confidence

is low (suggesting uncertainty about how features map to reward), our model predicts

that subjects will be more inclined to explore, and thus attention will be directed to

features with low information scores. In our initial approach, value for each feature

was computed according to the fRL + decay model. Information for each feature was

computed as a cumulative sum of looking time over the course of the game so far (See

section 3.3).

Confidence-Modulated Gain:

Another possible way that confidence could affect the distribution of attention is

by directly modulating the breadth of attention. This proposal reflects the similarity

in trends we observed between confidence and attention bias over the course of

learning. Our earlier results show confidence increasing and attention narrowing as
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subjects learn, reflected both by increases across time and by significant differences

between learned and unlearned games (Figure 3.3, Figure 3.4). This phenomenon

supports the possibility that confidence directly impacts how biased attention is

during learning.

In this conception, low confidence reflects a high degree of uncertainty about the

reward probabilities associated with different feature values, whereas high confidence

reflects a high degree of certainty. Instead of this uncertainty biasing what type of

features are seen as important (low-information vs. high-value) as in the previous

model, here uncertainty changes the scope of features being attended to, modulating

between broad attention to a high number of features or narrow attention to a few

features.

When subjects are more confident and more sure in their knowledge of which

feature is most predictive of reward, there is less incentive to attend to other stimuli.

Thus, their allocation of attention should reflect a more greedy algorithm, where the

highest valued features are awarded the vast majority of attention, and lower valued

features receive diminished attention. Conversely, when subjects are less confident,

they will seek information about a wider array of choices. By attending more broadly,

they will be more likely to gain knowledge about which features are linked to reward.

This hypothesis is similar to ideas formulated by Dayan et al. surrounding how

the values of different features should be incorporated into decision-making. In their

model of selective attention in classical conditioning paradigms, Dayan et al., highlight

two important principles which affect the distribution of attention: uncertainty and

unreliability (2000). Uncertainty is attached to the reward prediction associated with

each stimulus and measures the amount of evidence associated with the stimulus.

Unreliability concerns the relationship between the true value of the reward and the

prediction error associated with each stimulus. These measures are formalized into

statistical models governing how learning and responsibility for making predictions
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should be competitively allocated among stimuli. While these models were not

formulated with visual attention prediction in mind, aspects of them still bear on

questions of how attention is likely to be distributed during learning. Dayan et al.,

use estimates of stimulus uncertainty and reliability to modulate, respectively, the rate

at which an animal learns and how much different stimuli contribute when making

predictions about reward. These modulations are similar to the way in which we

believe confidence might modulate how widely attention is distributed on each trial.

Adjusting this idea of trial-by-trial modulation to our task, we created a model

in which subjects’ reported confidence affects how widely attention was allocated in

response to differences in feature weights. As in the Value-Based Attention model, this

model assumes that subjects will give greater attention to dimensions with high valued

features. In our model, however, the softmax inverse temperature parameter β, which

controls how strongly attention is biased toward the maximally-scored dimension, is

modified by the confidence associated with that trial:

φDi
=

eBt∗W (Di)

3∑
j=1

eBt∗W (Dj)

; Bt = β ∗ Confidencet. (4.5)

When subjects are less confident, the softmax temperature will be lower, leading to a

noisier allocation of attention and a more equal distribution of attention. Conversely,

when confidence is high, the inverse temperature will also be higher, leading to a more

biased allocation of attention in favor of the dimension with the highest feature value,

and a correspondingly narrower breadth of attention. If subjects modify how widely

they distribute their attention based on confidence, we would expect this model to

perform better in our comparison than the Value-Based Attention model, in which

the breadth of attention is solely dependent upon the differences between the values

of the features.
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Model Optimization and Evaluation

Models of attention were evaluated according to how well they predicted attention

to each of the three dimensions on every trial, using a leave-one-game-out cross-

validation procedure. For each subject and game, optimal parameters were obtained

by minimizing the model’s prediction error, which was calculated as the root

mean squared deviation (RMSD) between the predicted vector of attention weights

(obtained from the model) and the actual vector of attention weights (obtained from

eye-tracking analysis). The fitted parameters were then used in the model to predict

attention on the left-out game. For each model, the mean RMSD per trial was

calculated from the prediction errors in the left-out game.

4.2 Model Performance and Comparison

If confidence dynamically determines how attention is allocated during learning,

we would expect that our models which incorporate confidence into attention

predictions would do better than those that that use value alone, or that assume

uniform attention.1 We tested this approach by first comparing subject-by-subject

RMSDs obtained using the best parameters from model fitting. A lower RMSD

indicates a shorter distance between the actual and predicted attention vectors, and

thus a better prediction.

We found that across subjects, the value and confidence models generally did

better at predicting attention compared to the model that assumed uniform confidence

(Figure 4.1). While for some subjects the differences between models were quite small

(e.g. subjects 1, 4, 6), other subjects’ attention was distinctly better represented by

1Throughout this section, we use the terms confidence-based models and value-based model to
separate our three main models. While all three use value to inform the attention predictions, for the
ease of discussion it is useful to distinguish between the novel hypotheses that incorporate confidence
and the baseline value model which does not. Therefore, the original Value-Based Attention model
is referred to as the value-based model while the two new models (“Biased Value and Information”
and “Confidence-Modulated Gain”) are together referred to as the confidence-based models.
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one or a few of the models (e.g. subjects 9,12,18). To quantitatively compare the

performance of each of the models, we averaged RMSDs across all subjects (Figure

4.1B). Contrary to our expectations, the Value-Based Attention model had the lowest

average RMSD, doing slightly, although not significantly, better than either of our

confidence-based models. This is a surprising result given that the confidence models,

while based on value, incorporated additional metrics (i.e., confidence) that should

have given the models extra information, leading to a better prediction. This is

especially the case in the Biased Value and Information model, which uses both value

and information to calculate scores for features.

Figure 4.1: Initial Model Performance. A. Model performances for each subject,
measured by average RMSD. Models: UA – Uniform Attention; VA – Value-Based
Attention; BVI – Biased Value and Information; CMG – Confidence-Modulated
Gain. RMSDs for each subject were obtained by averaging across all the per trial
RMSDs generated from running the model using the best fit parameters for that
subject. Scatter shows model results for each subject, horizontal line of the same
color indicates the average RMSD across subjects for that model. Subjects ordered
by mean performance of models. Model optimization for one subject was unable to
converge, so that subject was excluded from the analysis. B. Average RMSD for each
of the four initial models (abbreviations and colors as in A). Bars correspond to the
horizontal lines in A. Error bars show across-subject SEM. Average RMSDs for VA,
BVI, and CMG models were all significantly different from uniform attention model
(VA-UA: p = .0054; BVI-UA: p = .0078; CMG-UA: p = .0294; paired sample t-test).
Differences between the other three models were not significant.

Results and Discussion: Biased Value and Information

To understand these unexpected findings, we looked more closely at the best fit

parameters for each of the models. If model optimization routinely hit bounds, or
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was returning nonsensical parameter values, this would help to explain the poorer

performance of these models. Model fits are summarized in Table 4.1.

The hypothesis underlying the Biased Value and Information model suggests that

the balance of attention to low-information versus high-value features should exist

on a curve determined by confidence. As confidence shifts, the shape of the curve

dictates whether information or value will have greater input to the overall score

assigned to that feature, which will directly impact how attention is distributed.

We chose to model this curve as a sigmoid whose center θ and slope λ were free

parameters determined by the model optimization process (Equation 4.3). According

to our hypothesis, this fitting should have resulted in a parameterization that began

with high α (biased toward low-information) and ended with low α (biased toward

high-value) as confidence increased (See Equation 4.2). However, this is not what we

see in the model fits. Instead, the average parameter values indicate that subjects

tended to bias towards value for the entirety of the game. The shape and center of

the sigmoid were, on average, so steep and so far to the left that for the available

confidence range (0-1), the resulting sigmoid α value was always 0, meaning the

model only used value to determine attention. Therefore, in the majority of cases

(75% of subjects), the model acted identically to the Value-Based model, leading to a

correspondingly similar performance in prediction. The slightly greater error overall

could be due to the remainder of subjects, all but one of whom had free parameter

values that hit against bounds and thus represent a poor model fit.

There are several possible explanations for why the model fitting was so contrary

to our presumed results. First, the results could indicate that people’s attention only

ever operates in a value-maximizing, reward-seeking manner, according to the most

stringent version of the Mackintosh theory.

Another possible explanation has to do with the structure of our task. Unlike

many real world scenarios, when multiple aspects of the environment are likely to
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Model Parameter Mean (SEM) Range Prior

Value-Based η (learning rate) .232 ±.045 0-1 None
β (softmax inverse temperature) 16.3 ±11.2 1-500 Gamma (2,3)
d (decay) .299 ±.059 0-1 None

Biased Value η (learning rate) .243 ±.045 0-1 None
+ Information β (softmax inverse temperature) 12.0 ±7.20 1-500 Gamma (2,3)

d (decay) .432 ±.087 0-1 None
λ (sigmoid slope) 3.73 ±.763 0-500 None
θ (sigmoid center) -2.64 ±.734 -5-5 None

Confidence- η (learning rate) .265 ±.046 0-1 None
Modulated Gain β (softmax inverse temperature) 17.5 ±8.54 1-500 Gamma (2,3)

d (decay) .363 ±.072 0-1 None

Table 4.1: Free Parameters and Best Fits for Each Model. Parameters were
confined to lie within the specified range of values. Running up against boundaries
would generally indicate a poor model fit and/or a model design that was a poor
predictor of the data. To aid model fitting, softmax inverse temperature β was always
regularized with a prior distribution that favored realistic values.

have varying levels of reward, the Dimensions Task contains only one target feature.

Knowing only one feature is predictive of reward, subjects have less incentive to be

exploratory and acquire knowledge about the remaining features. So long as subjects

have any hypothesis about which feature is likely to be the target feature, they might

prioritize value judgments, regardless of how confident they report feeling. It might

only be when subjects have mistaken hypotheses, such as when previously high-valued

features are proven less likely to be the target feature, that their lower confidence

would lead them to attend more to low information features which as of yet have not

been linked one way or the other with reward. This being the case, using confidence

to bias the importance of value versus information would not be a good predictor

of subjects’ attention in this task, although that does not preclude the model from

being a good description of people’s attention strategies in environments with more

varied risk and reward.

A third possible explanation for this result has more to do with the way in which

we conceived of the separation between attention to value and information. Our

model assumed that subjects would treat every feature equally with respect to the
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balance between attention to low-information versus high-value features. However,

a pitfall of this assumption is that high-value and high-information are difficult to

separate in our task (features only have high values if they have been chosen and

rewarded many times, which implies the subject has higher information about that

feature). Therefore, any bias towards the low-information metric would tend to

directly discount the highest valued features.

A hypothetical scenario demonstrates the problematic nature of this assumption:

At the beginning of the game, the subject chooses a random stimulus and is rewarded

for the choice. On the next trial, he picks the “face” feature from the previous

rewarded stimulus, and is again rewarded. As the subject begins to learn, he is

likely to attend at least slightly more to whichever feature currently has the highest

value, in this case, the face. However, even though the subject is in a hypothesis-

testing, exploitative regime, because he has not yet had time to substantively test his

hypothesis, he may indicate that he is not very confident. Thus, a model which only

looks at value would capture this situation better, whereas one using confidence to

modulate the balance between information and value would say the subject should

attend to low-information features even if those features are not associated with

reward.

When confidence is mid-range, especially near the beginning of the game, including

low information in the attention score might be particularly harmful, as it would

discount the most looked-at feature, which is likely the hypothesis the subject is

testing. Indeed, we found that attention on the previous trial was actually by far the

best predictor of attention on the next trial, suggesting a significant perseverance of

attention across trials (Figure 4.2). As our information metric is derived from trial-

by-trial attention, the high performance of the “model” that uses previous attention

to predict current attention suggests that any model which indiscriminately privileges

low information features is likely to suffer from greater prediction errors.
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Figure 4.2: Comparison to Previous Attention. A. Model performances for each
subject, measured by average RMSD. Models: UA – Uniform Attention; VA – Value-
Based Attention; Prev – Previous Attention. The previous attention “model” has
no parameters; it is simply a comparison between the vector of attention weights on
the previous trial and the vector of attention weights on the current trial. In other
words, it asks to what extent previous attention is a predictor of current attention.
B. Average RMSD for each model in A. Bars correspond to the horizontal lines in A.
Error bars show across-subject SEM. Differences between all models were significant
(UA-VA: p = .0054; UA-Prev: p = 5.2e-6; VA-Prev: p = 5.6e-5; paired sample t-test)

Results and Discussion: Confidence-Modulated Gain The other hypothesis

we were interested in testing was whether confidence modulates the breadth of

attention during learning. Based on our regression results, confidence had a strong

influence on the standard deviation of attention. Therefore, we would expect that

this model, which uses confidence to either narrow or broaden the distribution of

attention on each trial, should perform better than the value-based model, which

has no such modulation. However, looking at the modeling results, this does not

appear to be the case: The Confidence-Modulated Gain model does slightly worse,

not better, than the Value-Based Attention model (Figure 4.1).

Comparing the results of the modeling by subject, we found that subjects

were relatively evenly split between having their attention better explained by

the model that incorporated confidence into the softmax (CMG) and the original

value model where confidence did not bias the softmax (VA) (Figure 4.3). One

possible explanation of this result is that different people have different methods for

determining how narrowly to distribute attention, with some subjects incorporating
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confidence into their decisions about how to allocate attention and others just using

the spread of values. Based on the strength with which confidence explained the

standard deviation of attention in our regression analysis, we find this simplistic

explanation unsatisfying. However, that still leaves us with the difficult task of

explaining why, if the regression result is so strong, the Confidence-Modulated Gain

model did not show an improvement over the Value-Based Attention model.

Figure 4.3: Performance of Confidence-Modulated Gain Model versus
Value-Based Attention Model. A. Difference between subject-average RMSDs of
the Confidence-Modulated Gain (CMG) model and the Value-Based Attention model
(VA). For each subject, CMG model performance was subtracted from the VA model
score. Since low RMSD scores indicate a better fit, a negative difference indicates
that the VA model had a better prediction for that subject while a positive score
indicates the CMG model did better. B. Scatter plot of the same information, with
the RMSD scores plotted against each other. Each dot represents a single subject.
Line represents equal performance. Dots that are below and to the right of the line (in
light gray) have higher average RMSDs for the CMG model versus the the VA model
(indicating value-based attention was a better model fit). Dots shown above the line,
in dark grey, were subjects whose attention fit better to the Confidence-Modulated
Gain model.

We suggest that the problem lies not in the confidence modulation, but in the

feature values that are passed to the softmax function. Modulating the gain parameter

of the softmax does not alter the order of the inputs in any way: whichever dimension

had the highest value will still be apportioned the highest attention. Modulating the

gain only affects how greedy that allocation is– how much it exaggerates the relative

attention that should be given to the highest valued features. The general shape of the
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prediction in the Confidence-Modulated Gain model is therefore still highly dependent

upon how feature values are calculated. One side effect of this relationship is that if

the value predictions are wrong– if the value model predicts the majority of attention

will go to the wrong dimension– the confidence modulation will only exacerbate this

effect, resulting in an even greater prediction error compared to the simpler value

model. This would explain the difference in performance between the two models,

as well as the difference between our expectation and the results. Consequently, the

poor performance of the Confidence-Modulated Gain model suggests that the value

metric is not necessarily capturing subjects’ true evaluations of which features should

be attended to. Instead, we might need to look at a model that incorporates other

factors in order to determine which feature is most relevant for attention. If we could

find that ideal combination, it is likely the confidence-modulated softmax gain would

improve upon the performance of that model, surpassing both its predictions and the

predictions of the value-based attention model.

4.3 Further Investigations

In our model fitting analysis, we concentrated on predicting attention to each of the

dimensions across the entire length of each trial. We also chose to have as a baseline

a value-based model that used fRL with decay to assign values to each feature in

the game, and then used value to (at least partially) make predictions about the

distribution of attention. In this section, we address some alternative modeling choices

and ask how our main models perform with those measures.

Modeling Value Without Decay

As mentioned above, a Value-Based Attention model adopted from Leong et al.,

2017 was used as the basis for all the models we tested (not including the uniform
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attention control). The fRL w/ decay model has been shown to be a good predictor

for subject’s choices in the Dimensions Task, as well as in modeling their attention

(Niv et al., 2015; Leong et al., 2017). However, compared to a naive reinforcement

learning model, the fRL w/ decay model is potentially problematic for use in our study

because of the added decay element. The neurological substrate of decay is not as well

understood as other elements of the RL model, though it might represent forgetting

of non-chosen stimuli. The more opaque nature of the decay could be a potential

confound in our study, because it is possible that the decay absorbs attention effects

that are actually attributable to confidence changes, which would provide a partial

explanation for the failure of our confidence-based models to perform significantly

better than the value-based attention model.

To investigate this possibility, we tested the same three models described earlier,

but this time using feature RL without any decay to compute and update values. If

the decay aspect is absorbing some of the effect of confidence, we would expect the

confidence-based models to do comparatively better (versus value alone) in predicting

attention when the models do not incorporate decay. We found that performance

on all models declined when fRL without decay was used as the basis for value

computations (Figure 4.4). Absolute RMSDs were higher for all the models, and

model performances were also less different than the prediction of uniform attention.

The decrease in performance is not unexpected given what we know about the

ability of fRL w/ decay versus fRL without decay to predict subject’s choices in

the Dimensions Task. More pertinent to our question about the effect of decay was

the finding that the confidence-based models did not have any relative advantage in

this decay-less version. This suggests that the presence of decay in the RL model is

not responsible for the poor performance of the models we tested.
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Figure 4.4: Model Performance with No Decay Average model performance
across subjects. Model abbreviations as in Figure 4.1. The three latter models (VA,
BVI, and CMG) all used an RL model that did not include a decay component for the
unchosen stimuli. Otherwise, models are all as described in section 4.1. Compared to
the original models, removing decay resulted in lower performance, marked by higher
average RMSDs. Error bars show SEM. RMSDs for VA, BVI, and CMG models were
all significantly different from uniform attention model (VA-UA: p = .0084; BVI-UA:
p = .0129; CMG-UA: p = .0235; paired sample t-test). Differences between the other
three models were not significant.

Modeling Attention Within Chosen Stimulus

In our main modeling study, we attempted to predict the proportion of time

subjects would spend looking at each dimension on every trial. However, another

interesting aspect of attention to model would be looking at attention just to features

within the chosen stimulus on each trial. We modified our models to make predictions

about the relative attention to features just within the chosen stimulus and then

compared those results to the model performance when looking across the entire

dimension (See Figure 4.5 for details of modifications). We found that, on average,

our models were better at predicting dimensional attention than predicting attention

to the features within the chosen stimulus, as measured by absolute RMSD and by

comparison to the uniform attention model. Compared to dimensional attention,

attention within the chosen stimulus appears to be slightly less uniform. This is
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consistent with subjects predominantly attending to the two or three most highly-

valued features. While the highest-valued feature is likely to be in the chosen stimulus,

there may be other features of interest outside the chosen stimulus. If so, assuming the

other features are in a different dimension, attention will be relatively more uniform

when measuring across the dimension than when just measuring within the stimulus,

where there is only one dimension with a highly valued feature. As a caveat to

this explanation, we might expect attention within the chosen stimulus to be more

uniform during the outcome portion of the task, when the subjects receive feedback

on reward, than during the choice period. After feedback, all features in the stimulus

have the potential to be associated with a reward prediction error, and it might make

more sense to attend to all three features in order to maximize learning options.

Figure 4.5: Predicting Attention Within Chosen Stimulus. Average model
performance across subjects. Model abbreviations as in Figure 4.1. In contrast to
the original models, which predicted dimensional attention by putting the maximal
feature values/scores for each dimension into a softmax, these models took as
input to the softmax just the values/scores of the features that were in the chosen
stimulus. The resulting prediction was compared to the vector of attention weights
corresponding to the proportion of time subjects spent looking at each feature within
the chosen stimulus (time spent looking outside the chosen stimulus not included,
attention weights summed to 1). Otherwise, models are all as described in section
4.1. Error bars show SEM. Significant difference between UA and VA models (p =
.0405: paired sample t-test).
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Attention during Choice and Outcome

This distinction between how attention might be distributed at choice versus

learning is not captured in our original modeling paradigm. However, there is evidence

from past studies that attention at choice and attention at learning are not equivalent,

and that they have differential effects on learning (Leong et al., 2017). Our modeling

results further validate this claim. One major finding was that attention at choice was

much narrower than attention at learning, measured by the relative performance of

the uniform attention model. The higher RMSD for attention at choice indicates that

attention was less well predicted by the uniform attention model, implying that in

general, attention was more narrowly concentrated on one or two of the dimensions.

Across all models, RMSD measures for attention at choice and learning were higher

than those for whole trial attention (Figure 4.1). Interestingly, the Confidence-

Modulated Gain model did slightly better than the Value-Based attention model

in predicting attention at choice, indicating that confidence may have a greater effect

on attention during choice than during learning. Alternatively, confidence might be

equally influential at learning, and the difference might be due to using confidence

on the previous trial to predict attention during learning on the next trial. Since

the learning period occurs after feedback has been given, it is likely that confidence

has also changed in response to the feedback, and thus the distribution of attention

might reflect the updated confidence. Further testing would be needed to make this

distinction.
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Figure 4.6: Predicting Attention at Choice and at Learning. Average model
performance across subjects when predicting attention just during the the choice (A)
or outcome (B) periods. Model predictions computed as for dimensional attention.
Prediction error for choice was computed by taking the RMSD between the model
prediction and the attention weights calculated from looking time just during the
choice period of the trial (from beginning to just before feedback). Predictions for
attention at learning computed similarly for the period after feedback until the end of
the trial. Model abbreviations as in Figure 4.1. Error bars show SEM. At choice, the
average RMSDs of both the VA and CMG models were significantly different from
that of the UA model (p < .0001: paired sample t-tests). At learning, there were no
significant differences between the performances of any models.
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Chapter 5

Discussion

5.1 Evidence for An Interaction Between Confidence

and Attention

The behavioral and modeling results presented here provide support for our

hypothesis that there is an interaction between confidence and attention during

learning, and more specifically that confidence modulates how attention is allocated.

We found that the distributions of confidence and attention were similar throughout

the course of the confidence task, suggesting at least a correlative relationship

between the two measures. Lower confidence was associated with a lower standard

deviation of attention, indicating that subjects distributed their attention more

broadly, whereas higher confidence was associated with a higher standard deviation

of attention, indicating a more focused distribution of attention. Our regression

analysis built on this result, showing that confidence was a reliable predictor of the

breadth of attention, even accounting for other task-related variables such as feature

value, reaction time, and trial order.

We tested two hypotheses regarding how confidence might affect the distribution

of attention. According to the first theory, which built off the Pearce and Hall and
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Mackintosh models of attention, confidence should modulate the balance between

attending to low-information versus high-value features. According to the second

hypothesis, confidence acts as a more general modulator of the breadth of attention,

adjusting the “greediness” of the allocation of attention. Neither of these models

improved upon the value-based attention model on which they were based. In the

case of the Biased Value and Information model, we suspect that the way we applied

our information versus value criterion is responsible for the poor performance of the

model, rather than anything explicitly related to confidence.

In the case of the Confidence-Modulated Gain model, the issue is more complex.

The comparatively worse performance of the Confidence-Modulated Gain model is

at odds with the regression results, which give a clear indication that confidence

affects the breadth of attention. This discrepancy suggests that the original value-

based model is failing to capture some important aspect of how subjects attend to

different features. In particular, we make note of the finding that attention on the

previous trial is a highly reliable predictor of attention on the current trial. This

constancy of attention, which can also be inferred from our information metric, could

be indicative of subjects using a hypothesis-testing strategy. If this is the case, it helps

to explain the unexpectedly poor performance of both of our models and suggests

several intriguing possibilities for future studies, as well as offering a new lens with

which to examine the success of past models.

5.2 Future Directions

Our findings suggest several avenues of future exploration relating to how confidence

impacts the distribution of attention at learning. To address the deficiencies of

the Biased Value and Information model, we would be interested to go back and

incorporate our better understanding of the role of information in attention allocation.
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The coincidence of high-value and high-information features is problematic for our

current model, which applies to all features the same heuristic for determining whether

high value or low information should matter more in determining attention. At lower

levels of confidence, this even application risks artificially dampening the contribution

of the highest valued feature, which, not coincidentally, is the feature the subject is

most likely to be testing as a hypothesis and as a result is most likely to be attending

to.

This suggests two possible remedies for our model, either of which could be

consistent with how subjects actually use confidence judgments to impact their

attention allocation. First, it is possible that for the most highly valued features,

subjects are not sensitive to confidence when considering how to weight the

importance of that feature, and assign it a weight only on the basis of value. Thus,

we should include the information score in the calculation only for low-valued

features. This would presumably give a bump to only those features that are low-

valued because their relationship to reward has not yet been explored, while having

little impact on features whose link to reward has been proven unfruitful.

Alternatively, hearkening back to the idea of confidence bounds as a criteria of

when to explore and when to exploit (Auer, 2003), it is possible subjects implement

something more similar to a confidence threshold when determining the balance

between biasing value and information. Below a certain confidence level, subjects

may attend to features both according to their value and the level of information,

helping them gain knowledge in a reward-sensitive manner. Above that confidence

threshold, when subjects are more sure of their target and are trying to exploit their

knowledge to maximize reward, they would attend only to value. Both of these

alternative approaches could easily be tested through computational modeling.

Another direction to explore would be the role of hypothesis-testing in the

allocation of attention during learning. The interaction between value and
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perseverance of attention could have important implications for the learning process.

An interesting related possibility is that confidence affects the breadth of attention

by biasing the number of different hypotheses subjects attend to. Future work could

incorporate these possibilities into models and test their ability to predict attention

during the Dimensions Task.

The fact that our modeling results were so different for predicting attention across

the three dimensions of the task versus predicting attention to features within the

chosen stimulus is also a possible direction for further study. Based on these findings,

it is worth exploring the impact attention to features outside of the chosen stimulus

has on learning. While earlier models of choice behavior indicate that subjects employ

reinforcement learning rather than Bayesian-optimal methods to the Dimensions Task

(Niv et al., 2015), it would be interesting to test whether any counterfactual learning

occurs specifically for those well-attended features that are outside of the chosen

stimulus. This could be an extension of past findings that indicate that the amount

of learning for different features within the chosen stimulus is biased by attention

(Leong et al., 2017).

5.3 Limitations of Our Design

The greatest limitation in our ability to make claims about the way confidence

impacts the modulation of attention was our method of acquiring confidence scores.

Specifically, because we relied on a self-report taken once every three trials, we risked

missing important shifts in confidence that occurred in between those trials. While

the general pattern of confidence is likely to be captured by our data, we expect

that the interpolation measure leads to smoother fluctuations in confidence than is

actually the case. For instance, a sharp downturn in confidence could occur over

the course of one trial, and then only gradually shift over the next two trials. As
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we only measure confidence after the third trial, and then interpolate between that

and the former confidence measure, the rate of descent we record would not be an

accurate description of the true process. The discrepancies between the interpolated

and actual confidence scores could be enough to affect the accuracy of any predictions

the models make regarding the allocation of attention.

As such, it is worth considering other methods of recording confidence scores.

The original motivation behind collecting confidence scores only once every three

trials was that a more frequent report would disrupt subjects’ ability to play the

game by interrupting their attention and memory. Given the importance of having

linked trial-by-trial measures of confidence and attention, it might be worth testing

how much of an impact a more frequent confidence probe would have. Alternatively,

we could consider measuring confidence not through self-report, but by analyzing

changes in pupil size. Pupil size – which is already measured by our eye-tracking

system– is generally linked to state of arousal; however, in a 2017 study, Urai et al.

found that in perceptual decision making tasks, change in pupil diameter was related

to multiple signatures of decision confidence. While this study evaluated perceptual

confidence rather than confidence about value relationships, it is still possible that

changes in pupil diameter could be used as a measure of confidence that does not alter

subjects’ performance in the dimensions task. Further studies would be needed to

analyze the feasibility of this approach, as well as to confirm the relationship between

confidence as analyzed by pupil diameter and confidence as reported by subjects.

Another limitation relates to our method of inferring attention from eye-tracking

data. Our methods assume that subjects are attending to features at whichever

location they are looking, and assign importance to that attention. However,

especially when confidence is high, there is a possibility that eye gaze will not be as

tightly correlated to top-down, deliberate attention processes and will instead reflect

more random drifting and fixating. While subjects are learning, we expect that they
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will attend to those features they consider most important for determining future

reward. On the other hand, once subjects are highly confident in their knowledge

of the target feature, attention is only necessary to find that feature during the

pre-choice part of the trial. After selecting a stimulus, the subject can afford to allow

their attention to wander, with no particular learning goal in mind. Assuming the

subject is rewarded, it is likely attention will appear similarly undirected during the

outcome section of the trial, as perfect prediction means attention isn’t necessary

to update values. This “Goldilocks effect” of attention has been demonstrated in

past studies when a task is too easy or far too complex (Kidd et al., 2012). Because

subjects do not perfectly learn the target feature on most games, we do not expect

this effect to be significant, but it could be a potential confound.

5.4 Conclusion

In complex, high-dimensional environments, selective attention is necessary to narrow

the scope of information to a manageable level. Selective attention helps to relieve

cognitive processing constraints, in part by reducing the dimensionality of the task to

levels where simpler algorithms can be used both efficiently and effectively. In order

to best make use of selective attention to learn about the world, it is necessary to

learn where in the world attention should be directed. Our results strongly suggest

that there is an interaction between confidence and attention during learning, with

confidence modulating how people allocate their attention across different features

of a task. Future studies should be directed to uncovering the exact nature of that

relationship, as well as elucidating the role of hypothesis-testing in the attention

process.
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