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Abstract 

Some material in this abstract was taken from Bu et al. (2017). 

Reward can help teach selective attention what is relevant in a complex world. Previous 

studies have demonstrated that specific features consistently associated with high reward capture 

attention more than those associated with low reward. How reward influences attentional capture 

at the level of entire feature dimensions remains unclear. In this thesis, I test the hypothesis that 

learning to attend to highly rewarding features in one dimension generalizes to attentional 

capture by unrewarded features within that same dimension. I used two variants of a behavioral 

paradigm named the Token Task. In this task, participants learned to associate certain features 

from the dimensions of color and orientation with high reward, and others with low reward. 

Participants were randomly assigned to either a “color” or an “orientation” group, and all highly 

rewarded features were drawn from the corresponding dimension. To probe attention, I 

occasionally interrupted the learning task with a visual search task. Each search array contained 

both a color singleton and an orientation singleton, one of which was randomly chosen each trial 

to be the search target. I predicted that a learned dimensional attention bias would facilitate pop 

out and thus search for singleton targets in the dimension containing the highly rewarded feature. 

The findings suggest that reward can drive attentional capture at the dimensional level, at least 

for color. Additionally, the findings provide evidence of separate learning styles during the task 

that can differentially drive attentional capture. An experimental replication with variation 

demonstrated that the design of the visual search array is crucial to detecting an effect of 

dimensional attention.  
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Chapter 1 
 
Introduction 

Some material in this chapter was adapted from Bu (2016). 

1.1 Selective Attention in Everyday Life 

If we were aware of everything that our sensory systems were capable of processing, we 

would be paralyzed by the sheer overload of information we would receive at any given time. 

The real world environment is complex, and processing it in a manner most practical for survival 

presents a significant challenge to the brain. The brain’s attentional network, in a process called 

selective attention, provides a solution by actively determining which stimuli will receive 

additional cognitive processing. We engage in selective attention almost constantly like when we 

read in a crowded coffee shop or immediately spot a deer in the woods. The commonality in each 

of these cases is that attention is prioritizing certain stimuli, like a book or a deer, at the expense 

of surrounding and less relevant ones. How is the brain able to so quickly decide what is 

relevant, and direct attention accordingly?  

1.2 What Drives Selective Attention? 

The conventional framework of selective attention consists of an endogenous “top-down” 

mechanism in which attention is voluntarily deployed to a goal, and an exogenous “bottom-up” 

mechanism in which attention is involuntarily captured by the most salient, or noticeable, stimuli 

(Yantis, 2000). This dichotomy suggests that attentional priority is primarily determined by two 

factors: the extent to which a stimulus perceptually “pops out” in relation to other stimuli based 

on physical properties such as color contrast or sudden appearance (Theeuwes, 1992; Yantis & 

Jonides, 1984), and the extent to which attention is strategically directed in accordance with 
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one’s internal goals (Bricolo et al., 2002). However, factors outside of the conventional 

dichotomy can drive selective attention as well. Attentional selection also depends on the 

subjective significance that a stimulus has acquired over time through learning and experience. 

For example, a gun in a visual scene is easier to search for than a tree, and a burger is easier to 

search for than a couch (Oca & Black, 2017). A snake in the grass is more likely to receive 

attentional priority than a chair on the lawn (Flykt, Esteves, Ohman, Flykt, & Esteves, 2011), and 

a twenty-dollar bill lying on the street is more likely to capture our attention than a crinkled flyer 

(Anderson, Laurent, & Yantis, 2011). To illustrate the example of the dollar bill on the ground, 

the light green paper is not particularly salient based on its physical features, and we are not 

actively searching for dollar bills when we walk on the street. Indeed, factors such as threat, 

emotion, reward, and pleasure can all spontaneously influence the deployment of selective 

attention independent of the classical exogenous and endogenous framework.  

Zhao, Al-Aidroos, and Turk-Browne (2013) identified an even subtler factor that drives 

selective attention. They found that statistical learning spontaneously biases attention toward the 

location, feature, or dimension of a regularity, once again independent of goal relevance or 

stimulus salience. They demonstrated this through a series of experiments involving the 

presentation of shape streams that contained regularities in a location, feature, or dimension. 

Attentional bias was probed through reaction times in a visual search task. Critically, whenever 

the target of the search matched the location, feature, or dimension with the regularity, visual 

search times were faster; whenever the three sources of regularity served as distractors, search 

times were slower. This showed that statistical learning of regularity biases attentional priority. 

Clearly, selective attention is a flexibly adaptive and computationally complex process, 

and it is driven by daily experiences from the world in an effort to constantly learn how to attend 
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(Dayan, Kakade, & Montague, 2000). In this thesis, I seek to expand Zhao et al.’s experimental 

design and findings on the effects of statistical learning on dimensional attention to a body of 

literature suggesting that reward learning also drives attention. Specifically, I explore the 

mechanisms behind how reward can teach selective attention what is worth attending to in the 

environment, and I focus on the phenomenon of value-driven attentional capture. 

1.3 Reward and Attention 

It has been well established that consequences in the form of reward or punishment play a 

crucial role in shaping decision-making and overt behavior. For example, Thorndike’s Law of 

Effect (1911) states that any behavior followed by reward is likely to be repeated, and any 

behavior followed by less favorable consequences is likely to be stopped. Reinforcement 

learning is defined as the process of learning to predict consequences and subsequently optimize 

favorable interactions with the environment (Sutton & Barto, 1998). Indeed, factoring in 

outcomes when assessing the relevance of a behavior or stimulus is highly adaptive because it 

favors the production of rewarding behavior at the expense of other competing behaviors and 

choices. 

Just as reward teaches us to consciously select optimal behaviors, so reward also teaches 

attention to select which stimuli are most relevant and deserve more priority (Chelazzi et al., 

2013). The mechanisms by which reward drives visual selective attention have undergone much 

investigation in recent years.  There is evidence through priming that reward may have an 

immediate effect on the deployment of visual selective attention. Della Libera and Chelazzi 

(2006) utilized the negative reward-priming paradigm, which entails the presentation of a prime 

display immediately followed by a probe display. The prime display consists of a visual task 

involving a relevant stimulus, and a distracting stimulus that interferes with the visual scene and 
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must be ignored. Negative priming occurs when subjects take a longer time to complete the task 

in the following probe display when the new target matches the distractor that was ignored in the 

previous priming task, indicating a lingering effect of an inhibitory attentional mechanism. 

Critically, the authors found that reward value modulates the negative priming paradigm, with 

the priming effect being robust when the prime task was highly rewarded and absent when lowly 

rewarded. A similar reward priming phenomenon was also observed for objects, as opposed to 

specific shape stimuli: highly rewarded visual search for an object category either facilitated or 

impaired search when the category was present as a target or distractor, respectively, in the 

subsequent search trial (Hickey et al., 2015). Based on these studies, reward plays an important 

role in rapidly and involuntarily influencing the deployment of visual selective attention.  

The effects of reward on attention are not limited to immediate reward priming tasks. 

Della Libera and Chelazzi (2009) expanded their earlier findings on priming to a more general 

phenomenon about how reward can persistently influence attention, demonstrating the same 

attentional capture paradigm across several days. An initial visual search task required 

participants to search for targets, some accompanied by high reward and other by low reward, 

and was carried out over three training sessions on consecutive days. Five days later, in a test 

phase, participants performed the same task in the absence of reward, yet still showed lingering 

effects of the target’s previous reward contingencies through reaction time: a previously high-

reward shape became easier to select for and more difficult to reject, and the opposite was true 

for previously low-reward targets.  

The phenomenon by which previously rewarded stimuli involuntarily capture attention, 

independent of motivation, has been termed value-driven attentional capture (Anderson et al., 

2011). In Anderson et al.’s experiment, high reward and low reward were associated with a basic 
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stimulus feature – red or green – during an initial training phase. In the test phase, highly 

rewarded stimuli again either facilitated or interfered with visual search efficiency as previously 

described. Most importantly, the reward-associated stimuli were neither task-relevant nor salient 

in the test phase trials, suggesting that associated reward value inherently increases the salience 

and attentional priority of a stimulus. Additional studies on value-driven attentional capture by 

the same authors have revealed that the effect is modulated by the magnitude of the reward 

(Anderson et al., 2011) and that the effect may persist for as long as seven to nine months 

following reward learning without any additional training (Anderson & Yantis, 2013). One 

limitation to these experiments, which rely on training reward associations all at once and then 

following up with a block of attention probes at varying points in time, is that it is difficult to 

parse out the competing influences of memory as opposed to reward learning. The question then 

remains: to what extent is the modulation of selective attention by reward driven by memory of 

the reward contingency, or by the very process of reward learning and prediction error? Are 

these two different types of attentional learning by reward, or do they overlap in many ways? In 

this thesis, I present surprising findings to argue that the process of reward learning and 

prediction error, not memory and rule finding, is crucial for driving value-driven attentional 

capture.   

Overall, these studies converge on the conclusion that value-driven attentional capture is 

a robust, persistent, and involuntary aspect of selective attention. Such a mechanism has great 

implications for clinical conditions in which attention tends to be uncontrollably and abnormally 

biased toward certain critical stimuli. In the context of reward, this is most relevant for addiction, 

as a number of studies have demonstrated that addicted individuals have a strong tendency to 

attend to addiction-related objects in their environment, possibly because of an exaggerated 
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association of that object with reward that may increase its salience (Field & Cox, 2008). 

However, similar attentional biases have also been found towards pertinent stimuli in phobia 

(Mogg & Bradley, 2006) and eating disorders (Dobson & Dozois, 2004). Certainly, gaining a 

clearer understanding of the mechanisms behind which attention is flexibly deployed based on 

reward can illuminate not only learning and decision-making processes in everyday life, but also 

abnormal conditions in which similar attentional biases are implicated.  

1.4 Mechanisms of Value-Driven Attention 

Thus far, the evidence on reward and visual selective attention has come from a variety of 

approaches and research designs. Some studies have demonstrated an immediate effect of reward 

through priming in the subsequent trial (e.g. Hickey et al., 2015), others have demonstrated a 

lingering effect up to days following a long reward-association training session (e.g. Anderson et 

al., 2011) and still more have probed at the process of attentional learning itself by inserting 

attention probe trials amongst the reward training trials (e.g. Zhao et al., 2013). How might the 

underlying mechanisms be different, or are they ultimately the same?  

One limitation was that in most previously discussed studies, attentional capture typically 

transferred from a top-down goal-driven search task in the training phase to a bottom-up “pop 

out” search task in the test phase. This left the possibility remaining that reward modulation is 

specific to a particular mechanism of attention. Lee and Shomstein (2014) addressed this when 

they found that the effects of reward on attention also transfer in the reverse direction from 

bottom-up to top-down attention, suggesting that reward value prioritizes stimuli in a manner 

independent of specific attentional mechanisms. One possible explanation is that reward value 

enhances target salience in an integrated priority map that guides both bottom-up and top-down 

attention; a priority map is a topographic map of sensory input that combines the representation 
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of salience and relevance when stimuli compete for attentional selection (Fecteau & Munoz, 

2006).  

These findings are in line with fMRI evidence suggesting that value influences visual 

salience through early sensation and perception processing areas of the brain. For example, 

stimulus-reward associations directly modulate activation levels in the early visual cortices 

responsible for representing low-level stimulus features, such as V1 (Serences, 2008). 

Furthermore, rewarded stimulus features sharpen the population response of neurons that 

specifically encode the feature (Serences & Saproo, 2010); this specialized population encoding 

of a feature is most well-known with orientation (Hubel & Wiesel, 1962). Indeed, Hickey et al. 

(2010) proposed the anterior cingulate cortex (ACC) as the connection between reward and 

visual salience when they found that responses to reward feedback in the ACC could predict 

visual biases by reward. Anderson et al. (2014) supplemented these findings by proposing that 

both the caudate nucleus of the basal ganglia and the extrastriate visual cortex provide an 

attentional priority signal sensitive to reward history and irrelevant of endogenous attention. 

While the caudate nucleus is known to represent objects based on location and reward history 

(Yamamoto et al., 2013) and the extrastriate cortex is involved in upper stages of vision, the 

authors propose connections between the two regions (Seger, 2013) that could contribute to 

attentional capture by reward.  

While fully understanding the neural mechanisms of value-based attentional priority still 

requires further investigation, an overarching conclusion based on the fMRI studies is that 

reward enhances the representation of the rewarded feature in relevant visual areas. Areas of the 

brain responsible for processing reward might modulate these early sensory processing regions. 
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1.5 Generalizability into a Complex World 

Despite recent findings that connect value-driven attentional capture to generalized neural 

mechanisms of sensation, perception and reward, behavioral evidence on the generalizability of 

the phenomenon is limited. Value-driven attentional capture is most commonly studied when 

bound to a particular feature; for example, in both their training and test phases, Anderson et al. 

(2011) use a red circle or a green circle. Likewise, Della Libera and Chelazzi (2009) tested 

attention using identical shapes, and Laurent et al. (2014) find that a specific orientation can also 

capture orientation when the same stimulus was previously associated with reward.  

Repeating the same stimulus for both the reward-association training phase and the 

attention-probing training phase puts vast constraints on the external validity of these previous 

findings. In the real world, settings are significantly more complex than in the laboratory. The 

same stimulus is unlikely to always look the same due to environmental factors like lighting and 

perspective. How, then, can mechanisms of value-driven attentional capture be extended to 

everyday experiences and perceptions of stimuli such as houses, cars, and faces? An early 

investigation of this question revealed that stimulus-reward associations of a particular feature 

generalized to different stimuli that shared the same feature: for example, a red circle and a red 

letter (Anderson et al., 2012). Additional studies have expanded the capture of attention by 

reward to object categories rather than specific features, providing evidence through reward 

priming (Hickey et al., 2015) and MEG (Donohue et al., 2016).  

Bucker and Theeuwes (2017) provide strong evidence for the applicability and presence 

of value-driven attentional capture in real life when they demonstrate that Pavlovian reward 

learning, as compared to the instrumental association of reward with a task as commonly seen in 

the literature, underlies the phenomenon of value-driven attentional capture.  Given that 
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Pavlovian learning constantly and automatically occurs in every day life (Bouton, 2007), this 

also provides evidence for value-driven attentional capture as a mechanism that underlies the 

role of selective attention and reward in everyday experience.  

These findings suggest a versatile role for reward learning in modulating attention, but 

questions still remain unanswered. For example, how does value-driven attentional capture by a 

feature account for learning in a multidimensional world? 

1.6 From Feature to Dimension  

Dimensional attention is one way in which value-driven attentional capture can 

generalize into a multidimensional world, but this has not been extensively explored. To clarify, 

dimensional attention is a broader attention towards an entire category of features, such as color; 

feature-based attention is attention towards a specific element within a dimension, such as red. 

The effect of reward on dimensional attentional capture represents promising area of research for 

a number of reasons.  

First, the phenomenon of dimensional attention has been demonstrated multiple times in 

the literature, but just not in the context of reward. For example, Zhao et al. (2013) , as 

previously described, found that by imbuing regularity in one dimension – for example, having 

red always follow blue in a stream of colored shapes – they were able to create an attentional 

bias towards the dimension with regularities (color overall). Harris, Becker, Remington, and 

Harris (2015) showed that, even when participants were cued to search for only one feature, any 

singleton feature within that whole dimension subsequently captured their attention. Muller, 

Reimann, and Krummenacher (2003) used a similar attentional paradigm to likewise demonstrate 

that observers cued to a specific feature showed attentional capture by any feature within that 

dimension during a visual search array.  
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Furthermore, dimensional attention has crucial implications for understanding the 

mechanisms behind reward learning and how complex details of the environment are represented 

in the brain. At any given time, only a few dimensions in a complex environment – such as color, 

shape, or texture – are relevant for obtaining reward. For example, our selective attention toward 

the multidimensionality of cars must be versatile: in searching for a taxi, only color is relevant 

whereas attending to speed and distance is imperative for crossing the road. Reinforcement 

learning algorithms have notoriously suffered from what Bellman (1957) has referred to as the 

“Curse of Dimensionality,” becoming less efficient as the dimensionality of stimuli in the 

environment increases. Directing attentional priority toward some dimensions and not others is a 

promising solution to this problem. Consistent with this, Niv et al. (2015) demonstrated that 

reinforcement learning does rely on attentional mechanisms that reduce the dimensionality of a 

complex environment into only those dimensions that are behaviorally relevant.  

Finally, intuitively, we know that dimensional attention and learning do happen 

implicitly. For example, if we are learning that red is rewarding, we are simultaneously learning 

that a color is rewarding.  

In light of this discussion, this thesis seeks to fill the gap in the literature by bridging 

dimensional attention with the phenomenon of value-driven attentional capture. Attentional 

capture by a feature alone is not enough to generalize to a multidimensional world. I ask the 

questions: can reward learning spontaneously influence dimensional attention? To what extent 

does learning about a highly rewarding feature lead to attentional capture by not only the feature, 

but also the whole dimension of that feature? I hypothesized that learning about high reward 

features in one dimension will bias subjects’ attention towards other low reward features within 

the same dimension. Addressing these questions will reveal the extent to which the spontaneous 
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deployment of attention is flexible and can exist at multiple levels of abstraction, from features to 

dimensions to objects. Moreover, value-driven attentional capture at the dimensional level will 

provide a broad and lower level mechanism by which the reduction of dimensionality in 

reinforcement learning can occur.  

 In order to investigate whether feature-based reward learning biases dimensional 

attention, I conducted two behavioral experiments on human subjects, utilizing a Pavlovian 

reward learning paradigm and a visual search array in order to probe for dimensional attention. 

The methods, findings, and discussions of these two experiments are presented in the following 

chapters.  
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Chapter 2 

General Methods 

Some material in this chapter was adapted from Bu (2016). 

In this chapter, I provide an overview of the general methods for the two experiments 

reported in this thesis, focusing on the experimental design and statistical analyses common to 

both experiments.   

2.1 The Token Task 

The Token Task was first developed by Angela Radulescu and based on the experimental 

design by Zhao et al. (2013). For the experiments in this thesis, I used a set of stimuli, called 

“tokens,” which varied along the dimensions of color and orientation (fig. 2.1). The task 

consisted of three types of trials: collect trials, visual search array trials, and predict trials (fig. 

2.2). The purpose of the collect trials was to present a visual stream of tokens and their 

associated reward, imbuing certain visual features with high value and others with low value 

over time. Array trials were intermittent probes for the effect of reward on selective attention and 

attentional capture, critical to the hypothesis of the experiment. Predict trials assessed how 

successfully participants learned the reward contingencies after each block of collect and array 

trials. Together, these trials enabled me to investigate how reward learning influences the way 

we direct our attention in the future.   

 

 

 

 

Figure 2.1. An example set of 9 “tokens” varying 
along two dimensions, with 3 features within each 
dimension: color (red, green, blue) and orientation 
(45º, 90º, 135º). 
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2.1.1 Collect Trials and Reward Structure 

Collect trials (fig. 2.2A) comprised the majority of the experimental task. For each collect 

trial, subjects viewed a token in the center of the screen and “collected” each token by pressing 

the space bar on the keyboard. Upon collecting the token, a point value of either “+10” (low 

reward) or “+40” (high reward) was overlaid in white above the token; subjects were told that the 

more points they collected from these tokens, the larger their cash bonus would be. For each 

Figure 2.2. Trial types throughout the experiment. A) Collect trials. Subjects pressed space bar to view 
the point value of each token. B) Visual search array trials (adapted from Experiment 1 in this figure) 
interrupted collect trials to probe attention. Each contained one color singleton and one orientation 
singleton, and dimensional attention was measured based on which singleton was the target.  
C) Prediction trials. Subjects dragged the center token to a value on the bar, and clicked to select their 
prediction of the token’s point worth. 
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block of trials, tokens with one specific feature (e.g., red tokens) provided high reward most of 

the time, while tokens without this feature provided low reward most of the time. For the rest of 

this thesis, the feature predicting high reward in every block will be referred to as the relevant 

feature. The relevant feature changed after every block in the task, and participants were 

informed between each block that the relevant feature would change. Participants were randomly 

assigned to either a “color” group or an “orientation” group, and all rewarded features were 

drawn from the corresponding dimension (e.g. for subjects in the color group, the highly 

rewarded feature in each block would always be a color such as red or blue). This dimension will 

be referred to as the relevant dimension. Subjects were not informed of the relevant dimension or 

that only one feature at a time predicted high reward, and they had to learn these rules over time. 

The design of the collect trial in this task was strictly conducive to Pavlovian reward 

learning. In addition to what has been previously discussed in the introduction of this thesis, the 

use of Pavlovian reward learning was a noteworthy design choice because it allowed me to 

directly test whether simply imbuing certain stimuli with value would lead to an attentional bias 

toward the dimension, independent of any existing task set or instrumental behavior. It also 

allowed me to ensure that the reward learning experience of every subject was comparable.  

Several aspects of this experimental design were modified from the original Token Task. 

Visual reward overlaid above the stimulus was chosen due to evidence that suggested that the 

simultaneous presentation of a stimulus and its associated reward was an important factor in 

guiding visual representation in the brain (Roelfsema et al., 2010). A point reward system was 

chosen because it allows for the flexible manipulation of reward, such that high reward tokens 

(+40) were of a considerably greater magnitude than low reward tokens (+10); attentional 

capture by rewarded stimuli is modulated by the relative size of the reward (Anderson et al., 
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2011). The only possible reward values for each individual token were “+10” and “+40” in order 

to create a clear distinction between low and high reward. Finally, previous experiments 

involving the Token Task used an 80%/20% probabilistic feedback system, meaning that tokens 

with the relevant feature provided high reward with 80% probability and low reward with 20% 

probability. Tokens without the relevant feature provided high reward with 20% probability and 

low reward with 80% probability. However, as a result of this, subjects often struggled to learn 

the relevant rules guiding reward and its structure. For the experiments in this thesis, a 90%/10% 

probabilistic feedback system was chosen to facilitate learning while simultaneously maintaining 

a small prediction error to prolong the learning process.   

2.1.2 Visual Search Trials as a Probe of Dimensional Attention 

Visual search array trials would occasionally interrupt the stream of collect trials (fig. 

2.2B). The array always contained two singletons amidst homogenous distractors; one singleton 

would pop out solely due to its orientation, while the other would pop out solely due to its color. 

Furthermore, one singleton would always appear on the right side of the screen, and the other 

would always appear on the left side of the screen. Both would always be equidistant from the 

center. All tokens in the array except for one of the singletons contained a small gap in the 

center. The subject’s task was to press either “X” or “M” as quickly and accurately as possible 

whenever a search array appeared, to report whether the gapless token was on the left side of the 

screen or on the right side of the screen. “X” was always for “left”, while “M” was always for 

“right”; this was due to their relative positions on the keyboard, which made the keyboard 

mappings and the search task quick and intuitive.  

As the gapless token was always one of the singletons, the target for these search trials 

alternated between the orientation singleton and the color singleton (a example of each type of 
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target is shown in fig. 2.2B). There was an equal amount of color singleton target and orientation 

singleton target trials throughout the experiment. The timing of array trials was designed such 

that they were unpredictable but would appear more frequently near the end of each stream of 

collect trials (around once every 4 trials, as opposed to around once every 5 trials in the 

beginning), in order to better probe for an attentional bias after subjects learned which features 

predict high reward.  

The use of two competing singletons in a search array to probe for dimensional attention 

is novel and was motivated by a number of findings in the selective attention and attentional 

capture literature. On the most intuitive level, a competing singleton design depends on the 

biased-competition theory of attention. Objects are constantly competing for cortical 

representation and cognitive processing, and this theory suggests that attention’s role is to bias 

this competition in favor of more potentially relevant objects at the expense of others (Duncan, 

1996). When faced with two highly salient singletons in the visual field that differ only in their 

pop out dimension, an acquired dimensional attention bias could influence which singleton will 

compete better and capture attention first, manifesting in subject reaction times. This conclusion 

is further supported by evidence that attentional capture is strongly weighted towards a single 

object rather than triggered equally by multiple objects in visual scene (Grubert & Eimer, 2017) 

and that top-down processes can mediate attentional capture by a salient singleton (Kiss, 

Jolicoeur, Dell, & Eimer, 2009).  

2.1.3 Predict Trials as a Measure of Learning  

At the end of each block of collect and array trials, participants were presented with 

prediction trials (fig. 2.2C). All nine tokens seen in the collect trials were presented one by one, 

and subjects were asked to guess the average point value of each token in the set from out of a 
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range from 0 to 50. This continuous scale was designed to assess both how well the subjects had 

learned the relevant rule for the block and how confident subjects were in what they had learned 

(less confident subjects would be more likely to guess around 20 to 30, as opposed to values at 

either end of the scale). Because of the 90%/10% reward contingency, the correct average worth 

was set at 13 for tokens without the relevant feature of that particular block (low value) and 37 

for tokens with the relevant feature (high value). To motivate learning, answers were rewarded 

bonus points up to 100 per prediction based on how close they were to the real worth of the 

token. Participants were given aggregate feedback out of total points possible at the end. 

2.2 Experimental Overview 

2.2.1 Hypothesis 

In this thesis, I investigate whether reward can influence attentional capture at the level of 

entire feature dimensions. Specifically, I test the hypothesis that learning to attend to highly 

rewarding features in a single dimension results in attentional capture for other unrewarded 

features within that same dimension, as compared to features in other dimensions. 

The visual search trials are a critical test of this hypothesis. A learned dimensional 

attention bias should both facilitate pop out and search for a singleton target in the dimension 

containing the highly rewarded feature. If learning about rewarding features in one dimension 

creates an attentional bias towards that dimension, then I would expect subjects in the color 

group to be faster at finding color singleton targets than at finding orientation singleton targets, 

and I would expect subjects in the orientation group to find orientation targets faster than color 

targets. Statistically, I would expect an interaction between target dimension and group in a 2x2 

analysis of variance (ANOVA, fig. 2.3). 
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2.2.2 The Present Experiments  

In the following two chapters, I present two variants of the Token Task. I begin by 

describing in full the methods, results, and discussion of the first experimental run (chapter 3). 

Then, I discuss how the findings from this study were used to inform and modify the Token Task 

for a replication with variation (chapter 4). A general discussion (chapter 5) synthesizes and 

reconciles the findings from these two experiments, identifies potential limitations, and proposes 

pathways for future investigation. 

 

 

 

 Figure 2.3. Hypothesized results for reaction times of visual search trials, predicting a 2-way 
interaction between group (rewarded dimension throughout the experiment) and target 
dimension. 
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Chapter 3 

Experiment 1: The Token Task 

The goal of this experiment was to investigate if and how feature-based reward learning 

in the Token Task drives selective attention and attentional capture toward whole feature 

dimensions. Though previous variants of the Token Task have been run in the past as described 

in Bu (2016), this is the first experiment to use a competing singleton search array design to 

probe for dimensional attention. 

3.1 Methods  

3.1.1 Participants 

Thirty-five members of the Princeton University community (28 undergraduates; 26 

females and 9 males; age range 19-30 years; mean age of 21.7 years) participated in the 

experiment and were paid a flat rate of $8 for half an hour plus a bonus of $2 based on 

performance throughout the experiment. Due to technical failure, three subjects were excluded 

from analysis. This left a total of 32 participants (24 females and 8 males; age range 19-30 years; 

mean age of 21.9 years). All subjects reported normal or corrected-to normal visual acuity and 

color vision. Study materials and procedures received approval from the Princeton University 

Institutional Review Board (IRB), and subjects provided informed consent.   

3.1.2 Stimuli 

Visual stimuli were presented with a grey background using MATLAB 2014A and the 

Psychophysics Toolbox on a Dell XPS monitor. The stimuli used throughout the experiment 

consisted primarily of two sets of nine tokens each (fig. 3.1).  
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Tokens in the first set were used exclusively for collect triasls (fig. 3.1A). These nine 

tokens and six features, consisting of three from each dimension (color: red, blue, and yellow; 

orientation: 15º, 75º, and 135º), were imbued with varying levels of reward throughout the 

experiment. Tokens in the second set (fig. 3.1B) were used only as distractors in the visual 

search trials and were characterized by six features different from those seen in the collect trials 

(color: orange, green, and purple; orientation: 45º, 105º, and 165º). This was because in previous 

runs of the Token Task, I found one factor that could potentially influence the reaction times in 

visual search was the presence of rewarded features in the distractors. For example, if subjects 

learn that red is the relevant feature, then a search array consisting of a green target with red 

distractors could lead to potentially unpredictable effects such as enhanced distractor filtering 

(Lee & Shomstein, 2014) that could interfere with or confound the effects of a dimensional 

attention bias. As a result, I wanted to ensure that distractors in the visual search array did not 

contain any features that could be associated with reward. The specific colors and orientation 

angles in each set were chosen to create the maximum possible differentiation between stimuli. 

Figure 3.1. Two sets of tokens used in the experiment. Tokens varied along two dimensions, and 
there were 6 possible features for each dimension. A) The 9 tokens used for the collect trials. These 
tokens and their features would be associated with reward throughout the experiment. B) The 9 
tokens used as non-singleton distractors in the visual search trials. To avoid potential confounds, 
these distractor tokens had features completely distinct from those used in the collect trials.  
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Stimuli in the visual search trials were designed with careful attention to the features of 

the competing singletons and distractors (fig. 3.2A). Singletons were always a hybrid of features 

from the collect and distractor trials; the feature in the pop out dimension of the singleton was 

always a reward-associated one from the collect trials, while the feature in the other dimension 

was the same as the distractors. In other words, the color singleton would always be red, blue, or 

yellow, and the orientation singleton would always be 15º, 75º, or 135º. I chose this design 

because it would create an array in which all features were homogenous except for the 

orientation feature in the orientation singleton and the color feature in the color singleton. Half of 

Figure 3.2. A) Four examples of the visual search arrays used in this experiment. Note how 
the singleton features are a hybrid of the collect and distractor tokens in fig. 3.1. 
B) The pairings used to determine the features of singletons and distractors in the visual search 
trials, in order to both normalize and maximize singleton pop outs. 
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the time, the singleton in the rewarded dimension (e.g. the orientation singleton for the 

orientation group) would be in the relevant feature for that particular block of trials; the other 

half of the time, it would be in the two other low-reward features. This was in order to allow me 

to later analyze whether attentional capture by the relevant feature differs significantly from 

attentional capture by non-relevant features in the rewarded dimension.  

In the visual search array, every color singleton feature was paired with a distractor color 

maximally distant from it on the color wheel, and every orientation singleton feature was paired 

with a distractor orientation 90º away (fig.3.2B, can be observed in 3.2A). This was to preclude, 

for example, the possibility that color pop out in one array trial would be weaker with a yellow 

singleton among orange distractors, compared to another trial with a yellow singleton among 

purple distractors.  

Finally, the visual search array in this experiment always consisted of a 7x1 array of 

tokens. The singletons would always appear at the third and fifth position; the dimensions of the 

singletons and the location of the target alternated between these two positions.  

3.1.3 Procedure 

Before beginning the task, participants received on-screen instructions informing them 

how to complete each trial, including three examples of collect trials and one example of a visual 

search array trial. To facilitate learning of the relevant rules for reward, participants were 

explicitly told that the orientation and color of the tokens could help determine their worth: “It 

will be useful to pay attention to the point outcome of each token, because every now and then, 

we will test you on how well you can predict the values of certain tokens… The key to predicting 

successfully is to pay attention to the visual features of each token, as they might indicate how 

valuable it is.” Furthermore, to alert subjects to the possibility of probabilistic feedback, they 
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were told that the same token might give different points on different trials, but that on average 

some were worth more than others. Following the instructions, participants were given an 

abridged game as a practice round before beginning the experiment.  

Altogether, the experiment consisted of 6 blocks or “games” in total, such that each 

possible feature in the collect trials within the rewarded dimension served as the relevant feature 

two times. Each game consisted of a series of 108 collect trials interrupted by 24 array trials and 

followed by 9 predict trials at the end. The inter-trial interval was always 0.5 seconds with a 

timeout after 2 seconds for collect trials, 1 second with a timeout after 2 seconds for array trials, 

and 0.5 seconds with a timeout after 5 seconds for predict trials. A schematic of one game is 

shown in figure 3.3. After the experiment, subjects were debriefed and given a questionnaire 

(appendix A) assessing their engagement with the task and their knowledge of the relevant rules 

to reward. The whole procedure took 30 minutes. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Schematic of one block, or “game”, of the experiment out of nine games total. 
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3.1.4 Statistical Analysis  

All data were recorded and processed using MATLAB. Statistical analyses and tests on 

the data were carried out using R, with alpha = 0.05. When stated, within-subject error bars were 

calculated using the procedure described in Cousineau (2005).  

3.2 Results 

3.2.1 Trial Accuracy 

Due to the dependence of this experiment on a sensitive measure of reaction time, a 

preliminary descriptive analysis of subject performance on all trials was conducted to identify 

and exclude subjects with unusually poor performance (table 3.1). Collect trial accuracy was 

quantified by the percentage of tokens that a subject collected throughout the experiment; 

subjects were instructed at the beginning of the experiment to collect all the tokens. Visual 

search trial accuracy was quantified as the percentage of search targets that subjects correctly 

identified as being on the left or right side of the screen. Subjects were told to answer as quickly 

and as accurately as possible. Finally, predict trial accuracy was quantified as the percentage of 

trials that a subject guessed within six points of the correct value. Participants meeting any of the 

exclusion criteria, making their performance for that particular type of trial a strong statistical 

outlier, were excluded. Based on this method, three subjects were excluded, leaving 29 subjects 

total remaining for further analyses (15 in the color group and 14 in the orientation group). 

Trial Type Accuracy Measure Subject mean (SD)  Exclusion Criteria 
Collect trial % tokens collected 99.84% (0.55%) < 98.74% 

Visual search trial % correct response 94.74% (11.93%) <  70.75% 
Predict Trial % correct answers 84.84% (12.83%) < 59.18% 

 
Table 3.1: overall subject accuracy on collect, visual search, and predict trials. Exclusion criteria were 
determined using a statistical definition of outlier: the sample mean plus or minus two times the standard 
deviation. 
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Figure 3.4: Assessment of subject learning performance based on prediction trials. A) Histogram of 
subjects’ overall prediction accuracy, quantified as the % of predictions within 6 of the token’s correct 
worth.  The correct value of tokens with the relevant feature present was set at 37 points, due to the 
probabilistic feedback previously discussed. The correct value of tokens without the relevant feature was 
13 points. B) Overlapping histograms showing the distribution of all subject predictions for tokens with 
(high reward) and without (low reward) the relevant feature.  
 
 
3.2.2 Learning Performance  

Overall, participants showed robust evidence of learning throughout the task. Each 

participant’s accuracy was measured as a percentage of how many correct predictions they made 

within a range of six of the correct token worth out of the total number of prediction trials. The 

distribution of the prediction accuracies for the 29 subjects, split by their assigned group, is 

shown in figure 3.4A. The median subject prediction accuracy was 88.9% with a range from 68.5 

to 100%, meaning that all subjects (except for one outlier, who was excluded as previously 

discussed) performed above chance. This is complemented by an aggregated distribution of the 

specific predictions that subjects made for both high reward tokens, in which the relevant feature 

was present, and for low-reward tokens, in which the relevant feature was absent (fig. 3.4B). 
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With the exception of a few misses, the vast majority of predictions were able to distinguish 

between high reward (blue, on the right) and low reward (red, on the left) tokens. The most 

common predictions were 10 for low reward tokens and 40 for high reward tokens. It is clear that 

participants were able to distinguish between relevant and non-relevant tokens and had learned 

the relevant rule for determining reward, even if they did not take into account the probabilistic 

90%/10% feedback. Furthermore, subjects learned the relevant rule for determining high reward 

quickly (fig. 3.5). Even by the end of the first game, most subjects were able to predict with 

accuracy what the point value of each token was.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.5: A learning curve, quantified by average prediction for tokens with and without the relevant 
feature in each game, aggregated across subjects. 1 is the first game or block of the experiment, and 6 is 
the final block of the experiment. The correct prediction for tokens with the relevant feature not present 
was 13, and 37 for tokens with the relevant feature present. 
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Finally, these results are consistent with written feedback acquired from subjects in a 

questionnaire following the study. In these debriefing questionnaires, subjects were prompted 

with the question, “Did you notice that a particular characteristic was more likely to indicate 

whether tokens were worth more points? If so, which?” All but three subjects out of twenty-nine 

total were able to correctly identify the dimension that was more relevant to predicting reward. 

Moreover, when asked to rate the difficulty of the experiment on a scale of 1 (very easy) to 5  

(very difficult), the average response was 2.6 (SD = 0.91), leaning on the side of easy. 

3.2.3 Reward and Attention 

The critical test of my hypothesis depended on subject response times to the visual search 

trials. If feature-based reward learning generalizes to attentional capture at the dimensional level, 

then we would expect the group that a subject was assigned to (color or orientation) to 

differentially affect their response times to color and orientation singleton targets. Specifically, 

subjects should be faster to respond to singleton targets in the rewarded dimension compared to 

singleton targets in the non-rewarded dimension. To ensure that reaction times represented a 

search for the correct singleton target, all visual search trials in which subjects responded 

incorrectly (e.g., left when the gapless token was on the right side of the screen) were excluded.  

Visual search trial reaction times (fig. 3.6) were analyzed with a 2 (group: color, 

orientation; between subjects) x 2 (target dimension: color, orientation; within subjects) mixed-

effects analysis of variance (ANOVA). Consistent with our hypothesis, there was a trending 

interaction between target dimension and group, F(1, 27) = 2.876, p = 0.10, η2 = 0.096. A post-

hoc paired t-test revealed that subjects in the color group were significantly faster to find color 

singleton targets as opposed to orientation targets, t(14) =  2.311, p < 0.05, d = 0.22. There was 

also a main effect of target dimension, F(1, 27) = 5.200, p < 0.05, η2 = 0.161.  
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Figure 3.6: An interaction plot showing reaction times to visual search trials, broken down by group and 
target dimension. Since this was a mixed effect design with both a within subjects variable (target 
dimension) and a between subjects variable (group), two types of error bars were needed for each point. 
The solid lines are within-subject standard error (Cousineau, 2005), and the dotted lines are between 
subject standard error. N=15 color group subjects, N=14 orientation group participants.  
 

 

The presence of the trending two-way interaction between group and target dimension, 

particularly as it manifests in the color group compared to the orientation group, provides 

evidence of an effect of attentional capture at the dimensional level for color, but not for 

orientation. In the following three sections, I sought to better understand the factors that may 

have contributed to this effect. I present three additional analyses of the reaction time data based 

on the time course of the experiment, the presence of the relevant feature, and learning 

performance as measured by prediction accuracy.  
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3.2.4 Exploratory Analyses 

Analysis of Attentional Effects by Experimental Time Course 

I hypothesized that feature-based reward learning leads to attentional capture at the level 

of entire feature dimensions. However, reward learning does not usually happen immediately; 

prediction errors will dynamically update learned value over time (Sutton & Barto, 1998). For 

this experiment, a number of collect and search trials might be expected to elapse before subjects 

learn the reward structure and rules that predict reward, which then might lead to a learned 

attentional bias. This delay might manifest in the reaction time data in two ways.  

First, subjects are more likely to have successfully learned that features from one 

dimension consistently predict high reward by the latter half of the experiment. Thus, I predicted 

for this analysis that the dimensional attention bias effect might be stronger in the second half of 

visual search trials that appeared in the experiment, compared to the first half of visual search 

trials. However, a 2 (time course: first half of search trials, second half of search trials; within 

subjects) x 2 (group: color, orientation; between subjects) x 2 (target dimension: color, 

orientation; within subjects) ANOVA did not reveal a significant three-way interaction, F(1, 27) 

= 0.468, p = 0.50, η2 = 0.017, whereas the two-way interaction between target dimension and 

group remained robust,  F(1, 27) = 2.993, p < 0.10, η2 = 0.173. Moreover, there was a main 

effect of time overall, F(1, 27) = 6.450, p < 0.05, η2 = 0.173. Thus, participants got faster at 

responding to visual search trials in the latter half of the experiment, possibly suggesting a 

practice effect (Donovan & Radosevich, 1999), but the time course of the experiment was unable 

to account for differences in attentional capture.  

Second, since the highly rewarded feature changed in every game of the experiment, 

subjects need to take time to newly learn which feature predicts high reward in every game. It is 
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possible then, that the hypothesized interaction between group and target dimension becomes 

robust in the second half of visual search trials within each game, as compared to the beginning 

trials of each game. However, a 2 (time course: first half search trials of each game, second half 

search trials of each game; within subjects) x 2 (group: color, orientation; between subjects) x 2 

(target dimension: color, orientation; within subjects) revealed almost exactly the same trend as 

the first time course analysis. There was no significant three-way interaction F(1, 27) = 0.220, p 

= 0.642, η2 = 0.008, whereas the two-way interaction between target dimension and group 

remained trending, F(1, 27) = 2.921, p < 0.10, η2 = 0.10. Thus, there was no evidence to 

conclude that time course of learning, and of the experiment overall, significantly impacted the 

critical interaction observed between group and target dimension.  

Analysis of Attentional Effects by Presence of Relevant Feature 

Another factor to account for is the presence of the highly rewarded feature in the visual 

search trials. The pop out features of the singletons in the visual search trials were always one of 

the features that subjects saw during the collect trials (e.g. blue, yellow, red, 15º, 75º, 135º).  As a 

result, in every game, some singletons in the visual search trials had the highly rewarded feature. 

Attentional capture by a highly rewarded feature is a phenomenon that has been well established 

in the literature, and would not provide any evidence of generalization to a dimensional attention 

bias (Anderson et al., 2011). Thus, in order to demonstrate an attentional capture effect by the 

whole dimension, this portion of trials alone cannot drive the interaction effect that we observed. 

The visual search trials containing singletons with low-reward features (e.g., the relevant feature 

is absent) must also contribute to the effect, or at least not differ significantly from those trials 

with the relevant feature present. Part of the reason I chose to include visual search trials with the 

relevant feature was to be able to test for whether this difference exists.   
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Figure 3.7: Interaction plots showing reaction times to visual search trials, broken down by target 
dimension and the presence of the relevant (highly rewarded) feature for A) subjects in the color group 
and B) subjects in the orientation group. Standard error, corrected again for within-subjects comparison 
in each graph, was used. N=15 color group subjects (A), N=14 orientation group participants (B). 
 

The breakdown of the reaction time data by the presence or absence of the highly 

rewarded feature is shown in figure 3.7. Even with within-subjects error bars, it can be observed 

that there is no significant difference between visual search trials with and without the highly 

rewarded feature. In fact, for the orientation group, the difference actually trends in the opposite 

direction of what we might expect assuming value-driven attentional capture by a feature. 

Additionally, a 2 (presence of relevant feature: absent, present; within subjects) x 2 (target 

dimension: color, orientation; within subjects) x 2 (group: color, orientation; between subjects) 

ANOVA did not reveal a three-way interaction, F(1, 27) = 0.011, p = .918, η2 < 0.001, despite a 

trending interaction between target dimension and group as previously noted.  

Thus, there is no evidence to conclude that the presence of the relevant feature in the 

visual search trials could account for the attentional bias that we observed, particularly with 
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regards to the color group and the color target singletons. This is consistent with our hypothesis 

for an effect of attentional capture at the dimensional level, as opposed to attentional capture at 

the level of individual features. 

Analysis of Attentional Effects by Prediction Accuracy  

Finally, I predicted that the better subjects learned the features that predicted high reward 

throughout the task, the stronger they would show an effect of an attentional bias at the 

dimensional level. This is an intuitive prediction; a subject who has successfully learned which 

features predict high reward is more likely to be biased toward those features than a subject who 

is struggling to learn or may not be aware of what predicts high reward best.  

In order to perform a continuous analysis between subjects’ learning performance and 

attentional capture effect by a dimension, the two variables must first be quantified. Learning 

performance was measured and quantified using subject accuracy on the prediction trials; 

specifically, prediction accuracy was defined as the percentage of trials in which a subject was 

able to successfully predict the token’s true value within 6 of the correct value (e.g., for low-

reward tokens, a prediction from 10-16 points was considered correct; for high-reward tokens, a 

prediction from 34-40 points). If a subject guessed outside of these ranges, it is likely that they 

did not learn or were not confident that one specific feature always predicted high reward.  

The attentional capture effect was quantified by calculating the average reaction time in 

each subject for visual search trials with a color singleton target and for visual search trials with 

an orientation singleton target: 

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

= 𝑀𝑒𝑎𝑛(𝑅𝑇!"#$%! !" !"#$%&#'$' !"#$%&"'%)

−𝑀𝑒𝑎𝑛(𝑅𝑇!"#$%! !" !"#$!%"% !"#$%&"'%) 



VALUE-DRIVEN ATTENTIONAL CAPTURE                                                                         40 

Based on our dimensional attention hypothesis, reaction times with a target in the un-

rewarded dimension should be longer than reaction times with a target in the rewarded 

dimension. Thus, the more positive the capture effect is for subjects in either the color or 

orientation group, the more attentional bias they showed toward the rewarded dimension. The 

more negative the capture effect is, the more their attentional bias trended towards the un-

rewarded dimension, contrary to what we would predict.   

 Surprisingly, a correlational analysis between learning performance and attentional 

capture effect showed a significant negative correlation, r = -0.55, p < 0.005 (fig. 3.8). This 

negative correlation remained robust even when the potential outlier with a capture effect of 

around 150 ms was removed, r = -0.45, p = 0.01 and also when the color and orientation group 

subjects were correlated separately, r = -0.77, p < 0.001 for color and r = -0.54, p < 0.05 for 

orientation.  

 

 

 

 

 

 

 
 
Figure 3.8: A scatterplot summarizing the findings of the correlation analysis between subject learning 
performance and attentional capture effect. The blue line indicates the best linear fit and the black line 
indicates 0 (no difference between RT for singleton targets in the rewarded versus unrewarded dimension, 
below which subjects showed an attentional bias in the direction opposite than what we would expect 
(e.g. a color group subject shows faster RTs for orientation singletons compared to color singletons). 
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The analysis seems to indicate that the less accurate subjects were in predicting the 

average point worth of tokens, the stronger their attentional capture effect was by the rewarded 

dimension. To seek further evidence of this effect, subjects were split into three groups 

depending on their accuracy: a low accuracy group (prediction accuracy from 68-84%; N=9; 4 

color and 5 orientation group subjects), a middle accuracy group (84-91%; N=10; 5 color and 5 

orientation group subjects), and a high accuracy group (91-100%; N=10; 6 color and 4 

orientation group subjects). A 3 (accuracy: low, mid, high; between subjects) x 2 (group: color, 

orientation; between subjects) x 2 (target dimension: color, orientation) ANOVA revealed a 

significant three-way interaction, F(2, 23) = 7.506, p < 0.005, η2 = 0.395. The interaction 

between target dimension and group became significant, F(1, 27) = 6.078, p < 0.05, η2 = 0.21. 

There was also a trending interaction between target dimension and accuracy, F(2, 23) = 2.566, p 

< 0.10, η2 = 0.18, as well as a main effect of target dimension, F(1, 27) = 8.567, p < 0.005, η2 = 

0.271. Overall, the findings of this ANOVA suggest that the variability in subject reaction times 

can be much better accounted for once subject accuracy is introduced as a factor. The findings 

from this three-way analysis can be visualized in figure 3.9. 

When the low, middle, and high accuracy subject groups were analyzed separately, the 

attentional capture effect was most robust for the low accuracy subjects, revealing a significant 

two-way interaction between target dimension and group just as hypothesized, F(1, 7) = 16.803, 

p < 0.005, η2 = 0.706. By contrast, there was no evidence of a two-way interaction in either the 

middle accuracy subjects, F(1, 8) = 0.606, p = 0.459, η2 = 0.070, or the high-accuracy subjects, 

F(1, 8) = 0.937, p = 0.361, η2 = 0.105. This suggests that the low-accuracy subjects were largely 

responsible for driving the trending effect previously reported in the critical test of the hypothesis 

(fig. 3.6)  
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Figure 3.9: Interaction plots showing reaction times to visual search trials, broken down by target 
dimension and group for A) subjects in the low accuracy group; B) subjects in the middle accuracy 
group; and C) subjects in the high accuracy group. Again, since this was a mixed effect design with 
both a within subjects variable (target dimension) and a between subjects variable (group), two types of 
error bars were needed for each point. The solid lines are within-subject standard error (Cousineau, 2005), 
and the dotted lines are between subject standard error. N=9 low accuracy subjects (A), N=10 middle 
accuracy subjects (B), N=10 high accuracy subjects (C).  
 
 
 
3.3 Discussion 

In this experiment, participants viewed a series of “tokens” that varied in the two 

dimensions of color and orientation and learned the rules that predict which stimuli are worth the 

highest reward. Specifically, subjects had to figure out that one feature in every experimental 

block was associated with high reward, and more generally that the highly rewarded features in 

every block were all drawn from the same dimension (color features if they were assigned to the 

color group, orientation features if assigned to the orientation group). During this process, visual 

search trials sporadically appeared, utilizing competing singletons to probe for a dimensional 

attention bias towards either color or orientation. Analyses of subject predictions of token value 
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at the end of each experimental block indicated that subjects were largely successful at learning 

which tokens were worth the highest reward and which tokens were not.  

This experiment sought to investigate the effects of reward learning on how our attention 

is captured and directed in the future. When specific color features were consistently associated 

with higher reward, subjects were faster to find color singletons even in a low-reward color in a 

visual search array, compared to orientation singletons. This modulation of attention towards the 

color dimension by reward was absent when only orientation features were consistently 

associated with high reward.  Here, subjects showed no difference in response times for color 

compared to orientation singleton targets. In summary, reward seems to be able to drive 

attentional capture at the dimensional level, at least for color. The present results are largely 

consistent with my hypothesis, but two main caveats must be addressed. 

The first caveat is that there was no observable attentional bias towards orientation in the 

group where orientation features, not colors, were consistently rewarded. The similarity in the 

response time for color and orientation singleton targets would suggest that subjects in this group 

received neither the attentional facilitation that the color group experienced towards color 

singletons, nor the attentional facilitation that should have been conferred by their own rewarded 

dimension. The lack of a corresponding attentional bias towards the orientation dimension can at 

least in part be responsible for why the ANOVA interaction between group and target dimension 

was trending but not significant. One likely explanation is that the color singletons were 

inherently more salient than orientation singletons in the visual search trials (for an intuitive feel 

of this, refer back to the sample arrays in figure 3.2A). This was verbally reported by a number 

of pilot subjects, and was also evidenced by a main effect of singleton dimension on reaction 

time, suggesting that subjects were overall faster to find color singletons than orientation 
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singletons. Indeed, there is evidence in the literature that orientation singletons are more difficult, 

or require more effort, to identify than color singletons. For example, Holguín et al. (2009) 

designed a task using EEG in which visual search targets alternated in blocks between color 

singleton targets, and orientation singleton targets. When orientation singletons acted as targets, 

they elicited slower reaction times than the color singletons and larger N2p amplitude, an ERP 

component related to visual selective attention. As a result, it is difficult in the context of this 

study to determine whether attentional capture does not generalize to the orientation dimension 

compared to color, or on other hand whether the bottom-up salience of color is simply overriding 

the more subtle effects of reward towards dimensional attention in the orientation group.  

The second caveat to these results was the surprising finding in the exploratory analysis 

that learning performance, as measured by subject prediction accuracy, was negatively correlated 

with an attentional capture effect by the rewarded dimension. At first, this finding seems directly 

in conflict with the present hypothesis: if feature-based reward learning leads to attentional 

capture by the dimension, then how could it be that the less well subjects learned the rules 

determining reward, the stronger they demonstrated the hypothesized attentional capture effect? 

In fact, the negative correlation between prediction accuracy and the attentional capture effect 

was so robust that “low accuracy” subjects, ranging from 68-84%, were almost entirely 

responsible for driving the modulation we observed of color singleton target search by reward.  

To explain this finding in the framework of my hypothesis, I propose that the negative 

correlation between subject learning performance and the attentional capture effect provides 

evidence that different subjects engaged in different types of learning throughout the task. 

Subjects with higher prediction accuracy, from 85-100%, clearly learned the reward structure of 

the game very quickly. They may have learned that in every game, tokens with one feature were 



VALUE-DRIVEN ATTENTIONAL CAPTURE                                                                         45 

more likely to be worth close to 40 points while tokens without the feature were worth close to 

10 points. Once they became confident in this rule, continuing to perform well throughout the 

task no longer required reward learning. One who is aware of the reward structure of the game 

could determine the highly rewarded feature within just a short stream of collect trials and 

predict the worth of tokens within close range of the correct value at the end of each game. For 

these subjects, the task may have become too easy, and factors crucial to reward learning such as 

prediction error (Rouhani, Norman, & Niv, 2017; Sunny, Manjaly, & Kumar, 2015) may have 

gone away. This would be consistent with the time course analyses performed, in which there 

was no evidence to conclude that attentional effects at the beginning of the experiment or each 

experimental block differed significantly from later trials where subjects had presumably learned 

the reward associations better.  

By contrast, subjects with lower prediction accuracy, from 68-84%, indisputably still 

learned the general reward structure, as they were able to distinguish between high and low 

reward tokens the majority of the time. What their lower prediction accuracy might signify is 

simply that they were less confident or possibly even unaware of the rule that only one feature 

every game predicted high reward; as a result, their reward learning throughout the task would 

have been a more continuous process, involving more prediction errors and updating of reward 

value. The implications of this possibility for our understanding of value-driven attentional 

capture and for the present task will be further explored in Chapter 5, General Discussion. 

Overall, given these caveats, two clear paths for a re-design of the Token Task become 

apparent. The first is to attempt to create the reward modulation effect of dimensional attention 

towards orientation, perhaps by increasing the salience of orientation singletons relative to color. 

This would also have the benefit of exploring whether the effects we observed in this experiment 
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were robust or generalizable to other types of attention probes. The second possibility is to 

redesign the reward structure and learning experience of the task to ensure standard reward 

learning processes, possibly by making the relevant rules predicting reward more difficult to 

figure out. In the following chapter, I describe an experiment in which I pursued the former 

option.  
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Chapter 4 

Experiment 2: A Replication with Variation 

The goal of this experiment was to perform a replication with variation on experiment 1, 

and to specifically investigate whether the effects of attentional capture previously tested could 

generalize to a different type of visual search array. In the previous experiment, we observed an 

attentional capture effect in which subjects in the color group were able to find color singletons 

significantly faster than orientation singletons in a visual search array. Subjects in the orientation 

group did not show any differences in reaction time between color and orientation singleton 

targets, suggesting that rewarding the orientation dimension did not facilitate search for pop outs 

in this dimension. I theorized that this was due to the color singletons being inherently and 

perceptually more salient than orientation. Thus, a secondary goal of this experiment was to re-

design the visual search array in order to decrease the salience of the color singleton while 

increasing the salience of the orientation singleton. My hypothesis for this experiment remains 

the same: subjects who learn that color features are rewarding should demonstrate a dimensional 

attention bias towards color singleton targets, while subjects who learn that orientation features 

are rewarding should demonstrate the same bias towards orientation singleton targets.  

4.1 Methods 

4.1.1 Participants 

Thirty-one new members of the Princeton University community (all undergraduates; 18 

females; age range 18-22 years; mean age of 19.8 years) participated in the experiment for 

course credit plus a $3 bonus for performance. One subject misunderstood the instructions to the 

experiment and was excluded, leaving 30 participants (18 females; age range 18-22 years; mean 
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age of 19.8 years). All subjects reported normal or corrected-to normal visual acuity and color. 

Study materials and procedures received approval from the Princeton University IRB, and 

subjects provided informed consent.  

4.1.2 Stimuli 

The design and presentation of stimuli, or “tokens”, were the same as in experiment 1, 

with some modifications. First, the features of the nine tokens used exclusively for collect trials 

(fig. 3.1A) were changed. Colors (green, purple, red) were slightly muted such that they popped 

out less against the grey background in order to better equate the bottom-up saliency of the color 

and orientation singletons in the visual search trials. Additionally, one potential factor 

distinguishing the way these features could be learned and represented in the brain in Experiment 

1 was that the naming of the features. For example, the color features were easily named (e.g. 

red) while the orientation features were not (e.g. 15º). The orientation features were changed to 

45º, 90º, and 135º (e.g. horizontal, left diagonal, right diagonal) for this new experiment to 

reduce this potential difference. 

 

 

 

 

 

 
 
 
Figure 4.1. Tokens used throughout the experiment. A) The 9 tokens used for the collect trials. These 
tokens and their features would be associated with reward throughout the experiment. B) All non-
singleton distractors in the visual trials were made the same to control for potential differences in 
luminance and salience. 
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I also introduced an additional control in this experiment: all non-singleton distractors 

would always be the same: black, vertical tokens (fig. 3.1B). This ensured both that distractors 

did not contain features that might be associated with reward and that some distractors were not 

more salient or more distracting than others.  

As with the previous experiment, a competing singleton design was used for the visual 

search trial, with one color singleton and one orientation singleton. Again, these singletons only 

differed from distractors in their pop out feature: color singletons were either green, purple, or 

red, as in the collect trials, but were otherwise vertical to match the distractors. In comparison, 

orientation singletons were black to match the distractors and popped out solely due to being 

oriented 45º, 90º, or 135º.  

A 7x7 array was used for the visual search trials in this experiment (fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Four examples of the visual search arrays used in this experiment. 
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The dramatic increase in the size of the visual search array was designed to enhance the pop out 

of the orientation singleton, as discussed earlier. Orientation singletons tend to be more salient 

when completely surrounded by a contrasting background (Bogler, Bode, & Haynes, 2013) as 

opposed to being surrounded only on two sides as in Experiment 1. The competing singletons 

could only appear in the second and sixth columns of the array and in positions that were 

equidistant from the center of the screen. The left/right discrimination task for the visual search 

trials remained the same.  

4.1.3 Procedure and Statistical Analyses 

The primary focus during this experimental re-design was the visual search array trials.  

The experimental procedure was the same as in Experiment 1. Additionally, as in experiment 1, 

all data were recorded and processed using MATLAB. Statistical analyses and tests on the data 

were carried out using R, with alpha = 0.05, and when stated, within-subject error bars were 

calculated using the procedure described in Cousineau (2005). 

4.2 Results 

4.2.1 Trial Accuracy 

As previously described, subject performance on collect, visual search, and predict trials 

was analyzed to determine outliers with unusually poor performance for exclusion (table 4.1). 

Based on these criteria, four subjects were excluded, leaving 26 subjects total remaining for 

further analyses (13 in the color group and 13 in the orientation group). 

Trial Type Accuracy Measure Subject mean (SD)  Exclusion Criteria 
Collect trial % tokens collected 99.82% (0.57%) < 98.69% 

Visual search trial % correct response 91.98% (13.71%) <  64.55% 
Predict Trial % correct answers 81.54% (13.79%) < 53.96% 

 
Table 4.1: overall subject accuracy on collect, visual search, and predict trials. Exclusion criteria for the 
three types of trials were determined as previously described in experiment 1, based on varying 
definitions of a statistical outlier. 



VALUE-DRIVEN ATTENTIONAL CAPTURE                                                                         51 

4.2.2 Learning Performance  

Participants again showed rapid and robust evidence of reward learning (fig. 4.3A-C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.3: Assessment of subject learning performance based on prediction trials. A) Histogram of 
subjects’ overall prediction accuracy. B) Histograms showing distribution of all subject predictions for 
tokens with (high reward) and without (low reward) the relevant feature. C) An aggregated learning curve 
over time, quantified by average prediction for tokens with and without the relevant feature in each game. 
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The subject prediction accuracy (fig. 3.4A) was 87.0% with a range from 57.4 to 100%, 

meaning that most subjects were able to consistently predict which tokens were highly rewarded 

and which ones were not. The aggregated distribution of the specific predictions that subjects 

made for both tokens with and without the relevant feature (fig. 3.4B) also demonstrates that the 

vast majority of predictions successfully distinguished between high reward (blue, on the right) 

and low reward (red, on the left) stimuli. Consistent with the previous experiment, the most 

common predictions were 10 for low reward tokens and 40 for high reward tokens, suggesting 

that many participants learned the reward structure without taking into account the probabilistic 

90%/10% feedback. Finally, the learning curve (fig. 3.4C) demonstrates that most subjects 

learned the relevant rule for determining high reward quickly, before the end of the first game. In 

written feedback acquired from a questionnaire following the study, all but two subjects were 

able to correctly identify the dimension that was more relevant to predicting reward. On average, 

on a scale from 1 (very easy) to 5 (very difficult), subjects rated the difficulty of the experiment 

3.1 (SD = 1.04), suggesting that task the task felt neither too difficult nor too easy.   

4.2.3 Reward and Attention 

Visual search trials in which the subject responded incorrectly were excluded from the 

following analysis. To test my hypothesis, visual search trial reaction times (fig. 3.6) were 

analyzed with a 2 (group: color, orientation; between subjects) x 2 (target dimension: color, 

orientation; within subjects) mixed-effects ANOVA. In direct contrast to the analysis from 

Experiment 1, there was no evidence of an interaction between target dimension and group, F(1, 

24) = 0.034, p = 0.855, η2 = 0.001. There was a main effect of target dimension, F(1, 24) = 

13.567, p < .005, η2 = 0.36, suggesting that subjects were faster overall to find color singletons. 
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Figure 4.4: Interaction plot showing reaction times to visual search trials, broken down by group and 
target dimension. Two types of error bars were plotted for each point: the solid lines are within-subject 
standard error for comparison within group, by target dimension (Cousineau, 2005), and the dotted lines 
are between subject standard error. N=13 color group subjects, N=13 orientation group participants.  
 

It is clear from the statistics as well as figure 4.4 that the group subjects were assigned to, 

hence the rewarded dimension throughout the experiment, did not appear to modulate reaction 

times for color singleton targets as opposed to orientation singleton targets at all. By changing 

the design of the visual search array, I was unable to replicate the findings from the first 

experiment. Possible explanations for this will be explored in the following discussion sections. 

4.2.4 Exploratory Analyses 

Given the lack of an interaction between group and target dimension in these data as well 

as the robust main effect of target dimension (color singletons capturing attention much more 

strongly regardless of reward), the analyses previously performed in experiment 1 on the time 
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course of the experiment, and the correlation between prediction accuracy and attentional effects, 

did not produce meaningful results.  

Analysis by Presence of Relevant Feature 

When reaction time data was again broken down by the presence or absence of the highly 

rewarded feature in every game, a 2 (presence of relevant feature: absent, present; within 

subjects) x 2 (target dimension: color, orientation; within subjects) x 2 (group: color, orientation; 

between subjects) ANOVA revealed a significant two-way interaction between the presence of 

the relevant feature and the group, F(1, 24) = 15.08, p < 0.001, η2 = 0.385 in addition to a main 

effect of target dimension as expected, F(1, 24) = 10.26, p < 0.005, η2 = 0.300. Post-hoc paired t-

tests revealed that subjects in the color group were slower to respond to visual search trials 

overall when the relevant feature was present, t(25) =  3.142,  p < 0.005, d = 0.19. Subjects in the 

orientation group were faster to respond to visual search trials overall when the relevant feature 

was present, t(25) =  3.142,  p < 0.05, d = 0.12. These effects can be visualized in figure 4.5. 

 

 

 

 

 

 

 

 

 
Figure 4.5: Interaction plots showing reaction times to visual search trials, broken down by target 
dimension and the presence of the relevant (highly rewarded) feature for A) subjects in the color group 
and B) subjects in the orientation group. Within subjects standard error was used. N=13 color group 
subjects (A), N=13 orientation group participants (B). 
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4.3 Discussion 

The findings of this experiment are puzzling, especially in light of what I found in 

experiment 1. The learning experience, reward structure, and assessments of learning 

performance throughout both experiments were kept constant. The only changes made in this 

experiment were to the design of the visual search trial, in an attempt to create better controls 

while increasing the salience of the orientation singleton relative to the color singleton. 

Specifically, the set size of the visual search array was increased from 7x1 to 7x7, colors were 

muted, orientation angles were adjusted, and all distractor features were made to be black, 

vertical tokens.  

As a result of making one or more of these changes, the reaction time data now failed to 

produce evidence of an interaction between group (the rewarded dimension) and the target 

dimension. Rewarding color features or orientation features consistently had no impact on how 

subjects’ attention was deployed toward competing color and orientation singletons in a visual 

search array. Subjects of both groups were faster to find color singletons than orientation 

singletons, suggesting that the measures taken to increase orientation pop out were ineffective.  

If the subject’s group did have an impact on selective attention in this experiment, it was 

in unpredictable ways. The orientation group was slower overall to respond to the visual search 

trials, regardless of target dimension. Though this difference was not significant, this effect has 

been observed before; in the “high accuracy” subjects of Experiment 1 (fig. 3.9C), subjects in the 

orientation groups were also slower to respond compared to subjects in the color group. Why 

might rewarding the orientation dimension lead to slower responses than rewarding the color 

dimension? One potential explanation for this is that rewarding orientation features increases its 

bottom-up saliency (Brian A. Anderson et al., 2011), but not enough to override the color 
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singleton’s greater physical saliency as previously discussed. Factors such as reward and 

physical salience are likely to both factor into an integrated attentional salience map (Koene & 

Zhaoping, 2007), but for the orientation group, both orientation and color receive elevated 

priority, increasing competition overall for both dimensions. Indeed, this could manifest in 

increased reaction time: Mounts and Tomaselli (2005) demonstrated using a visual search task 

that responses were slowest for a target stimulus when it was accompanied by competing high-

salience stimuli, compared to when it was accompanied by low-salience stimuli. The color group 

will not have this same level of competition because increasing the saliency of the color 

dimension through reward will be congruent with the inherent physical saliency of the color 

singletons compared to the orientation singletons.  

The significant interaction between the presence of the relevant feature and group was 

also puzzling, and it is both difficult and counterintuitive to explain. Since it is a two-way 

interaction that aggregates across target dimension, it indicates that the presence of the relevant 

feature, which is in only one dimension for each subject, would equally affect reaction time 

when it serves as both a target and a distractor in search trials.  This seems surprising given the 

value-driven attentional capture literature, and calls for replication and future investigation. 

4.3.1 Reconciling Experiments 1 and 2  

How can the discrepancy in the findings between Experiments 1 and 2 be reconciled? 

One possibility that must be acknowledged is that the findings from experiment 1 were simply 

not replicable, and that there was not actually a modulation of dimensional attention towards 

color by reward. However, this conclusion cannot be made unless a direct replication of the 

original design is conducted. Another possibility is that learning about orientation features does 

not generalize to the dimension in the same way that learning about color features does. If color 
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and orientation are represented differently in the brain, then attempting to increase orientation 

pop out at the expense of color could greatly reduce ability to observe the hypothesized effect for 

color. However, assuming that reward can indeed influence attention at the dimensional level 

and that this experiment simply failed to detect it, the following are a number of proposed factors 

that explain why the findings of this experiment differed from the findings of experiment 1.  

Different subject pools 

Experiment 1 used a paid subject pool; participants were volunteers from the Princeton 

University community who expected to be compensated monetarily for their time. This made the 

administration of a monetary bonus based on point rewards a much more feasible and natural 

procedure. By contrast, Experiment 2 used a course subject pool, in which undergraduates at 

Princeton University participated in order to fulfill a course requirement. Several subjects 

revealed through verbal report at the end of the experiment that they had not been expecting to 

receive a bonus for the points they accumulated during the experiment due to these 

circumstances, even if this was mentioned in the instructions of the experiment. If subjects in this 

experiment did not correlate performance and the points they accumulated with reward, then it is 

difficult to say whether they were actually engaging in reward learning processes, for example 

involving dopamine (Berridge & Robinson, 1998), throughout the experiment. Subsequently, 

reward in the experiment may have had a weaker impact on attention. 

Difficulty of the task 

On average, subjects took around 100 ms longer to respond to visual search trials in this 

experiment (mean = 785 ms, SD = 240 ms) compared to subjects in experiment 1 (mean = 616 

ms, SD = 245 ms). It is likely that increasing the size of the visual search array made searching 

for targets slightly more difficult. However, we observed in experiment 1 that the potential effect 
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of reward on dimensional attention is very small, averaging around 30 ms. One possibility is that 

even a slight increase in the difficulty of the visual search trial could reduce the sensitivity of the 

attention probe and mask a more subtle effect on reaction times by reward. 

Location-based attentional selection 

A noteworthy difference between this experiment and experiment 1 was that in 

experiment 1, the locations of the two singletons were always fixed at 2 positions in the visual 

search array, directly flanking the center token. By contrast, in experiment 2, the locations of the 

singletons could be in a number of locations in the 7x7 array, as long as they were equidistant 

from the center. There is robust evidence in the literature that attentional selection is heavily 

dependent on location (Hopf, Boelmans, Schoenfeld, Heinze, & Luck, 2002); in the case of 

experiment 1, it is likely that subjects learned that the target singleton would always appear in 

one of two locations, and would orient their attention accordingly. 

The present hypothesis of the visual search design rests on the assumption that in the face 

of competing singletons, our selective attention will experience competition and will exhibit a 

bias based on a subtle effect of attentional priority driven by reward. Experiment 1 possibly 

creates a cleaner test of this by eliminating varying locations as a factor and relying on local 

competition between a target and its distractor (Reddy & Vanrullen, 2007). By contrast, the 

additional effort necessary to make longer-distance eye movements and to search in a much 

larger array could have overridden an effect of reward-biased competition in Experiment 2.  

Larger set size, increased competition, and crowding effects 

The use of a larger set size presents other potential problems as well. By surrounding the 

competing singletons in the visual searches with 47 other black, vertical tokens, the present 

experiment forced these singletons to compete with a much larger global onset of the whole 
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display. This is potentially overwhelming and swamps the salience of both singletons (Turatto & 

Galfano, 2000). As the hypothesis of this thesis relies only on competition of the two singletons 

with each other, increasing the global competition is largely unnecessary, if not problematic. 

Additionally, the use of a much larger and denser search array reduces visibility of the 

target and subsequently hinders search performance. This is known as the crowding effect, or 

lateral masking in psychology (Strasburger, Harvey, & Rentschler, 1991). Notably, the effect has 

been shown to be stronger for the peripheral visual field rather than foveal vision (Bouma, 1970; 

Flom, Weymouth, & Kahneman, 1963), meaning that it would have a more negative impact on a 

large search array such as the one used in the present experiment, compared to the smaller line 

array used in Experiment 1.  

Dependence of value-driven attentional capture on context 

Finally, Anderson (2015) found that value-driven attentional capture is context specific. 

He showed that the same stimulus feature does or not capture attention depending on whether it 

was associated with reward within the context it appears. In the context of the present 

experiment, the sea of black tokens may have created a drastically different visual scene that 

could have led the visual system to believe that the reward-associated dimension was appearing 

in a new context. This differed sharply from Experiment 1 where the line array was much less 

overwhelming. 

4.3.2 Lessons Learned  

This experiment demonstrated how carefully a visual search trial must be designed in 

order to probe for evidence of reward-driven attentional bias towards a dimension. 

Psychophysics is a crucial consideration when investigating visual selective attention. The 

experiment was designed to be a controlled improvement upon Experiment 1, but despite only 
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making changes to the visual search array, the trends in the data were drastically different from 

the previous experiment. There was almost no interaction at all between reward and the 

dimension of the singleton target. This could but does not necessarily suggest that the findings 

reported in Chapter 3 of this thesis were not meaningful or robust. Rather, value-driven 

attentional capture by the dimension, if it exists, is a subtle effect that could be affected or 

masked by factors such as learning, stimulus crowding, location, context and competition. Future 

designs investigating this research question or related ones should pilot and optimize various 

types of visual search arrays that take these factors into consideration.  
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Chapter 5 

General Discussion 

Some material in this chapter was adapted from Bu (2016). 

5.1 The Effect of Learning on Dimensional Attention 

I began this thesis by asking whether feature-based reward learning generalizes to value-

driven attentional capture at the level of entire feature dimensions. Dimensional attention has 

been demonstrated in behavioral paradigms and can be driven by statistical learning (Harris et 

al., 2015; Muller et al., 2003; Zhao et al., 2013). Reward is also known to teach selective 

attention, and dimensional attention plays a significant role in decision-making reinforcement 

learning paradigms (Chelazzi et al., 2013; Niv et al., 2015). In spite of these findings, the current 

research on value-driven attentional capture has largely ignored the possibility that dimensional 

attention could also be at play, and I sought to fill this gap. 

In my experiments, subjects had to learn that only features from one dimension, either 

color or orientation, predicted high reward. I then used a competing singleton visual search array 

as an attention probe in order to test whether attentional priority can be biased towards faster 

reaction times in one singleton target dimension compared to the other. I ran two variants of the 

Token Task behavioral paradigm in order to test my hypothesis, using findings from my first 

experiment to inform the second.  

Feature-based reward learning biases dimensional attention, at least for color 

In the first experiment, I found evidence of dimensional attentional capture when colors 

were consistently highly rewarded, but not when orientations were consistently highly rewarded. 

Moreover, I found that attentional capture by the high-reward feature in every game did not 
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differ significantly from attentional capture by the low-reward feature in every game, allowing 

the data to further support the dimensional attention hypothesis. Whether there is truly a 

discrepancy between how reward acts on attention towards color and orientation, or if my 

attention probe simply failed to detect the effect of reward on orientation pop out search, remains 

an open area for future investigation.  

The present experimental design also leaves one question unclear. Participants generally 

learned two separate rules over the course of the task. The first was that one feature per game 

would predict high reward. The second was that all highly rewarded features across games were 

coming from the same dimension. Which learning process drove the effect that I observed? It 

could be that learning about one feature generalizes to the whole dimension, or that learning 

about a rewarded dimension leads to attentional capture by that dimension. Future studies could 

try to disentangle these two questions, possibly by not allowing the relevant feature to switch 

every game.  

The type of learning could influence value-driven attentional capture  

Surprisingly, I found in Experiment 1 that learning performance was negatively 

correlated with an attentional bias towards the rewarded dimension. This potentially introduced a 

new variable into my experimental question: does the type of learning determine whether value-

driven attentional capture by the dimension will be observed? Specifically, does value-driven 

attentional capture by a dimension require the presence of a continuous reinforcement learning 

process, using prediction errors to imbue stimuli with varying levels of value? I propose two 

separate types of learning that may have occurred during the experiment that could explain why 

low accuracy subjects drove the effect that I observed.  
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The first type of learning is reward learning as it is classically described (Sutton & Barto, 

1998), and is more likely to have been present in the low accuracy subjects. Subjects begin each 

game not knowing which features are more highly rewarded than others. As they view more 

tokens with their associated reward and experience prediction errors, they gradually update the 

values of these tokens over time. With this type of learning, subjects may not have noticed that 

one feature in every game consistently predicted high reward, or were not confident in this rule, 

and this would thus manifest in lower prediction accuracy. 

The second type of learning is not reward learning but “rule learning.” Subjects with 

higher accuracy predictions, who are likely to have used this form of learning, may have quickly 

realized that one relevant feature in every game predicted reward. As a result, they could confirm 

within just a small number of collect trials what the highly rewarded feature was. There would be 

no prediction error for the rest of the game, and the subjects would be able to consistently guess 

close to the correct value of tokens. 

If this distinction were true and only subjects with the first type of learning showed 

evidence of value-driven attentional capture, this could provide valuable insight into how reward 

drives selective attention. Prediction error has already been shown to be able to account for some 

associative and perceptual learning (den Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Law 

& Gold, 2009); it may be that the process of learning about high reward, rather than the acquired 

value itself, creates a more robust effect on modulating visual selective attention. This 

conclusion would also be consistent with the findings reviewed in Chapter 1.4, “Mechanisms of 

Value-Driven Attention,” which directly implicated reward structures of the brain in attentional 

capture.  
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Visual search arrays are a sensitive probe for dimensional attention  

Experiment 2 showed that by just changing the search array, it is possible to get 

dramatically different results. I previously proposed a number of potential reasons for why I 

obtained different results. In short, the distractors, the visual scene, the location of the targets, 

and the eye movements necessary to perform a search are all worth considering and optimizing. 

5.2 Experimental Limitations  

In light of all we have learned, several limitations must be acknowledged when 

considering the findings and conclusions from the present experiments.  

Statistics 

A number of conclusions in this investigation relied on ANOVA. While this is generally 

a powerful test for investigating the contribution of categorical variables to a dependent variable, 

a number of continuous variables were considered as factors in thesis as well. For example, I 

examined how prediction accuracy and the time course of the experiment may have impacted 

subject reaction time. The prediction accuracy analysis was particularly critical and relied on 

arbitrarily splitting the subjects into three separate bins for the ANOVA. While a correlation 

analysis was performed, it only involved two variables. A reasonable future step with the present 

data would be to build a linear regression model accounting for all potential variables such as 

prediction accuracy, time, group, target dimension, and others, to better account for continuous 

variables and to create a more unified predictor of subject reaction times.  

This investigation also relied heavily on a large number of predictions and statistical 

tests, ranging from three-way and two-way interactions to main effects and t-tests. As a result, I 

uncovered a lot of surprising findings, including the two-way interaction in the breakdown of 

reaction time by relevant feature for Experiment 2, and the relationship between prediction 
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accuracy and attentional capture effect. However, as the alpha threshold would tell us, if I ran 

twenty comparisons and all of them were significant, one of them is likely to be spurious even if 

it falls beneath the significance threshold. Corrections for multiple comparisons are one way to 

address this potential limitation.  

Finally, I aimed for around thirty subjects after filtering for performance in each 

experiment. However, this number was arbitrarily chosen based on the subject number used in a 

previous and relevant study. Given how small the effect of reward on dimensional attention 

might be, I may not have had enough power for my statistical analyses, particularly when I 

proceeded to further break trials down by accuracy, game, and other factors. Power analyses 

could inform what a target subject number should be in the future.  

Color versus Orientation 

My hypothesis depended on a critical two-way interaction between group and target 

dimension. This prediction implicitly assumed that the effect of reward on dimensional attention 

would be similar for both color and orientation. However, evidence is accumulating that this is 

actually not the case. Shin and Ma (2017) showed that subjects are able to retrieve irrelevant 

color features from visual working memory at a much higher rate of precision than irrelevant 

orientation features. This suggests that color is overall a more memorable irrelevant feature, and 

is directly in line with my finding in Experiment 1 that the orientation group showed no 

difference in reaction time between orientation and color singletons. It is likely that in spite of 

orientation being rewarding, color was still salient and memorable to the orientation group.  

Moreover, to what extent color and orientation are represented asymmetrically in the visual 

cortices is still an active area of debate (Girelli & Luck, 1988; Tanigawa, Lu, & Roe, 2010); for 

example, Brouwer and Heeger (2013) argue that color is clustered categorically in the brain 
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whereas orientation is not. Given the landscape of this literature, the use of color and orientation 

as comparable dimensions in the experiment may lead to different and unpredictable effects that 

limit the data, a potential example being the analysis by presence of relevant feature in 

Experiment 2. 

The use of color as a pop out dimension in this task may be particularly problematic. 

There is strong evidence that luminance is a specific aspect of color that receives attentional 

priority (Proulx & Egeth, 2008). Color and luminance have even been shown to have dissociable 

effects on attentional selection (Morrone, Denti, Spinelli, Moruzzi, & Ardeatina, 2002). In the 

experiments reported in this thesis, I did not control for the relative luminance of the colors that I 

used. This could explain why some colors may have popped out more than others, and why color 

overall may have been more salient than orientation.  

Reward System 

The reward system in the present experiments was not ideal. The Token Task rewarded 

subjects using a point system. This is somewhat far removed from actual reward, and is likely to 

be characterized as a tertiary reinforcer: it predicts money which subsequently predicts more 

direct rewards (Seward, 1950). Some studies in the attentional capture literature use a cash 

reward system  (e.g., 1 cent for low reward and 5 cents for high reward), but this type of design 

was not practical for the present experiments due to the large number of trials in one run. 

Moreover, though the points were converted to a cash bonus at the end, subjects usually 

ended up with as many as 14,000 points due to the large number of trials. Thus, the points may 

have been viewed as a less meaningful reward for subjects. Moreover, the dichotomy between 10 

points for low reward and 40 points for high reward might confound the effects of reward 

learning with the effect of simply seeing a rare occurrence (+40). These limitations all depend on 
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how token value is learned and represented in each subjects’ brain. Potential solutions would be 

to make the point distribution continuous (for example, have high reward be normally distributed 

around 40) or to redesign the experiment to convert to a cash reward system.  

Reward History and Feature-Based Value-Driven Attentional Capture 

Reward history and feature-based value-driven attentional capture are two factors that 

could potentially confound my conclusion about attentional capture at the dimensional level. For 

the pop-out singleton features in the visual search trials, I chose to use only features that were 

associated with varying rewards during the collect trials. This had two advantages: it allowed me 

to make a direct comparison of attentional capture by high-value features compared to low-value 

features, and it provided a test of my hypothesis while increasing my chances of observing the 

hypothesized effect.  

The disadvantages of this choice must also be acknowledged. Feature-based value-driven 

attentional capture, to summarize, is when a feature associated with high reward (e.g., red) 

receives more attentional priority later. This phenomenon is well established and provides no 

evidence of generalization to dimensional attention. Given my design, if feature-based value-

driven attentional capture occurred for the tokens with the relevant feature present in the visual 

search array, then they could drive and confound the effect I observed of dimensional attention 

bias for the color group. Even though a comparison of reaction times for search targets with and 

without the relevant feature revealed no significant differences, it is possible that feature-based 

value-driven attentional capture was still present.  

Moreover, value-driven attentional capture is an effect that has been shown to persist 

long after the high-reward stimulus stops being rewarded (Failing & Theeuwes, 2014; Theeuwes 

& Belopolsky, 2012). It can observed days or even months after experimental learning first took 
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place (Anderson & Yantis, 2013). In the present study, each of the three features in the relevant 

dimension of the collect trial tokens take turns becoming the relevant feature twice altogether per 

experiment. These are the same features that are used in the visual search trials. It is possible that 

once a feature becomes the relevant feature even once, its capture effect on attention will persist 

even when it becomes a low reward feature in the following game. This persistence of value-

driven attentional capture could potentially explain the interaction we observed in Experiment 1 

between group and target dimension, thus confounding our explanation that attentional capture 

by the dimension led to the interaction. 

5.3 Future Directions  

Replicating some of the findings in this thesis would be illuminating in itself, but in order 

to move forward, some of the aforementioned limitations must be addressed. I propose the 

following three emphases.  

Manipulation of learning 

One of the most robust findings from experiment 1 was that prediction accuracy was 

negatively correlated with the attentional capture effect, and that low accuracy subjects were 

largely responsible for the potential effect of dimensional attentional capture that I observed. 

This is intriguing and deserving of further exploration. A future study could possibly reduce the 

probabilistic reward feedback in the experiment to, for example, 75%/25% to make the learning 

task more difficult and to increase prediction error for all subjects. If we can again confirm the 

finding that more prediction error in learning is responsible for driving dimensional attention, 

this could have vast implications for the mechanisms by which perceptual learning and 

modulation of visual selective attention occur.  

 



VALUE-DRIVEN ATTENTIONAL CAPTURE                                                                         69 

Optimization of the visual search array 

A main takeaway from Experiment 2 is that the design of the visual search array is 

sensitive and crucial for probing dimensional attention. Factors such as size, crowding, and 

location of singleton targets are all worth considering and optimizing. If color is used as a 

dimension, then luminance must be taken into account. Li et al. (2014) found that color is 

organized along the framework of the HSL color space in V4; an ideal control then would be to 

choose colors for a new experiment that are isoluminant as determined by the HSL color space.  

A stronger test of the hypothesis  

Reward history and feature-based value-driven attentional capture were identified as 

potential confounds for the present study. A stronger test of the hypothesis that eliminates these 

confounds would be to use singletons in the visual search array with new features that subjects 

have never seen before. If these new features still capture attention without ever being associated 

with reward, it would provide robust evidence in support of attentional capture by the dimension. 

Despite the findings reported in this paper, perhaps the greatest lesson to be learned is 

that there is still so much more to be done to understand how value-driven attentional capture 

generalizes into a multidimensional world. 
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Appendix A 

Post-Study Questionnaire, administered to all subjects following experiments 1 and 2.  

 

Debriefing questionnaire 

 
Thank you for participating in the experiment. We would be grateful if you could answer 
the following questions. 
 
 
What did you think this experiment was about?  
 
 
 
Did you notice any patterns?  
 
 
 
Did you notice that a particular characteristic was more likely to indicate whether tokens 
were worth more points? If so, which?  
 
 
 
Rate (from 1 to 5) how interesting you found the experiment: 
Very boring  1 2 3 4 5  Very interesting 
 
Rate (from 1 to 5) how difficult you found the experiment: 
Very easy  1 2 3 4 5  Very difficult 
 
How much were you motivated to make correct predictions? 
Not at all  1 2 3 4 5  Very much 
 
What did you think of the instructions to the experiment? 
Not clear  1 2 3 4 5  Very clear 
 
 
 
 
 

Thank you! 
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