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Abstract

How does mood influence one’s preference for risk through experiential learning? Mood
has been shown to color various aspects of cognition, including the processes of learning and
decision-making. Previouswork has revealed that these very processes are also highly sensitive
to risk – the variance associated with an outcome. While many studies have investigated the
relationship between mood and risk-taking tendencies, this relationship in the context of
trial-and-error learning has been underexplored. Drawing from theoretical and experimental
findings, wepropose thatmood affects risk-sensitive learning throughnonlinear effects on the
learning of probabilistic stimuli. To test this hypothesis, we recruited and tested 150 subjects
on Amazon Mechanical Turk using a risk-sensitive reinforcement learning task containing
experimental mood inductions (happy, sad, or neutral). We addressed the following research
aims: (1) to examine mood’s effects on the learning of deterministic vs. probabilistic stimuli,
(2) to compare distinct computational cognitive models of risk-sensitive learning, and (3) to
tease out the mechanism by which mood drives risk preferences within the framework of
the best-fitting model. Our behavioral results demonstrate a significant link between mood
and risk attitudes, with a happy induction, relative to a sad induction, predicting a greater
preference for risk. While the specific mechanism by which moodmodulates risk preference
is unclear, our results suggest the possibility of a more nuanced, dynamic model with mood
in interaction with asymmetric learning.
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1
Introduction

Imagine the following scenario. You are a frequent visitor to a certain restaurant,

and you are deciding between two options. You know that the fish taco is delicious... but

you know that sometimes it is bad. On the other hand, the beef taco is pretty good every

time – not bad, not delicious – just reliably good.
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Would you take the bet or would you play it safe? “It depends,’’ you say. And it certainly

does. Navigating an uncertain world, we make countless choices every day, learning from

trial-and-error along the way. We have good days and bad days, and there is not a single mo-

ment during which we do not experience mood.

So, back to the scenario. Would you bemore likely to order the fish taco on a good day or a

bad day? We set forth to test this out, specifically with the following question in mind: how

does mood influence our attitudes toward risk?

Through behavioral analyses and computationalmodeling, we sought to uncover the neu-

rocomputational processes involved in mood-driven risky decision-making.

1.1 Risk-Sensitive Reinforcement Learning

Risky decision-making has been a topic of great interest in the fields of neuroscience57, be-

havioral economics20, and psychology51. From financial investors58 to reckless teenagers68

to patients with bipolar disorder56, risk-takers abound in every corner of society. Within our-

selves, the holistic influence of cognitive, emotional, and hormonal factors have been shown

to modulate decision-making under risk38, defined as the variance associated with an out-

come.

The beef taco is always pretty good, with zero variance; its outcome is deterministic. The

fish taco, on the other hand, is risky; its outcome is probabilistic.

Risk preference is defined as an individual’s general susceptibility to or avoidance of risky

prospects. In the hypothetical scenario above, a risk-seeking individual might prefer the fish

taco, while a risk-averse individual might prefer the beef taco.

While aspects of risky behavior have been well explored in experimental contexts where
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information about risk is explicitly provided17,29,36,54, they have been less explored in the con-

text of trial-and-error learning where the probability of an outcome is uncertain28,30. In the

restaurant scenario, you do not know the exact probability with which the fish taco might

be delicious, and this is true for most other instances in the real world where we are often

not provided such knowledge. It is mostly through experience that we learn about differ-

ent outcomes and their variance25. Experiential decision-making has been shown to depend

on distinct cognitive processes from those evoked by explicit knowledge, suggesting a high

degree of context-dependence for the emergence of risk attitudes32.

Experiential learning and decision-making is the essence of reinforcement learning (RL),

a field of machine learning that has strongly influenced neuroscience45. It is defined as an

adaptive process in which an agent utilizes its previous experiences to improve the outcomes

of future choices in an uncertain environment66. This framework has been instrumental in

advancing our understanding of human learning and decision-making10,45,13,35, all the more

popular for its neurobiological basis. Dopaminergic neurons in the midbrain are believed

to encode the hallmark of the RL model, called the prediction error, by firing more actively

frompositive prediction errors (due to better-than-expected outcomes) and less actively from

negative prediction errors (due to less-than-expected outcomes)62.

In a study by Niv (2012), the same neural correlates for RL were also found to be sensi-

tive to experienced risk, suggesting that risk sensitivity plays a crucial role in learning46. Niv

(2012) considered two main ways by which such risk sensitivity could result: nonlinear sub-

jective utilities for uncertain outcomes6 and nonlinear effects on learning for uncertain out-

comes43. In a simple reinforcement learning framework66, subjects use past experience to

learn the values of different stimuli based on prediction errors (discrepancies between ex-
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pected and actual outcomes). While this model has proven successful in explaining a wide

range of behavioral and neural data, it cannot adequately model risk sensitivity because it fo-

cuses on estimating the mean outcome (and does not track variance). Particularly for cases

in which there is no highest value option, the model’s linear treatment of outcome valua-

tion and learning prevents it from capturing risk attitudes. On the other hand, risk-sensitive

models like the subjective utility model6 and the asymmetric learning model43 are able to

capture risk preferences through their nonlinear effects on the processes of reinforcement

learning. Niv (2012) found the asymmetric learning model, which treats unexpected posi-

tive outcomes differently from unexpected negative outcomes, to best capture risk-sensitive

behavior (continued in Chapter 2).

1.2 Mood-Sensitive Reinforcement Learning

As humans, we are innately sensitive to the pervasive effects of mood, defined as a state of

affect that typically lasts longer than emotions16. While good and bad outcomes have been

known to affect mood42,64, it was unclear whether mood also affected outcome valuations.

Importantly, a study by Eldar &Niv (2015) foundRL to be sensitive tomood15. Ultimately,

interactions betweenmood and cognition are bidirectional; mood affects cognitive processes

(like perception, attention,memory, and executive functions)67 and these sameprocesses also

affect our mood37.

The important relationship between mood and cognition is further spotlighted when we

consider how things could gowrong; theoreticalmodeling showed thatmood instabilitymay

result from a positive-feedback effect between mood and cognition15,4, resulting in distur-

bances in both mood and cognition.
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Mood is commonly thought to constitute abstract, subjective feelings that are difficult to

grasp, even descriptively21,52. However, computational modeling has suggested that mood,

as well as other subjective states, could be captured more objectively. Specifically, mood has

been proposed as a “representation of momentum’’ – the cumulative impact of prediction

errors, which then biases both the perception and learning of outcomes16. Emotional states

were found to essentially feed back onto the perception of outcomes, biasing valuations in a

mood-driven way.

1.3 Mood and Risky Behavior

How exactly does mood affect risky behavior?

A large bulk of the literature points to positive moods being linked to higher risk-taking

tendencies24 and negative moods being linked to lower risk-taking tendencies77. When we

consider the manic episode (pathologically elevated mood) of bipolar disorder49, increased

risk-taking is even a diagnostic criterion for a manic episode1. One of the most prominent

theories explaining these effects is the Affect InfusionModel (AIM)18, which proposed that

a positive mood would make individuals more risk-seeking because they would rely more

on positive cues during the judgment process. In the hypothetical restaurant scenario, an

elevatedmoodmaymake youmore likely to order the fish taco by focusing your thoughts on

memories of when the fish taco was delicious (and less on memories of the bad meals).

Yet other studies have found the opposite results, with positive mood states reducing real-

world risk-taking behavior33 and negative mood states contributing to greater risk-aversion

in everyday decision-making27. A study evaluating age-related differences driving mood’s in-

fluence on risk-taking tendencies found an asymmetrical effect of positive and negativemood
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on risk preference9. The Mood Maintenance Hypothesis (MMH)31, predicts the opposite

effect from AIM. According to this theory, for people in a positive mood, there is a greater

desire to maintain their state of happiness. As a result, a positive mood is predicted to make

people more cautious, and ultimately more risk-averse. If you are in a great mood, perhaps

you would be more inclined to stick with the beef taco just in case the fish taco turns out to

be bad. If you are having a bad day, maybe you would go ahead and order the fish taco, since

it may make your day better.

As the literature shows, the strong relationship between mood and risk preference is un-

deniable, but conflicting results suggest a strong dependence on context. State-level vs. trait-

level effects, experimental vs. real-world settings, normal vs. pathological mood states, fi-

nancial vs. health-related risks, and risk for gains vs. losses are just a few examples of how

differential risk attitudes may emerge as a function of not only mood, but also important

mediating variables.

1.4 Mood-Driven Risk-Sensitive Reinforcement Learning

The studies by Niv (2012) and Eldar & Niv (2015) showed that our learning and decision-

making processes are sensitive to both risk andmood. Taken together, these two studies pro-

vide potential evidence for amood-driven risk-sensitiveRLprocess thatmay result in distinct

attitudes toward risk.

In our study, we contextualize our focus onmood-driven risk-taking under the framework

of reinforcement learning. The interaction betweenmood and risk attitudes in the context of

experiential learning remains unclear; amajor objective of this study is to elucidate if and how

mood modulates risk preferences in this novel framework. If mood is shown to modulate
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risk attitudes during trial-and-error learning, computational modeling may clarify how. The

asymmetric learning model and the utility model represent distinct mechanisms by which

choices within a risk-sensitive learning paradigm could be modeled. They suggest the fol-

lowing questions: what mechanism accounts for changes in risk attitudes as a function of

mood? Do certainmood states directly modify the curvature of one’s subjective utility func-

tion, which in turn modifies one’s propensity to make risky decisions, or do they instead

directly exacerbate asymmetry in learning for unexpected good vs. bad outcomes, which in

turn modifies one’s risk attitudes?

To test these questions, we designed an experiment containing a variant of the choice task

used byNiv (2012). The biggest difference was that we experimentally manipulatedmood as

subjects engaged in a risk-sensitive RL task. Our research aims can be summarized as follows:

(1) to examinemood’s effects on the learning of deterministic vs. probabilistic stimuli, (2) to

compare distinct computational cognitive models of risk-sensitive learning, and (3) to tease

out the mechanism by whichmood drives risk preferences within the framework of the best-

fitting model.

1.5 Hypotheses and Predictions

(1) We hypothesized mood to distinctly affect the learning and decision-making processes

for probabilistic outcomes, and not for deterministic outcomes. Based on the bulk of litera-

ture implicating positive mood in higher risk-taking tendencies, we predicted a happy mood

induction to increase preferences for risk and a sad mood induction to decrease preferences

for risk. (2) Given the computational modeling results by Niv (2012) as well as the results

of a small pilot experiment, we hypothesized the asymmetric learning model to best capture
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risk-sensitive behavior (relative to other candidate models). (3) Assuming the asymmetric

learning model to be the best-fitting model, we hypothesized that mood would affect risk

preferences by modulating the learning, rather than the utility, of the probabilistic stimulus

(specifically, exacerbating the nonlinear affects of learning to drive distinct risk attitudes).
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All life is an experiment. The more experiments you make

the better.

RalphWaldo Emerson

2
Methods

2.1 Experimental Design

2.1.1 Participants

ThroughAmazonMechanical Turk (MTurk), 150 individuals (eighty-fourmale; age, 20-71;

mean, 39 years) from across the United States participated in our experiment. MTurk is an

online crowdsourcing platform where participants get paid to complete web-based tasks for
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money11. In order to control for the testing environment as much as possible, we imposed a

series of measures including audio checks and comprehension checks.

Participantswere excluded fromanalysis if they failed to learn adequately during the choice

task (overall proportion correct on deterministic trials was less than a binomial probability of

0.59), failed to respond correctly to at least four out of six comprehension checks, or failed to

choose a stimulus on every trial of the task. In total, thirteen participants met the exclusion

criteria, leaving 137 subjects for analysis. Prior to this study, an additional 20 participants

were tested in a shortened pilot study containing just the choice task. All participants were

compensated for their timewith a base payment of $4.50 and an additional payment of up to

$1.50 based on performance. Study procedures were approved by the Princeton University

Institutional Review Board.

2.2 Overview

To explore the interactions between mood and risk preference during learning, we utilized a

sequential trial-and-error choice task consisting of stimuli differing in outcome variance. Our

task was a modified version of the task used by Niv (2012)46.

The choice task was framed as an Orchard Harvesting Game in which subjects were mo-

tivated (by extra financial gain) to maximize reward by harvesting as many apples as possible.

Importantly, subjects were not told the values or outcome probabilities of each orchard, and

instead had to learn fromexperience. Throughout the task, subjectswere shown shortmood-

inducing video clips, and various self-report probes were used to assess mood changes as well

as subjective valuations of stimuli. A questionnaire was given to subjects (before or after

the choice task, with random assignment) to extract individual-difference measures (state-
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Figure 2.1: Schema c of Experiment. A er consent was obtained, the MTurk study started with a display of instruc ons.
The choice task contained three blocks, each preceded by mood-inducing videos. Before and a er each mood induc on,
self-reported measures of mood were collected. A er the choice task, goodness ra ngs of the experimental s muli were
collected. A ques onnaire was given to subjects before or a er the choice task, with random assignment.

level positive and negative affect and trait-level manic and depressive tendencies). Figure 2.1

shows the overall schematic of the study.

2.3 Risk-Sensitive Choice Task

Abinary choice taskwas presented inwhich the goalwas to harvest asmany apples as possible.

Subjectswere familiarizedwith the task throughon-screen instructions: (1)On each trial, you

will be asked to choose one of two orchards to harvest. Each orchard is represented by a unique

flag. (2) After you harvest an orchard, you will receive either ZERO apples, ONE apple, or

TWO apples. (3) Some orchards are better than others, in the sense that they will give you more

apples when you harvest them. Your goal is to harvest asmany apples as you can, and your bonus

payment for this HIT will reflect the number of apples that you harvest. (4) Lastly, sometimes

you will see only a single orchard available to choose. When this happens, please choose the single

orchard. Subjects were required to pass an instructions comprehension check before moving on to

the task.
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Since subjects were told in advance that they could receive either zero, one, or two apples,

the expected value for any stimulus before experience was assumed to be 1 apple. Thus, in

our computational modeling, we set the expected value of each stimulus to 1 since we had

provided this a priori knowledge.

There were four possible stimuli (orchards) in the choice task: S1, S2, S3, and S4 (Figure

2.2). S1, S2, and S3were the deterministic stimuli, while S4was the probabilistic stimulus. S1

always produced zero apples (m=0, p=100%), S2 always produced one apple (m=1, p=100%),

S3 always produced two apples (m=2, p=100%), and S4 produced either zero apples or two

apples, by a 50/50 payout (m=2, p=50%). Given that S2 and S4 predicted rewards of equal

meanbut different variance, these two stimuliwere ofmost interest. Theprobabilistic reward

scheme was designed to capture risk preference throughout the task with presentations of

this particular stimulus pair. The stimulus-value pairings were randomized for each subject

to control for possible differences arising from the particular pattern used for the risky and

safe stimuli.

Two types of trials were presented, intermixed randomly: free trials and forced trials. In

free trials, subjects were shown two stimuli on the screen and were instructed to choose one

(by pressing the left or right keyboard arrow). In forced trials, subjects were shown only one

stimulus andwere instructed to choose it. Following each choice (whether free or forced), the

screen displayed the number of apples the chosen stimulus had given. The forced trials were

included to make sure subjects adequately sampled each stimulus (so as to prevent choice

bias). Thiswas important for computationalmodeling, since biased sampling could allow for

risk aversion to arise implicitly from even the most simple, risk-neutral RL model47. Thus,

this was an essential way of mitigating potential biases that could result from an interaction

12



between choice and learning. Additionally, givenour focus on intersubject differences, forced

exploration allowed for more accurate comparisons of risk attitudes, since all subjects would

have had comparable exposures to the stimuli.

The task consisted of 156 trials (three blocks of 52 trials each, with mood-inducing videos

in between). The task continued sequentially from one block to the next, with no change in

any of the experimental conditions (stimuli continued to have the same values and probabili-

ties and no new stimuli were presented). The trials comprised of (1) 36 “risk” trials involving

a choice between S2 (m=1, p=100%) and S4 (m=2, p=50%); (2) 84 “test” trials involving

choices containing a stimulus with a higher expected value (correct stimulus); and (3) 36

forced trials involving each of the stimuli. The proportion of times a subject chose S4 across

all “risk” trials was used as the behavioralmeasure of risk preference. The proportion of times

a subject chose the correct stimulus across all “test” trials was used to assess overall learning

(objective performance). Figure 2.2 displays an example sequence of trials and choices.

2.4 Mood Inductions

With random assignment, participants either received sad, neutral, or happy mood induc-

tions. Themood inductions were in the form of short 90-secondmovie clips; example scenes

are shown in Figure 2.3. The neutral and sad videos were taken from a validated film set for

the induction of basic emotions26 and a database of emotion-eliciting films59. One of the

happy videos (involving an Olympic skater) was taken from a study on positive emotional

disturbance22. The other two happy videos were validated in other experiments in the Niv

Laboratory at Princeton University. Each subject was shown three movie clips total from

the same video condition (sad, neutral, or happy). Each block was preceded by one of these

13



Certain stimuli Risky stimulus

S1

S2

S3

S4

outcome next trialchoicestimuli

outcome next trialchoicestimuli

outcome next trialchoicestimuli

outcome next trialchoicestimuli

Example Sequence

Stimuli

Figure 2.2: S muli & Example Sequence of Choice Task. There were four possible s muli (orchards). S1, S2, and S3 were
the determinis c s muli, while S4 was the probabilis c s mulus. S1 always produced zero apples, S2 always produced
one apple, S3 always produced two apples, and S4 produced either zero apples (50% of the me) or two apples (50% of
the me). Subjects were not told this informa on (they were only told before-hand that they could receive either zero,
one, or two apples and that some orchards produce more apples than others). The reinforcement learning choice task was
designed to assess the effects of mood on learning and risk-sensi ve choice behavior. In each trial, one or two orchards
differing in color and design were presented on the le or right side of the screen. Subjects were instructed to choose one
of the orchards on each trial (by pressing the le or right keyboard arrow). During forced trials, subjects were instructed
to choose the single orchard that appeared on the screen. Each choice was followed by an image indica ng the number
of apples received. A sample trial/choice sequence is shown.
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Sad Videos

Neutral Videos

Happy Videos

Figure 2.3: Mood-Inducing Videos and Self-Reported Mood Scales. Each subject was shown three movie clips total from
the same video condi on. The top, middle, and bo om rows display scenes from the sad, neutral, and happy video condi-
ons, respec vely. Before and a er watching each 90-second video clip, subjects were prompted to report their valence

and arousal. Valence and arousal were reported a total of six mes each throughout the task, once before and a er each
of the three mood induc ons.

three clips. To test whether subjects had paid attention to the videos, a series of image and

comprehension checks followed each clip.

2.5 Self-ReportedMeasures

2.5.1 Mood Scales

A circumplex model of affect proposes that all affective states arise from cognitive interpre-

tations of neural sensations that are thought to result from two independent neurophysio-

logical systems53. Specific emotions are thought to arise out of patterns of activation within

these two systems, together with cognitive interpretations. While the valence dimension cap-

tures hedonic tone (the degree to which an emotion is pleasant or unpleasant), the arousal

dimension describes the degree to which an emotion is associated with high or low energy.

We asked subjects to rate their valence and their arousal on two separate scales, before and

after each mood induction, in order to capture both dimensions of affect (Figure 2.3). We
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collected these self-reports to confirm the efficacy of the mood inductions and to see how

they affected ratings of valence and arousal. Given important interactions between valence

and arousal in affecting cognition, it was important to probe for both dimensions of mood

to examine the videos’ effects.

Different subjects may have interpreted levels of the mood scales differently, so to account

for individual variability in the use of the mood scales, we z-scored all mood measurements

by subject and then averaged the difference between post-induction and pre-induction re-

ports to derive estimates for mood change. This was done for both valence and arousal be-

fore adding them to regressions. When calculating correlations, however, we did not z-score

the mood ratings, since doing so would not have allowed us to compare across subjects. As

a general note, we used Spearman’s rank correlations, which are non-parametric and non-

assuming of normality; given the non-normal distributions of our data, this method was ap-

propriate.

2.5.2 Goodness Scales

Subjects were asked to provide their hedonic subjective valuations of each stimulus on a con-

tinuous scale of goodness (Figure 2.4). We included these probes to compare self-reports

with behavioral findings. The difference between a subject’s goodness ratings for the risky

stimulus (S4) and safe stimulus (S2) provide ameasure of risk preference. Wewere interested

in visualizing the correlation between the self-reported and behavioral measures of risk pref-

erence to see the extent to which the conscious subjective report aligned with behavior. A

high correlation might indicate greater awareness of one’s risk preference and may suggest

higher reliability in using self-reported goodness measurements to derive measures of true
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risk attitudes.

How good was this orchard in the context of this task?

Click directly on the slider to enter your response.

The worst 
orchard

About 
average

The best 
orchard

How good was this orchard in the context of this task?

Click directly on the slider to enter your response.

The worst 
orchard

About 
average

The best 
orchard

Figure 2.4: Goodness Scales. A er the choice task, subjects were asked to rate the goodness of each of the s muli on
a con nuous scale ranging from ”The worse orchard” to ”About average” to ”The best orchard”. This figure depicts the
ra ngs for our s muli of most interest. The normalized difference between a subject’s goodness ra ngs for the risky
s mulus (S4) and safe s mulus (S2) provide a measure of risk preference. In the sample ra ngs above, the hypothe cal
subject’s self-reports indicate a higher preference for risk, since a higher ra ng was given for the risky s mulus (S4).

2.6 Questionnaire

A questionnaire was presented to subjects at the beginning or end of the experiment, with

random assignment. Questions were taken from the Positive and Negative Affect Schedule

(PANAS)71 for measures of state-level positive affect and state-level negative affect and the

7 Up 7 Down Inventory76 for measures of trait-level manic tendency and trait-level depres-

sive tendency. PANAS is comprised of two 10-item mood scales consisting of words that

describe different feelings and emotions. Subjects ranked each word on a five-point scale

ranging fromNot At All to Extremely. For both positive affect and negative affect, a higher

score represents a higher level of affect.71. The 7Up 7Down inventory is a brief, 14-item ver-

sion of the General Behavior Inventory that is specifically designed to identify dimensions of

mania and depression. Higher scores represent higher tendencies. Mania and depression

characterize symptoms of bipolar disorder, and given our study’s focus on mood and risky

decision-making (bothofwhich are strongly implicated inbipolar disorder), these individual-
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difference measures were of particular interest.

2.7 Approaches to ComputationalModeling

Wewere interested infinding thebest-fittingmodel of trial-by-trial choices inour risk-sensitive

RL task. Basedon thefindings byNiv (2012), whose studyhadused a very similar choice task,

we decided to narrow our focus on the two risk-sensitive models that were explored in this

study: utility model and asymmetric learningmodel. To compare against a baselinemodel as

well as amore complexmodel, we compared fourmodels in total: standardRLmodel, utility

model, asymmetric learning model, and super model (containing both utility and asymmet-

ric learning mechanisms).

2.7.1 Standard RLModel

Simple RL66 offers a general framework for modeling sequential decisions arising from trial

and error. Subjects use past experience to learn the values of different stimuli based on dis-

crepancies between expected and actual outcomes. After an outcome (reward) is received

(rt), the expected value of the associated stimulus k is updated (at timepoint t+ 1):

Vk
t+1 = Vk

t + η(rt − Vk
t )

The prediction error represents the difference between the actual and expected rewards

(rt − Vk
t ). The learning rate, η, takes a value between 0 and 1 and captures the extent to

which the prediction error updates the expected value of the stimulus. The expected value of

each stimulus (for all models) was initialized to 1, since subjects had been told before starting
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the task that orchards could produce either zero, one, or two apples. The model assumes

that subjects use stimulus outcomes to guide their decisions, while occasionally exploring

by choosing lower-value options. The softmax choice rule has these properties. It selects

stimulus kwith probability:

pkt =
exp(βVk

t )∑K
i=1 exp(βVi

t)

β is the inverse temperature parameter that controls the level of stochasticity in themodel’s

choices. β = 0 represents completely random responding while β = ∞ represents complete

deterministic responding to choose the highest value option.

The parameters that define the standard RLmodel are represented by:

θStandard = (η, β)

2.7.2 UtilityModel

Most studies that have derived risk-sensitive RL methods have focused on various elabora-

tions to the subjective utility framework63. The utility model is an elaboration of the simple

RLmodel that maps objective outcomes to subjective utilities through a nonlinear transfor-

mation6. The exponential utility framework accounts for the fact that different individuals

hold differing degrees of risk aversion; the shape of the utility curve is dependent on the pa-

rameter α. A concave curve represents risk-averse tendencies (positive α), a convex curve rep-

resents risk-seeking tendencies (negative α), and a linear function represents risk neutrality

(α = 0).

If α ̸= 0:

U(rt) =
(1− e−αrt)

α
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The same rule from the standard RLmodel is then used to update the expected value:

Vk
t+1 = Vk

t + η(U(rt)− Vk
t )

The parameters that define the utility model are represented by:

θUtility = (η, β, α)

This model does not account for variance, at least explicitly. Instead, it is implicitly en-

coded by subjective utilities. For example, a risk-averse individual is expected to have a higher

subjective utility for a safe stimulus relative to a risky stimulus (evenwhen both have the same

mean payoff), arising from a preference for certainty at the expense of a possibly better out-

come. Thus, this model’s non-linear treatment of uncertain outcomes is what allows it to

affect the learning of probabilistic stimuli more than deterministic stimuli.

2.7.3 Asymmetric LearningModel

Unlike the standard RL and utility models, the asymmetric learning model explicitly ac-

counts for variance to capture risk sensitivity. As another variant of the simple RL frame-

work, the only difference is that there are two learning rates (ηpos and ηneg) – one for positive

prediction errors and one for negative prediction errors.

Vk
t+1 = Vk

t + ηpos(rt − Vk
t )

Vk
t+1 = Vk

t + ηneg(rt − Vk
t )
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The parameters that define the asymmetric learning model are represented by:

θAsymmetric = (ηpos, ηneg, β)

While the learning rate in the standard RL model is indiscriminate of feedback valence,

differential treatment for unexpected good and bad outcomes allows the asymmetric learning

model to penalize or favor outcome variance. This allows for nonlinear effects on learning

for uncertain outcomes. If the learning rate for negative prediction errors is higher than the

learning rate for positive prediction errors, the expected value of a risky stimulus would be

driven down, and themodelwould give rise to risk aversion. Similarly, risk-seeking tendencies

could result from a relatively higher learning rate for positive prediction errors compared to

negativeprediction errors. Through asymmetric learning, themodel is able todistinctly affect

the learning of probabilistic stimuli46.

As our final model, we tested a combinedmodel called the super model that involves both

mechanisms of the utility and asymmetric models. The risk-sensitive parameters of the su-

per model include η+ and η− for asymmetric learning, along with α for the subjective utility

transformation.

θSuper = (η+, η−, α, β)

Prior to data collection, we performed simulations with the first three models to generate

expected patterns of trial-by-trial choices for hypothetical subjects categorized as risk-seeking

and risk-averse. These simulations allowed us to verify that the models, under various pa-

rameter conditions, produced qualitatively and quantitatively distinguishable patterns of be-

havior that were compatible with our research questions. Afterwards, we conducted a pilot
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experiment with 20 subjects containing just the choice task. Model fitting and parameter

estimation using the pilot data allowed us to verify the robustness of our experimental set-

up. All subjects were able to adequately learn the values of the deterministic stimuli, and our

choice task allowed us to distinguish between models under optimal parameter conditions.

The results also provided potential evidence supporting the asymmetric learning model40.

2.7.4 Maximum-Likelihood Approach toModel Fitting

In themaximum likelihood approach tomodel fitting, the goal is to find the parameter values

of the model (θ̂
MLE
m ) that maximize the likelihood of the observed data.

We optimizedmodel parameters bymaximizing the trial-by-trial log likelihoods of the data

through the entire task (156 trials), given different settings of the model parameters. This

is equivalent to minimizing the negative log likelihood (the loss) of the data. We used the

Python SciPy70 function optimize.minimize with method=‘TNC’. This function performs

bound-constrained minimization72 that uses a truncated Newton algorithm44 to minimize

a function with variables subject to bounds. We also fit separate models to each block (52

trials). Themodel-fitting procedurewas the same, except themodelwas fit to 52 trials instead

of 156.

LL =
T∑
t=1

logp(choicet|θm)

where p is the model’s probability of the specific choicet given the parameters of the model

and the information up to that choice.

The following represents the optimal parameters for a specific model:

θ̂
MLE
m = θmargmaxLL

22



Model likelihoods were based on assigning probabilities to the 156 trials (or 52 trials) for

each subject, according to the softmax function. Given our focus on intersubject differences,

we fit the parameters for each subject individually rather than pooling data across subjects46.

Given the multiplicative interaction between learning rates and softmax inverse tempera-

tures in the model35, we imposed parameter constraints to produce realistic parameter fits.

We constrained learning rates to the range 0 ≤ η ≤ 1 . The inverse temperature softmax

parameter was constrained to the range 0≤ β ≤ 40. The utility parameter was constrained

to the range -5≤ α ≤ 5. Initial guesses for optimization were determined from the results of

an extensive brute optimization procedure. The constraints were determined after successive

visualizations of parameter distributions using more or less bounded ranges. All parameters

had uniform priors.

2.7.5 Model Performance andModel Comparison

We took themean of the total log likelihoods produced from the optimized parameters across

participants and applied the Bayesian Information Criterion (BIC) to transform these mean

log likelihoods into mean BICs. Overfitting is a common problem that results from increas-

ing the number of parameters75. BIC attempts to mitigate this problem by penalizing more

complex models (model complexity is reflected by its number of parameters). The model

with the lowest BIC represents the best-performing model.

BIC = −2 ∗ LL+ k ∗ log(n)

whereLL= themaximized log likelihood for the estimatedmodel,n= thenumber of trials,

and k = the number of free parameters to be estimated. For model-fitting on the entire task,
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n = 156, and for model-fitting on specific blocks, n = 52. The super model, which has four

parameters (compared to three in the utility and asymmetric learning models), was included

in model comparison to assess trade-offs between model performance and complexity.
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3
Behavioral Results

Prior to starting our main behavioral analyses, we first performed a manipulation check to

make sure that ourmood inductions had “worked” by testing for their effects on self-reported

mood. We specifically wanted to confirm that self-reported valence had changed significantly

after the happy and sad inductions and that all three videos in each video condition were

comparable in their mood-inducing effects.
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3.1 Effect ofMood Inductions on Self-ReportedMood

Figure 3.1 shows average self-reported mood ratings over time, showing that the mood in-

ductions had driven self-reported mood in the expected directions after each induction.
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Figure 3.1: Mood Induc ons vs. Mood Reports. Elicita on numbers 1, 3, and 5 are pre-mood induc on mepoints, while
elicita on numbers 2, 4, and 6 are post-mood induc on mepoints. Based on self-reported measures of valence and
arousal, the mood induc ons caused significant differences in these measures as a func on of the video condi on.

We used generalized linear models to test the effect of the video condition on self-reported

mood. We also tested for the effect of the video condition in interaction with each of the

individual-difference measures collected from the questionnaire. We built separate regres-

sion models (instead of a single model) for each individual-difference measure in interaction

with the video condition because we found significant correlations among the individual-

difference measures.

Specifically, we found positive correlations between positive affect and 7 up (ρ(135) =

0.33, p < 0.001) and between negative affect and 7 down (ρ(135) = 0.46, p < 0.001), and

negative correlations between positive affect and 7 down (ρ(135) = −0.41, p < 0.001) and
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between positive affect and negative affect (ρ(135) = −0.28, p < 0.001).

3.1.1 Effect of Video Condition on Valence Change

According to the results of a generalized linear model, the sad induction produced a signif-

icant negative effect on valence change relative to the happy induction (β = −2.24, p <

0.001) and the neutral induction produced a significant negative effect on valence change

relative to the happy induction (β = −0.94, p < 0.001).

To test for possible interactions between the video condition and individual-difference

measures on valence change, a numeric encoding of video condition (-1 for sad, 0 for neutral,

1 for happy) was used to derive a single interaction coefficient for each individual-difference

measure interaction. No significant interactions were found (all p > 0.05). There were also

no significant correlations between individual-difference measures and valence change (all

p > 0.05).

3.1.2 Effect of Video Condition on Arousal Change

According to the results of a generalized linear model, the sad induction produced a signifi-

cant negative effect on arousal change relative to the happy induction (β = −0.55, p < 0.01)

and the neutral induction produced a significant negative effect on arousal change relative to

the happy induction (β = −0.46, p < 0.05).

A significant negative interaction between the sad induction and positive affect relative to

the interactionbetween thehappy induction andpositive effectwas found (β = −0.045, p <

0.05). For sad-induced subjects, a higher positive affectmeasure predicted a larger-magnitude

drop in arousal following amood induction. None of the other interactions with individual-
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difference measures were significant (all p > 0.05). There were no significant correlations

between individual-difference measures and arousal change (all p > 0.05).

3.1.3 Correlation between Valence and Arousal

We visualized the correlation between valence change and arousal change (Figure 3.2) and

found these two measures to be positively correlated overall (ρ(135) = 0.27, p < 0.05).

However, theonly significant correlation existed for theneutral condition (ρ(46) = 0.43, p <

0.05). The correlations for the happy and sad video conditions were not significant (both

p > 0.05). The Fisher Z-transformation confirmed all video condition-specific correlations

to be significantly different.
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Figure 3.2: Valence Change vs. Arousal Change. This figure depicts the rela onship between the average valence change
and the average arousal change. We found these two dimensions of mood to be posi vely correlated overall (ρ(135) =
0.27, p < 0.05), the only significant correla on existed for the neutral condi on (ρ(46) = 0.43, p < 0.05). The
correla ons for the happy and sad video condi ons were not significant (both p > 0.05). The Fisher Z-transforma on
confirmed all video condi on-specific correla ons to be significantly different.
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3.1.4 Comparison of Videos within Video Conditions

We tested for the comparability of the videos for each video condition in theirmood-inducing

effects according to self-reported measures (Figure 3.3). No statistically significant differ-

ences between group means of valence change or arousal change were found by one-way

ANOVA for any of the video conditions (all p > 0.05).
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Figure 3.3: Video Comparability within Video Condi ons. No sta s cally significant differences between group means of
valence change or arousal change were found by one-way ANOVA for any of the video condi ons (all p > 0.05).

3.1.5 Interim Summary

A significant effect of the video condition on valence change confirmed the effectiveness of

our mood inductions in inducing the desired valence (at least according to the self-reports).

However, a significant effect of the video condition on arousal change presents a possible

limitation. Since the happy induction (relative to the sad induction) produced increases in

both valence and arousal, we cannot be certain that possible effects on risk preference were

independent of changes in arousal. The finding that valence and arousal reports were only
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significantly correlated for subjects in the neutral condition makes it more likely that the sad

and happy inductions had affected both the valence and arousal dimensions of mood. It

is still notable, however, that the video condition had a more significant effect on valence

change. Additionally, for sad-induced subjects, a higher positive affect measure predicted a

larger-magnitude drop in arousal change, suggesting this particular state-level measure to be

an important mediator in our results. No significant differences were found for the videos in

each condition, confirming the comparability of the videos. This was a necessary check, as it

mitigates the possibility that certain videos had elicited conflicting moods.

3.2 Effect ofMood onOverall Learning

Through trial and error, subjects were able to learn the relative values of the deterministic

stimuli (S1, S2, S3). Overall learning was quantified by the proportion of “test” trials (84

trials) to which subjects had correctly responded. Forced trials and “risk” trials were excluded

from this analysis. The learning curve in Figure 3.4 depicts averaged performance (coded

either 0 or 1 for objective correctness of choice) of all subjects per trial. The red dashed lines

separate the three blocks. The curve shows that most learning had taken place in block 1.
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Figure 3.4: Overall Learning Curve. On the y-axis, correct is a binary variable that indicates whether or not the subject
chose the s mulus of higher expected value. It does not reflect the received reward. Over me, average performance
improved as subjects learned the values of s muli through sequen al decision-making. The ver cal do ed lines separate
the experiment into the three blocks. The curve shows that most learning had taken place in block 1.

To more specifically assess the effect of mood on overall learning, we fit a generalized lin-

ear mixed effects model (Table 3.1) on a binary variable that encodes the correctness of the

choice. We used a categorical encoding of the video condition as a predictor. Generalized

linear mixed effects models incorporate both fixed-effects and random-effects parameters in

a linear predictor via maximum likelihood. Our model was fit with random intercepts by

subject ID. Block was included as a fixed-effects variable to test how the effect of the video

condition may have varied by block.

Results showed block to have a significant positive effect on overall learning (p < 0.01).

The mood inductions did not have a significant effect (all p > 0.05).
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Dependent variable:

correct

block 1.183∗∗∗
(0.153)

video_condneutral 0.012
(0.300)

video_condsad 0.152
(0.300)

block:video_condneutral −0.002
(0.198)

block:video_condsad −0.200
(0.196)

Constant 0.839∗∗∗
(0.227)

Observations 11,358
Log Likelihood −2,861.551
Akaike Inf. Crit. 5,741.102
Bayesian Inf. Crit. 5,807.141

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.1: Effect of Video Condi on on Overall Learning. The results of a generalized linear mixed effects model showed
block to have a significant posi ve effect on overall learning (p < 0.01). The mood induc ons did not have a significant
effect (all p > 0.05)

.
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3.2.1 Interim Summary

The only significant predictor was block, which is in line with the expected upward trajec-

tory of performance through sequential trial-and-error learning. Additionally, the learning

curve shows performance to improve most substantially in block 1. This finding aligns with

expected patterns of model-free learning, where the learning rate decays over iterations46.

Our main finding that the mood inductions had not affected overall learning supports our

hypothesis for Aim 1 that mood would not bias the learning of deterministic stimuli.

3.3 Effect ofMood on Risk-Sensitive Learning

“Mood” in our study could be represented in several ways. As predictors, we used the video

condition (categorical encoding of mood) and self-reported mood (continuous encoding

of mood) in separate generalized linear mixed effects models to test for their effects on be-

havioral risk attitudes. Given the significant positive correlation we found between valence

change and arousal change (at least for the neutral condition), we tested for the effects of

self-reported valence change and arousal change as predictors in separate models. Risk pref-

erence was quantified by the proportion of “risk” trials (36 trials) in which subjects chose the

probabilistic stimulus (S4) over the deterministic stimulus (S2).

Prior to starting ourmain analyses, we found no significant correlations between risk pref-

erence and any of the individual-difference measures (all p > 0.05).
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3.3.1 Video Condition as a Predictor

According to the results (Table 3.2, the sad induction predicted a lower preference for risk

(p < 0.05). The block also had a significant negative effect on risk preference (p < 0.01),

predicting subjects to become increasingly risk-aversewith eachblock (Figure 3.5). The slope

of this decline did not differ based on the video condition, as the interaction effect (derived

using a numerical encoding of video condition) was not significant (p > 0.05).
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Figure 3.5: Block vs. Risk Preference. On the y-axis, risky chosen is a binary variable that indicates whether or not the
subject chose the risky s mulus (S4) over the safe s mulus (S2). On average, subjects were generally risk-averse regardless
of video condi on (they were risky less than 50% of the me). According to the results of a generalized linear mixed effects
model, going from one block to the next decreased the probability of choosing the risky s mulus by an es mated 59%
(p < 0.01). The error bars in the figure should be interpreted with cau on, since they only represent summary sta s cs of
the data. Themixed-effects regression showed that this downward trend did not vary by video condi on, as the interac on
term was found to have no significant effect (β = −0.16, p > 0.05). Thus, the three slopes depicted in this figure were
not significantly different.
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Dependent variable:

risky_chosen

block −0.591∗∗∗
(0.166)

video_condneutral −0.336
(0.380)

video_condsad −0.847∗∗
(0.389)

block:video_condneutral 0.204
(0.230)

block:video_condsad 0.325
(0.234)

Constant 0.545∗∗
(0.275)

Observations 4,932
Log Likelihood −2,714.015
Akaike Inf. Crit. 5,446.030
Bayesian Inf. Crit. 5,504.562

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.2: Effect of Video Condi on on Risk Preference. The results of a generalized linear mixed effects model showed
a sad mood induc on to predict a lower preference for risk rela ve to a happy mood induc on (p < 0.05). The block
also had a significant nega ve effect on risk preference (p < 0.01), predic ng subjects to become increasingly risk-averse
with each block. The slope of this decline did not differ based on the video condi on, as the interac on effect (derived
using a numerical encoding of video condi on) was not significant (p > 0.05).

35



3.3.2 Self-ReportedMood as a Predictor

Self-reported valence change and self-reported arousal change (Models 1 and 2 in Table 3.3)

were not predictive of risk preference (both p > 0.05). The block was again shown to have a

significant negative effect (p < 0.01). The interaction between self-reported valence change

and block was not significant (p > 0.05), but the interaction between self-reported arousal

change and block was significantly positive (β = 0.22, p < 0.05). This interaction is de-

picted in Figure 3.6. Higher drops in arousal were associated with faster declines in risk

preference through blocks.
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Figure 3.6: Interac on between Block and Arousal Change on Risk Preference. The results of a generalized linear mixed
effects model showed a significantly posi ve interac on effect between the block and self-reported arousal change (β =
0.22, p < 0.05). More nega ve drops in arousal were associated with faster declines in risk preference through blocks.
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Dependent variable:

risky_chosen

(1) (2)

block −0.430∗∗∗ −0.421∗∗∗
(0.100) (0.094)

valence_change_avg_z 0.193
(0.129)

block:valence_change_avg_z −0.044
(0.078)

arousal_change_avg_z −0.129
(0.178)

block:arousal_change_avg_z 0.220∗∗
(0.105)

Constant 0.223 0.156
(0.164) (0.159)

Observations 4,932 4,932
Log Likelihood −2,715.185 −2,713.727
Akaike Inf. Crit. 5,444.371 5,441.453
Bayesian Inf. Crit. 5,489.895 5,486.978

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.3: Effect of Self-Reported Mood Change on Risk Preference. The results of a generalized linear mixed effects
model showed that self-reported valence change and self-reported arousal change (Models 1 and 2) were not predic ve
of risk preference (both p > 0.05). The block had a significant nega ve effect (p < 0.05). The interac on between
self-reported valence change and block was not significant (p < 0.05), but the interac on between self-reported arousal
change and block was significantly posi ve (β = 0.22, p < 0.05). More nega ve drops in arousal were associated with
faster declines in risk preference through blocks.
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Correlations within each Video Condition

We calculated correlations between self-reported mood change (both valence and arousal)

on behavioral risk preference. For the sad video condition, the valence change was found

to be negatively correlated with risk preference (ρ(43) = −0.31, p < 0.05). All other video

condition-specific correlationswere not significant (p > 0.05), andFisherZ-transformations

showed no significant differences between video condition-specific correlations. No signifi-

cant correlations were found between arousal change and risk preference (all p > 0.05).

3.3.3 Interim Summary

As hypothesized for Aim 1, the video condition had a significant effect on risk preference,

with a sad induction making subjects more risk-averse, relative to a happy induction.

Interestingly, subjects generally become more risk-averse across blocks, regardless of the

video condition. Over time, subjects gained abetter ideaof theprobabilistic stimulus through

more exposures. Most learning took place in block 1, where subjects were expected to have

chosen the risky stimulus more frequently in order to figure out its variance in outcome.

Naturally, after accumulating more knowledge, subjects overall could have chosen the risky

stimulus less frequently, resulting in what looks like greater risk aversion over time. At the

presentmoment, however, the specific effect of block is unclear; for example, perhaps watch-

ing more videos (thus, their cumulative effects regardless of video condition), modulated an-

other aspect of cognition that left subjects generally less likely to choose the risky stimulus

(discussion continued in Chapter 4 and Chapter 5).

Another interesting finding was that self-reported mood changes were not predictive of

risk preferences, while the video condition was. This result suggests a possible disconnect be-
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tween conscious reflections of mood and truly experienced mood. More broadly, it suggests

that the simple act of watching amood-inducing video has predictable effects on behavior (at

least in our experimental context). At the same time, our results are less interpretable. Are

the mood-reports unreliable? How can we be sure that our mood inductions had truly af-

fected mood? Could they have affected another aspect of cognition to influence distinct risk

attitudes? The differential effects by block on risk preference based on self-reported arousal

further point to the need to clarify these questions (discussion continued in Chapter 5).

3.4 Self-Reported Risk Preference vs. Behavioral Risk Preference

The “goodness” difference is the normalized difference between self-reported goodness rat-

ings for the risky (S4) and safe (S2) stimuli. It is essentially a measure of hedonic preference.

There was a significant positive correlation between the goodness difference and behavioral

risk preference (ρ(135) = 0.56, p < 0.001), shown in Figure 3.7. Fisher Z-transformations

showed no significant differences between video condition-specific correlations.
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Figure 3.7: Goodness Ra ng Difference vs. Risk Preference. The “goodness” difference is the normalized difference
between self-reported goodness ra ngs for the risky and safe s muli. Risk preference is a behavioral measure that is
quan fied by the propor on of mes the risky s mulus was chosen when presented with the safe s mulus. A significant
posi ve correla on between these two variables was found (ρ(135) = 0.56, p < 0.001). Fisher Z-transforma ons
showed no significant differences between video condi on-specific correla ons.

3.4.1 Interim Summary

A significant positive correlation suggests the goodness difference to be a reliable indicator of

behavioral risk preference. Since the self-reported goodness ratings were collected at the end

of the task, they represent reflections – a result of looking back on the task and assessing how

subjectively “good” the stimuli were. These ratings provide a glimpse into subjective valua-

tions and potentially inform us of the extent to which subjects may have been consciously

aware of their preferences for risk.
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4
Computational Modeling Results

The study by Niv (2012) proposed the asymmetric learning model, among the candidate

models, as the best-fitting model of risk-sensitive learning. Since we utilized a variant of the

task used in this study, we expected to find similar results. However, whilewedid utilize a very

similar choice task, there was one major difference: we experimentally manipulated mood,

which then drove distinct risk preferences. Thus, given our novel experimental framework,
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it was still necessary to compare other candidatemodels throughmodel-fitting on our behav-

ioral results. Specifically, we tested to see (1) if the asymmetric learning model would best

capture risk-sensitive behavior (relative to other candidate models) and (2) if the asymmetric

learningmodelwould also account for the observedmood-driven differences in risk attitudes.

In total, we performedmodel-fitting andmodel comparison across four models: standard

RL model, utility model, asymmetric learing model, and super model. The standard RL

model was not expected to capture risk attitudes because it has no “risk-sensitive” parameter

that would allow for any sort of non-linearity (in outcome valuation or in learning). The util-

ity model, which does not explicitly track variance, was expected to suffer from drawbacks

in our model-free framework (where subjects were given minimal information and had to

learn through trial and error). The asymmetric learning model, by virtue of explicit track-

ing of variance, was predicted to perform the best. The super model was included in model

comparison to assess trade-offs between model performance and complexity.

4.1 Results ofModel-Fitting

4.1.1 Capturing the General Behavioral Pattern

After model-fitting on the entire task, the asymmetric learning model had the lowest mean

BIC (86.02), followedby the utilitymodel (89.91), the supermodel (90.14), and the standard

RLmodel (92.19). A lower BIC indicates a better fit of the data, so the asymmetric learning

model performed the best (Table 4.1).

The difference in mean BICs between the asymmetric and utility models was -3.88 and

the standard deviation of the difference was 9.06. The difference in mean BICs between the

asymmetric and standard Models was -6.17 and the standard deviation of the difference was
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13.95. The difference inmeanBICs between the asymmetric and supermodels was -4.12 and

the standard deviation of the difference was 5.47.

Given that we saw a significant effect of block in driving risk preference (with subjects on

average becoming more risk-averse through time), we fit the models separately to each block.

In block 1, the standard model performed the best, followed by the asymmetric learning,

utility, and super models. In block 2, the asymmetric learningmodel performed the best, fol-

lowed by the standard, utility, and super models. In block 3, the asymmetric learning model

performed the best, followed by the utility, standard, and super models.

Model Mean BIC (All) Block 1 Block 2 Block 3

Standard 92.19 37.26 36.43 36.57
Asymmetric 86.02 37.64 35.40 33.97
Utility 89.91 38.88 38.09 36.32
Super 90.14 40.67 38.17 36.14

Table 4.1: BIC Approxima ons. Overall, the asymmetric learning model had the lowest mean BIC, signaling the best fit
on the data. In block 1, the standard model performed the best, and in blocks 2 and 3, the asymmetric learning model
performed the best.

The asymmetric learningmodel emerged as the best-fittingmodel in capturing the general

behavioral pattern, and the next step was to see if this mechanism was invariant of the video

condition. For example, a positive mood could havemore substantially modulated the learn-

ing of uncertain stimuli (suggesting the asymmetric learning framework), while a negative

mood could have more substantially modulated the utility of uncertain stimuli (suggesting

the utility framework). Essentially, the mechanism driving risky decision-making may have

been dependent on the video condition. To address this possibility, we compared model fits

to each video condition group 4.1.

Across all video conditions, the asymmetric learning model was found perform the best.
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Figure 4.1: Model Comparisons Across Video Condi ons. The Bayesian Informa on Criterion (BIC) was used as a metric
for model comparison. The model with the lowest BIC is preferred. Previous results showed the asymmetric learning
model for subjects in the neutral condi on to produce the best fit of the data. Thus, we subtracted this mean BIC value
from the others to display the differences in mean BICs rela ve to this best-fi ng model.

The relative model rankings were also consistent, except for in the neutral video condition.

Here, while the asymmetric learning model still performed the best, the utility model per-

formed worse than the super model (for the other video conditions, the utility model per-

formedbetter than the supermodel). Whencomparing the asymmetric learningmodel across

video conditions, its performance was best in the neutral condition.

4.1.2 Interim Summary

Our computational modeling results support our hypothesis (Aim 2) for the asymmetric

learning model in best capturing risk-sensitive learning in the task. As expected, the util-

ity model came in second place. The super model performed less well than the asymmetric

learning and utility models (while it performed the best when comparing mean likelihoods,

it came in third place when comparing mean BICs). Despite the penalty for model com-

plexity, it is notable that the super model still performed better than the standard RLmodel

(which only had two parameters compared to four). This result confirmed that a simple RL
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framework cannot adequately capture risk attitudes.

The results of model-fitting to each block showed interesting patterns. In block 1, the

standard RL model performed the best. Since this was when subjects were doing most of

the learning, it may have been too early for distinct risk preferences to emerge. Thus, risk-

sensitive models may not have been able to gauge differences in risk attitudes this early on

across subjects during a time when they were trying to learn not only the values of the de-

terministic stimuli, but also the variance of the probabilistic stimulus. Across blocks starting

from the first to the third, all models besides the standard RLmodel produced progressively

better fits of the data. Risk-sensitive models are expected to perform well under conditions

in which subjects have fully learned the outcomes of the deterministic stimuli and have de-

veloped more discernible risk preferences. As expected, the asymmetric learning model did

indeed perform the best in block 2, but interestingly, the utility model still performed worse

than the standardRLmodel. Itwas only in block 3 that the utilitymodelmovedup to second

place. These results potentially provide further support for the asymmetric learning model,

which was able to more sensitively capture risk preferences at an earlier stage of trial-and-

error learning. Our results showing the utility model performing worse than the standard

RLmodel in blocks 1 and 2 support findings that while the subjective utility framework has

seen useful applications in modeling risk attitudes, it performs poorly as a model-free RL

algorithm43,7. In consideration of the significant effect of block that we found on risk pref-

erences, our results provide potential support for the idea that this effect could have been

a function of learning. The fact that our risk-sensitive learning models had the best fits on

block 3 trials suggests that distinct risk attitudes are more discernible after a certain amount

of learning had taken place. At first glance, subjects seem to have become more risk-averse
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through time, but this trend may have resulted because true risk attitudes simply emerged at

a later time upon more exposure to the deterministic and probabilistic stimuli.

The video condition-specific results ofmodel-fitting showed the asymmetric learningmodel

to consistently perform the best across all video conditions. This provides support for the

asymmetric learning framework as a generally robustmodel of risk-sensitive learning. Whether

or not subjects’ risk preferences had been modulated by experimentally induced mood, the

asymmetric learning model produced the best fits. Another interesting finding was that this

model performed the best when fitted to subjects in the neutral condition. This possibly sug-

gests the need for a more complexmodel in whichmood is a modulating factor, as the results

show poorer performance in cases where risk-preference was driven bymood inductions (sad

and happy). Nevertheless, the synthesis of our results above provide strong evidence in sup-

port of the asymmetric learning model. The next step was to then assess if this model could

also explain how distinct mood-driven risk preferences emerged.

4.2 CapturingMood-Driven Effects on Risk Preference

Aim 3 of the study was to investigate the role of mood in modulating risk preference in the

context of our best-fitting model. Given the general superiority of the asymmetric learning

model in capturing behavioral patterns across video conditions and blocks, we focused our

attention on the fitted parameters of the asymmetric learning model.

This model has three parameters: η+, η−, and β. The two learning rates are our risk-

encoding parameters. A higher positive difference between η+ and η− would lead to higher

risk-seeking tendencies. Prior to analyses, wenormalized thedifference in learning rates (eta_diff

= η+−η−
η++η− ) to produce a comparable metric across participants.
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Figure 4.2: Difference in Asymmetric Etas vs Risk Preference. eta_diff represents the normalized difference between η+
and η−. The correla on between eta_diff and risk preference was found to be significant (ρ(135) = 0.70, p < 0.001),
with the highest correla on for the neutral condi on (ρ(46) = 0.77, p < 0.001). Fisher Z-transforma ons showed no
significant differences between video condi on-specific correla ons.

As a sanity check, we first visualized the correlation between the normalized difference in

learning rates (eta_diff) and behavioral risk preference to make sure the model was working

as expected, with a more positive difference in learning rates correlated with a higher risk

preference. The correlation between eta_diff and risk preference was found to be significant

(ρ(135) = 0.70, p < 0.001), with the highest correlation for the neutral condition (ρ(46) =

0.77, p < 0.001). Fisher Z-transformations showed no significant differences between video

condition-specific correlations, but it is notable that this result aligns with the model’s best

fit on data for the neutral condition.

Before performing statistical tests to determine possible video condition-specific differ-

ences in parameters (η+, η−, and β), we visualized their distributions and found the three

parameters to be skewed. We used the Kruskal-Wallis test, a non-parametric method for

testing whether samples originate from the same distribution, instead of ANOVA to test

47



sad neutral happy
video_cond

0.0

0.2

0.4

et
a_

po
s

sad neutral happy
video_cond

0.0

0.2

0.4

0.6

et
a_

ne
g

sad neutral happy
video_cond

20

40

be
ta

sad neutral happy
video_cond

1

0

1

et
a_

di
ff

Figure 4.3: Parameter Distribu ons for Asymmetric Learning Model. η+, η−, and β are the free parameters of our best-
fi ng model, the asymmetric learning model. They represent the learning rate from posi ve predic on errors, the learning
rate from nega ve predic on errors, and the so max parameter, respec vely. eta_diff is the normalized difference be-
tween η+ and η−. We found no significant differences between group means for any of the three free parameters as
determined by the Kruskal-Wallis test (p > 0.05). Most importantly, we found no significant differences between group
means for eta_diff as determined by one-way ANOVA (F(2, 133) = 0.22, p > 0.05).

for video condition-related differences in these parameters. No significant differences were

found for any of these parameters (all p > 0.05). Most importantly, there were no sig-

nificant differences between group means for eta_diff as determined by one-way ANOVA

(F(2, 133) = 0.22, p > 0.05). When eta_diff was correlated with individual-difference

measures, we found no significant correlations across any of these measures (all p > 0.0.5).

4.2.1 Interim Summary

We foundno significant video condition-specificdifferences in the asymmetric learningmodel’s

risk-sensitive parameters. Thus, while the model was the best at capturing general behavioral

patterns for risk-sensitive learning, we could not pinpoint themechanismbywhich themood

inductions had led to distinct risk preferences. Had we found significant group-level differ-
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ences in eta_diff based on the video condition, wemay have beenmore certain in attributing

mood’s effect on risk preference to the asymmetric learning process. At the present moment,

however, we can neither confirm nor deny this hypothesis.

Our finding that the asymmetric learning model best captures risky decision-making for

neutral-induced subjects possibly offers a hint as towhywe couldnot derive significantmood-

related differences directly from the model’s risk-sensitive parameters. Our results possibly

suggest that amodelwithmooddirectly as a parameter in the asymmetric learning framework

may offer a more nuanced and accurate way of capturing mood-driven risk preferences.
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5
General Discussion

Howdoes mood influence one’s preference for risk through experiential learning?

To explore this question, we tested subjects using a risk-sensitive reinforcement learning

task containing experimental moodmanipulations. A happymood induction caused higher

risk-taking tendencies, while a sadmood induction caused lower risk-taking tendencies. The
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overall learning of deterministic stimuli was left untouched by mood. The results of com-

putational modeling suggested the asymmetric learning model to best capture trial-by-trial

choices through its nonlinear effects on the learning of probabilistic stimuli. Whether this

model can explain the mood-driven effects on risk preference is unclear; our results point to

future directions aimed at clarifying how exactly mood modulates risk-sensitive computa-

tions.

5.1 Evidence forMood-Driven Risk-Sensitive Learning

Our behavioral and modeling results provide support for our hypothesis that mood would

distinctly bias the learning of risky stimuli (with no effects on overall learning). Addition-

ally, our hypothesis that the asymmetric learning model would be the best-fitting model of

behavioral patterns was supported throughmodel selection. Our final hypothesis that mood

would modulate the risk-sensitive parameters of the asymmetric learning model to bias risk

preference remains an open possibility. At the presentmoment, it is simply unclear; whether

due to low statistical power or other possibilities, we found no significant differences in the

asymmetric learning process as a function of video condition. Nevertheless, our results pro-

vide strong evidence for a mood-biased risk-sensitive RL process and suggest insights for a

more nuanced computational model.

5.2 Implications for Theories ofMood andDecision-Making

Our findings are consistent with theoretical and experimental findings implicating positive

mood with higher risk-taking tendencies and negative mood with lower risk-taking tenden-

cies27. This includes the Affect Infusion Model18 and a body of findings, particularly for

51



pathological mood states, showing mania to result in more risk-seeking behavior50,24 and de-

pression to result in more risk-averse behavior77. Thus, our results are inconsistent with the

Mood Maintenance Hypothesis31, which would have predicted happy-induced subjects to

be less willing than sad-induced subjects to choose the risky stimulus, as well as experimen-

tal findings suggesting associations between negative affect and risk-seeking attitudes55, and

between positive affect and risk-averse attitudes48,33.

At the same time, it is difficult to draw direct comparisons because risk-sensitivity is highly

context-dependent across time and space. There is the fundamental question of whether ex-

perimental risk preferences reflect real-world behavior69. Additionally, people can be risk-

seeking in one domain and risk-averse in others (like health and financial decisions)61. Our

own results have also shown that interactions between state-level and trait-level effects further

complicate the relationship between mood and risk attitudes. Perhaps most importantly in

light of our study, there are distinct cognitive differences when information about risk is ex-

plicitly provided compared to when this information must be learned experientially46.

Thus, we frame our discussion of risky decision-making specifically around the context

of trial-and-error learning, where mood inductions were found to have distinct effects on

risk attitudes. Now in a more comparable context, we can more robustly claim consistency

in results with those found by Niv (2012)46. Our results of model comparison selected the

asymmetric learning model as the most likely cognitive representation driving risk-sensitive

learning; this validates the modeling results by Niv (2012).

The study by Eldar &Niv (2015) was the second motivating work behind our study, as it

provided evidence for a mood-biased learning paradigm. While Eldar & Niv (2015) did not

focus on risky decision-making specifically, their study established mood’s distinct biasing
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role in the reinforcement learning process (specifically, on the perception of outcomes). Our

results showing mood’s predictable influence on model-free decision-making are consistent

with their study’s finding of mood’s biasing effect on learning. Concurrently, our models

propose distinct mechanistic roles of mood. In our proposed model, we predicted mood to

exacerbate asymmetric learning by pushing the relative difference between η+ and η− in one

direction or the other, leading to nonlinear effects on mood. In the model outlined in Eldar

& Niv (2015), mood was proposed to directly bias the perception of outcomes through a

mechanism involving symmetric learning with a mood-biased nonlinear transformation of

outcome. While in general conceptual agreement, these two models propose distinct cogni-

tive effects of mood. Future work could be dedicated to investigating whether the former,

the latter, or a combination of the mood effects is occurring to explain mood-biased risky

decision-making.

5.3 Limitations of our Design

The biggest limitation of our study concerns our ability to make claims about the role of

“mood” in modulating risk preference, given the possible unreliability of our self-reported

mood measures. We trusted that our mood inductions had “worked” by seeing how self-

reported mood had changed as a result of these inductions. However, we found conflicting

results, as the video condition emerged as the only reliable predictor of risk preference. To add

to this limitation, happy-induced subjects relative to sad-induced subjects reported not only

different valence changes, but also different arousal changes. Arousal’s implication in other

interactions involving state-level positive affect and block further suggest that valence may

not explain the full story. Our inability to pinpoint the particular causal effect of the videos
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suggests a need to explore newmetrics to evaluate the efficacy of our mood inductions. Self-

reports are not the gold standard; previous studies have utilized more objective procedures

like pupil diameter analysis74 and voice analysis39,12 to determine features like the valence

and arousal of the induced mood, the extent to which the induced mood lasted throughout

the experiment, and the specific emotions they had experienced (like anxiety and excitement).

Another limitation of our study is that we did not probe for risk attitude as an individual-

difference measure. While we collected state-level and trait-level features related to our in-

dependent variable (mood inductions), we did not have a measure related to our dependent

variable (risk attitudes). Thus, we could not test baseline risk-taking tendencies in interaction

with the video condition in ourmixed-effectsmodels or visualize potentially informative cor-

relations.

A related limitation comes from our between-subjects study design in which each subject

only experienced one of the three mood inductions. As a result, we do not have a good indi-

cation as to how the mood inductions changed risk preferences within each subject relative

to baseline risk-taking tendencies. A design inwhich the same subject receives different kinds

of mood inductions would allow for better assessment of how risk preferences could change

within-subject as a function of mood.

In our computational models, we had a fixed learning rate instead of a decaying learn-

ing rate, which would have been more representative of the sequential learning process in a

model-free environment35. When we observed model fits to specific blocks, the asymmetric

and utility models were shown to perform poorly, particularly in block 1. Utilizing a more

dynamic learning rate that reflects the slowing of learning through trials may have produced

better model fits and controlled for important interactions with learning in a risk-sensitive
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framework.

5.4 Future Directions

To address the most pressing limitation of our study, a future study should implement a de-

sign that captures an objectively reliable measure of mood. For example, speech is a rich,

natural marker whose semantic and acoustic features have been shown to be highly predic-

tive markers of various emotions and cognitive states8,3. Happy, sad, angry, scared, curious,

confused, embarrassed, and stubborn are just a few examples of emotions that can be de-

tected using deep learning12. Based on findings suggesting that emotions of the same valence

can have differential effects on risk-taking tendencies41,23, it is all the more important to gain

more clarity about the specific cognitive states that are affected by different moodmanipula-

tions to give rise to distinct risk preferences.

In our study, we found the difference between subjects’ “goodness” ratings of the risky and

safe stimuli to be strongly correlated with behavioral risk preference. Given the observed ef-

fect of block on risk preference, we could collect “goodness” ratings after every block (instead

of after just the third block). Visualizing separate correlations by block may clarify whether

behavioral risk preference in that block was a function of inadequate learning (represented

by a weaker correlation) or a function of true risk attitudes (represented by a stronger corre-

lation). A subject’s “goodness” of a stimulus is likely to encapsulate the subject’s thoughts

and feelings about both its mean and variance, both of which are expected to contribute to

the overall “goodness” of the stimulus. To gain a clearer idea of subjective valuations, we can

also ask specifically for subjects’ explicit beliefs about the probabilities associatedwith stimuli

outcomes. These subjective probabilities could help test (more explicitly) if different risk at-
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titudes had emerged due to different subjective probabilities (representing mood-modulated

perceptions of probability). For example, a positive mood may promote higher risk-taking

tendencies by biasing the perceived probability of future positive outcomes. Studies have

found that happy people, relative to sad people, report beingmore optimistic about the prob-

ability of a future positive outcome73. If we consider our two models of interest, the utility

and asymmetric learning models, such a framework may align more closely with the utility

model, since it involves a change of outcome valuation. On the other hand, if happy-induced

and sad-induced subjects report the same probability measures for the risky stimulus, this

result may align more closely with the asymmetric learning model, since objective probabili-

ties are preserved in this model; the learning process itself would be more likely to have been

affected by a mood-biased effect to produce distinct risk attitudes.

Niv (2012) found the nucleus accumbens (implicated in reinforcement learning19) to be

sensitive to risk in a model-free context. Other studies focused on model-based decision-

making (involving explicit knowledgeof risk) showed several cortical areas tobe risk-sensitive29.

These findings suggest a high contextual dependence in how risk is tracked and represented

in the brain. Given the unique design of our task – a model-free environment that was inter-

spersedwith deliberatemoodmanipulations – it would be interesting to analyze the patterns

of activation65 that are associated with mood-driven risk-sensitive learning. While we would

expect to find risk sensitivity in the nucleus accumbens, mood’s implication in a variety of

brain regions (most notably, the limbic system14) presents interesting possibilities for future

functional magnetic resonance imaging (fMRI) studies of this mood-driven effect.

In our experiment, we targeted a very specific type of risk preference – a risk preference for

gains where stimuli of equal means but different variance were presented. We could imagine

56



another case inwhich choosing the risky optionwould have resulted in a loss, or one inwhich

the risky stimulus differed in the mean instead of the variance. These other possibilities rep-

resent assessments of risk in different neuroeconomic frameworks; future studies could test

how mood’s modulating effects differ across various types of risk measures. Loss aversion is

a well-known cognitive bias in which individuals prefer avoiding losses to obtaining equiva-

lent gains34. Given the heightened sensitivity for losses, mood may be more likely to affect

risk-taking that elicits loss aversion, particularly because such an aversion inherently involves

more emotions in the first place and would thus affect choices to a greater degree2.

In the future, it would be interesting to replicate an improved version of our experiment

on a clinical population characterized by high mood instability (like patients with bipolar

disorder). A higher susceptibility to changes in mood would predict a higher effect of ex-

perimental mood inductions. Greater mood changes as a result of trait-level tendencies may

producemore exacerbated differences in risk-taking tendencies as a function ofmood, which

may provide more clarity onmood-biased interactions on risk-sensitive reinforcement learn-

ing processes. Modeling data from a clinical population could not only provide insights into

how destructive cognitive processes may result, but research could also informmore general

computational models of cognition as a function of individual differences.

The computational modeling work presented here provides the groundwork for more

rigorous approaches to modeling. Given that neurocomputational processes are incredibly

complex and that our candidate models represent massive oversimplifications of the inner

workings of the mind, future directions for research involve building more nuanced models

of cognition, given the insights we have gained from this study. There is always room for a

better model. Thus, building upon our current models is an immediate next step to better
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capture how mood might be driving asymmetric learning (or possibly another risk-sensitive

learning framework) to produce our observed behavioral effects.

Additionally, future work should focus onmore accurate ways formodel comparison. Al-

though our computational modeling results led to the selection of the asymmetric learning

model, the difference in means between this model and the utility model was not drastic.

While we can say that the asymmetric learning framework offered a better explanation, we

cannot outrule the subjective utility framework. Previous work has proposed that hierar-

chical procedures yield better estimates of model parameters than do nonhierarchical, inde-

pendent approaches60. Thus, to more accurately assess model performance, we may want to

estimate parameters using Bayesian hierarchical parameter estimation.

5.5 Conclusion

Navigating through the stochasticity of life, we constantlymake decisions under uncertainty,

all under the filter of mood. After watching a feel-good movie, would you be more likely to

order that fish taco? Our results suggest so. The simple act of watching an emotionally-

charged video predictably influences our preferences for risk. Whether under the influence

of mood or not, risk attitudes have been shown to be driven by nonlinear effects on learning

for uncertain outcomes.

Research inmood-modulated riskybehavior canhave significant clinical implications. Com-

putational psychiatry is a burgeoning field that draws from computational neuroscience and

machine learning to more objectively and quantitatively extract insights from psychiatric

conditions4,5. It offers a promising avenue for theory-driven and data-driven research to join

hands in deriving better models of cognitive disturbance such that an informed mechanis-
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tic understanding of pathology could lead to more accurate diagnostic methods and better

treatment outcomes. Given that risk-taking behavior iswidely implicated in a range ofmood-

related disorders, a long-term goal of this research is to help elucidate how the computational

workings of the mind could go askew to result in disturbances in mood, cognition, and be-

havior.

Our results suggest interesting mood-driven effects in risk-sensitive learning. Future stud-

ies should be dedicated to elucidating mood’s specific computational role in mediating pref-

erences for risk.
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