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Abstract 

Despite the prevalence of fear-based psychiatric disorders, the computational 

mechanisms underlying persistent, generalized fear remain unknown. This thesis argues 

that under- and over-segmentation of latent causes best explains the different forms of 

extinction failure observed in fear conditioning, ranging from overgeneralization of fear 

and slow learning, to “over-accommodation” and rapid new associative learning without 

updating old beliefs. Through the latent cause model, these different learning regimes can 

be achieved through one parameter: the observation prior, which regulates the degree to 

which observations in the world are thought to be stochastic or determinstic. This 

parameter has an intuitive relationship with many common cognitive distortions, such as 

black-and-white thinking.  I begin by describing the latent cause model and its 

application to fear conditioning by simulating existing behavioral results. Then, I present 

a new, online differential fear conditioning task to validate “virtual shock,” replicate 

previous results capturing individual differences in fear extinction, and evaluate model 

predictions. I conclude by discussing ongoing work extending this model to ask questions 

about trauma’s effect on fear learning, by considering trauma as an uncontrollable stress 

that can modulate observation priors.  
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1. Introduction  

Nearly 20% of American adults are diagnosed with a fear-based disorder, such as 

obsessive compulsive disorder (OCD), panic disorder, or post-traumatic stress disorder 

(PTSD) (Harvard Medical School, 2005). These disorders can be debilitating and are 

often characterized by avoidance behavior (Mahoney et al., 2018), increased negative 

beliefs (Ramos-Cejudo & Salguero, 2017), hormonal changes (Thorsell, 2010), and 

persistence of fear, even after exposure to contrary evidence (Moutoussis et al., 2018). 

People who suffered early life stress—such as physical or sexual abuse, loss, and housing 

or food insecurity, among other stressors—are at a higher risk of later developing these 

disorders than the general population (Famularo et al., 1992; Fierman et al., 1993; Heim 

& Nemeroff, 2001). However, the computational mechanisms underlying persistent, 

generalized fear and why it may arise more in some individuals than others remain 

unknown.  

Fear conditioning, a form of classical or Pavlovian conditioning, can be used as a 

laboratory proxy for acquired fear. Its undoing, termed “fear extinction” or, simply, 

“extinction,” can be used to understand how learned fear diminishes in safe contexts, 

providing a useful model behind many exposure therapies, such as Cognitive Behavioral 

Therapy (CBT) (Nair et al., 2020). However, extinction (and therapy) can fail (Dunsmoor 

et al., 2015), and many patients report resurgence of fear after treatment (Moutoussis et 

al., 2018). One useful Bayesian learning model explaining extinction failure is the latent 

cause model, which posits that individual differences in the failure to extinguish fear 

emerge from differences in the inferred causal structure of the environment (Gershman & 

Niv, 2010, 2012).  

The latent cause model assumes that, rather than directly associating cues with 

outcomes, individuals infer hidden (or “latent”) causes underlying both stimuli. 

Differences in this inferred casual structure—such as single versus separate causes 

underlying acquisition and extinction – could explain the different observed fear learning 

outcomes (see Figure 1 for more details) (Gershman & Niv, 2010, 2012). The number of 

latent causes created in response to observations, which I refer to as segmentation, can be 

optimal (where the inferred structure perfectly matches the structure of the environment) 

or not. I posit that latent cause creations lie along a continuum surrounding optimal 
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segmentation, with under-segmentation referring to the creation of too few causes and 

over-segmentation to the spurious creation of too many causes.  

Recently, failures in extinction have been shown to be more common in 

participants with PTSD, accompanied by an under-segmentation of latent causes 

(Norbury et al., 2021), suggesting a link between the disorder and over-generalization of 

fear. Among healthy adults, exposure to uncontrollable stress before fear conditioning 

and extinction has also been shown to lead to extinction failure (Hartley et al., 2014).  

This thesis seeks to combine these results in a unified theoretical manner, 

examining the computational basis for individual differences in latent cause assignments 

in fear conditioning and relating this to a single parameter: the variance of the 

observation prior, which I then connect to beliefs in controllability. Through simulations, 

I show that extreme values of this observation prior parameter lead to under- or over-

segmentation of latent causes, resulting in different learning regimes which have been 

observed in individuals, both with and without psychiatric illness (Gershman & Hartley, 

2015; Norbury et al., 2021).  

I begin by describing the latent cause model and an intuitive understanding of its 

application to fear conditioning by simulating existing behavioral results. Then, I present 

a new, online differential fear conditioning task to help validate “virtual shock” 

paradigms, replicate previous results capturing individual differences in fear extinction, 

and present preliminary results supporting this task’s use in measuring people’s 

observation priors. Next, I present current work on extending this model to ask questions 

about trauma’s effect on fear learning, by considering trauma as uncontrollable stress that 

modulates the observation prior. I conclude by incorporating results, both theoretical and 

behavioral, into a holistic framework for understanding individual differences informed 

by life experience. This is not only crucial to clinicians treating patients with fear-based 

disorders, but it also contributes to an emerging literature on trauma-informed care, 

Disability studies (Rashed, 2019), and the newly coined “dignity neuroscience” (White & 

Gonsalves, 2021). 
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2. Theoretical Background 

This section discusses the latent cause model’s applications to fear extinction in 

two parts: first, mathematical assumptions and second, behavioral simulations of other 

experimental work and predictions for the new task.  

2.1 Latent Cause Model Definition and Assumptions1  

In the standard view of extinction, the learned association is that the conditioned 

stimulus (shown in Figure 1 as a lightbulb) causes the unconditioned stimulus (shown in 

Figure 1 as a lightning bolt for the shock) and therefore the unconditioned response (such 

as freezing or tensing up). However, there are other possible structures. For instance, one 

latent cause could explain both the cue and the shock, or both could be caused by two 

unrelated latent causes.  

Figure 1. Visual representation of different possible structures of relationships between 

causes, a single cue, and a single outcome, based on the model of Gershman and Niv (2010). 

 

While in the standard view and the single latent cause structure (shown in the two 

leftmost panels) repeated presentation of the light without shock would lead to a 

weakening of the association and extinction of fear, the two latent cause structure has 

separate underlying causes for the grouping of the light and shock and the light on its 

own. For an agent with this model structure, repeated presentation of the light without 

                                                           
1 This section contains text that is based closely on, or identical to, text found in my junior paper. 
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shock would do nothing to target the fear association held in C1, which could lead to 

spontaneous recovery of fear when presented with the light again later. 

People cluster experiences together, and these clusters dictate what associations 

are updated during learning (Gershman & Niv, 2010, 2012). Therefore, accurately 

targeting learned associations during extinction requires identifying the correct cluster. 

To do so, this model uses nonparametric Bayesian inference with an infinite capacity 

prior—also called a “Chinese Restaurant Process (CRP).” (Navarro & Perfors, n.d.) The 

CRP metaphor explains how in a crowded restaurant with infinite tables (possible latent 

causes), each incoming customer (current trial) will be seated, most often at the same 

tables as other customers. There can never be more non-empty tables than there are 

customers, and each customer can only sit at one table. For every customer, there is also a 

probability that they will be seated at a new, empty table, and this probability depends on 

how popular the currently non-empty tables are (Equation 1).  

 Translated to the latent cause inference model, the assumptions are as follows: first, 

each trial observation (of both cues and outcomes) can only be ascribed to a single latent 

cause; second, the total number of possible causes is only bounded by the total number of 

trials, but current trial outcomes are more likely to be assigned to heavily-assigned causes 

(Lloyd & Leslie, 2013). 

𝑃(𝐶𝑡+1|𝐶1…𝑡) = {
𝑃(𝐶𝑡+1 = 𝑘) =

𝑁𝑘

𝑡 + 𝛼

𝑃(𝐶𝑡+1 = 𝐾 + 1) =
𝛼

𝑡 + 𝛼

 

Equation 1. The probability that the next customer (trial) sits at (is caused by) the kth table (cause) is 

proportional to the number of other customers seated at it (number of trials explained by the cause). This is 

calculated as follows: ∑ 𝑁𝑘
𝑘
𝑘=1 + 𝛼 = 𝑡 + 𝛼 . The probability of being assigned to a new, K+1th table, 

completes the space of all possible options for an incoming customer.  

 

This clustering is useful because it allows for the generalization of association 

learning. Consequently, the posterior probability of a particular cluster assignment is 

given by Bayes’ rule, shown in Equation 2.  
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𝑃(𝐶1:𝑡|𝐹1:𝑡) =
𝑃(𝐹1:𝑡|𝐶1:𝑡)𝑃(𝐶1:𝑡)

𝑃(𝐹1:𝑡)
 

 
Equation 2. Bayes’ rule, in an applied form to the probability of a set of cluster assignments given all the 

features observed. This describes the probability of an event given another based on the prior conditions 

and context. The probability that the current cause C is the real cause given the current observation in 

feature F is equal to the probability of the observation given the latent cause multiplied by the independent 

probability of the cause, all over the independent probability of the observation. The solution to the applied 

form is intractable due to the marginalization over all possible cluster assignment, 𝐶1:𝑡, but it can be 

approximated using particle filtering. 

   

This posterior distribution, 𝑃(𝐶1:𝑡|𝐹1:𝑡), is the agent’s belief about the underlying 

latent cause structure of their experience after making an observation. Exact inference in 

this model is not tractable, since it requires marginalizing over all possible cause 

allocations, which grow exponentially with trials. Therefore, this model approximates the 

inference using particle filtering (for more, see Gershman & Niv, 2012; Pisupati, 2021). 

Finally, the likelihood term, 𝑃(𝐹1:𝑡|𝐶1:𝑡), which represents the likelihood of the 

observations if the person’s cause attributions were true, requires an additional layer of 

Bayesian inference.  Since the actual probability that a given observation is caused by a 

specific latent cause is unobservable, the agent must infer it. The model assumes that 

people may have non-uniform Beta priors over observation probabilities, and that binary 

observations are generated from a Bernoulli process dependent on probabilities phi, or 

𝜙𝑖,𝑘, as shown in Equation 3. The inferred probabilities resulting from this process 

contribute to the likelihood of cause assignments or “importance weights” during 

inference and importance sampling, and are updated after every trial yielding learned 

associations (Speekenbrink, 2016). 

𝑃(𝐹𝑡|𝑐𝑡 − 𝑘) −  𝑃(𝑓𝑡|𝐶𝑡
− 𝑘) − ∏𝑃 (𝑓𝑖,𝑡|

𝐶𝑡
− 𝑘) − ∏𝜙𝑖,𝑘; 𝑃(𝜙𝑖,𝑘) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽);  𝛼, 𝛽 {

= 1
< 1
> 1

 

Equation 3. For each feature f in the feature vector F, random observations are generated through a 

Bernoulli process governed by probabilities 𝜙𝑖,𝑘. These are formulated via a Beta prior. 

 

 The observation prior is a prior over phi in Equation 3, and it can be thought of as 

a parameter that defines the degree of an agent’s belief in the randomness of the world. 

Starting out with a “deterministic” prior, i.e. a belief that probabilities are often all-or-
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nothing, leads to surprising observations being assigned to new causes. Creating too 

many latent causes can give the impression of rapid learning but does not extinguish the 

original association, failing to generalize between acquisition and extinction trials. Such 

over-accommodating individuals could be more susceptible to spontaneous recovery of 

fear. On the other hand, a “stochastic” prior, i.e. a belief that probabilities are often close 

to chance, leads to attribution of disparate observations to a single cause and 

overgeneralization. The creation of too few latent causes leads to poor discrimination 

between stimuli and therefore poor extinction performance through the generalization of 

fear to safe stimuli. 

This process detailed above considers every trial as unique, which is important to 

the interleaved nature of most fear conditioning experiments, however, it does not 

account for blocking and time effects.  

The success of fear extinction can also be tested temporally, with spontaneous 

recovery and relearning measures, which this basic CRP model cannot capture. 

Experimental evidence shows that animals and people show the resurgence of a 

previously extinguished fear when presented with the same stimuli as in extinction after a 

certain amount of time. Agents are also faster to relearn an old fear association if it 

begins being reinforced again than to learn a new association (Myers & Davis, 2007). To 

account for the importance of the time interval between extinction and spontaneous 

recovery or relearning, an additional parameter must be added to the model: temporal 

persistence (Pisupati, 2021).  

This can be modeled using an extension of the CRP for non-interchangeable data, 

called the Distance Dependent CRP (DDCRP) (Blei & Frazier, 2011). Rather than 

assigning incoming customers to tables, the DDCRP connects customers to each other, 

then determining table assignments, allowing for the preservation of identification or 

customers (Blei & Frazier, 2011). Translated to the model, this allows the time point of 

the observation to matter, while still functioning on the interleaved presentation of 

stimuli.  
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2.2 Model Predictions and Simulations 

Previous research using this latent cause model framework for fear extinction has 

distinguished between individuals who attribute fear acquisition and extinction trials to a 

single cause and those who attribute these to different causes. Healthy participants in the 

latter group showed higher resurgence of fear than the former (Gershman and Hartley, 

2015) while participants with PTSD were more likely to fall into the former category 

(Norbury et al. 2021) (Figure 2).  

 

 
Figure 2. Latent cause regimes and their consequences as found by Norbury et al. 2021 and 

Gershman and Hartley 2015. Attribution of optimal learning to either one-cause or two-cause 

regimes in these papers differs.  

 

 

However, this delineation does not capture the full range of possible regimes that 

could contribute to differences in learning and fear extinction, especially in extinction 

tasks with both safe (CS-) and dangerous (CS+) stimuli. Here, I propose that inferred 

causal structures lie on a spectrum between too few and too many latent cause 

assignments, corresponding to “discrimination” failures (failures in distinguishing 

between safe and dangerous stimuli) and “over-accommodation” failures (failures in 

updating beliefs about stimuli that are no longer dangerous) respectively, with “good” 

extinction falling in between. Using simulations, I show that these extremes can be 

reached through changes in the observation prior parameter, shown in Figure 3 below. 

My proposed delineation of latent cause regimes clarifies the mapping between erroneous 

inference of causal structure and different types of extinction failures. Moreover, I relate 

these regimes to a single parameter, the observation prior, that can reflect beliefs in the 
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controllability of outcomes, possibly modulated by an individual’s past experiences (for 

more on the connection to past life experience, see section 4).2  

 

 

 

Figure 3. Simulation of Hartley et al. 2014 experimental set-up results show three clear learning regimes, 

consistent with extinction failures found by Norbury et al. and Gershman and Hartley as well as optimal 

extinction (wherein optimal is defined by similarity of the inferred latent structure to the true structure of 

the task).  100 “participants” were simulated in each observation prior category for 36 trials of acquisition 

and 48 trials of extinction (for the stimulus set-up, see Hartley et al. 2014).  

 

I argue that over-and under-segmentations of latent causes best explains the 

different forms of extinction failure possible in fear conditioning. Furthermore, this 

                                                           
2 This section contains text and figures based closely on, or identical to, my presented poster at SfN 2021 

(Aitsahalia, 2021). 
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model provides a way to explain the intriguing stressor-controllability effects on fear 

extinction failure found by Hartley et al., which show an “Instrumental-to-Pavlovian” 

transfer that can be modeled by a change in the observation prior parameter, which could 

be modulated by perceived control (or lack thereof) (2014). Considering psychological 

control computationally, as explained by Huys and Dayan (2009), control can be 

formulated as the achievability of outcomes given actions. People may have different 

priors over this mapping, ranging from the belief that outcomes and actions have no 

relationships to the belief that particular actions always lead to particular outcomes. 

These priors can change due to reinforcement and the observation of outcomes in relation 

to actions, and may be different for different domains (Huys & Dayan, 2009). However, 

these beliefs may also influence learning in situations where no actions are taken. I 

propose that controllability affects the assignment of observations to latent causes in 

future Pavlovian learning by influencing observation priors. Beliefs that the world is 

uncontrollable, or that one’s actions have no effect over the reward or punishment seen, 

can generalize to beliefs that unknown causes generate observations randomly (i.e. a 

stochastic observation prior), which would lead to an over-assignment of disparate 

observations to a single cause, or under-segmentation.  

Based on model simulations, the conditioned response to the CS- starting in 

acquisition can be used as a proxy for the learning regime and therefore observation 

prior, with higher values of the CS- indicating a more stochastic prior and lower values 

denoting a more deterministic prior. Based on this model, the expectancy of the CS- 

predicts not only the CS+ in acquisition, but also extinction and spontaneous recovery.  If 

people were behaving according to this model, those with higher expectancies for the CS- 

in acquisition would not have higher expectancy ratings overall, but rather lower 

separation between the two stimuli in both acquisition and extinction, indicating their 

overgeneralization. This model would also predict that people falling into this regime 

would assume more threat for novel stimuli, especially those that share some degree of 

similarity with the CS+. On the other hand, people with deterministic observation priors 

would be more likely to rapidly separate the CSs and not ascribe danger to novel stimuli. 

However, this rapid learning protects the original CS+ association with the US, meaning 

that we expect to see higher rates of spontaneous recovery of fear and faster relearning of 
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the association as well, since the association does not need to be retrained, rather 

reactivated (Pisupati, 2021). 

The addition of persistence or distance-dependence (Figure 4) to the model adds 

key predictions for behavior in day 2 of the task: that too deterministic a prior would lead 

to higher rates of spontaneous recovery. 

Figure 4. Simulation of performance on modified online task across all three regimes. Key predictions 

include that stochastic priors lead to slower extinction (Day 1), slower relearning (Day 2), and lower 

spontaneous recovery (Day 2) when compared to flat or deterministic priors. 

   

3. Experiments 

This section describes the central experiment presented in this thesis: a virtual 

differential fear conditioning task using a loud scream as an unconditioned stimulus to 
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test the model predictions described above.3 This experiment allows for fear conditioning 

on humans to be conducted online and without the use of electric shock, and also captures 

the wide range of individual differences in fear extinction in the general population.  

3.1 Experiment 1: Individual Differences in Differential Fear Conditioning  

The described experiments were approved under IRB 11968 Behavioral Studies 

of Learning and Decision-making. All experimental code was written and served using 

NivTurk software, python, and jsPsych. 

3.1.1 Methods  

 Online participants completed two tasks over two days. The first task was a 

classic fear conditioning and extinction task, using a loud scream as the US with two 

different stimuli. Second, at least one day later, participants were recalled to test their 

spontaneous recovery of fear. Across both Pavlovian tasks, participants were asked to 

rate their expectancy of the scream as a behavioral readout of their predictions.  

Participants were found and screened through Prolific. 53 participants participated 

in two parts of the experiment over two days (with 71 participating solely in day 1), not 

including the 8 participants excluded from the sample (6 due to data saving errors using 

Prolific, and 2 due to a failure to complete the audio check). All participants provided 

informed consent.  

Day 1: Fear Conditioning, Generalization, and Extinction 

This differential fear conditioning task was modified from Hartley et al. (2014) to 

a shortened online format and different abstract colored stimuli. Participants were 

instructed to complete the experiment with headphones and were allowed to play the 

scream (US) to set their audio volume to a level that was considered “unpleasant but not 

unbearable”. They were then instructed to maintain their computer volume at this level 

throughout the task. At the start of each trial, participants were shown a fixation cross, 

which was sometimes shown along an audio instruction to press a particular letter key as 

                                                           
3 Scream .mp3 and other experimental stimuli are available upon request.  
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an audio check. Participants were asked to rate the likelihood that the scream would play 

on a scale of 1-9 after the presentation of each stimulus.  

  

Figure 5. Trial structure for fear conditioning. Following a fixation cross, participants saw one of two 

stimuli in within blocks randomized order and were asked to rate the likelihood of a scream. Then, they 

were presented with the shape on its own and the accompanying reinforcement, either silence or the 

scream. Trial structure remains the same during extinction, but without any reinforcement. 

 

Participants completed 30 trials of acquisition, comprised of 12 CS- trials and 18 

CS+ trials reinforced at 50% with the loud scream. Participants were then asked to fill out 

the Anxiety Control Questionnaire (ACQ), a validated self-report measure about 

perceived control over internal events and threats in the world (Rapee et al., 1996) (See 

Appendix for questionnaire with attention checks). This was followed by the 

generalization phase, which consisted of 10 trials: 2 presentations of each of 5 stimuli: 

the CS+, CS-, and 3 intermediate gradated stimuli, none of which were reinforced. To 

prevent extinction from occurring during generalization, participants were told that the 

experiment audio was muted during this phase, and asked to rate how likely it was that 

the scream was playing while they could not hear it. In the final round of day 1, 

participants were presented with 24 trials of extinction, half of which were the CS+ and 

the other half were the CS-.  
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Day 2: Spontaneous Recovery, Generalization, and Relearning  

 At least one day after completing Day 1, participants were invited to complete 

Day 2, which also consisted of 3 rounds. Following a new audio check, participants were 

shown 24 trials of both CSs without scream, to test spontaneous recovery of fear. Next, 

they were shown 30 trials of relearning, which were identical to the acquisition trials. The 

final round was generalization, where they were also instructed that the audio was turned 

off and shown the same 5 generalization stimuli twice each to assess differences in 

generalization from day 1. Finally, participants were asked affective questions about their 

feelings in response to the two main stimuli as well as whether or not they noticed the 

scream happening more often following one of the shapes than the other.  

3.1.2 Results  

Expectancy ratings, reaction time, audio checks, survey attention checks, and 

survey responses were recorded from all participants. 2 participants were excluded from 

the sample due to failing the audio attention check. 

First, the average expectancy rating to all presentations of the two differential 

stimuli were averaged across all participants (Figure 6A, middle). To determine learning 

regimes, the average expectancy rating for the CS- throughout 12 trials of acquisition was 

calculated and compared.4 The 20 participants with the lowest ratings for CS- were 

considered “deterministic” (shown in Figure 6 on the right) while those 20 with the 

highest ratings were considered to have “stochastic” priors (shown on the left). As 

predicted, those participants with a higher CS- rating in acquisition did not have simply 

higher ratings overall, but rather showed less separation between conditioned stimuli 

(Figure 6A, left). These stochastic prior participants also showed higher ratings for 

intermediate novel stimuli in generalization, including stimuli that closely resembled the 

CS- (Figure 6B, left), showing a higher generalization of fear than participants with 

deterministic priors.  

The two groups, separated based solely on CS- expectancy rating in acquisition, 

had statistically significant differences in CS+ expectancy in extinction (mean CS+ lower 

                                                           
4 All analyses were performed using MatLab R2019b. Code is available upon request.  
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in extinction for deterministic group, p<0.01), generalization on novel intermediate 

stimuli (mean rating for all intermediate stimuli lower for deterministic group, p<0.01), 

and spontaneous recovery (mean starting value for CS+ higher for deterministic group, 

p<0.05) and relearning (mean CS+ value higher for deterministic group, p<0.05) in day 2.  

 

Figure 6. Expectancy Ratings over learning in day 1, generalization, and day 2 across regimes, with 

stochastic priors shown on the left (N=20), the average of all participants in the middle (N=71 for day 1, 

N=53 for day 2), and deterministic priors (N=20) shown on the right. The yellow lines correspond to the 

CS+ (the yellow stimulus) while the red lines correspond to the CS-. 95% confidence interval of SEM is 

shown shaded around mean learning curves. Stimuli 1-5 in panel B are color coded to represent the 5 

generalization stimuli. 

 

 These results align well with the predicted model regimes, suggesting strong 

evidence that this task can be used to assess model parameters. The key features, 
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including separation between CSs and rate of extinction, spontaneous recovery, and 

relearning are shown as hypothesized in the behavioral data. 

Trying to separate regimes based on CS- value (rather than number of 

participants), we find that more participants endorse an average CS- value of below 2 

(N=40) than anything above 4 (N=7), suggesting that more people in this sample fit into 

the deterministic rather than stochastic prior regime, which is in line with other 

researchers’ findings that people tend to have more deterministic priors over casual 

structures in their everyday life (Griffiths & Tenenbaum, 2009; Schulz & Sommerville, 

2006). 

However, the cause of the individual differences in priors is unclear. This 

experiment was tested in the general population, and it is possible that participants who 

either have fear-based disorders or endorse subclinical traits relating to them might be 

more likely to fall into the stochastic category, since feelings of a lack of control or 

helplessness are commonly reported by patients with psychiatric disorders (Abramson et 

al., 1989; Ross et al., 1999). 

To test this, correlations between responses on the ACQ and learning regime were 

calculated. Statistical tests showed no significant difference between the mean ACQ 

score for participants in the stochastic versus deterministic category (however, it seems 

there is a trend towards conflating CSs among the participants who endorsed the least 

control, see Appendix). However, this lack of difference could be explained by a lack of 

specificity in the domain of control. While the ACQ focuses on control over internal 

events like emotions as well as some external negative events (Rapee et al., 1996), 

screaming shapes are unlikely to be encountered in everyday life. It is possible that the 

confines of the experiment are too narrow for a prior over general controllability to apply, 

with the observation prior captured in this experiment to be one of control over 

behavioral experiments, screams, video games, or a different specific domain.  

3.2 Experiment 2: Controllability Manipulation  

To see if controllability over a specific outcome can influence observation priors 

over that same outcome, we are currently piloting a controllability manipulation. Hartley 
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et al. found that exposure to inescapable stress (via electric shock) in a maze task prior to 

fear conditioning led to worse extinction of fear (2014), which can be explained in this 

model by the effect of controllability of shocks on observation priors over the 

randomness of shocks, influencing future learning involving shocks.  

3.2.1 Methods  

Day 1: Instrumental Controllability, Fear Conditioning 

 After performing audio tests and calibrating volume for the scream, participants 

are instructed that they will be travelling through a haunted house and exploring its 

rooms. They may choose to turn one of three directions: left, back, or right at the start of 

each trial, and that their choice will lead them into a room, which will either be safe or 

scary.   

 

Figure 7. Uncontrollable stress manipulation trial structure. After a fixation cross, participants were shown 

an image of a hallway and asked which way they would like to turn. Three options were presented: left, 

back, and right. While participants were told they would be shown the room they had turned to, the actual 

structure of reinforcement was purely probabilistic, with half of trials resulting in the presentation of a 

calm, empty room and no scream, and the other half resulting in the presentation of a scary room and the 

loud scream.  
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 We intend to then create a deterministic version of the haunted house 

manipulation, wherein participants do have instrumental control over the presentation of 

the scream, to later yoke more participants in the uncontrollable condition to, so that we 

can ensure any ensuing differences are not a result of differences in number of screams 

heard but rather control over them. Crucially, the only commonality between the 

controllability manipulation and the later fear conditioning (aside from the context of 

being in an online experiment) is the shared US, the scream. This should force 

participants to develop or adapt a controllability prior over that specific outcome, which 

will then be measured in the fear conditioning task.  

 Participants in both conditions will then undergo the fear conditioning and 

extinction detailed above (section 3.1.1).  

Day 2: Spontaneous Recovery, Generalization, and Relearning 

 At least one day later, participants would return to complete the same second half 

of the task (detailed above under Day 2 in section 3.1.1). Behavioral data would then 

exist from three conditions: escapable stress, inescapable stress, and no stress, replicating 

Hartley et al.’s set-up (2014). 

3.2.2 Predicted Results 

As this task is currently being piloted, there is not a large enough sample size to 

report any significant results, but the presented model makes strong, falsifiable claims 

about performance in both days of the experiment. We predict, based on the model and 

previous results, that repeated lack of control over the presentation of the scream will 

push participants towards a belief in the stochasticity of the scream, and therefore worsen 

extinction (Hartley et al., 2014). On the other hand, participants exposed to controllable 

stress would be biased towards a more deterministic prior and their learning would align 

with that regime. Those results may not be particularly different from the non-

manipulated control group, since we already see a bias towards deterministic priors in the 

general population (Figure 6A, middle).  
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One aspect of Hartley et al.’s results not captured in this simple prediction is that 

participants in the inescapable stress condition showed higher rates of spontaneous 

recovery (Hartley et al., 2014), which is inconsistent with the simulations that show lower 

rates of spontaneous recovery with stochastic priors. However, with stochastic enough a 

prior, it may take far more than the allotted number of extinction trials to fully extinguish 

the association, so the spontaneous recovery observed may be a direct continuation of the 

conditioned response. Further research and modifications to the model would need to be 

added to account for participants who behave in the stochastic regime in day 1 but seem 

to shift in day 2. It is possible that lack of control also changes learning rates 

asymmetrically for negative events, or that another unknown time effect is taking place.  

4. Discussion  

This thesis presents a new formalization of individual differences in fear learning 

as related to observation and controllability priors over outcomes. It draws from evidence 

in psychology, neuroscience, statistics, control theory, and new preliminary experimental 

results.  

Considering control beliefs computationally, as a prior over the randomness of 

outcomes (Huys & Dayan, 2009), this research contributes to the field’s understanding of 

fear generalization and the mechanisms by which persistent, generalized fear may emerge 

and be maintained in a single, theoretically unified model.  

The experiment presented does have limitations, including the reliance on self-

report both for control beliefs and expectancy. Being explicitly asked for expectancy 

ratings may shape learning, as has been shown in reversal learning tasks (Atlas et al., 

2022). Future work could use electro-dermal or neuroimaging measures to compare with 

explicitly reported prediction, as well as use affective ratings to determine conditioned 

response. Despite being used in many human studies of fear conditioning, skin 

conductance response (SCR) does not seem to be directly linked to expectancy, with 

many researchers using differential SCR measures without clear rationale for what this 

readout corresponds to (Gershman & Hartley, 2015). Future work using this task could 

combine expectancy ratings with SCR to elucidate its relationship to model parameters.  
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The presented model could also be further developed with a more normative 

account for time effects, developing a clearer hierarchical Bayesian structure. The 

learning regimes described in this thesis were achieved via only one parameter, the 

observation prior; however, adding parameters will likely lead to a better fitting model 

for individual participants.  

This work prompts many clinically relevant and basic science questions. For 

example, how far does fear generalize and how does this vary across people? In this 

proposed controllability manipulation, the specific US is the only constant between the 

instrumental and Pavlovian tasks. Would fear generalize using a different but similar US, 

for example, a different scream? What about an unrelated noise, or a shock? While 

previous results show the negative impacts of lack of control in a Pavlovian setting 

(Hartley et al., 2014), it would be important to test these effects in instrumental 

conditioning settings. PTSD has been shown to push people towards a stochastic regime 

(Norbury et al., 2021), but it is possible that other psychiatric disorders, such as OCD 

with magical thinking (Einstein & Menzies, 2004), may push people towards too 

deterministic a regime. It is also possible that lack of control in one domain prompts 

attempts to gain control in other areas, acting as a form of “Instrumental-to-Instrumental” 

transfer. Eating disorders, for example, have been described by patients as ways to 

control their body in an uncontrollable world (Froreich et al., 2016). Future work using 

this latent cause segmentation framework could model eating disorder patients’ 

controllability priors and compare them with other clinical and neurotypical groups.  

Understanding the role of external control over outcomes in psychiatric disorders 

can also help both neuroscientists and clinicians reduce stigma around mental illness.5 

Trauma-informed care seeks to ground patients’ behavior in their life context, (Purkey et 

al., 2018) and this thesis contributes to that framework. By focusing on generalized fear 

as an adaptive response to an uncontrollable situation being carried into situations where 

the behavior is no longer adaptive, this research allows for the understanding of 

neurodivergent cognition as rational rather than defective. Most current theories in 

psychiatry and cognitive neuroscience describe the thoughts and behaviors in anxiety 

                                                           
5 This section contains text that is based closely on, or is identical to, text found in my Junior Paper.  
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disorders as entirely biological (Friedman, 2007; Garcia De Miguel et al., 2012; Thorsell, 

2010) or, when including cognition, as simply maladaptive (Calvete et al., 2013; 

Mahoney et al., 2018). However, much of this research does not account for or address 

the life history of patients. Not only does this lead to patients feeling ignored or 

invalidated (Rashed, 2019; Szasz, 1994), it also overlooks a potentially central 

mechanism by which these disorders develop. This computational and theoretical thesis 

aims to shift the focus from purely biological dysregulation to a more nuanced view that 

factors in the generalization of environmentally-appropriate stress responses to 

exaggerated fear. Drawing from the field of Disability studies, there is already language 

for understanding psychiatric disorders in a trauma-informed and humanistic way, 

focusing on how the behaviors arise and the agency of the patient (Amundson & Tresky, 

2007; Oliver, 1990; Rashed, 2019).  
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Appendix  

ACQ (Rapee et al., 1996): 

Listed below are a number of statements describing a set of beliefs. Please read each 

statement carefully and, on the 0-5 scale given, indicate how much you think each 

statement is typical of you. 

 

1. I am usually able to avoid threat quite easily. 

2. How well I cope with difficult situations depends on whether I have outside help. 

3. When I am put under stress, I am likely to lose control. 

4. I can usually stop my anxiety from showing. 

5. When I am frightened by something, there is generally nothing I can do. 

6. My emotions seem to have a life of their own. 

7. There is little I can do to influence people's judgements of me. 

8. Whether I can successfully escape a frightening situation is always a matter of chance 

with me. 

9. I often shake uncontrollably. 

10. I can usually put worrisome thoughts out of my mind easily. 

11. When I am in a stressful situation, I am able to stop myself from breathing too hard. 

12. I can usually influence the degree to which a situation is potentially threatening to 

me. 

13. I am able to control my level of anxiety. 

14. There is little I can do to change frightening events. 
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15. The extent to which a difficult situation resolves itself has nothing to do with my 

actions. 

16. If something is going to hurt me, it will happen no matter what I do. 

17. I can usually relax when I want. 

18. When I am under stress, I am not always sure how I will react. 

19. I can usually make sure people like me if I work at it. 

20. Most events that make me anxious are outside my control. 

21. I always know exactly how I will react to difficult situations. 

22. I am unconcerned if I become anxious in a difficult situation, because I am confident 

in my ability to cope with my symptoms. 

23. What people think of me is largely outside my control. 

24. I usually find it hard to deal with difficult problems. 

25. When I hear that someone has a serious illness, I worry that I am next. 

26. When I am anxious, I find it difficult to focus on anything other than my anxiety. 

27. I am able to cope as effectively with unexpected anxiety as I am with anxiety that I 

expect to occur. 

28. I sometimes think, "Why even bother to try to cope with my anxiety when nothing I 

do seems to affect how frequently or intensely I experience it?". 

29. I often have the ability to get along with "difficult" people. 

30. I will avoid conflict due to my inability to successfully resolve it. 

Attention checks (presented in randomized locations throughout the questionnaire): 

1. I swim across the Atlantic every day to go to work. (Expected answer: 0) 

2. I can hold my breath for at least one second. (Expected answer: 5) 
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Supplementary Figure 1: Lowest ACQ Scorers Learning 

 


