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Abstract

Although online samples have many advantages for psychiatric research, some potential

pitfalls of this approach are not widely understood. Here, we detail circumstances in which

spurious correlations may arise between task behavior and symptom scores. The problem

arises because many psychiatric symptom surveys have asymmetric score distributions

in the general population, meaning that careless responders on these surveys will show

apparently elevated symptom levels. If these participants are similarly careless in their

task performance, this may result in a spurious association between symptom scores and

task behavior. We demonstrate this pattern of results in two samples of participants

recruited online (total N = 779) who performed one of two common cognitive tasks.

False-positive rates for these spurious correlations increase with sample size, contrary to

common assumptions. Excluding participants flagged for careless responding on surveys

abolished the spurious correlations, but exclusion based on task performance alone was

less effective.
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Introduction

In recent years, online labor markets (e.g., Amazon Mechanical Turk, Prolific, CloudResearch)

have become increasingly popular as a source of research participants in the behavioral

sciences [1], in no small part due to the ease with which these services allow for recruit-

ment of large, diverse samples. The advantages of online data collection have also begun

to be recognized in psychiatric research [2], where this method offers several distinct ad-

vantages over traditional approaches to participant recruitment. The ability to assess

psychiatric symptom severity in large general-population samples makes possible large-

scale transdiagnostic analysis [3, 4], and facilitates recruitment from difficult-to-reach

participant populations [5]. Online labor markets also facilitate re-recruitment, making

them an attractive option for validating the psychometric properties of assessment tools

[6] or studying clinical processes longitudinally [7].

With the advantages of online data collection also come specific drawbacks. Since partic-

ipants recruited from online labor markets are typically completing experiments in their

homes, they may be more likely to be distracted or multi-tasking during an experiment.

They may also be more likely to use heuristic response strategies with the intention to

minimize expenditure of time and cognitive effort (e.g., responding randomly on self-

report surveys or behavioral tasks). Here, we will refer to such inattentive or low-effort

behaviors as careless/insufficient effort (C/IE) responding [8, 9]. Among researchers us-

ing online labor markets, a common view is that poor-quality data resulting from C/IE

responding can simply be treated as a source of unsystematic measurement error that

can be overcome with increased sample sizes [3, 10]. Common practice in online behav-

ioral research is to mitigate poor-quality data using the same screening methods that

are typically used in in-person data collection (e.g., excluding participants who perform

at- or below-chance on behavioral tasks). However, these methods may be specifically

inappropriate for online psychiatry studies, as we detail below.

Here we wish to draw special attention to an underappreciated feature of psychiatric

research using self-report symptom surveys. In such surveys, participants rate their en-

dorsement of various psychiatric symptoms and, since most individuals in the general

population tend to endorse no or few symptoms in many symptom domains, the resulting

ground-truth symptom score distributions tend to be heavily positively skewed [11, 12].

In this situation, the assumption that C/IE responding merely increases unsystematic

measurement noise becomes untenable. Because of the positive skew in the ground-truth

symptom distribution, participants who respond carelessly to the symptom survey are

more likely to report higher levels of symptom endorsement relative to participants who

complete the survey attentively [10, 13, 14]. Consequently, unless C/IE survey responses

are carefully identified and removed, a considerable proportion of putatively symptomatic

individuals in an online sample may, in fact, be participants who have not engaged with

the experiment with sufficient attention or effort.

When participants complete both symptom surveys and behavioral tasks—a common

study design in computational psychiatry—this artifact has the potential to induce spu-
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rious correlations between symptom self-report scores and task behavior. That is, while

C/IE behavior is traditionally thought of as a source of noise that can result in type II

(false negative) errors, here we suggest that in large-scale online psychiatric studies it

can instead result in type I (false positive) errors. Concretely, if the same participants

who engage in C/IE responding on surveys (and who therefore inaccurately report high

levels of psychiatric symptoms) also respond with insufficient effort on behavioral tasks,

this can cause experimenters to observe an entirely spurious correlation between greater

symptom severity and worse task performance (see Figure 1). A similar effect has been

well documented in personality psychology, where the presence of C/IE responding can

induce correlations between questionnaires, and bias factor estimation in factor analysis

[8, 10, 15–17].

Here, we demonstrate the real risk that C/IE responding can lead to spurious symptom-

task correlations in computational psychiatry research. First, we asked to what extent

recent studies in computational psychiatry screen participants based on self-report symp-

tom data. We found that the majority of these studies did not screen participants’ survey

data at all, and that very few followed best-practice recommendations for survey data

screening. We then asked whether behavioral screening alone was sufficient to identify

participants engaging in C/IE responding on psychiatric symptom surveys. In two new

datasets from two separate online labor markets, we found that screening based on task

behavior fails to completely identify participants engaging in C/IE responding on surveys.

Lastly, we investigated whether, under these circumstances, C/IE responding led to spu-

rious correlations between symptom severity and task performance for positively-skewed

symptom measures. Consistent with the logic set out above, we confirmed that failure to

appropriately screen out C/IE survey responding in the proof-of-concept datasets that we

collected would have produced a number of spurious correlations between task behavior

and self-reported symptoms that are abolished when data are screened more thoroughly.

Results

Narrative review of task and self-report screening practices

First, we sought to what extent recent online studies screen participants in a way that

would reduce the risk of spurious correlations due to C/IE participants. We performed a

narrative literature review of 49 online human behavioral studies, and evaluated whether

and how each study performed task and self-report data screening (see Methods for details

of the literature search).

Among studies that we reviewed, approximately 80% (39/49) used at least one method to

identify C/IE responding in task behavior (Table 1). Of these, just over half relied on a

single screening method, with considerable heterogeneity in behavior screening methods

across studies. Most common (46% of these studies) was identifying participants whose

performance was statistically indistinguishable from chance-level on some measure of

3



accuracy. Almost as common (38% of these studies) was screening based on low response

variability (i.e., excluding participants who predominantly responded in the same fashion

across trials, such as using only a single response key).

In contrast, only a minority (19/49, or 39%) of studies screened for C/IE responding in

self-report symptom measures. The most common survey screening method was the use

of attention checks, which are prompts for which most responses are unlikely given atten-

tive responding. Participants who do not give the correct response to these prompts are

therefore likely to be engaged in C/IE responding. Attention checks can be subdivided

into instructed items (in which participants are explicitly told which response to select;

e.g., ‘Please select “Strongly Agree”’), and infrequency items (in which some responses

are logically invalid or exceedingly improbable; e.g., endorsing ’Agree’ for the question ‘I

competed in the 1917 Summer Olympic Games’). Of those studies that specified what

type of attention check was used, instructed items were the most common method. As

we discuss further below, this is notable because best-practice recommendations for data

collection in personality psychology explicitly counsel against using instructed-item atten-

tion checks [18–20]. Only a handful of studies employed statistical or so-called unobtrusive

screening methods such as outlier detection or personal consistency.

In sum, whereas screening for C/IE responding in task behavior was relatively common

for online behavioral studies, screening of self-report survey data was far less prevalent.

Although this pattern may seem troubling, low rates of survey data screening are not

necessarily an issue if screening on task behavior alone is sufficient to remove participants

engaging in C/IE responding. That is, screening on survey data may be redundant if there

is a high degree of correspondence between task- and survey-based screening methods.

In the next section, we explicitly test this hypothesis in a large sample of online partici-

pants completing a battery of self-report surveys and a behavioral task. Specifically, we

measure the empirical correspondence between common task- and survey-based screen-

ing methods—as identified in our literature review—so that results are informative with

respect to typical study designs in online psychiatry research.

C/IE participants appear psychiatric when symptoms are

rare

To measure the correspondence of screening measures estimated from task and self-report

behavior, we conducted an online behavioral experiment involving a simple decision-

making task and a battery of commonly used self-report psychiatric symptom measures

(see Methods). A final sample of 386 participants from the Amazon Mechanical Turk

(N=186) and Prolific (N=200) online labor markets completed a probabilistic reversal-

learning task and 5 self-report symptom measures. The reversal-learning task required

participants to learn through trial-and-error which of three options yielded reward most

often, and was modeled after similar tasks used to probe reinforcement-learning deficits

in psychiatric disorders [21, 22]. The five self-report measures were the 7-up (which
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measures symptoms of hypomania), the 7-down (which measures symptoms of depres-

sion), the GAD-7, (which measures generalized anxiety symptoms), the BIS/BAS (which

measures reward and punishment motivations), the SHAPS (which measures anhedonia

symptoms), and the PSWQ (which measures worry symptoms), and were chosen based

on previous literature to have a variety of expected response distributions (symmetric and

asymmetric). In line with current best-practice recommendations [23], each self-report in-

strument included one ‘infrequency’ item that could be used to identify C/IE responses in

survey data (see Methods for a list of infrequency items). The entire experiment (surveys

and task) was designed to require 10 minutes on average to complete (observed mean =

10.28 minutes). To minimize any influence of fatigue on survey responding, participants

completed the surveys prior to beginning the task.

To assess the overall quality of the data, we examined the number of participants flagged

by the choice accuracy and infrequency item screening measures. Only 26 participants

(7%) were flagged as exhibiting choice behavior at or below statistically chance levels

in the reversal-learning task. In contrast, 85 participants (22%) endorsed a logically in-

valid or improbable response on one or more of the infrequency items when completing

the self-report symptom measures. This discrepancy in the proportion of participants

flagged by each method is consistent with previous research, which found varying lev-

els of sensitivity to C/IE responding across screening methods [24]. The proportion of

participants flagged for C/IE responding was marginally but significantly greater on Me-

chanical Turk compared to Prolific for both task (MTurk: N=18/186; Prolific: N=8/200;

two-tailed, two-sample proportions test: z(384) = 2.224, p = 0.026, h = 0.230, 95% CI =

[0.006, 0.107]) and survey data (MTurk: 50/186; Prolific: 35/200; two-tailed, two-sample

proportions test: z(384) = 2.223, p = 0.026, h = 0.227, 95% CI = [0.011, 0.176]).

We hypothesise that spurious behavior-symptom correlations may emerge due to a mean-

shift in the average level of symptom endorsement in participants engaging in C/IE re-

sponding relative to attentive participants. In turn, a mean-shift is expected to occur

when the overall rate of symptom endorsement is low; that is, comparably higher scores

are more likely for C/IE participants responding at random on a questionnaire with a

right-skewed score distribution. In line with our predictions, the average level of symptom

endorsement was noticeably exaggerated in C/IE-responding participants for the symp-

tom measures where symptom scores were most positively-skewed (7-up, 7-down, GAD-7;

Figure 2). In contrast, where there was higher rates of symptom endorsement overall,

the distributions of symptom scores between the two groups of participants were less no-

ticeably distinct. Permutation testing confirmed that observed mean-shifts in symptom

scores for C/IE participants were statistically significant for the majority of symptom

measures (Table 2).

Hereafter, we use the infrequency-item method as a primary means of identifying C/IE

responding in our data. To verify this approach, we conducted three validation analyses.

The first analysis compared estimated internal consistency of self-report measures between

the C/IE and attentive groups. The logic is that, if C/IE responding manifests as a

tendency to respond randomly, we should expect to see a decrease in the consistency of a
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measure in the C/IE responding group [24–26]. In line with this reasoning, we observed

a reduction in Cronbach’s α in the C/IE group for the majority of survey instruments

(Table 2). A permutation test confirmed that the average decrease in internal consistency

across measures was greater than would be expected by chance given the difference in

participant numbers between groups (two-tailed, paired-samples t-test: t(6) = −3.689,

p = 0.021, d = 1.506, 95% CI = [-0.048, -0.141]).

Second, we quantified the degree to which participants responded to self-report symptom

surveys in a stereotyped fashion; that is, we determined if participants exhibited patterns

in their responses that were independent of the contents of the survey items. We fit

a random-intercept item factor-analysis model [27] to self-report data (see Methods),

and for each participant we estimated an intercept parameter that quantified their bias

towards using responses on the left or right side of the response scale, regardless of what

that response signifies for a particular self-report measure (e.g., low on one symptom scale

versus high on another). We observed a credible difference between the average value of

this intercept for the two groups (∆intercept = −0.67, 95% HDI = [−0.78,−0.55]), such

that C/IE participants were biased towards using the right-half of survey response options.

This translates to a tendency to endorse more severe symptoms on the 7-up/7-down

and GAD-7 scales (where the rightmost options indicate greater frequency of symptoms)

but less extreme symptoms or personality traits on the SHAPS and BIS (where the

rightmost options indicate lower frequency of symptoms or personality traits) despite

these inventories measuring strongly correlated constructs (i.e., depression and anhedonia,

anxiety and behavioral inhibition).

Finally, we compared the proportion of participants meeting the cutoff for clinical levels

of psychopathology before and after excluding participants based on their responses to

the infrequency items. Previous studies have found that applying such measures reduced

the prevalence of clinical symptomology in online samples towards ground truth rates

from epidemiological studies [13]. On the most positively-skewed measures, the fraction

of participants reaching clinical levels of symptom endorsement prior to screening was

greater than what would be expected (Table 2). For example, 13.0% of participants scored

at or above clinical thresholds for (hypo)mania on the 7-up scale in our sample prior to

screening, compared with a 12-month prevalence of 5% in the general population [28, 29],

but this rate was reduced to 4.0% (in line with the population prevalence estimates) after

exclusion of C/IE respondents. We observed a similar pattern for both major depressive

disorder (MDD) and anxiety (population prevalence estimates of 7% and 5% respectively;

[11, 30, 31]). Interestingly, the proportion of participants meeting threshold on the GAD-

7 was elevated compared to previous literature. We suspect this may reflect elevated rates

of state anxiety during the COVID-19 pandemic [32], when these data were collected. In

line with previous research, we interpret these inflated rates of clinical symptomology in

our sample prior to screening as suggestive of C/IE responding [13].
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Low agreement between task and self-report screening mea-

sures

Next, we evaluated the degree of correspondence between behavioral and self-report

screening measures in order to determine whether screening on behavior alone was suf-

ficient to identify and remove careless participants. In line with the literature review,

we computed multiple measures of C/IE responding from each participant’s task behav-

ior and survey responses (see Methods for description of measures). To measure the

degree of correspondence between these behavioral and self-report screening measures,

we performed two complementary analyses. First, we computed pairwise correlations on

the unthresholded (continuous) measures using Spearman’s rank correlation. The result-

ing pairwise similarity matrices are presented in Figure 3 (left panel). After correcting

for multiple comparisons, there were few significant correlations between the behavioral

and self-report screening measures. Only choice accuracy showed significant associations

with any self-report measure (specifically, the infrequency and Mahalonobis distance mea-

sures). Crucially, the sizes of these observed correlations were roughly half those observed

for the correlations between the self-report measures. This is worrisome as it suggests

that, although there is some relationship between C/IE responding on tasks and self-

report inventories, the relationship is not strong enough to ensure reliable detection of

careless participants using task data alone.

Second, we used the Dice similarity coefficient to quantify agreement between different

screening methods in the set of participants flagged for exclusion (Figure 3, right panel).

This approach quantifies the degree of overlap between the set of would-be excluded par-

ticipants based on different screening measures under a common exclusion rate. Though

some measures have relatively clear threshold cutoffs (e.g., chance level performance for

task accuracy), the majority of the measures evaluated here do not. As such, we eval-

uated the measures with respect to the top 10% of “suspect” participants flagged by

each measure, corresponding roughly to the fraction of participants having performed at

chance levels on the reversal-learning task. (Results of the same analysis repeated for

the top 25% of “suspicious” participants — corresponding roughly to the fraction of par-

ticipants flagged by the infrequency-item measure — produced similar results; see Table

S5.) Results were largely consistent with the correlation analysis: few pairs of task and

self-report screening measures achieved levels of agreement greater than what would be

expected by chance. The only significant cross-modality pair identified — between the

infrequency item and choice accuracy measures — has a Dice similarity coefficient less

than 0.4. In other words, when these two measures are used to identify the top 10% of

participants most strongly suspected of C/IE responding, they agree on only two out of

every five participants. Screening on choice accuracy alone (the most common method

identified in our literature review) would fail to identify the majority of participants most

likely engaging in C/IE responding as determined by the infrequency items.

Taken together, these results suggest that measures of C/IE responding in task and self-

report data do not identify the same set of participants. This means that solely excluding

participants on the basis of poor behavioral performance—the most common approach
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in online studies—is unlikely to identify participants who engage in C/IE responding on

self-report surveys.

C/IE responding yields spurious symptom-behavior correla-

tions

Here we examine the potential consequences of screening only on task behavior in our

data. To do this, we estimated the pairwise correlations between the symptom scores

of each of the self-report measures and several measures of performance on the reversal

learning task. This analysis emulated a typical computational psychiatry analysis, in

which the results of primary interest are the correlations between task behavior and self-

reported psychiatric symptom severity.

For each participant, we computed both descriptive and computational-model-based mea-

sures of behavior on the reversal learning task (see Methods). To understand the effects of

applying different forms of screening, we estimated the correlations between each unique

pairing of a self-report symptom measure and measure of behavior under four different

conditions: no screening, screening only on task behavior (i.e., only participants whose

choice accuracy was above chance), screening only on self-report responses (i.e., only

participants who responded correctly on all infrequency items), or both. The resulting

pairwise behavior-symptom correlations following each screening procedure are presented

in Figure 4. We note that we did not correct these correlation analyses for multiple com-

parisons, since our purpose was to demonstrate the extent of this issue across multiple

behavioral measures and self-report symptoms. Any one of these correlations considered

individually can be thought of as emulating a conventional analysis where fewer statistical

tests would be performed.

When no rejections based on C/IE responding was applied (i.e., all participants were

included in the analysis; Figure 4A), many significant correlations emerged between mea-

sures of task behavior and symptom scores, in particular for 4 of the self-report instru-

ments (7-up, which measures symptoms of hypomania; 7-down, which measures symp-

toms of depression; GAD-7, which measures generalized anxiety symptoms; and BIS,

which measures tendencies related to behavioral inhibition). Consistent with our pre-

dictions, the majority of these correlations involved symptom measures with asymmetric

score distributions. Attending to only the most skewed measures (i.e., 7-up, 7-down,

GAD-7), symptom endorsement was correlated with almost every behavioral measure.

That is, significant correlations were not restricted only to general behavioral measures

often used as proxies for participant effort (e.g., accuracy, inverse temperature β) but also

to measures of specific theoretical interest, such as asymmetry of learning from positive

and negative reward prediction errors (κ). Conversely, we found few significant correla-

tions among symptom measures with more symmetric distributions. This is despite the

fact these scales measure similar symptoms and syndromes (e.g., anxiety as measured by

the GAD-7 and worry as measured by the PSWQ; depression as measured by the 7-down

and anhedonia as measured by the SHAPS).
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Next, we excluded participants from analysis based on task-behavior screening (i.e., choice

accuracy, removing the 7% of participants exhibiting behavior indistinguishable from

chance; Figure 4B). The pattern of correlations was largely unchanged: we again found

many significant correlations between measures of behavior and asymmetric symptom

measures, but almost no significant correlations involving symmetric symptom measures.

This suggests that rejection of participants based on the most common form of behavioral

screening (i.e., performance accuracy) had little effect on behavior-symptom correlations

as compared to no screening.

In stark contrast, when we rejected participants based on self-report screening (removing

22% of participants who endorsed one or more invalid or improbable responses on the

infrequency items; Figure 4C), the number of significant correlations was markedly re-

duced, particularly for several of the most skewed symptom measures (7-down, GAD-7)

and proxy measures of task attentiveness (e.g., accuracy, inverse temperature). This pat-

tern of correlations was largely similar when rejections were applied based on both task

and self-report screening measures (Figure 4D). We also note that with stricter screening,

the remaining significant correlations were, for the mostly but not always, weaker (Tables

S6–S9).

These findings suggest that many of the significant behavior-symptom correlations ob-

served without strict participant screening may indeed be spurious correlations driven

by C/IE responding. Importantly, screening based on task behavior alone did not ade-

quately protect against spurious symptom-behavior correlations in the presence of skewed

distributions of symptom endorsement. For instance, consider the 7-down scale, a mea-

sure of trait depression: had we not screened participants based on infrequency items, we

would have erroneously concluded that there were many significant associations between

reversal-learning task performance and self-reported depression. Screening on self-report

data allowed us to identify that each of these depression-behavior correlations was likely

to be spurious.

One possible objection to this interpretation is that the reduction in significant correla-

tions following self-report screening was a result of the reduced sample size after removal

of C/IE respondents (which comprised over 20% of the sample). To test this alternative

hypothesis, we performed the same correlation analysis after removing random subsets

of participants, fixing the sample size to that obtained after excluding C/IE respondents.

In this case, the pattern of significant correlations was more similar to that before screen-

ing than after screening using the infrequency measure (two-tailed, paired-samples t-test:

t(4999) = 262.490, p < 0.001, d = 3.713, 95% CI = [0.136, 0.138]; Figure S2, compare to

Figure 4A). Thus, the reduction in significant correlations following screening was unlikely

to be driven solely by a reduction in statistical power.

Next, we investigated how spurious correlations depended on sample size. To do so, we

performed a bootstrapping analysis where we held fixed the proportion of participants

engaging in C/IE responding (i.e., 5%, 10%, 15%, 20%) and increased the total number

of participants. Across all analyses, we measured the correlation and between the 7-down

depression scale and learning-rate asymmetry (κ), which we previously identified as likely
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exhibiting a spurious association. (The following results are not specific to learning-rate

asymmetry and generalize to other pairs of variables; Figure S3).

The outputs of the bootstrapping analysis are presented in Figure 5. We found that,

although estimated correlation magnitudes were independent of sample size (x-axis, left

panel), the absolute magnitude of the behavior-symptom correlation increased with the

proportion of C/IE participants (different coloured circles, left panel). Crucially, we found

false-positive rates for spurious correlations increased with increases in sample size in our

data for all but the smallest rates of C/IE responding (right panel). This runs counter

to a common assumption that larger sample sizes are protective against spurious cor-

relations because they serve to mitigate measurement error. Although this assumption

is correct for unsystematic measurement error, it no longer holds in the regime of sys-

tematic measurement error (where larger sample sizes reduce the variance of estimates,

but do not alter their bias). Instead, our results suggest that, except for low rates of

C/IE responding, the false-positive rate for behavioral-symptom correlations will become

increasingly inflated as the sample size increases.

Findings replicate in second study with alternative measures

One possible concern with the results presented so far is that they are specific to one

instantiation of our experimental design. With more stringent quality assurance protocols

during participant recruitment, or perhaps a different task or set of self-report measures,

one might wonder if spurious correlations would remain such a threat.

To evaluate the generalizability of our findings, we therefore conducted a conceptual repli-

cation experiment in which an independent sample of N=393 participants (N=193 from

MTurk using CloudResearch, N=200 from Prolific) completed a more difficult cognitive

task, the well-known “two-step task” [33], and an alternate set of self-report measures (see

Supplementary Materials B for details). Importantly, participants were recruited after

CloudResearch and Prolific implemented new protocols to improve data quality on their

respective platforms. As a final control measure, participants completed self-report symp-

tom measures as before, but also personality measures with no hypothesized relationship

to model-based planning behavior on the two-step task.

For the sake of brevity, we report here only the main pattern of findings (all results

are reported in Supplementary Materials B). In the replication sample, 55 out of 393

participants (14%) endorsed a logically invalid or improbable response on one or more

of the infrequency items when completing the self-report measures. This is roughly two-

thirds of the fraction of participants who were flagged for C/IE responding in the original

study, suggesting that the newer quality assurance protocols used by the online platforms

are at least partially effective.

In the self-report symptom measures, we replicated the finding that total scores were

noticeably exaggerated in participants suspected of C/IE responding, but only for symp-

tom measures where overall rates of symptom endorsement were the lowest (Figure S7;
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Table S11). Similarly, we again found that task-based screening and self-report screen-

ing measures showed low correspondence (Figure S8; Tables S12–S13); that is, excluding

participants on the basis of poor behavioral performance would not have identified and

removed participants who engaged in C/IE responding on self-report surveys.

Finally, when we did not apply any exclusions, we observed spurious correlations between

performance on the two-step task and total scores for both symptom and personality

self-report measures with a mean-shift in scores between attentive participants and par-

ticipants suspected of C/IE responding (Figure S9). In contrast with our original findings,

however, we found that excluding participants based on self-report or task screening mea-

sures was sufficient to abolish these spurious correlations.

In sum, we replicated most of the main findings from the original study in an indepen-

dent sample of participants completing a different task and other self-report measures.

Although we found that screening on task behavior was sufficient to protect against spu-

rious correlations in the replication sample, it is difficult to generalize and predict when

or why this might be the case for other datasets. As such, we still believe that screening

for C/IE responding in both task and self-report measures is the best approach to protect

oneself against the possibility of spurious correlations.

Patients with depression do not fail attention checks more

often

One major concern with performing rigorous screening and exclusion of participants based

on C/IE detection methods is that we might inadvertently introduce an overcontrol bias

[34]. That is, to this point we have treated the tendency towards C/IE responding as

independent from psychopathology. However, to the extent that C/IE responding reflects

lack of motivation [35], avoidance of effort [36, 37], or more frequent lapses of attention [38,

39], one might hypothesise a true underlying association between psychopathology and

careless responding in online studies. It is thus plausible that rigorous screening of C/IE

responding might lead to the differential exclusion of truly symptomatic participants.

To explore this possibility, we embedded attention checks into the self-report measures of

two studies of patients with major depressive disorder (see Supplementary Materials C for

details). Specifically, N=35 psychiatric patients (confirmed to meet criteria for a diagnosis

of major depressive disorder through a structured clinical interview) across 45 unique

testing sessions and N=17 healthy controls across 20 unique testing sessions, all recruited

through the Rutgers-Princeton Center for Computational Cognitive Neuropsychiatry (i.e.,

not via online labor platforms), completed a series of self-report symptom measures,

online, on their computers from the comfort of their homes. In total, 16 of 65 (24.6%)

participants failed one or more attention checks. Subdivided by group, 6 of 20 (30%)

healthy participants and 10 of 45 (22%) MDD patients were flagged for C/IE responding.

Using these data, we computed pairwise Bayes factors comparing three candidate mod-
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els: attention check failure rates are equal between healthy and MDD patients (M1);

failure rates are greater in MDD patients (M2); and failure rates are greater in healthy

participants (M3). The model assuming equal rates of failure between healthy and MDD

participants was 2.88 times more likely than the model assuming greater rates for MDD

patients. In turn, the model assuming lower rates of failure for MDD patients was 1.27

times more likely than the model assuming equal rates. Finally, the model assuming lower

rates of failure for MDD patients was 3.65 times more likely than the model assuming

higher rates for MDD patients. Only the final comparison exceeds the cutoff value of

3, which is conventionally treated as the minimal amount of evidence required to treat

a difference in model fit as meaningful. Although the size of the sample precludes any

definitive conclusion, it is noteworthy that the model least consistent with the data was

the one where MDD patients are more likely to fail infrequency item attention checks.

These data suggest, therefore, that it is unlikely that individuals with high depression

symptom severity were disproportionately flagged for C/IE responding in the main anal-

yses. Accordingly, we tentatively conclude that the screening measures we are suggesting

are not likely to result in overcontrol bias and false-negative correlations between tasks

and symptom measures, at least in the case of individuals with depression. It remains

possible that other psychiatric symptoms might be associated with a different pattern of

results.

Discussion

In this study, we highlighted a particular set of circumstances, common in computational

psychiatry research done on large online samples, in which spurious correlations may

arise between task behavior and self-reported symptomology. When the ground-truth

prevalence of a symptom is low in the general population, participants who respond

carelessly on measures assessing this symptom may erroneously appear as symptomatic.

Careless responding on tasks used to measure cognitive constructs can then masquerade as

a correlation between individual differences in these constructs and symptom dimensions.

We found repeated evidence for this pernicious pattern in two samples of participants

recruited from two popular online labor platforms. False-positive rates for these spurious

correlations increased with sample size, because the correlations are due to measurement

bias, not measurement noise. Importantly, we found that screening on task behavior alone

was often insufficient to identify participants engaging in C/IE responding and prevent

the false-positive correlations. Unfortunately, a literature review identified this type of

screening as the most common practice in online computational psychiatry studies. We

recommend instead to screen and exclude participants based on responding on surveys,

a practice that abolished many spurious behavior-symptom correlations in our data.

One way of conceptualizing our results is through the lens of rational allocation of men-

tal effort [40]. In any experiment, attentive responding is more effortful than careless

responding. As such, participants completing an online task must perform a cost-benefit

analysis—implicitly or otherwise—to decide how much effort to exert in responding. The
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variables that factor into such calculations are presumably manifold and likely include

features of the experiment (e.g., task difficulty, monetary incentives), facets of the partic-

ipant (e.g., subjective effort costs, intrinsic motivation, conscientiousness), and features

of the online labor market itself (e.g., opportunity costs, repercussions for careless re-

sponding).

Viewed from the perspective of effort expenditure, our results suggest that participants

appraised the cost/benefit trade-off differently for behavioral tasks and self-report surveys.

Specifically, we found that only 7% of participants in the first study were at chance-level

performance in the task, compared to more than 22% of participants who failed one or

more attention-check items in the self-report surveys (a finding that qualitatively repli-

cated in a second study involving a different task). Moreover, different measures of C/IE

responding were weakly or not at all correlated between task behavior and self-report

responses. This suggests the motivation for effortful responding was greater in the behav-

ioral tasks, though precisely why is unclear. One possibility is that we gave participants

a monetary incentive for attentive responding only during the tasks (a common practice,

according to our literature review). A second possibility is that participants expected

fewer consequences for C/IE responding during the self-report surveys, a reasonable as-

sumption in light of how infrequently previous experiments have screened self-report data.

Alternatively, participants may have found the gamified behavioral tasks more engaging

or the self-report inventory more tedious. Regardless of the reason, this discrepancy

reinforces our observations concerning the inadequacy of behavioral-task screening as a

stand-alone method for identifying C/IE responding. Since, in general, participants may

appraise costs and benefits of effortful responding differently for behavioral tasks and

self-report surveys, screening for C/IE responding on one data modality may in general

be unsuitable for identifying it in the other. We therefore recommend screening on each

component of an experiment.

One complicating factor for our argument is that C/IE responding may manifest in other

ways than simply random responding for both behavioral tasks and self-report surveys.

Indeed, there are more ways to respond carelessly than to respond attentively to a task or

self-report inventory (e.g., random response selection, straight-lining, zig-zagging, acqui-

escence bias) [9]. The specific response strategy a participant adopts is likely to reflect the

idiosyncratic integration of multiple perceived benefits (e.g., time saved, effort avoided)

and costs (e.g., loss of performance bonuses, risk of detection and forfeited pay). As has

been previously documented [24], the presence of multiple response strategies makes it

clear why certain screening measures are more or less likely to correlate. For example,

the inter-item standard deviation and personal reliability measures are both sensitive to

statistically random responding, but less sensitive to straight-lining. Most importantly, a

diversity of heuristic response strategies highlights the need for many screening measures

of C/IE responding, each sensitive to different heuristic strategies.

Here we have focused on the potential for C/IE responding to result in spurious symptom-

behavior correlations when rates of symptom endorsement are low, a case common to

online computational psychiatry research. Beyond this, we should emphasize that a
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diversity of heuristic response strategies entails that there is more than one mechanism by

which spurious correlations can emerge. To the extent that the only prerequisite is a mean-

shift between attentive and careless participants, ours is not the only situation where one

might expect spurious correlations to emerge [16]. For example, random responding on

items with high base-rate endorsement could yield spurious correlations with precisely

the opposite pattern observed here. Conversely, straight-lining may actually suppress

correlations when symptom endorsement is low. In sum, without more understanding

about the various types of heuristic responding and when each is likely to occur in a

sample, it is difficult to predict a priori the patterns of systematic bias that may arise for

a given study. This is further impetus for experimenters to be wary of C/IE responding

and to use a variety of screening measures to detect it.

One objection to the rigorous screening and exclusion of participants based on C/IE de-

tection methods is that we might inadvertently introduce an overcontrol bias. That is,

to the extent that C/IE responding might reflect symptoms common to psychopathol-

ogy (e.g., low motivation, effort avoidance, inattentiveness), rigorous screening of C/IE

responding might lead to the differential exclusion of truly symptomatic participants. To

explore this possibility, we embedded attention checks into the self-report measures of two

studies of patients with major depressive disorder. Though our final sample was small,

we did not find evidence that depressed patients were more likely to fail attention checks

than healthy controls (if anything, healthy participants were more likely to be flagged by

C/IE screening). These results provide preliminary evidence that rigorous C/IE screening

is unlikely to result in overcontrol bias. However, further research with larger samples is

necessary to validate attention checks in depressed and other patient populations.

Given that the results of our patient study are preliminary and warrant further inves-

tigation, researchers might still be wary of possible overcontrol bias. However, when

using self-report questionnaires for screening, for overcontrol to seriously impact results

it would have to be the case that symptomatic participants frequently endorse improb-

able or impossible responses to infrequency-item checks (e.g., responding ‘Agree’ to “I

competed in the 1917 Olympic Games”). In this case, and even if such participants truly

are experiencing severe symptoms of motivation or attention, there is likely to be limited

utility in measuring these symptoms using a self-report measure that they are unable to

complete veridically. A similar rationale underlies the widespread use of semi-structured

interviews and other clinician-report measures rather than self-report measures for in-

clinic psychiatric research. We would therefore argue that, if the psychiatric phenomenon

being studied is such that this issue warrants concern, the research question may be bet-

ter suited to an in-person study design involving participants in the clinic who meet full

diagnostic criteria than a correlational design involving an online convenience sample.

Notwithstanding the above, one response to this legitimate concern is to take a graded

approach to screening and excluding participants [41]. That is, participants could be

screened with respect to a multitude of measures and only the consistently flagged par-

ticipants be removed, thereby reducing the risk of inducing bias. Another possibility is

to use sensitivity analysis as an alternative to exclusion, testing whether full-sample ob-
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served correlations are robust to the exclusion of participants flagged by measures of C/IE

responding. We note that the strict screening approach used in the present study did not

preclude us from identifying symptomatic participants or behavior-symptom correlations.

Indeed, we found in our sample roughly 10% of participants endorsing symptoms con-

sistent with clinical levels of depression, and approximately 20% consistent with clinical

levels of acute anxiety. These estimates are within the realm of epidemiological norms [11,

30, 32]. (We should note, however, that some studies have found elevated rates of psy-

chiatric symptomology in online participants even after controlling for C/IE responding

[13].) We also observed some positive correlations between anxiety and choice behavior

that were consistent with effects found in previous literature [42–44]. For example, we

found higher lose-shift rates and higher learning rates following negative prediction errors

correlated with self-reported anxiety. This suggests that the screening methods we em-

ployed were not so aggressive as to attenuate behavior-symptom correlations that would

be expected from the literature.

There are several notable limitations to this proof-of-concept study. We used a small set

of screening measures, and did not employ other recommended procedures (e.g., logging

each key/mouse interaction during survey administration to detect form-filling software

or other forms of speeded responding [45]). Thus, we cannot be confident that all of

the flagged participants were indeed engaging in C/IE responding; similarly, we cannot

be certain that we correctly excluded all participants engaged in C/IE responding. We

studied behavior-symptom correlations for only two tasks and two sets of self-report

instruments. It remains to be seen how generalizable our findings are, although our study

design was inspired by experiments prevalent in the online computational psychiatry

literature. As suggested above, future studies may find greater correspondence between

task and self-report screening measures for more difficult behavioral experiments. Finally,

we should note that, unlike previous studies in which some participants were explicitly

instructed to respond carelessly [45], we do not have access to “ground truth” regarding

which participants were engaging in C/IE responding. Future work testing the efficacy of

different screening metrics for identifying instructed C/IE responding may help to identify

some of the issues that we have identified here.

This study highlights the need for more research on the prevalence of C/IE responding in

online samples and its interactions with task-symptom correlations. Many open questions

remain, including under what conditions task- and symptom-screening measures might

better correspond, what screening measures are most effective and when, and under

what conditions spurious correlations are more likely to arise. For example, we found

that screening on task behavior alone was insufficient to prevent putatively spurious

correlations for one task (reversal learning) but was sufficient for another task (the two-

step task). This discrepancy may reflect differences in the tasks (e.g., the two-step task

may be more challenging and thus more sensitive to C/IE responding) or differences in

the screening measures (e.g., choice accuracy across 90 trials may be a noisier measure

than win-stay lose-shift choice behavior across 200 trials).

One especially pressing question is how sample size affects the likelihood of obtaining
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spurious correlations. The results of a bootstrapping analysis in our data suggest that

false positive rates are likely to increase with sample size. As computational psychiatry

studies move towards larger samples to characterize heterogeneity in symptoms (and

to increase statistical power), it will be important to understand how sample size may

exaggerate the effects of systematic error. It will also be important to understand how

this is moderated by overall C/IE responding rates, which we observed to vary across

platforms and time, and which will presumably continue to evolve with changing labor

platform and researcher screening practices.

We conclude with a list of concrete recommendations for future online studies involving

correlations between task behavior and self-report instruments. We note that these rec-

ommendations are not limited to computational psychiatry studies, but are applicable

to any online individual-differences cognitive science research involving similar methods

(e.g., behavioral economics, psycholinguistics).

Moving forward, we strongly recommend that experimenters employ some form of self-

report screening method, preferably one recommended by the best-practices literature

(e.g., [9, 13, 16, 19, 24]). Our literature review found that, to date, the majority of online

studies assessing behavior-symptom correlations have not used self-report screening, and

our results demonstrate that stand-alone task-behavior screening is not necessarily suf-

ficent to prevent spurious symptom-behavior correlations induced by C/IE responding.

We therefore encourage experimenters to use a variety of data-quality checks for online

studies and to be transparent in their reporting of how screening was conducted, how

many participants were flagged under each measure, and what thresholds were used for

rejection.

When collecting self-report questionnaire data, we encourage experimenters to use screen-

ing methods sensitive to multiple distinct patterns of C/IE responding (e.g., random

responding, straight-lining, side bias) and, if possible, to log all page interactions (e.g.,

mouse clicks, keyboard presses). We specifically recommend experimenters use infrequency-

item attention checks rather than instructed-item checks, as multiple studies have now

shown that online participants are habituated to and circumvent the latter (e.g., [18–20];

Supplementary Materials B). Participants flagged by suspicious responses on attention-

check items should either be excluded from further analysis, or assessed using sensitivity

analyses to ensure that observed full-sample correlations are robust to their exclusion.

We found that spurious correlations predominantly affected self-report instruments for

which the expected distributions of symptom scores were asymmetric (either positively

or negatively skewed). As such, all else equal, symmetrically-distributed measures of

a given construct should be preferred to asymmetrically-distributed measures (though

this will often be infeasible given that the prevalence of many psychiatric symptoms in

the general population is typically small). Scales with reverse-coded items can be used

to quantify the consistency of participants’ responses between reverse-coded and non-

reverse-coded measures of the same latent construct. With some care, this may be used

to identify C/IE responding even for measures that do not include attention-check items

[46]. Similarly, it may be beneficial to include multiple self-report surveys of the same
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construct to measure consistency across scales.

In our experience, we have found it instructive to review discussions on public forums for

participants of online labor markets (e.g., at the time of writing, Reddit, TurkerNation).

Doing so helps an experimenter identify what screening methods would-be participants are

already aware of and prepared to answer correctly. (Several examples of workers discussing

common attention checks can be found at the Github repository for this project.)

More broadly, we encourage experimenters in computational psychiatry to be mindful of

the myriad reasons why participants may perform worse on a behavioral task. Wher-

ever possible, researchers are encouraged to design experiments where the signature of

some psychiatric syndrome could not also be explained by C/IE responding (e.g., [47,

48]). Experimenters should also carefully consider whether an online study is truly ap-

propriate for the research question. In particular, if the project aims to study syndromes

associated with considerable difficulty in task or survey engagement (e.g., severe ADHD,

acute mania), symptomatic participants are likely to produce responses that cannot be

distinguished from C/IE responding. In such a case, correlational research in online sam-

ples is likely not the best approach for the research question. Finally, we conclude by

noting that it is preferable to prevent C/IE responding than to account for it after the

fact [49]. As such, we recommend researchers take pains to ensure their experiments

promote engagement, minimize fatigue and confusion, and compensate participants fairly

and ethically.

Methods

Experiment

Sample

409 total participants were recruited to participate in an online behavioral experiment in

late June - early July, 2020. Specifically, 208 participants were recruited from Amazon

Mechanical Turk (MTurk) and 201 participants were recruited from Prolific. This study

was approved by the Institutional Review Board of Princeton University, and all partic-

ipants provided informed consent. Total study duration was approximately 10 minutes

per participant. Participants received monetary compensation for their time (rate USD

$12/hr), plus an incentive-compatible bonus up to $0.25 based on task performance.

Participants were eligible if they resided in the United States or Canada; participants

from MTurk were recruited with the aid of CloudResearch services [50]. (Note: This study

was conducted prior to the introduction of CloudResearch’s newest data quality filters

[51]). Following recent recommendations [52], MTurk workers were not excluded based

on work approval rate or number of previous jobs approved. No other exclusion criteria

were applied during recruitment. It is important to note that both CloudResearch and
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Prolific use a number of tools (e.g., IP-address screening) to filter out the lowest quality

participants. In addition, our custom experiment delivery software (NivTurk; see below)

has bot-checking functionality built into it, and rejects from the start participants who

are likely to not be human. We are therefore confident that our study is not strongly

affected by participants using software to automatically complete the experiment.

Data from several participants were excluded prior to analysis. Three participants (all

MTurk) were excluded due to missing data. In addition, we excluded 20 participants who

disclosed that they had also completed the experiment on the other platform. This left a

final sample of N=386 participants (MTurk: N=186, Prolific: N=200) for analysis. The

demographics of the sample split by labor market is provided in Table S1. Notably, the

participants recruited from MTurk were older (mean difference = 7.7 yrs, two-tailed, two-

sample t-test: t(384) = 6.567, p < 0.001, d = 0.669, 95% CI = [5.4, 10.0]) and comprised

of fewer women (two-tailed, two-sample proportions test: z(384) = 2.529, p = 0.011,

h = 0.258, 95% CI = [0.030, 0.228]).

Experimental Task

Participants performed a probabilistic reversal learning task, explicitly designed to be

similar to previous computational psychiatry studies [21, 22]. On every trial of the task,

participants were presented with three choice options and were required to choose one.

After their choice, participants were presented with probabilistic feedback: a reward (1

point) or a non-reward (0 points). On any trial one choice option dominated the others.

When chosen, the dominant option yielded reward with 80% probability; the subordi-

nate options yielded reward with only 20% probability. The dominant option changed

randomly to one of the two previously subordinate options every 15 trials. Participants

completed 90 trials of the task (1 learning block, 5 reversal blocks).

As a cover story, the probabilistic reversal learning task was introduced to participants as

a fishing game in which each choice option was a beach scene made distinguishable by a

colored surfboard with unique symbol. Participants were told they were choosing which

beach to fish at. Feedback was presented as either a fish (1 point) or trash (0 points).

Participants were instructed to earn the most points possible by learning (through trial-

and-error) and choosing the best choice option. Participants were also instructed that

the best option could change during the task, but were not informed about how often or

when this would occur (see Supplementary Materials A for the complete instructions).

Prior to beginning the experiment, participants had to correctly answer four comprehen-

sion questions about the instructions. Failing to correctly answer all items forced the

participant to start the instructions over.

The task was programmed in jsPsych [53] and distributed using custom web-application

software. All experiment code is publicly available (see Code Availability statement). A

playable demo of the task is available at https://nivlab.github.io/jspsych-demos/

tasks/3arm/experiment.html.
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Symptom Measures

Prior to completing the reversal learning task, participants completed five self-report

symptom and personality-trait measures. The symptom measures were selected for in-

clusion based on their frequency in clinical research, and for having an expected mixture

of symmetric and asymmetric score distributions.

Seven-Up/Seven-Down. The Seven-Up/Seven-Down (7u/7d; [54]) scale is a 14-item

measure of lifetime propensity towards depressive and hypomanic symptoms. It is an

abbreviation of the General Behavior Inventory [55], wherein only items that maximally

discriminated between depression and mania were included. Items are scored on a 4-point

scale from 0 (“Never or hardly ever”) to 3 (“Very often or almost constantly”). Total

symptom scores on both subscales range from 0 to 21, and are usually strongly right-

skewed, with few participants exhibiting moderate to high levels of symptom endorsement.

Generalized Anxiety Disorder-7. the Generalized Anxiety Disorder-7 (GAD-7; [56])

is a 7-item measure of general anxiety. The GAD-7 assesses how much a respondent has

been bothered by each of seven core anxiety symptoms over the last 2 weeks. Items are

scored on a 4-point scale from 0 (“not at all”) to 3 (“nearly every day”). Total scores

on the GAD-7 range from 0 to 21, and are usually right-skewed, with few participants

exhibiting moderate to high levels of symptom endorsement.

Behavioral Inhibition/Behavioral Activation Scales. the Behavioral Inhibition and

Behavioral Activation Scales (BIS/BAS; [57]) are a measure of reward and punishment

sensitivity. The original 42-item measure was recently abbreviated to a 14-item measure

[58], which we use here. Items are scored on a 4-point scale from 1 (“very true for

me”) to 4 (“very false for me”). Total scores on the BAS subscale range from 8 to 32,

whereas total scores on the BIS subscale range from 4 to 16. Previous reports have

found total scores to be symmetrically distributed [59]. Importantly, in order to maintain

presentation consistency with the other symptom measures, the order of the BIS/BAS

response options was reversed during administration such that “very false for me” and

“very true for me” were the left- and rightmost anchors, respectively.

Snaith-Hamilton Pleasure Scale. the Snaith-Hamilton Pleasure Scale is a 14-item

measure of anhedonia [60]. Items are scored on a 4-point scale from 0 (“strongly agree”)

to 3 (“strongly disagree”), where higher scores indicate greater pathology. Total scores

on the SHAPS range from 0 to 42, and have previously been found to be somewhat right-

skewed [61, 62], with only the minority of participants exhibiting moderate to high levels

of symptom endorsement. Importantly, as with the BIS/BAS, the order of the SHAPS

response options was reversed during administration such that “strongly disagree” and

“strongly agree” were the left- and rightmost anchors, respectively.

Penn State Worry Questionnaire. the Penn State Worry Questionnaire is a measure

of worry symptoms [63]. The original 16-item was recently abbreviated to a 3-item

measure [64], which we use here. Items are scored on a 5-point scale from 0 (“not at all

typical of me”) to 4 (“very typical of me”), where higher scores indicate greater pathology.
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Total symptom scores range from 0 to 12 and are usually uniformly distributed.

Analysis

All statistical models fit as part of the analyses (described in detail below) were estimated

within a Bayesian framework using Hamiltonian Monte Carlo as implemented in Stan

(v2.26) [65]. For all models, four separate chains with randomised start values each took

2000 samples from the posterior. The first 1500 samples from each chain were discarded.

As a result, 2000 post-warmup samples from the joint posterior were retained. Unless

otherwise noted, the R̂ values for all parameters was less than 1.1, indicating acceptable

convergence between chains, and there were no divergent transitions in any chain.

Validation analyses

To validate the infrequency items as a sensitive measure of C/IE responding, we performed

three complimentary analyses. We describe each in turn below.

Cronbach’s α. We compared the average Cronbach’s α, a measure of internal consis-

tency, between attentive and C/IE participants. To control for the unbalanced numbers

of participants in these groups, we performed a permutation test. First, we estimated

Cronbach’s α was estimated for each subscale and group. Next, we computed the average

difference in Cronbach’s α between the two groups. Then we created a null distribution

for this statistic by repeating the same analysis but permuting group membership (i.e.,

randomly assigning participants to either group), holding fixed the sizes of both groups.

This procedure was performed 5000 times. To compute a p-value, we tallied the number

of null statistics equal to or (absolutely) greater than the observed test statistic.

Random intercept item factor analysis. We employed random intercept item

factor analysis [27] to detect heuristic patterns of responding. In the model, the prob-

ability of observing response level k (of K total levels) from participant i on item j is

defined as:

p( yij = k ) =


1 − logit−1(µi + xj · θi − cj,1) if y = 1

logit−1(µi + xj · θi − cj,y−1) − logit−1(µi + xj · θi − cj,y) if 1 < y < K

logit−1(µi + xj · θi − cj,K−1) − 0 if y = K

where µi is an intercept for participant i; θi is a vector of latent factor scores for participant

i; xj is a vector of factor loadings for item j; cj is a vector of ordinal cutpoints for item

j; and yij is the observed response for participant i on item j.
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In this analysis, we did not estimate the factor loadings but instead treated them as

observed. Specifically, we defined the factor loading for each item as a one-hot vector

where the only nonzero entry denoted that item’s corresponding subscale. That is, all

of the items from a given subscale were assigned to their own unique factor (which was

fixed to one). As such, the model estimated one factor score per participant and subscale

(akin to the 1-parameter ordinal logistic model).

Crucially, each participant’s responses were also predicted by a random intercept term,

µi, which was not factor specific but instead was fit across all items. This intercept

then reflects a participant’s overall bias towards a response level. In our analysis, we

coded the response levels such that the smallest value indicated endorsing the leftmost

anchor (irrespective of semantic content) and the largest value indicated endorsing the

rightmost anchor (irrespective of semantic content). Because the leftmost response option

corresponds to symptomology on some scales (SHAPS), and a lack of symptomology for

others (GAD-7, 7-up/7-down), we would not expect a consistent nonzero bias in this

random intercept term for an attentive participant.

Clinical cutoffs. We compared the proportion of participants in our sample reaching

the threshold for clinical symptomology before and after applying exclusions. For the

GAD-7, previous research has suggested a clinical cutoff score of 10 or higher [11, 31].

Though the 7-up/7-down scales do not have firmly established clinical cutoffs recent work

has suggested a cutoff score of 12 or higher [66], which we use here. Finally, the original

authors of the SHAPS scale recommended as a cutoff a score of 3 or more when the items

are binarized (1, ‘Strongly disagree’ or ‘Disagree’; 0, ‘Strongly agree’ or ‘Agree’). We use

this scoring approach in Table 2.

Correspondence of screening measures

To measure the correspondence of task- and self-report-based screening measures, we

estimated a number of standard measures of data quality from each participant’s task

behavior (four in total) and self-report responses (five in total). Beginning first with the

self-report data, we describe each below.

Self-report screening measure: Infrequency items. Infrequency items are

questions for which all or virtually all attentive participants should provide the same re-

sponse. We embedded four infrequency items across the self-report measures. Specifically,

we used the following questions:

1. Over the last two weeks, how much time did you spend worrying about the 1977

Olympics? (Expected response: Not at all)

2. Have there been times of a couple days or more when you were able to stop breathing

entirely (without the aid of medical equipment)? (Expected response: Never or

hardly ever)
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3. I would feel bad if a loved one unexpectedly died. (Expected response: Somewhat

true for me or Very true for me)

4. I would be able to lift a 1 lb (0.5 kg) weight. Expected response: Agree or Strongly

agree)

Prior to conducting the study, the infrequency items were piloted on an independent

sample of participants to ensure that they elicited one dominant response. In the main

study, we measured the number of suspicious responses made by each participant to

these questions. For thresholded analyses, participants were flagged if they responded

incorrectly to one or more of these items.

Self-report screening measure: Inter-item standard deviation. The inter-

item standard deviation (ISD) is an estimate of a participant’s response consistency on a

self-report measure [67], defined as:

ISD =

√∑k
i=1(yj − ȳ)2

k − 1

where yi is a participant’s response to item i, yi is a participant’s average score across

all items, and k is the total number of items for a self-report measure. A composite ISD

measure was estimated per participant by summing across each of the seven self-report

scales. Larger ISD values indicate lower response consistency.

Self-report screening measure: Personal reliability. The personal reliability

coefficient is an estimate of a participant’s response consistency on a self-report measure,

estimated by correlating the average scores from split-halves of their responses. To avoid

any item-order bias, a participant’s personal reliability coefficient for a particular self-

report measure was computed from the average correlation from 1000 random split-halves.

A composite reliability measure was generated per participant by averaging across each

of the seven self-report scales. Smaller reliability coefficients indicate lower response

consistency.

Self-report screening measure: Mahalanobis D. The Mahalanobis distance is

a multivariate outlier detection measure, which estimates how dissimilar a participant is

relative to all others. For a participant i, the Mahalanobis D is defined as:

D =
√

(Xi − X̄)T · Σ−1
XX · (Xi − X̄)T

where (Xi − X̄) represents the vector of mean-centered item responses for participant i

and Σ−1
XX represents the inverted covariance matrix of all items. Greater Mahalanobis D

values indicate larger deviations from the average pattern of responding.
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Self-report screening measure: Reading time. The reading time is the total

number of seconds spent filling out a particular self-report measure, adjusted for that

measure’s total number of items [13]. A total reading time estimate was estimated for

each participant by summing across the adjusted time for each of the seven self-report

measures. Shorter scores are indicative of less time having been spent on each item.

Task-based screening variable: Choice variability. Choice variability was de-

fined as the fraction of trials of the most used response option per participant. Choice

variability could range from 0.33 (all response options used equally) to 1.00 (only one

response option used). Values closer to 1.00 are indicative of more careless responding

during the task.

Task-based screening variable: Choice accuracy. Choice accuracy was defined

as the fraction of choices of the reward-maximizing response option. For a task with 90

trials and three response options, a one-tailed binomial test at α = 0.05 reveals chance-

level performance to be 37 or fewer correct choices (41%). Lower accuracy values are

indicative of more inattentive responding during the task.

Task-based screening variable: Win-Stay Lose-Shift. Win-stay lose-shift

(WSLS) measures a participant’s tendency to stay with a choice option following a re-

ward versus shifting to a new choice option following a non-reward. WSLS thus measures

a participant’s sensitivity to reward feedback on the screen. WSLS was estimated per

participant via regression, where the current choice (stay, switch) predicted by the pre-

vious trial’s outcome (reward, non-reward) and a stationary intercept. Here we used

the first (slope) term to represent a participant’s WSLS tendency. Lower values of this

term indicate less sensitivity to reward feedback and are thus indicative of more careless

responding during the task.

Task-based screening variable: Response times. “Suspicious response time”

was defined as the proportion of trials with an outlier response time, here measured as

responses faster than 200ms. Greater proportions of outlier response times are indicative

of more careless responding during the task.

Correspondence Analysis. We measured the correspondence of the above screening

measures via two complimentary approaches. First, we computed pairwise correlations

on the unthresholded (continuous) measures using Spearman’s rank correlation. Second,

we estimated the pairwise rate of agreement on the binarized measures using the Dice

similarity coefficient (looking at the top 10% and 25% most suspicious respondents for

each measure). The former approach estimates two measures’ monotonic association,

whereas the latter approach estimates their agreement as to which participants were

most likely engaging in C/IE responding. For significance testing, we used permutation

testing wherein a null distribution of similarity scores (i.e., Spearman’s correlation, Dice
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coefficient) was generated for each pair of screening measures by iteratively permuting

participants’ identities within measures and re-estimating the similarity. P-values were

computed by comparing the observed score to its respective null distribution. We cor-

rected for multiple comparisons using family-wise error rates [68].

Correlations between behavior and symptom measures

To quantify the effects of both task and self-report data screening on behavior-symptom

correlations, we estimated the pairwise correlations between the symptom scores of each

of the self-report measures and several measures of performance on the reversal learning

task. For each participant, we computed both descriptive and model-based measures of

behavior on the reversal learning task. We describe each in turn below.

Descriptive measures. Descriptive task measures included the following: accuracy

(the fraction of choices of the reward-maximizing response option), points (the total

number of points accumulated over the game), win-stay rates (the fraction of trials on

which a participant repeated the previous trial’s choice following a reward outcome), lose-

shift rates (the fraction of trials on which a participant deviated from the previous trial’s

choice following a non-reward outcome), and perseveration (the number of trials on which

a participant continued to choose the previously dominant response option following a

reversal in task contingencies).

Model-based measures. The model-based measures were derived from a common

reinforcement learning model of choice behavior, the risk-sensitive temporal difference

learning model [69]. In this model, the expected value of a choice option, Q(s), is learned

through cycle of choice and reward feedback. Specifically, following a decision and reward

feedback, the value of the chosen option is updated according to:

Qt+1(s) = Qt(s) + η · δt

where η is the learning rate bounded in the range [0, 1] (controlling the extent to which

value reflects the most recent outcomes) and δ is the reward prediction error, defined as:

δt = rt −Qt(s)

where rt is the observed reward on trial t. In the risk-sensitive temporal difference learning

model, there are separate learning rates for positive and negative prediction errors, such

that positive and negative prediction errors have asymmetric effects on learning. For

example, the effect of negative prediction errors on learned values is larger than that of

positive errors if ηp+ < ηn, and vice versa if ηp > ηn.

Finally, decision-making according to the model is dictated by a softmax choice rule:
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p(yt = s) =
exp (β ·Q(s))∑S
i exp (β ·Q(s))

where β is the inverse temperature, controlling a participant’s sensitivity to the expected

value of the choice options. In sum then, the model-based approach describes a partici-

pant’s choice behavior as a function of three parameters (β, ηp, ηn).

We fit the reinforcement learning model to each participants’ choice behavior using Stan

(details above). Notably, 11 participants (3% of sample) had parameter estimates with

poor convergence, i.e., R̂ > 1.1; their parameters were removed from the correlation

analysis. Participants’ parameters were fit individually (i.e., not hierarchically) so as

to prevent bias during parameter estimation from partial-pooling between attentive and

C/IE participants. Parameters were sampled using non-centred parameterisations (i.e.,

all parameters were sampled separately from a unit normal before being transformed to

the appropriate range). Of note, the learning rates were estimated via an offset method

such that ηp = η+κ and ηn = η−κ, where κ is an offset parameter controlling the extent

of an asymmetry between the two learning rates. This parameter was also entered into

the behavior-symptom correlation analyses.

We confirmed the model adequately fit participants’ choice behavior through a series of

posterior checks (Figure S5). In particular, we confirmed the model recapitulated the

group-average learning curves for each block of the experiment. Moreover, we confirmed

that the model was able to recover reasonably well the choice accuracy for each partici-

pant.

The model-based measures included for analysis were: choice sensitivity (β, inverse tem-

perature), positive learning rate (ηp), negative learning rate (ηn), and learning rate asym-

metry (κ =
ηp−ηn
ηp+ηn

, normalized difference between ηp and ηn). We chose these measures

as they have been previously used to assess performance in clinical samples [22, 42, 70,

71].

Correlation analysis. Behavior-symptom correlations (after various forms of screen-

ing and exclusion) were estimated using Spearman’s rank correlation. Significance test-

ing was performed using the percentile bootstrap method [72] so as to avoid making any

parametric assumptions. These correlation analyses were not corrected for multiple com-

parisons, since our overarching purpose was to demonstrate the extent of this issue across

multiple behavioral measures and self-report symptoms. Any one of these correlations

considered individually can be thought of as emulating a conventional analysis where

fewer statistical tests would be performed.

Literature Review

To characterize common data screening practices in online computational psychiatry stud-

ies, we performed a narrative literature review [73]. We identified studies for inclusion
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through searches on Google Scholar using permutations of query terms related to online

labor platforms (e.g., “mechanical turk”, “prolific”, “online”), experimental paradigms

(e.g., “experiment”, “cognitive control”, “reinforcement learning”), and symptom mea-

sures (e.g., “psychiatry”, “mental illness”, “depression”). We note that it was not feasible

to conduct a systematic review, which requires the use of a publication database with

reproducible search, because we required Google Scholar’s full-text search in order to

identify papers by recruitment method (e.g., Mechanical Turk). We included in the re-

view studies that (a) recruited participants online through a labor platform, (b) measured

behavior on at least one experimental task, and (c) measured responses on at least one

self-report symptom measure. Through this approach, we identified for inclusion 49 stud-

ies spanning 2015 through 2020. The complete list of studies, and search terms used to

find them, are included in the Github repository for this study.

Two of the authors (S.Z., D.B.) then evaluated whether and how each of these studies

performed data quality screening for both the collected task and self-report data. Specif-

ically, we confirmed whether a study had performed a particular type of data screening,

with screening categories determined based on previous taxonomies of screening methods

(e.g., [9]). In addition, we assessed the total number of screening measures each study

used and if monetary bonuses were paid to participants. This review was not meant to

be systematic, but instead to provide a representative overview of common practices in

online behavioral studies.

Data availability

The data that support the findings of this study are openly available on Github at https:

//github.com/nivlab/sciops.
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//github.com/nivlab/sciops. The experiment code is available at the same link. The

custom web-software for serving online experiments is available at https://github.com/

nivlab/nivturk.
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Tables

Task Screening Self-Report Screening

Frequency N=39 (80%) N=19 (39%)

Measure Accuracy 18 (37%) Attention Check 17 (35%)

Variability 15 (31%) Instructed 10 (20%)

Response Time 7 (14%) Infrequency 2 (4%)

Comprehension Check 5 (10%) Unspecified 5 (10%)

Other 16 (33%) Unobtrusive 4 (8%)

Table 1: The prevalence and types of task and self-report data screening practices in a sample (N=49)

of recent online behavioral studies.
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Total Score Cronbach’s α % Clinical Cutoff

Subscale Skew Attentive C/IE t-value p-value Attentive C/IE Before After

7-up 0.806 3.9 10.2 -13.312 <0.001 0.84 0.84 13.0% 4.0%

7-down 0.759 4.8 10.7 -9.987 <0.001 0.94 0.88 17.4% 9.3%

GAD-7 0.753 4.9 9.7 -7.881 <0.001 0.92 0.87 25.9% 17.3%

BIS 0.780 7.7 7.9 -0.542 0.612 0.83 0.62 - -

BAS 0.171 15.7 16.2 -0.912 0.357 0.84 0.71 - -

SHAPS 0.256 8.0 10.8 -4.043 <0.001 0.90 0.81 17.9% 14.6%

PSWQ 0.193 4.8 6.7 -4.784 <0.001 0.93 0.81 7.3% 7.0%

Table 2: Descriptive statistics of the self-report symptom measures between attentive and C/IE

participants. Skew: the empirical skewness of the distribution of total symptom scores. Total score:

the average symptom score across attentive and C/IE participants. Scores were compared using a two-

sample t-test (df = 384, α = 0.05, two-tailed, not corrected for multiple comparisons). Cronbach’s α:

a measure of response consistency, where values closer to 1 indicate greater consistency in responses.

% Clinical Cutoff: the percentage of participants reaching threshold for clinical symptomology before

and after screening based on the infrequency measure. The BIS/BAS scales do not have clinical

thresholds.
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Figures

Figure 1: Simulated example of how spurious behavior-symptom correlations can arise when symptom

endorsement is rare. Left: When symptoms are moderately common in the general population, C/IE

respondents (blue) are indistinguishable from attentive participants (red) in self-report measures (x-

axis, marginal distribution shown on top). Despite the worse task performance of C/IE respondents

(y-axis), no correlation arises between symptom scores and task performance (dots are participants

drawn from the shown distributions, with 15% C/IE participants; dashed line shows the (lack of)

Spearman rank correlation.) Right: When symptoms are rare in the general population, careless

respondents appear symptomatic in self-report measures. As a result, self-report symptom scores

show a significant Spearman rank correlation (two-sided) with task performance.
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Figure 2: Raincloud plots of total symptom scores in attentive (N = 301; red) and C/IE (N = 85;

blue) participants. Each colored dot represents the symptom score for one participant. Black circles:

average score within each group (error bars denote 95% bootstrap confidence interval). Shaded plots:

distribution of scores for each group of participants. The scales are ordered approximately according

to their estimated skew (see Table 2) from top-left (7-up) to bottom-right (PSWQ). The average level

of symptom endorsement is most markedly different between groups in symptom measures with the

lowest overall rates of endorsement.
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Figure 3: Similarity of task and self-report data screening measures. Each tile corresponds to the

Spearman rank correlation (left) and Dice similarity coefficient (right) between two screening mea-

sures across participants (N = 386). Similarity indices are thresholded such that only the magnitude

of statistically-significant associations (permutation test, p < 0.05, two-sided, corrected for multiple

comparisons) are shown. (Unthresholded values are presented in Tables S3–S5.) Cross-modality cor-

relations between task (y-axis) and self-report screening measures (x-axis) are in the dashed rectangle.

Acronyms: INF = infrequency item; ISD = inter-item standard deviation; REL = personal reliabil-

ity; MAH = Mahalanobis distance; READ = reading time; VAR = choice variability; ACC = choice

accuracy; WSLS = win-stay lose-shift rate; RT = suspicious response times.
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Figure 4: Absolute Spearman rank correlations between task behavior (y-axis) and symptom measures

(x-axis) under different regimes of data screening and participant exclusions. (A) No Screening = no

exclusions (N = 386). (B) Accuracy Only = exclusions based on chance-level performance in the

reversal-learning task (N = 352). (C) Infrequency Only = exclusions based on invalid or improbable

responses to infrequency items (N = 301). (D) Both Types = exclusions based on the previous

two measures (N = 283). Only statistically significant correlations are shown (p < 0.05, two-sided,

not corrected for multiple comparisons; signed correlations are shown in Figure S1 and Tables S6–

S9). Black Xs indicate significant correlations abolished under screening. Acronyms: Acc = choice

accuracy; Pts = total points earned; WS = win-stay rate; LS = lose-shift rate; Pers = perseveration

errors; β = inverse temperature; ηp = positive learning rate; ηn = negative learning rate; κ = learning

rate asymmetry.
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Figure 5: False positive rates for spurious correlations increase with sample size. Left: Spearman

rank correlations and 95% bootstrap confidence intervals between learning rate asymmetry (κ) and

depression scores (7-down) as a function of sample size and proportion of C/IE participants. The

thick dashed lines indicate the threshold for statistical significance for the Spearman correlation at

the corresponding sample size. Markers are jittered along the x-axis for legibility. Right: False positive

rates for learning rate asymmetry (κ) and depression scores (7-down) as a function of sample size and

proportion of C/IE participants. False positive rate was calculated as the proportion of bootstrap

samples in which the Spearman rank correlation between κ and 7-down was statistically significant

(p < 0.05, two-sided). The horizontal dotted line denotes the expected false positive rate at α = 0.05.
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Supplementary Materials A

Signed correlation analysis

Supplementary Figure 1: Signed Spearman rank correlations between task behavior (y-axis) and
symptom measures (x-axis) under different regimes of data screening and participant exclusions. (A)
No Screening = no exclusions (N = 386). (B) Accuracy Only = exclusions based on chance-level
performance in the reversal-learning task (N = 352). (C) Infrequency Only = exclusions based on
invalid or improbable responses to infrequency items (N = 301). (D) Both Types = exclusions
based on the previous two measures (N = 283). Only statistically significant correlations are shown
(p < 0.05 not corrected for multiple comparisons). Black Xs indicate significant correlations ablated
under screening. Acronyms: Acc = choice accuracy; Pts = total points earned; WS = win-stay rate;
LS = lose-shift rate; Pers = perseveration errors; β = inverse temperature; ηp = positive learning
rate; ηn = negative learning rate; κ = learning rate asymmetry.
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Bootstrapping Analysis

Supplementary Figure 2: The pattern of significant behavior-symptom correlations before (A; N =
386) and after (B; N = 301) screening compared to the resulting pattern when random subsets
of participants (N = 301, matched to screening using the infrequency measure) are removed (C).
Panels (A) and (B) are reproduced from Figure 4 for convenience. (C) The fraction of significant
correlations in 5000 bootstrapped samples. (D) The similarity of the pattern of correlations after
removal of random subsets to that before and after screening using the infrequency measure (N = 5000
bootstrapped samples). Similarity was calculated using the simple matching coefficient. Random
removal subsets were significantly more similar to the “No Screening” than to the “Infrequency”
screening datasets (two-tailed, paired-samples t-test: t = 262.490, p < 0.001, d = 3.713, 95% CI =
[0.136, 0.138]).
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The relationship between sample size and false positive rates gener-
alize to other sets of variables

Supplementary Figure 3: False positive rates for spurious correlations increase with sample size. Left:
Spearman rank correlations and 95% bootstrap confidence intervals between inverse temperature (β)
and depression scores (7-down) as a function of sample size and proportion of C/IE participants. The
thick dashed lines indicate the threshold for statistical significance for the Spearman correlation at the
corresponding sample size. Markers are jittered along the x-axis for legibility. Right: False positive
rates for inverse temperature (β) and depression scores (7-down) as a function of sample size and
proportion of C/IE participants. False positive rate was calculated as the proportion of bootstrap
samples in which the correlation between β and 7-down was statistically significant. The horizontal
dotted line denotes the expected false positive rate at α = 0.05.
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The relationship between sample size and true positive rates for true
correlations

Supplementary Figure 4: True correlations are independent of the proportion of C/IE participants
in the sample. Left: Spearman rank correlations and 95% bootstrap confidence intervals between
learning rate asymmetry (κ) and anxiety scores (GAD-7) as a function of sample size and proportion
of C/IE participants. The thick dashed lines indicate the threshold for statistical significance for
the Spearman correlation at the corresponding sample size. Markers are jittered along the x-axis for
legibility. Right: True positive rates for learning rate asymmetry (κ) and anxiety scores (GAD-7) as
a function of sample size and proportion of C/IE participants. True positive rate was calculated as
the proportion of bootstrap samples in which the correlation between κ and GAD-7 was statistically
significant. The horizontal dotted line denotes the expected false positive rate at α = 0.05.
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Posterior predictive checks

Supplementary Figure 5: Posterior predictive checks for the risk-sensitive temporal difference learning
model. (A) Observed (black) and predicted (blue) learning curves averaged across the group (N =
375). (B) Observed versus predicted choice accuracy across participants (N = 375). (C) Distribution
of average predictive density across participants (N = 375).
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Participant demographics

MTurk Prolific

Total N=186 N=200

Age N % N %

18-25 16 8.6 78 39.0
26-35 76 40.9 69 34.5
36-45 46 24.7 31 15.5
46-55 22 11.8 13 6.5
55+ 26 14.0 9 4.5

Gender N % N %

Female 83 44.6 112 56.0
Male 103 55.4 85 42.5

Other 0 0.0 3 1.5

Ethnicity N % N %

Hispanic or Latino 15 8.1 10 5.0
Not Hispanic or Latino 168 90.3 183 91.5

Rather not say 2 1.1 7 3.5
Unknown 1 0.5 0 0.0

Race N % N %

African American 21 11.3 7 3.5
Asian 5 2.7 53 26.5
White 151 81.2 121 60.5

Multiracial 6 3.2 4 2.0
Rather not say 1 0.5 12 6.0

Use other platform N % N %

Yes 71 38.2 28 14.0
No 115 61.8 172 86.0

Supplementary Table 1: The demographics of each sample by online labor market. On average, the
samples were similar though the sample from Mechanical Turk was older (two-tailed, two-sample
t-test: t(384) = 6.567, p < 0.001, d = 0.669, 95% CI = [5.4, 10.0]) and comprised of fewer women
(two-tailed, two-sample proportions test: z(384) = 2.529, p = 0.011, h = 0.258, 95% CI = [0.030,
0.228]). Note: the demographics do not include 20 participants excluded for participating in the study
twice, once per platform.
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Careless participants show different behaviors on the reversal learn-
ing task

Attentive C/IE t-value p-value Cohen’s D 95% CI

Acc 0.587 0.532 4.008 <0.001 0.492 [0.028, 0.082]
Pts 50.163 47.729 2.376 0.019 0.292 [0.426, 4.441]
WS 0.898 0.776 5.387 <0.001 0.662 [0.077, 0.165]
LS 0.609 0.751 -5.335 <0.001 0.655 [-0.195, -0.090]
Pers 0.245 0.259 -1.505 0.139 0.185 [-0.033, 0.004]
β 6.754 4.082 5.404 <0.001 0.664 [1.702, 3.640]
ηp 0.643 0.551 2.846 0.007 0.350 [0.029, 0.157]
ηn 0.738 0.784 -1.516 0.120 0.186 [-0.106, 0.013]
κ -0.069 -0.218 3.729 <0.001 0.458 [0.071, 0.227]

Supplementary Table 2: Measures of task behavior compared between attentive (N = 301) and C/IE
(N = 85) participants. Metrics compared using two-tailed, two-sample permutation t-tests (df = 384,
α = 0.05, not corrected for multiple comparisons). Acronyms: Acc = choice accuracy; Pts = total
points earned; WS = win-stay rate; LS = lose-shift rate; Pers = perseveration errors; β = inverse
temperature; ηp = positive learning rate; ηn = negative learning rate; κ = learning rate asymmetry.
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Correspondence of screening measures

The following are the unthresholded results of the screening measure correspondence analyses.

INF ISD REL MAH READ VAR ACC WSLS RT

INF -
ISD 0.337 (<0.001) -
REL -0.360 (<0.001) -0.804 (<0.001) -
MAH 0.406 (<0.001) 0.836 (<0.001) -0.608 (<0.001) -

READ -0.111 (0.644) 0.209 (<0.001) -0.193 (0.002) 0.138 (0.220) -
VAR -0.061 (1.000) -0.038 (1.000) 0.068 (0.999) -0.024 (1.000) -0.026 (1.000) -
ACC -0.206 (<0.001) -0.133 (0.273) 0.044 (1.000) -0.182 (0.009) -0.074 (0.996) 0.027 (1.000) -

WSLS 0.060 (1.000) 0.103 (0.794) -0.085 (0.971) 0.115 (0.574) 0.103 (0.790) -0.060 (1.000) 0.221 (<0.001) -
RT 0.040 (1.000) -0.025 (1.000) 0.017 (1.000) 0.013 (1.000) -0.158 (0.067) -0.007 (1.000) -0.094 (0.910) -0.050 (1.000) -

Supplementary Table 3: Spearman rank correlations (p-value) of task and self-report data screening
measures (N = 386). Each entry corresponds to the Spearman correlation between two screening
measures. Acronyms: INF = infrequency item; ISD = inter-item standard deviation; REL = personal
reliability; MAH = Mahalanobis distance; READ = reading time; VAR = choice variability; ACC =
choice accuracy; WSLS = win-stay lose-shift rate; RT = suspicious response times. Bolded entries
indicate statistical significance for a two-sided rank correlation test (α = 0.05, corrected for multiple
comparisons).

INF ISD REL MAH READ VAR ACC WSLS RT

INF -
ISD 0.462 (<0.001) -
REL 0.484 (<0.001) 0.691 (<0.001) -
MAH 0.516 (<0.001) 0.732 (<0.001) 0.619 (<0.001) -

READ 0.319 (0.688) 0.165 (1.000) 0.165 (1.000) 0.216 (1.000) -
VAR 0.208 (1.000) 0.216 (1.000) 0.238 (1.000) 0.259 (1.000) 0.292 (0.981) -
ACC 0.379 (0.011) 0.312 (0.792) 0.258 (1.000) 0.344 (0.180) 0.237 (1.000) 0.282 (0.998) -

WSLS 0.253 (1.000) 0.247 (1.000) 0.227 (1.000) 0.258 (1.000) 0.299 (0.964) 0.303 (0.901) 0.505 (<0.001) -
RT 0.267 (1.000) 0.219 (1.000) 0.271 (1.000) 0.271 (1.000) 0.333 (0.363) 0.251 (1.000) 0.239 (1.000) 0.260 (1.000) -

Supplementary Table 4: Dice similarity coefficients (p-value) for task and self-report data screening
measures for the top 10% most suspicious participants. Each entry corresponds to the Dice coefficient
between two screening measures for the 10% most suspicious participants. Acronyms: INF = infre-
quency item; ISD = inter-item standard deviation; REL = personal reliability; MAH = Mahalanobis
distance; READ = reading time; VAR = choice variability; ACC = choice accuracy; WSLS = win-stay
lose-shift rate; RT = suspicious response times. Bolded entries indicate statistical significance for a
two-sided Dice similarity permutation test (α = 0.05, corrected for multiple comparisons).

INF ISD REL MAH READ VAR ACC WSLS RT

INF -
ISD 0.355 (<0.001) -
REL 0.355 (<0.001) 0.564 (<0.001) -
MAH 0.355 (<0.001) 0.667 (<0.001) 0.359 (<0.001) -

READ 0.290 (0.006) 0.231 (0.231) 0.154 (0.999) 0.231 (0.231) -
VAR 0.116 (1.000) 0.080 (1.000) 0.080 (1.000) 0.160 (0.996) 0.133 (1.000) -
ACC 0.269 (0.020) 0.137 (1.000) 0.164 (0.985) 0.192 (0.809) 0.247 (0.088) 0.171 (0.968) -

WSLS 0.242 (0.121) 0.103 (1.000) 0.154 (0.999) 0.205 (0.635) 0.231 (0.231) 0.240 (0.140) 0.630 (<0.001) -
RT 0.164 (0.988) 0.105 (1.000) 0.132 (1.000) 0.184 (0.879) 0.289 (0.007) 0.164 (0.985) 0.225 (0.307) 0.237 (0.162) -

Supplementary Table 5: Dice similarity coefficients (p-value) for task and self-report data screening
measures for the top 25% most suspicious participants. Each entry corresponds to the Dice coefficient
between two screening measures for the 25% most suspicious participants. Acronyms: INF = infre-
quency item; ISD = inter-item standard deviation; REL = personal reliability; MAH = Mahalanobis
distance; READ = reading time; VAR = choice variability; ACC = choice accuracy; WSLS = win-stay
lose-shift rate; RT = suspicious response times. Bolded entries indicate statistical significance for a
two-sided Dice similarity permutation test (α = 0.05, corrected for multiple comparisons).
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Correlations between behavior and symptom measures

The following are the unthresholded results of the correlation analyses between task behavior
and self-reported symptoms.

7u 7d GAD-7 BIS BAS SHAPS PSWQ

Acc -0.295 (<0.001) -0.166 (0.001) -0.093 (0.041) -0.134 (0.006) -0.020 (0.328) -0.051 (0.158) -0.037 (0.232)
Pts -0.225 (<0.001) -0.076 (0.065) -0.023 (0.315) -0.144 (0.003) -0.061 (0.104) -0.051 (0.154) 0.024 (0.321)
WS -0.327 (<0.001) -0.160 (<0.001) -0.129 (0.009) -0.171 (<0.001) -0.006 (0.449) -0.048 (0.178) -0.062 (0.116)
LS 0.285 (<0.001) 0.158 (<0.001) 0.146 (0.002) 0.050 (0.157) -0.037 (0.241) 0.000 (0.494) 0.110 (0.015)

Pers 0.134 (0.004) 0.066 (0.111) 0.032 (0.271) 0.166 (<0.001) 0.018 (0.370) 0.080 (0.064) -0.004 (0.469)
β -0.370 (<0.001) -0.157 (<0.001) -0.114 (0.019) -0.185 (<0.001) 0.017 (0.377) -0.063 (0.105) -0.043 (0.204)
ηp -0.097 (0.037) -0.105 (0.023) -0.101 (0.029) -0.033 (0.274) -0.020 (0.351) -0.015 (0.402) -0.041 (0.213)
ηn 0.168 (<0.001) 0.094 (0.032) 0.108 (0.016) -0.050 (0.165) -0.056 (0.143) -0.020 (0.351) 0.042 (0.205)
κ -0.175 (<0.001) -0.137 (0.004) -0.147 (0.002) -0.008 (0.444) -0.020 (0.356) -0.028 (0.294) -0.061 (0.118)

Supplementary Table 6: Spearman rank correlation (p-value) between task behavior and self-report
symptom measures when no screening and rejections have been applied (N = 386). Acronyms: Acc
= choice accuracy; Pts = total points earned; WS = win-stay rate; LS = lose-shift rate; Pers =
perseveration errors; β = inverse temperature; ηp = positive learning rate; ηn = negative learning
rate; κ = learning rate asymmetry. Bolded entries indicate statistical significance for a two-sided rank
correlation test (α = 0.05, not corrected for multiple comparisons).

7u 7d GAD-7 BIS BAS SHAPS PSWQ

Acc -0.263 (<0.001) -0.144 (0.006) -0.105 (0.025) -0.106 (0.022) -0.009 (0.436) -0.020 (0.363) -0.033 (0.272)
Pts -0.187 (<0.001) -0.042 (0.219) -0.020 (0.355) -0.126 (0.009) -0.055 (0.149) -0.028 (0.300) 0.036 (0.254)
WS -0.291 (<0.001) -0.137 (0.004) -0.123 (0.012) -0.161 (0.001) -0.019 (0.358) 0.006 (0.457) -0.044 (0.210)
LS 0.314 (<0.001) 0.170 (0.001) 0.156 (0.002) 0.034 (0.255) -0.036 (0.253) -0.037 (0.236) 0.124 (0.008)

Pers 0.083 (0.057) 0.022 (0.348) 0.011 (0.429) 0.151 (0.002) 0.010 (0.437) 0.076 (0.090) -0.021 (0.338)
β -0.332 (<0.001) -0.134 (0.004) -0.109 (0.027) -0.173 (<0.001) 0.010 (0.430) -0.040 (0.239) -0.023 (0.335)
ηp -0.056 (0.165) -0.089 (0.051) -0.105 (0.024) -0.013 (0.397) -0.029 (0.287) 0.034 (0.271) -0.035 (0.265)
ηn 0.259 (<0.001) 0.134 (0.004) 0.122 (0.011) -0.021 (0.351) -0.063 (0.130) 0.019 (0.362) 0.053 (0.161)
κ -0.171 (0.001) -0.125 (0.008) -0.150 (0.002) -0.016 (0.386) -0.032 (0.265) -0.033 (0.277) -0.060 (0.127)

Supplementary Table 7: Spearman rank correlation (p-value) between task behavior and self-report
symptom measures after applying rejections based on choice accuracy (N = 352). Acronyms: Acc
= choice accuracy; Pts = total points earned; WS = win-stay rate; LS = lose-shift rate; Pers =
perseveration errors; β = inverse temperature; ηp = positive learning rate; ηn = negative learning
rate; κ = learning rate asymmetry. Bolded entries indicate statistical significance for a two-sided rank
correlation test (α = 0.05, not corrected for multiple comparisons).

7u 7d GAD-7 BIS BAS SHAPS PSWQ

Acc -0.210 (<0.001) -0.048 (0.203) 0.009 (0.433) -0.082 (0.078) -0.020 (0.360) -0.005 (0.454) 0.009 (0.431)
Pts -0.167 (0.001) 0.040 (0.234) 0.070 (0.114) -0.107 (0.030) -0.046 (0.205) -0.011 (0.410) 0.071 (0.114)
WS -0.220 (<0.001) -0.045 (0.226) -0.008 (0.450) -0.143 (0.007) -0.025 (0.322) 0.001 (0.494) 0.016 (0.386)
LS 0.219 (<0.001) 0.084 (0.069) 0.113 (0.026) 0.019 (0.364) -0.021 (0.351) -0.050 (0.186) 0.082 (0.076)

Pers 0.088 (0.068) -0.028 (0.312) -0.024 (0.347) 0.127 (0.015) 0.006 (0.457) 0.048 (0.204) -0.052 (0.176)
β -0.257 (<0.001) -0.038 (0.254) 0.047 (0.205) -0.180 (<0.001) -0.011 (0.428) -0.032 (0.301) 0.056 (0.158)
ηp -0.052 (0.184) -0.064 (0.138) -0.079 (0.082) -0.015 (0.409) -0.008 (0.449) 0.004 (0.474) -0.055 (0.173)
ηn 0.165 (0.002) 0.067 (0.120) 0.141 (0.007) -0.037 (0.266) -0.089 (0.064) -0.030 (0.312) 0.054 (0.174)
κ -0.111 (0.029) -0.046 (0.225) -0.137 (0.008) 0.011 (0.426) 0.015 (0.396) 0.002 (0.484) -0.054 (0.180)

Supplementary Table 8: Spearman rank correlation (p-value) between task behavior and self-report
symptom measures after applying rejections based on infrequency items (N = 301). Acronyms: Acc
= choice accuracy; Pts = total points earned; WS = win-stay rate; LS = lose-shift rate; Pers =
perseveration errors; β = inverse temperature; ηp = positive learning rate; ηn = negative learning
rate; κ = learning rate asymmetry. Bolded entries indicate statistical significance for a two-sided rank
correlation test (α = 0.05, not corrected for multiple comparisons).
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7u 7d GAD-7 BIS BAS SHAPS PSWQ

Acc -0.229 (<0.001) -0.090 (0.065) -0.072 (0.116) -0.053 (0.190) 0.016 (0.383) 0.034 (0.280) -0.040 (0.247)
Pts -0.177 (0.003) 0.016 (0.388) 0.011 (0.436) -0.086 (0.075) -0.013 (0.414) 0.025 (0.324) 0.038 (0.267)
WS -0.227 (<0.001) -0.085 (0.081) -0.057 (0.179) -0.131 (0.016) -0.025 (0.341) 0.049 (0.201) -0.007 (0.461)
LS 0.236 (<0.001) 0.094 (0.059) 0.107 (0.036) 0.008 (0.453) -0.016 (0.387) -0.075 (0.101) 0.079 (0.080)

Pers 0.095 (0.056) -0.007 (0.459) 0.014 (0.411) 0.110 (0.038) -0.015 (0.392) 0.037 (0.274) -0.025 (0.332)
β -0.255 (<0.001) -0.072 (0.121) -0.008 (0.457) -0.165 (0.003) -0.011 (0.426) -0.015 (0.405) 0.028 (0.326)
ηp -0.045 (0.233) -0.088 (0.072) -0.108 (0.029) 0.004 (0.473) -0.000 (0.505) 0.049 (0.211) -0.073 (0.119)
ηn 0.196 (<0.001) 0.046 (0.213) 0.098 (0.047) -0.015 (0.389) -0.085 (0.088) 0.008 (0.459) 0.024 (0.342)
κ -0.114 (0.032) -0.046 (0.228) -0.134 (0.007) 0.007 (0.442) 0.012 (0.425) -0.004 (0.495) -0.051 (0.209)

Supplementary Table 9: Spearman rank correlation (p-value) between task behavior and self-report
symptom measures after applying rejections based on both choice accuracy and infrequency items
(N = 283). Acronyms: Acc = choice accuracy; Pts = total points earned; WS = win-stay rate; LS =
lose-shift rate; Pers = perseveration errors; β = inverse temperature; ηp = positive learning rate; ηn
= negative learning rate; κ = learning rate asymmetry. Bolded entries indicate statistical significance
for a two-sided rank correlation test (α = 0.05, not corrected for multiple comparisons).
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Reversal learning task Instructions

The following are the instructions given to participants for the probabilistic reversal learning
task. As a reminder, the task was given a fishing-themed cover story. Each paragraph below
denotes one screen of instructions.

Welcome to the fishing game! We will now give you some instructions on how to play the game.
Use the buttons below (or the arrow keys) to navigate the instructions.

In the fishing game, there are three beaches you can fish at. Each beach has its own unique
surfboard. (The colors and pictures on the surfboards are there just to help you tell the beaches
apart – they don’t have any special meaning other than that.)

On each turn you will be shown three beaches, and you will choose which one you want to fish
at. You can make your choice using the left, up, and right arrow keys.

When you fish at a beach, you will either catch a fish or you will catch trash. Try to catch fish,
and try not to catch trash!

Some beaches are better than others. You are more likely to catch fish at some beaches (though
you will still sometimes catch trash), and you are more likely to catch trash at other beaches
(though you still sometimes catch fish).

The beaches will change over time. As times goes by, you may be less likely to catch fish at a
beach where you were previously catching many fish.

Your goal is to catch as many fish as you can. You will receive a performance bonus up to
$0.25 that depends on how many fish you catch.

Now we will ask you some questions about the game. You must answer all questions correctly to
proceed. Feel free to read back through the instructions if there is anything you are not certain
about.

Following the instructions, participants completed a brief comprehension check where they
were asked the following questions about the task:

1. True or False: Your goal is to catch as many fish as you can. (True)

2. True or False: You are more likely to catch fish at some beaches than others. (True)

3. True or False: You will always catch fish at the best beach. (False)

4. True or False: How likely you are to catch a fish at a beach stays the same over time.
(False)

5. True or False: The number of fish you catch will affect your final performance bonus.
(True)

Participants were required to answer all of the items correctly before they could proceed to
the task. If they failed to do so, they restarted the instructions. There was no upper limit
as to how many times a participant could loop through the instructions (the large majority of
participants passed the comprehension check on their first try).

12



C/IE responding manifests as a distinct behavioral strategy

In an exploratory analysis, we employed a theory-agnostic modeling approach to investigate
how C/IE participants on the probabilistic reversal-learning task compared to attentive par-
ticipants. The motivation for this analysis was to better understand why C/IE responding
was inconsistently predicted by chance-level performance, and also correlated with asymmetric
learning rates.

To characterize participants’ choice behavior, we adapted the softmax regression model from
[1]. This model estimates, for each participant, how much their choice depends on the recent
history of trial events (rewarding outcomes, non-rewarding outcomes, and choices from the
preceding 5 trials). Specifically, the influence of the history of particular type of event is
defined as:

K∑
i

w = xt−1 · wt−1 + xt−2 · wt−2 + . . .+ xt−k · wt−k

where xt−i is a binary indicator [0,1] denoting if an event (i.e., reward, non-reward, previous
choice) occurred on trial t− i and wt−1 is the associated decision weight. These weights were
estimated for rewards, non-rewards, and previous choices up to five trials in the past. The
overall tendency to choose a particular choice option is dictated by a softmax choice rule:

p(yt = i) =
exp

(∑
wreward
i +

∑
wnonreward
i +

∑
wchoice
i

)∑
i exp

(∑
wreward
i +

∑
wnonreward
i +

∑
wchoice
i

)
Note that these weights were fit independently; that is, we did not employ an exponential kernel
to parameterize the decay of the weights at successively distant trial lags. In sum then, the
theory-agnostic model describes a participant’s choice behavior as a function of 15 parameters.

We fit the softmax regression model using Stan following the same procedure as for the theory-
based analyses. Participant parameters were fit individually (i.e., not hierarchically) so as to
prevent bias during parameter estimation from partial-pooling between attentive and C/IE
participants. Parameters were sampled with Gaussian priors with µ = 0 and σ = 5.

The regression weights for each event, averaged within attentive and C/IE participants, are
presented in Figure 6. Comparing attentive to C/IE participants, we observed a credible
difference (i.e., 95% highest density intervals excluded zero) only for the T − 1 weight for
previous choice. That is, attentive participants were more likely to repeat their previous choice
(i.e., greater choice hysteresis) than were C/IE participants.

This result may be initially surprising, since one might expect choice hysteresis to result in more
perseveration errors following contingency reversals. However, choice hysteresis is adaptive in
this probabilistic reversal-learning task. Because rewards in the task are probabilistic, once
the reward-maximizing response option has been identified ignoring an occasional unrewarding
outcome and instead performing the same response is optimal (until the next reversal occurs
and is identified). Interestingly, participants engaging in C/IE responding were also numerically
(though not significantly) less affected by previous outcomes, suggesting that their behavior
was not more adaptive, but rather just more random.
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Supplementary Figure 6: Softmax regression decision weights and 95% highest density intervals in
attentive (red) and C/IE (blue) participants. The weights reflect the extent to which the recent
history of rewards, nonrewards, or previous choices influence current choice. *Denotes where the 95%
highest density interval of the difference in weights excluded zero.

This pattern of results also helps explain the pre-screening correlations with asymmetric learn-
ing rates. Previous work has established that, when choice hysteresis is not accounted for in
reinforcement learning models, it can manifest as positive learning rate asymmetries [2, 3].
Since C/IE participants showed decreased hysteresis, which our reinforcement learning model
did not explicitly account for, we should expect to find a negative correlation between learning-
rate asymmetries and symptoms before C/IE participants are excluded. Indeed, this is what
we observed above.

In sum, the theory-agnostic analysis of task behavior revealed that C/IE participants exhibited
a qualitatively distinct behavioral strategy on the probabilistic reversal-learning task. C/IE
participants showed less adaptive choice hysteresis. Moreover, they were numerically (but
not significantly) less sensitive to outcomes. The latter finding helps clarify in part why we
observed low correspondence between task and self-report screening measures (that is, C/IE
participants were not significantly more likely to respond randomly during the task). These
results also present another hidden danger of C/IE responding: qualitatively distinct patterns
of behavior under C/IE responding can bias the estimation of parameters of theoretical interest
if not properly accounted for.
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Supplementary Materials B: Replication study

Background & motivation

Here we report a conceptual replication of our original study. The motivations for conducting
a replication study were threefold. First, we wanted to examine the generalizability of our
findings under new labor-platform conditions. Since summer 2020, when the original data were
collected, online labor markets like Mechanical Turk/CloudResearch and Prolific Academic
have undergone important changes. To address rampant data quality issues on Mechanical
Turk, CloudResearch introduced their “Approved Participants” filter. When selected, only
Mechanical Turk participants with a prior history of attentive and careful work are invited
to participate in experiments [4, 5]. Similarly, a deluge of new, lower-quality users signed
up to participate in studies on Prolific in summer, 2021 [6]. In response, Prolific introduced
new controls and filters to improve data quality on the platform [7]. In the wake of these
changes, we wanted to explore the relevance of our original findings. Specifically, with these
new safeguards, we wanted to examine whether the chance of spurious correlations has been
considerably reduced.

Second, we wanted to examine the generalizability of our findings to other behavioral measures.
In the original study, we used a short, straightforward, and relatively easy reversal-learning task.
Our motivation then was to demonstrate the risk of spurious correlations even for experiments
where the possibility of participant fatigue (and consequently C/IE responding) had been
minimized. One consequence of this design, however, was that the majority of participants
performed reasonably well on the task (only 26 participants, or 7% of the sample, exhibited
choice accuracy at or below chance levels). This could in part explain why we observed such low
correspondence between self-report and task-based screening measures. As such, we wanted to
repeat our experiment and analyses using a more difficult task. Therefore, in the replication
study we used the two-step task [8], which is both more challenging and takes longer than our
original reversal-learning task.

Finally, we wanted to examine the generalizability of our findings to other self-report measures.
In the original study, we found that self-report symptom measures with low rates of endorse-
ment were more likely to yield spurious correlations with behavior in the presence of C/IE
responding, as C/IE participants were more likely to endorse symptoms, as well as to perform
poorly on the task. In principle, this effect should not be limited to symptom measures, and
should extend to any self-report measure with an expected skewed or asymmetric score distri-
bution. Therefore, in the current replication study, we used two sets of self-report scales: one
set of psychiatric symptom measures and one set of personality measures. As before, each set
includes scales whose score distributions are expected to be symmetric as well as scales with
asymmetric (skewed) score distributions. Crucially, the two personality scales we chose, artistic
interests and greed avoidance, measure constructs that should have no meaningful relationship
with model-based choice behavior on the two-step task. Therefore, the personality measures
serve as a stronger test of our hypothesis that spurious correlations between self-report and
behavioral measures are more likely for skewed score distributions.
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Methods

Participants

400 total participants were recruited to participate in an online behavioral experiment in Febru-
ary, 2022. Specifically, 200 participants were recruited from Amazon Mechanical Turk (MTurk)
and 200 participants were recruited from Prolific. The study was approved by the Institutional
Review Board of Princeton University (#11968), and all participants provided informed con-
sent. Total study duration was approximately 20 minutes. Participants received monetary
compensation for their time (rate USD $12/hr), plus an incentive-compatible bonus up to
$1.00 based on task performance.

Participants were eligible if they resided in the United States or Canada. Participants from
MTurk were recruited with the aid of CloudResearch services [9] using their “Approved par-
ticipants” data quality filters [4]. As in the original study, MTurk workers were not excluded
based on work approval rate or number of previous jobs approved [10]. No other exclusion
criteria were applied during recruitment.

Data from N=7 participants who completed the experiment were excluded prior to analysis
because these participants (all from MTurk) disclosed that they had also completed the same
experiment on the other platform. This left a final sample of N=393 participants (MTurk:
N=193, Prolific: N=200) for analysis. The demographics of the sample split by labor market
is provided in Table 10. Participants recruited from MTurk were older on average (∆M = 4.9
yrs; two-tailed, two-sample t-test: t(391) = 4.248, p < 0.001, d = 0.429, 95% CI = [2.7, 7.2])
and comprised of fewer women (35.2% versus 61%; two-tailed, two-sample proportions test:
z(391) = 5.500, p < 0.001, h = 0.562, 95% CI = [0.182, 0.372]).

Experiment

Participants completed a gamified version of the two-step task [8] designed to dissociate “model-
free” and “model-based” decision-making. On every trial of the task, participants’ goal is to
collect as much “space treasure” as possible by traveling to one of two different planets and
“trading” with one of two aliens who live on that planet. Participants first chose between
two different-colored rocket ships (first-stage choice). Each rocket ship had a 70% chance
of traveling to one particular planet (e.g., the green rocket ship to the blue planet and the
purple rocket ship to the red planet; common transitions) and a 30% chance of traveling to
the other planet (uncommon transition). The rocket ship and planet colors were randomized
across participants, as were the mappings between rocket ships and planets. On each planet,
participants chose which of two aliens to “trade” with (second-stage choice). If chosen, an
alien would give the participant “treasure” with some slowly-changing probability, otherwise it
would give “junk”. The reward probabilities for each alien and trial were generated according
to independent Gaussian random walks. Participants completed 201 trials of the task, with an
optional break after the first half.

Prior to the beginning of the experiment, participants had to read a set of instructions in which
they were told that the rocket ships mostly traveled to one planet, but sometimes went to the
other, and that the chance an alien would give them treasure would change slowly over the
course of the task. Before they could start the task, participants had to correctly answer three
sets of comprehension questions about the instructions. Failing to correctly answer all items
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MTurk Prolific

Total N=193 N=200

Age N % N %

18-25 11 5.7 47 23.5
26-35 71 36.8 76 38.0
36-45 60 31.1 41 20.5
46-55 29 15.0 22 11.0
55+ 22 11.4 14 7.0

Gender N % N %

Female 68 35.2 122 61.0
Male 124 64.2 73 36.5
Other 1 0.5 5 2.5

Ethnicity N % N %

Hispanic or Latino 16 8.3 12 6.0
Not Hispanic or Latino 177 91.7 180 90.0
Rather not say 0 0.0 8 4.0

Race N % N %

American Indian/Alaska Native 2 1.0 0 0.0
Asian 15 7.8 41 20.5
Black or African American 13 6.7 12 6.0
White 156 80.8 133 66.5
Multiracial 6 3.1 10 5.0
Rather not say 1 0.5 4 2.0

Supplementary Table 10: The demographics of each sample by online labor market.

forced the participant to reread a section of the instructions. Participants were permitted up
to ten retries of the comprehension questions before they were removed from the experiment;
however, no participant exceeded this limit.

The task was programmed in jsPsych [11] and distributed using custom web-application soft-
ware. The experiment code is available at https://github.com/nivlab/sciops, and the web-
software is available at https://github.com/nivlab/nivturk. A playable demo of the task
is available at https://nivlab.github.io/jspsych-demos/tasks/two-step/experiment.

html.

Self-report measures

Prior to the start of the two-step task, participants completed four self-report measures in
a randomized order. One was the 14-item seven-up/seven-down scale (7u/7d; [12]), which
measures lifetime incidence of depressive and (hypo)mania symptoms. This scale is expected
to elicit lower rates of symptom endorsement, thereby resulting in asymmetric (right-skewed)
score distributions. Participants also completed an alternative 7-item measure of general anx-
iety symptoms over the last year (e.g., “I was overwhelmed by anxiety.”; [13]). This scale is
expected to elicit moderate rates of symptom endorsement, thereby resulting in a symmetric
score distribution. We therefore expected the depression and mania measures to be at greater
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risk for spurious correlations with behavior on the two-step task than the anxiety measure.

In addition, participants completed a 6-item measure of artistic interests (e.g., “I believe in the
importance of art”; [14]). Based on previous studies, this scale is expected to elicit high rates
of endorsement, thereby resulting in an asymmetric score distribution. Finally, participants
completed a 6-item measure of greed avoidance, which measures attitudes towards wealth and
status (e.g., “I am out for my own personal gain”; [14]). Based on previous studies, this scale
is expected to elicit moderate rates of endorsement, thereby resulting in a symmetric score
distribution. We therefore expected the artistic interests scale to be at greater risk for spurious
correlations with behavior on the two-step task than the greed avoidance scale.

Correspondence of screening measures

As in the original study, we measured the correspondence of screening measures based on the
task and self-report behavior. We calculated a number of standard measures of data quality
from each participant’s task behavior (four in total) and self-report responses (five in total).
The self-report screening measures were identical to those used in the original study, except
that we used (mostly) new infrequency items. We describe each of the new screening measures
below.

Self-report screening measure: Infrequency items. Infrequency items are questions
for which all (or virtually all) attentive participants should provide the same response. We
embedded four infrequency items across the self-report measures. Specifically, we used the
following questions:

1. Have there been times in your life where you blinked your eyes at least once per day?
(Expected response: Very often)

2. Have there been times of a couple days or more when you were able to breathe underwater
(without an oxygen tank)? (Expected response: Never or hardly ever)

3. I was worried about the canine World Cup. (Expected response: Not at all)

4. I have used a computer. (Expected response: Slightly Agree, Agree, or Strongly agree)

Prior to conducting the study, the infrequency items were piloted on an independent sam-
ple of participants to ensure that they elicited one dominant response. We also included one
instructed item (“Please select ‘Neutral’ as your response”) to compare to the infrequency
items. We measured the number of ‘suspicious’ (i.e., incorrect) responses made by each partic-
ipant to these questions. For thresholded analyses, participants were flagged if they responded
incorrectly to one or more of these items.

Task-based screening variable: Side variability. Side variability was defined as the
fraction of trials a participant chose the left option (by pressing the left arrow key) across first
stage choices during the two-step task. Side variability could range from 0.00 (only right arrow
key used) to 1.00 (only left arrow key used). Extreme values (i.e., closer to zero or one) are
indicative of more careless responding during the task, as the sides for which each choice option
was displayed was determined randomly on each trial.
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Task-based screening variable: Choice variability. Choice variability was defined as the
fraction of trials a participant chose the same first-stage choice option (randomized to the right
or left side of the screen) during the two-step task. Choice variability could range from 0.00
(selected the green rocket ship exclusively) to 1.00 (selected the purple rocket ship exclusively).
Extreme values (i.e., closer to zero or one) are indicative of more careless responding during
the task as the most rewarding option changed throughout the task.

Task-based screening variable: Win-Stay Lose-Shift. Win-stay lose-shift (WSLS) mea-
sures a participant’s tendency to stay with a first-stage choice option following a second-stage
reward versus shifting to a the other choice option following a non-reward. WSLS thus mea-
sures a participant’s sensitivity to reward feedback. WSLS was estimated per participant via
regression, predicting each first-stage choice (stay, switch) by the previous trial’s outcome (re-
ward, non-reward) and an intercept. We used the first (slope) term to represent a participant’s
WSLS tendency. Lower values of this term indicate less sensitivity to reward feedback and are
thus indicative of more careless responding during the task. Thresholds for chance-level WSLS
performance were determined by fitting the same regression model to 5000 randomly-generated
datasets of first-stage choice (datasets were generated by matching the probability of staying
with the previous trial’s choice to the distribution observed empirically, but choices were oth-
erwise independent across trials; that is, independent of previous outcome). The threshold for
above-chance WSLS was defined as the 95th percentile of the distribution of slope estimates
for the random data, corresponding to a one-tailed hypothesis test (α = 0.05) that the slope
coefficient is greater than zero.

Task-based screening variable: Response times. “Suspicious response time” was de-
fined as the proportion of first-stage choices with a response faster than 200ms. Greater
proportions of outlier response times are indicative of more careless responding during the
task.

Correspondence Analysis. We measured the correspondence of the above screening mea-
sures via two complementary approaches. First, we computed pairwise correlations on the un-
thresholded (continuous) measures using Spearman’s rank correlation. Second, we estimated
the pairwise rate of agreement on the binarized measures using the Dice similarity coefficient
(looking at the top 10% most suspicious respondents for each measure). The former approach
estimates two measures’ monotonic association, whereas the latter approach estimates their
agreement as to which participants were most likely engaging in C/IE responding. For sig-
nificance testing, we used permutation testing wherein a null distribution of similarity scores
(Spearman’s correlations or Dice coefficients) was generated for each pair of screening measures
by iteratively permuting participants’ identities within measures and re-estimating the similar-
ity. P-values were computed by comparing the observed score to its respective null distribution.
We corrected for multiple comparisons using family-wise error rates [15].

Correlations between behavior and symptom measures

To quantify the effects of both task and self-report data screening on behavior-symptom cor-
relations, we estimated the pairwise correlations between the scale scores of each self-report
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measure and several measures of model-agnostic performance on the two-step task [16]. Lo-
gistic regression analyses were conducted with the statsmodels package [17] in the python
programming language. The model tested if participants’ first-stage choice behavior (coded as
Stay = 1, Switch = 0) was influenced by the previous trial’s reward (coded as Rewarded = 1,
Unrewarded = 0), previous trial’s transition (coded as Common = 1, Uncommon = 0), and
their interaction. Importantly, the interaction term between previous reward and transition is
a proxy for the contribution of model-based learning to choice behavior [16].

Correlations between the behavioral measures (i.e., logistic regression coefficients) and self-
report measures were calculated using Spearman’s rank correlation, after various forms of
screening and exclusion. Significance testing was performed using the percentile bootstrap
method [18] so as to avoid making any parametric assumptions. These correlation analyses
were not corrected for multiple comparisons, since our overarching purpose was to demonstrate
the extent of this issue across multiple behavioral measures and self-report symptoms. Any
one of these correlations considered individually can be thought of as emulating a conventional
analysis where fewer statistical tests would be performed.

Results

Careless participants (often) appear symptomatic when the overall level of symp-
tom endorsement is low

To begin our analysis of the replication dataset, we examined the number of participants flagged
by the WSLS and infrequency item screening measures. Only 31 participants (8%) were flagged
as exhibiting choice behavior at or below statistically chance levels in the two-step task. In con-
trast, 55 participants (14%) endorsed a logically invalid or improbable response on one or more
of the infrequency items when completing the self-report measures. The proportion of partici-
pants flagged for C/IE responding was significantly greater on Mechanical Turk compared to
Prolific for both task (MTurk: N=23/193; Prolific: N=8/200; two-tailed, two-sample propor-
tions test: z(391) = 2.911, p = 0.004, h = 0.305, 95% CI = [0.026, 0.132]) and survey data
(MTurk: 34/193; Prolific: 21/200; two-tailed, two-sample proportions test: z(391) = 2.033,
p = 0.042, h = 0.206, 95% CI = [0.003, 0.140]). Across the four infrequency items, the average
failure rate was 5.3% (range: 2.5% – 8.9%). In contrast, no participant failed the instructed
item. This discrepancy in the proportion of participants flagged by each type of attention
check is consistent with previous research, which found that instructed items are insensitive
measures of C/IE responding [19–21].

Previously, we observed a mean-shift in the average level of symptom endorsement for partici-
pants suspected of engaging in C/IE responding relative to attentive participants on measures
for which the overall rate of symptom endorsement is low. This result was (mostly) replicated
in the current dataset. Total scores were noticeably exaggerated in participants suspected of
C/IE responding for the symptom measures where overall rates of symptom endorsement were
the lowest (e.g., mania; Figure 7, leftmost plot). Where there were higher rates of symptom en-
dorsement overall (e.g., anxiety), the distributions of symptom scores between the two groups
of participants were more similar (Figure 7, middle plots). Permutation testing confirmed that
observed mean-shifts in symptom scores for C/IE participants were statistically significant for
the most skewed symptom measures (Table 11).

For the personality measures, however, an interesting pattern emerged (Figure 7, rightmost
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Supplementary Figure 7: Raincloud plots of total symptom scores in attentive (N = 338; red) and
C/IE (N = 55; blue) participants. Each colored dot represents the symptom score for one participant.
Black circles: average score within each group (error bars denote 95% bootstrap confidence interval).
Shaded plots: estimated distribution of responses for each group of participants.

Subscale Skew Attentive C/IE t-value p-value Cohen’s D 95% CI

Mania 1.065 3.249 6.273 -6.054 <0.001 0.880 [-4.003, -2.045]
Depression 0.889 5.719 6.945 -1.572 0.119 0.229 [-2.756, 0.303]
Anxiety 0.438 8.536 8.655 -0.127 0.900 0.019 [-1.950, 1.712]
Artistic interests -0.918 28.068 26.291 1.872 0.061 0.272 [-0.083, 3.637]
Greed avoidance 0.550 11.769 16.436 -4.166 <0.001 0.606 [-6.863, -2.472]

Supplementary Table 11: Comparison of the self-report total scores between attentive (N = 338) and
C/IE (N = 55) participants. Scores compared using two-tailed, two-sample permutation t-test with
df = 391 (α = 0.05, not corrected for multiple comparisons).

plots). We did not observe a statistically significant mean-shift in total scores for the subscale
with the most skewed score distribution (i.e., artistic interests). However, an unexpected
and statistically significant mean-shift in the average level of endorsement was observed for
the more symmetrically-distributed greed-avoidance subscale. The reason for this finding is
unclear. Regardless, this finding presents an opportunity to test for spurious correlations
between behavioral and self-report measures in the presence of a mean-shift in scores in the
absence of (substantially) skewed score distributions.

Low correspondence between task and self-report measures of C/IE responding

Next, we evaluated the degree of correspondence between behavioral and self-report screen-
ing measures to determine whether screening on behavior alone was sufficient to identify and
remove careless participants. To measure the degree of correspondence between these behav-
ioral and self-report screening measures, we performed two complementary analyses. First, we
computed pairwise correlations on the unthresholded (continuous) measures using Spearman’s
rank correlation (Figure 8, left panel). After correcting for multiple comparisons, there were a
handful of significant correlations between the behavioral and self-report screening measures.
Abnormal response times emerged as the metric most correlated with the self-report screen-
ing measure. Crucially, as in the original study, the sizes of these observed correlations were
roughly half those observed for the correlations between the self-report measures.

Second, we used the Dice similarity coefficient to quantify agreement between different screening
methods in the set of participants flagged for exclusion (Figure 8, right panel). This approach
quantifies the degree of overlap between the set of would-be excluded participants based on
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Supplementary Figure 8: Similarity of task and self-report data screening measures. Each tile cor-
responds to the Spearman rank correlation (left) and Dice similarity coefficient (right) between two
screening measures across N = 393 participants. Acronyms: INF = infrequency item; ISD = inter-
item standard deviation; REL = personal reliability; MAH = Mahalanobis distance; READ = reading
time; SV = side variability; CV = choice variability; WSLS = win-stay lose-shift rate; RT = suspicious
response times. Similarity scores have been thresholded after correcting for multiple comparisons.
Numbers denote the strength of statistically significant correlations. Cross-modality correlations
between task-behavior (left) and infrequency-item self-report measures (bottom) are in the dashed
rectangle.

different screening measures under a common exclusion rate. Results were largely consistent
with the correlation analysis: only a handful of task and self-report screening measures achieved
levels of agreement greater than what would be expected by chance. Of the significant cross-
modality pairs, the average similarly coefficient was less than 0.4. In other words, when any
of these sets of two measures are used to identify the top 10% of participants most strongly
suspected of C/IE responding, they agree on only two out of every five participants. Screening
on task behavior alone would fail to identify the majority of participants most likely engaging
in C/IE responding.

Taken together, these findings corroborate the results of the original study: measures of C/IE
responding in task and self-report data do not identify the same set of participants. This
means that solely excluding participants on the basis of poor behavioral performance—the
most common approach in online studies—is unlikely to identify participants who engage in
C/IE responding on self-report surveys.

Spurious symptom-behavior correlations produced by C/IE responding

To understand the effects of applying different forms of screening, we estimated the correlations
between each unique pairing of a self-report measure and measure of behavior under four differ-
ent conditions: no screening, screening only on task behavior (i.e., removing participants whose
win-stay lose-shift behavior was not above chance), screening only on self-report responses (i.e.,
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removing only participants who responded incorrectly on one or more infrequency items), or
both. The resulting pairwise behavior-symptom correlations following each screening proce-
dure are presented in Figure 9. We note that we did not correct these correlation analyses
for multiple comparisons, since our purpose was to demonstrate the extent of this issue across
multiple behavioral measures and self-report symptoms. Any one of these correlations consid-
ered individually can be thought of as emulating a conventional analysis where fewer statistical
tests would be performed.

When no rejections were applied (i.e., all participants were included; Figure 9A), we observed
multiple significant correlations between measures of task behavior and symptom scores for hy-
pomania and depression. Consistent with our predictions, these correlations involved measures
with low overall endorsement rates and mean-shifts in score distributions between attentive and
C/IE participants. Conversely, we found no significant correlations with the symmetrically-
distributed anxiety scores. This is despite the fact this scale measures symptoms that are
comorbid with depression and mania. Crucially, of the two personality measures, we observed
significant correlations only for the measure found to exhibit a mean-shift in scores between
attentive and C/IE participants (i.e., greed avoidance). These included a significant correlation
with the interaction term, which is used as a proxy measure for model-based choice behavior.
That is, significant correlations were not restricted only to general behavioral measures but
also to measures of specific theoretical interest.

Next, we excluded participants from the analysis based on task-behavior screening (i.e., lack
of win-stay lose-shift behavior, removing the 8% of participants exhibiting behavior indistin-
guishable from chance; Figure 9B). In contrast to the findings of the original study, the pattern
of correlations was meaningfully changed: the putatively spurious correlations between greed
avoidance and performance on the two-step task were ablated. Two previously significant
correlations between hypomania and two-step performance were also rendered non-significant.
A similar pattern of results was observed when we rejected participants based on self-report
screening (removing 14% of participants who endorsed one or more invalid or improbable re-
sponses on the infrequency items; Figure 9C) and when rejections were applied based on both
task and self-report screening measures (removing 18% of participants; Figure 9D).

These findings suggest that some of the significant behavior-symptom correlations observed
without strict participant screening may indeed be spurious correlations driven by C/IE re-
sponding. Interestingly, in contrast to the original study, with a more demanding behavioral
task, screening based on either task behavior or self-report behavior alone was sufficient to pro-
tect against spurious symptom-behavior correlations in the presence of mean-shifts in scores
between attentive and C/IE participants. For example, both forms of screening ablated the
would-be significant correlation between model-based behavior and greed avoidance. The dis-
crepancy in results between the original and replication studies may reflect the smaller num-
bers of participants failing attention checks in the replication study (14%) compared to the
original study (22%), as well as differences in the behavioral tasks. Regardless, we replicate
the findings of the original study in that screening on self-report data allowed us to identify
symptom-behavior correlations most likely to be spurious.

Discussion

Here we reported findings from a replication study whose purpose was to examine the gen-
eralizability of our original findings under new labor market conditions, different behavioral
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Supplementary Figure 9: Absolute Spearman rank correlations between task behavior (y-axis) and
symptom measures (x-axis) under different regimes of data screening and participant exclusions. (A)
No Screening = no exclusions. (B) WSLS Only = exclusions based on chance-level performance
in the two-step task. (C) Infrequency Only = exclusions based on invalid or improbable responses
to infrequency items. (D) Both Types = exclusions based on the previous two measures. Only
statistically significant correlations are shown (p < 0.05, not corrected for multiple comparisons).
Black Xs indicate significant correlations ablated under screening. Acronyms: PrevRew = sensitivity
to reward on the previous trial; PrevTrans = sensitivity to transition type on previous trial; MB/MF
= index of model-based/model-free behavior (interaction between PrevRew & PrevTrans).

measures, and different self-report measures. To this end, we recruited an independent sample
of almost 400 participants, using CloudResearch’s and Prolific’s latest data-quality filters, to
complete the two-step task and a novel set of self-report measures. As evidence of the efficacy
of the new data-quality filters, the proportion of participants flagged for C/IE responding in the
self-report measures was noticeably smaller in the replication sample (14%) compared to orig-
inal sample (22%). This decrease in the number of participants suspected of C/IE responding
was observed for both MTurk and Prolific (though, as in the original study, the proportion of
low-quality participants was significantly, albeit marginally, smaller for Prolific than MTurk).
Regardless, although the new online labor platform quality-control measures seem to be effec-
tive, they did not completely solve the problem; indeed, the proportion of participants engaging
in C/IE responding was reduced only by one-third.

Next, we compared the distribution of self-report scale scores for attentive participants and
participants suspected of engaging in C/IE responding. Replicating our previous result, we
observed a mean-shift in the average level of symptom endorsement for participants suspected
of C/IE responding relative to attentive participants, only when the overall rate of symptom
endorsement was low. Specifically, flagged participants showed significantly elevated scores
on the hypomania scale (with its right-skewed score distribution) but not so on the anxiety
scale (with its symmetric score distribution). Interestingly, we found the opposite pattern
for the personality measures: scores for participants engaging in C/IE responding were not
significantly different than those of their attentive counterparts on the artistic interests scale
(with its left-skewed score distribution), but was so for the greed avoidance scale (with its more
symmetric score distribution). One possible explanation for the discrepancy in findings between
the symptom and personality measures is the direction of the skew for the artistic interests
scale. Previously, using random-intercept item factor analysis, we observed that participants
engaging in C/IE responding were more likely to use the right-half of the response scale. As
such, such a pattern of responding is more likely to produce a mean-shift in scale scores,
compared to attentive participants, on a scale with a right-skewed distribution (e.g., mania,
depression scales) than a scale with a left-skewed distribution (e.g., artistic interests scale).
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Further research is still needed to characterize patterns of C/IE responding.

The results in the replication study did corroborate the findings of the original study in terms of
the degree of correspondence between behavioral and self-report screening measures, suggesting
that measures of C/IE responding in task and self-report data do not identify the same set of
participants. Even with a more difficult task (i.e., the two-step task), we observed relatively low
correspondence between self-report and task-based screening measures. This supports our sug-
gestion that both forms of screening are necessary to identify participants providing low-quality
responses. Finally, we examined the consequences of various types of screening methods for
correlations between behavioral and self-report measures. As in the original study, we detected
significant spurious correlations when no screening was applied. This included correlations
between model-based planning on the two-step task and scores on the greed avoidance scale,
for which there is no theoretical reason to predict a correlation. Instead, this correlation al-
most certainly reflects the mean-shift in scores between attentive participants and participants
flagged for C/IE responding on the greed avoidance scale. As evidence of this, excluding par-
ticipants who failed one or more infrequency items ablated this correlation. In contrast to
the original study, excluding participants based on poor performance on the two-step task was
also sufficient to ablate this correlation. Thus, there may be instances where screening based
on poor behavioral performance is sufficient to prevent spurious correlations. However, in the
absence of perfect information as to when those situations should arise, we conclude that it is
simply safer to screen participants on both dimensions of performance.

In summary, we conclude that the results of the original study are not limited to the task and
self-report measures used in that study, or to online platforms at a particular point in time.
Despite legitimate advances in data quality controls, online labor platforms still suffer from
participants engaging in C/IE responding. Given a priori uncertainty regarding the ability of
task measures alone to screen such participants, we recommend also using infrequency items
to detect inattentive responding on self-report measures. Finally, and most importantly, this
second study strengthened the finding that C/IE responding is likely to result in mean-shifts in
scores for symptom scales with overall low rates of endorsement, which are in turn capable of
yielding spurious correlations between self-report and behavioral measures. The best safeguard
against such spurious correlations continues to be screening in both domains.
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Correspondence of screening measures

The following are the unthresholded results of the screening measure correspondence analyses.

INF ISD REL MAH READ SV CV WSLS RT

INF -
ISD 0.164 (0.043) -
REL -0.119 (0.490) -0.842 (<0.001) -
MAH 0.303 (<0.001) 0.750 (<0.001) -0.596 (<0.001) -

READ -0.206 (0.001) 0.099 (0.843) -0.065 (1.000) 0.059 (1.000) -
SV 0.138 (0.214) 0.026 (1.000) -0.014 (1.000) 0.071 (0.997) -0.028 (1.000) -
CV -0.119 (0.494) -0.007 (1.000) -0.002 (1.000) -0.063 (1.000) 0.179 (0.013) -0.116 (0.560) -

WSLS -0.260 (<0.001) -0.064 (1.000) 0.043 (1.000) -0.128 (0.348) 0.061 (1.000) -0.168 (0.029) 0.003 (1.000) -
RT 0.338 (<0.001) 0.127 (0.357) -0.102 (0.792) 0.274 (<0.001) -0.180 (0.012) 0.306 (<0.001) -0.233 (<0.001) -0.351 (<0.001) -

Supplementary Table 12: Spearman rank correlations (p-value) of task and self-report data screening
measures (N = 393). Each entry corresponds to the Spearman correlation between two screening
measures. Acronyms: INF = infrequency item; ISD = inter-item standard deviation; REL = personal
reliability; MAH = Mahalanobis distance; READ = reading time; SV = side variability; CV =
choice variability; WSLS = win-stay lose-shift rate; RT = suspicious response times. Bolded entries
indicate statistical significance for a two-sided rank correlation test (α = 0.05, corrected for multiple
comparisons).

INF ISD REL MAH READ SV CV WSLS RT

INF -
ISD 0.168 (0.988) -
REL 0.168 (0.988) 0.450 (<0.001) -
MAH 0.358 (<0.001) 0.550 (<0.001) 0.250 (0.122) -

READ 0.379 (<0.001) 0.100 (1.000) 0.125 (1.000) 0.150 (1.000) -
SV 0.211 (0.467) 0.100 (1.000) 0.125 (1.000) 0.200 (0.728) 0.175 (0.969) -
CV 0.043 (1.000) 0.076 (1.000) 0.051 (1.000) 0.025 (1.000) 0.025 (1.000) 0.000 (1.000) -

WSLS 0.400 (<0.001) 0.175 (0.969) 0.075 (1.000) 0.300 (0.007) 0.300 (0.007) 0.100 (1.000) 0.101 (1.000) -
RT 0.400 (<0.001) 0.150 (1.000) 0.150 (1.000) 0.300 (0.007) 0.375 (<0.001) 0.225 (0.358) 0.000 (1.000) 0.450 (<0.001) -

Supplementary Table 13: Dice similarity coefficients (p-value) for task and self-report data screening
measures for the top 10% most suspicious participants. Each entry corresponds to the Dice coefficient
between two screening measures for the 10% most suspicious participants. Acronyms: INF = infre-
quency item; ISD = inter-item standard deviation; REL = personal reliability; MAH = Mahalanobis
distance; READ = reading time; SV = side variability; CV = choice variability; WSLS = win-stay
lose-shift rate; RT = suspicious response times. Bolded entries indicate statistical significance for a
two-sided Dice similarity permutation test (α = 0.05, corrected for multiple comparisons).
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Correlations between behavior and symptom measures

The following are the unthresholded results of the correlation analyses between task behavior
and self-report scores.

Mania Depression Anxiety Artistic Interests Greed Avoidance

Stay -0.262 (<0.001) -0.078 (0.055) 0.017 (0.366) -0.000 (0.509) -0.127 (0.007)
PrevRew -0.115 (0.013) -0.104 (0.019) -0.035 (0.255) 0.059 (0.119) -0.058 (0.126)

PrevTrans -0.093 (0.032) -0.059 (0.115) -0.039 (0.215) -0.041 (0.215) 0.006 (0.452)
MB/MF -0.224 (<0.001) -0.012 (0.410) 0.004 (0.476) 0.018 (0.362) -0.092 (0.037)

Supplementary Table 14: Spearman rank correlation (p-value) between task behavior and self-report
symptom when no screening and rejections have been applied. Acronyms: PrevRew = sensitivity to
reward on the previous trial; PrevTrans = sensitivity to transition type on previous trial; MB/MF
= index of model-based/model-free behavior (interaction between PrevRew & PrevTrans). Bolded
entries indicate statistical significance for a two-sided rank correlation test (α = 0.05, not corrected
for multiple comparisons).

Mania Depression Anxiety Artistic Interests Greed Avoidance

Stay -0.201 (<0.001) -0.050 (0.154) 0.018 (0.373) -0.042 (0.215) -0.082 (0.061)
PrevRew -0.088 (0.051) -0.097 (0.044) -0.046 (0.204) 0.039 (0.242) -0.020 (0.341)

PrevTrans -0.084 (0.057) -0.048 (0.187) -0.022 (0.339) -0.036 (0.264) 0.006 (0.451)
MB/MF -0.195 (<0.001) 0.036 (0.265) 0.028 (0.304) -0.013 (0.395) -0.064 (0.123)

Supplementary Table 15: Spearman rank correlation (p-value) between task behavior and self-report
symptom after applying rejections based on WSLS behavior. Acronyms: PrevRew = sensitivity to
reward on the previous trial; PrevTrans = sensitivity to transition type on previous trial; MB/MF
= index of model-based/model-free behavior (interaction between PrevRew & PrevTrans). Bolded
entries indicate statistical significance for a two-sided rank correlation test (α = 0.05, not corrected
for multiple comparisons).

Mania Depression Anxiety Artistic Interests Greed Avoidance

Stay -0.159 (0.002) -0.043 (0.211) 0.029 (0.307) -0.080 (0.076) -0.052 (0.185)
PrevRew -0.085 (0.075) -0.091 (0.058) -0.032 (0.297) 0.041 (0.230) -0.028 (0.314)

PrevTrans -0.064 (0.120) -0.107 (0.026) -0.053 (0.157) -0.040 (0.226) 0.026 (0.328)
MB/MF -0.139 (0.005) 0.016 (0.387) 0.004 (0.478) -0.062 (0.129) 0.015 (0.395)

Supplementary Table 16: Spearman rank correlation (p-value) between task behavior and self-report
symptom after applying rejections based on infrequency items. Acronyms: PrevRew = sensitivity to
reward on the previous trial; PrevTrans = sensitivity to transition type on previous trial; MB/MF
= index of model-based/model-free behavior (interaction between PrevRew & PrevTrans). Bolded
entries indicate statistical significance for a two-sided rank correlation test (α = 0.05, not corrected
for multiple comparisons).
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Mania Depression Anxiety Artistic Interests Greed Avoidance

Stay -0.141 (0.007) -0.049 (0.188) 0.025 (0.340) -0.081 (0.072) -0.057 (0.166)
PrevRew -0.081 (0.078) -0.097 (0.049) -0.032 (0.289) 0.033 (0.281) -0.018 (0.381)

PrevTrans -0.050 (0.192) -0.093 (0.054) -0.031 (0.299) -0.033 (0.286) 0.027 (0.321)
MB/MF -0.138 (0.008) 0.038 (0.242) 0.026 (0.322) -0.063 (0.135) 0.001 (0.488)

Supplementary Table 17: Spearman rank correlation (p-value) between task behavior and self-report
symptom after applying rejections based on both WSLS behavior and infrequency items. Acronyms:
PrevRew = sensitivity to reward on the previous trial; PrevTrans = sensitivity to transition type on
previous trial; MB/MF = index of model-based/model-free behavior (interaction between PrevRew
& PrevTrans). Bolded entries indicate statistical significance for a two-sided rank correlation test
(α = 0.05, not corrected for multiple comparisons).
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Supplementary Materials C: Attention checks in healthy

and depressed patients

Background & motivation

One concern with using attention checks for screening and exclusion of participants is that
we might inadvertently introduce an overcontrol bias [22]. That is, to the extent that C/IE
responding reflects symptoms of psychopathology such as lack of motivation [23], avoidance of
effort [24, 25], or more frequent lapses of attention [26, 27], it is plausible that rigorous screening
of C/IE responding might lead to the differential exclusion of truly symptomatic participants.
As a result, true associations between poor or different task performance and psychopathology
symptoms could go undetected (type II error). The purpose of the below preliminary and
exploratory study was to examine whether individuals with a confirmed psychiatric disorder
were indeed more likely than healthy controls to fail attention checks embedded in self-report
symptom scales.

Methods

Participants

Participants were recruited as part of two independent studies to investigate reward processing
in individuals with and without a history of major depression and bipolar disorder (results of
those studies not reported here). The studies were approved by the Institutional Review Board
of Rutgers University (#2019000738, #2018000629), and all participants provided informed
consent. Participants received monetary compensation for their time (rate USD $20/hr), plus
an incentive-compatible bonus based on task performance.

In both studies, participants volunteered for a multi-session study conducted online via video
conferencing. Specifically, participants completed each session from their homes while on Zoom
with a study coordinator. Both studies required participants to complete (1) a structured clin-
ical interview (the SCID-5) with a trained interviewer to verify that they met the criteria for
one or more psychiatric disorders, and (2) a series of computerized self-report surveys and cog-
nitive tasks. During each session, while participants were completing self-report questionnaires
or behavioral tasks, the study coordinator turned off their camera and microphone, but was
available if the participant had any questions.

Participants were recruited through clinician referral and online ads (i.e., Google ads, Craigslist)
targeting individuals with a history of depression, anhedonia, apathy, and/or (hypo)mania
symptoms. Participants were eligible for participation if they (1) had no history of head injury
resulting in loss of consciousness for more than 20 minutes; (2) had not been diagnosed with
intellectual disability; (3) had not been diagnosed with any neurological condition; (4) did not
meet criteria for substance dependence (excluding nicotine) in the past 6 months; (5) had not
received electroconvulsive therapy in the past 8 weeks; and (6) were aged between 18-65. For
one of the two studies, participants were also required to score 6 or higher on the Wechsler Test
of Adult Reading to be included in the study. Furthermore, clinical participants were eligible if
they met criteria for a diagnosis of major depressive disorder and, if they were on medication,
they had been on on stable treatment with this medication for at least the past 4 weeks. Non-
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clinical (control group) participants were eligible if they did not meet criteria for any psychiatric
diagnosis and were not currently taking any medication used to treat psychiatric disorders.

52 participants were recruited to participate in a behavioral experiment. Of these, 14 partici-
pated in both studies. In total, there was data from 20 sessions involving a healthy participant
and data from 45 sessions involving a patient with major depressive disorder. Of the 17 healthy
participants, 6 identified as men and 11 identified as women. Of the 35 psychiatric patients, 6
identified as men, 27 identified as women, 1 identified as non-binary, and 1 preferred not to say.
The healthy participants were 24.2 years old on average (sd = 3.5), whereas the psychiatric
patients were 27.4 years old on average (sd = 10.6).

Infrequency items

To measure and compare C/IE responding between healthy and MDD patients, we used two
sets of attention checks. Each set was composed of three infrequency items and one instructed
item. Participants were assigned one or the other set. The six infrequency items were:

1. Worrying too much about the 1977 Olympics. (Expected response: Not at all)

2. I have never used a computer. (Expected response: Completely untrue or Quite untrue)

3. I would be able to lift a small (1 lb) weight. (Expected response: Extremely characteristic
of me or Somewhat characteristic of me)

4. Have there been times of a couple days or more when you were able to stop breathing
entirely (without the aid of medical equipment)? (Expected response: Never)

5. Over the past year, how often did you have days where you were able to blink your eyes
without difficulty? (Expected response: Often or Very often)

6. I am generally able to remember my own name. (Expected response: True)

Analysis

Of primary interest here was whether MDD patients fail infrequency item attention checks
at equal or at greater rates than healthy participants. To test this, we conducted Bayesian
hypothesis testing using Bayes factors [28]. Specifically, we defined three competing models:

• M0 : Binom(N1, p),Binom(N2, p)

• M1 : Binom(N1, p− δ),Binom(N2, p+ δ)

• M2 : Binom(N1, p+ δ),Binom(N2, p− δ)

where N1 and N2 are the observed number of healthy and MDD participants, respectively;
p is the latent probability of a participant failing one or more attention checks; and δ is an
offset parameter specifying the hypothesized difference in failure rates between groups. Thus,
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M0 assumes equal rates of failures between healthy and MDD participants, whereas M1 and
M2 assume greater and lower rates, respectively, for MDD participants compared to healthy
participants. The common latent probability, p, was set to the observed average rate across
the two groups. The offset, δ, was set to 0.05. This value was selected because it signifies a
difference in portions of ∆p = 0.1, corresponding to a small effect for a difference in proportions
test (h = 0.2; [29]).

Results

In total, 16 of 65 (24.6%) sessions involved one or more failed attention checks. Interestingly,
the overall proportion of flagged sessions was similar to that observed for the original study.
Subdivided by group, 6 of 20 healthy participant sessions (30%) and 10 of 45 MDD participant
sessions (22%) were flagged for C/IE responding. Unsurprisingly, given the modest sample size,
the difference between the two proportions was not significantly different from zero (two-tailed,
two-sample proportions test: z(63) = 0.672, p = 0.502, h = 0.178, 95% CI = [-0.157, 0.312]).
Across the six infrequency items, the average failure rate was 8.5% (range: 0.0% – 19.7%). In
contrast, no participant failed either instructed item. This result further corroborates previous
research, which has found that instructed items are poor measures of C/IE responding [19–21].

Next, we computed the Bayes factor for each pair of candidate models. A model assuming
equal rates of failure between healthy and MDD participants was 2.88 times more likely than
the model assuming greater rates for MDD patients. In turn, a model assuming lower rates
of failure for MDD patients was 1.27 times more likely than the model assuming equal rates.
Finally, a model assuming lower rates of failure for MDD patients was 3.65 times more likely
than the model assuming higher rates for MDD patients. Only the final comparison exceeds the
cutoff value of 3, which is conventionally treated as the minimal amount of evidence required
to treat a model comparison as meaningful.

Discussion

Here we sought to examine whether actual MDD patients were equally or more likely to fail
infrequency items than healthy controls in settings similar to those experienced by online
participants (i.e., completing an experiment online, on a computer in one’s home or otherwise
chosen environment). Although the small sample precludes any definitive conclusion, it is
noteworthy that the model least consistent with the data was the one where MDD patients
were more likely to fail infrequency-item attention checks. Indeed, a model in which healthy
controls failed attention checks at a greater rate than patients was credibly preferred to the
alternative. This preliminary finding may reflect differences in motivation between patients
and controls for participating in psychiatric research. Indeed, whereas healthy controls may
be primarily motivated to participate for monetary purposes, patients may be motivated to
participate to further scientific research that may ultimately benefit them (or others suffering
from the same conditions). That is, patients may have more “stakes in the game,” and may
therefore be more motivated to provide higher-quality responses. Regardless, further research is
required to examine whether this preliminary finding holds in larger samples and other testing
contexts.
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