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Abstract

Cognitive tasks are capable of providing researchers with crucial insights into the

relationship between cognitive processing and psychiatric phenomena. However, many

recent studies have found that task measures exhibit poor reliability, which hampers

their usefulness for individual-differences research. Here we provide a narrative review of

approaches to improve the reliability of cognitive task measures. Specifically, we introduce

a taxonomy of experiment design and analysis strategies for improving task reliability.

Where appropriate, we highlight studies that are exemplary for improving the reliability

of specific task measures. We hope that this article can serve as a helpful guide for

experimenters who wish to design a new task, or improve an existing one, to achieve

sufficient reliability for use in individual-differences research.

1 Introduction

Cognitive tasks hold great promise for biological psychiatry. When properly designed,

such tasks are capable of isolating and measuring specific cognitive processes. Individual

differences in performance on cognitive tasks can therefore provide researchers with crucial

insights into the cognitive processes underlying psychiatric phenomena. Elsewhere in

psychology, cognitive tasks have been useful in predicting important outcomes such as

academic achievement [1] and cognitive decline [2]. Cognitive tasks, then, have the po-

tential to be invaluable tools for refining our understanding of psychiatric symptoms and

syndromes. For a cognitive task to be useful in this regard, however, it must possess

sufficient measurement properties.

We define a cognitive task as any experimental paradigm that measures behavior

in order to make inferences about one or more cognitive processes (e.g., Stroop task,

delay discounting task, reversal-learning task). Cognitive-task measures of behavioral

performance can be descriptive (e.g., proportion correct responses, average response time)
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or model-based (e.g., drift rate in evidence accumulation models). The psychometric

quality of a measure can be summarized by three key properties: discriminatory power,

validity and reliability [3]. The discriminatory power of a task measure describes its ability

to measure variability in participants’ performance. This is a necessary property of tasks

used to study individual differences; where there is no variation in performance, there are

no individual differences to study. The validity of a task measure concerns whether it

actually measures what it intends to measure. Finally, the reliability of a task measure

characterizes the degree to which it consistently measures some feature of participants.

That is, a task measure is reliable if, assuming participants have not changed, it produces

the same scores, or the same ordering of scores, for participants within a single testing

session or across multiple testing sessions. This review focuses on task-measure reliability.

The formal definition of reliability

In classical test theory [4], the variance in observed scores on a task measure x is the sum

of the true score variance σ2
T , reflecting real individual differences in the latent construct

of interest, and measurement error σ2
E , i.e., σ

2
x = σ2

T + σ2
E . The reliability of a measure

is defined as the proportion of variance attributable to the true score variance relative

to total variance: ρxx′ =
σ2
T

σ2
T+σ2

E
. Thus, reliability quantifies the magnitude of individual

differences relative to the noisiness of a task measure; the larger the reliability of a task

measure, the more it reflects true individual differences rather than noise. Reliability

is therefore a prerequisite for validity: an unreliable task measure reflects measurement

error and not the construct of interest. If this were not reason enough to care about

reliability, the observed correlation between two measures (e.g., task performance and

self-reported symptom score) is bounded by their individual reliabilities [5]:

ρxy = ρtt
√
ρxx′ · ρyy′ (1)

where ρxx′ and ρyy′ are the reliabilities of two measures, x and y; ρtt is their true latent

correlation; and ρxy is their observed correlation. As all reliabilities are < 1, the reliability

of a measure places an upper bound on the maximum observable correlation between

itself and a second measure (Figure 1). As an important corollary, as measure reliability

decreases, the number of participants required to reliably detect a correlation between

two measures increases [6]. Thus, poor reliability hampers our ability to investigate

associations between cognitive processes, as measured by task performance, and other

variables of interest.

To further complicate matters, the reliability of a task measure is not absolute – it

reflects interactions between the task design, the participants, and the context in which

the task is administered. Indeed, task reliability can vary as a function of experiment

parameters (specific stimulus set, number of trials, time limits [8, 9]); sample populations

(healthy adults, children, psychiatric patients [9, 10]); testing locations (in clinic, on-

line); response modality (desktop, smartphone, virtual reality [11, 12]); scoring method

(component scores, difference scores); and estimation method [13–15]. For example, a

cognitive task originally designed for use with an adult population may prove too diffi-

cult for children. Their task performance may drop to chance level, thereby minimizing

between-participant variance and, as a consequence, task reliability. As a second exam-
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Figure 1: The relationship between measure reliability, observed correlations, and statistical power.

(A) The maximum expected observed correlation between two measures as a function of their true

(latent) correlation and reliability. As the reliability of two measures decreases, so too does their

observed correlation. (B) Required sample size for 80% power to detect true correlations between

two measures given their reliability. As the reliability of two measures decreases, the number of

participants required to detect an association increases. Even with a large sample size of N = 500,

two measures with moderate reliability (ρxx′ = ρyy′ = 0.5) will only reliably detect true correlations

above 0.3, which are likely high for individual-differences cognitive research [7].

ple, participants completing an experiment online from their homes may experience more

distraction than if they participated in the lab. This may increase measurement error,

leading to a concomitant decrease in reliability. Experimenters therefore cannot assume

the reliability of a task measure is constant. At the very least, researchers should evaluate

reliability after having made changes to a task or scoring procedure, or when administer-

ing the task to new sample populations or in new testing contexts. Ideally, researchers

would investigate and report the reliability of task measures as part of any individual

differences research.

Although verifying the reliability of cognitive task measures is paramount to individual

differences research, the reliability of task measures is seldom reported [6, 16]. When they

are reported, task measures frequently exhibit lower reliability than what is conventionally

considered the minimum acceptable level for individual-differences research (ρxx′ on the

order of 0.7 – 0.8) and the reliability regularly achieved by self-report measures. Indeed,

many studies have now found that task measures exhibit moderate-to-low reliability [17–

22].

One possible explanation for this finding is the so-called “reliability paradox” of cog-

nitive tasks [17], which states that the often lackluster reliability of tasks is a result of

a mismatch in goals between experimental and individual-differences psychological re-

search. In experimental psychology, the goal is often to demonstrate the existence of a

behavioral effect. One means of increasing the power to detect an effect is to minimize

between-participants variance. This is the exact opposite of what is desirable for indi-

vidual differences research, where between-participants variance is essential to achieving
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reliable task measures. For example, the Stroop effect is one of the most robust effects in

experimental psychology; virtually everyone shows a Stroop effect [23]. However, in part

due to this fact, between-participants variance on the Stroop effect is often limited [24].

Thus, the tendency in biological psychiatry to adopt the most prominent tasks in exper-

imental psychology—the ones that most reliably demonstrate a behavioral effect—may

actually hamstring efforts to study individual differences.

Regardless, we do not believe that task measures are inherently less reliable than

self-report measures, or that pessimism about task-based individual-differences research

is warranted. It is possible to (re)design tasks to achieve good reliability, even to the high

levels dictated by conventional standards [25–28]. The purpose of the current article is to

provide a narrative review of approaches to improve task-measure reliability. Specifically,

we introduce a taxonomy of strategies for improving the reliability of cognitive-task mea-

sures through experiment design and analysis. Where appropriate, we highlight studies

that are exemplary for improving the reliability of specific task measures. For the inter-

ested reader, we review methods for calculating the reliability of task measures in the

supplementary materials, as these topics have been discussed at length elsewhere [6, 14,

16]. We hope that this article can serve as a helpful guide for experimenters design-

ing a new task, improving an existing task, or refining their scoring methods to achieve

sufficient reliability for use in individual-differences research.

2 Improving task reliability

As defined above, the reliability of a task measure is the proportion of variance at-

tributable to between-participant differences relative to measurement error. Thus, the

two major strategies for improving the reliability of a measure are to increase between-

participant variability or decrease measurement error. In what follows, we discuss ap-

proaches for accomplishing each objective in turn. Where appropriate, we highlight stud-

ies that are exemplary for improving the reliability of a task measure by implementing a

particular strategy.

2.1 Increasing between-participant variance

2.1.1 Ceiling & floor effects

By definition, the reliability of a task measure is zero when there is no variability across

participants. Thus, range restriction of task measures via ceiling or floor effects is a seri-

ous obstacle to reliability. Siegelman and colleagues [29] noted the consequences of floor

effects on reliability in the context of statistical learning tasks. In such tasks, participants

must learn to identify subtle patterns in the transition probabilities underlying a continu-

ous sequence of stimuli. In reanalyzing archival datasets, Siegelman and colleagues found

a majority of participants were at chance-level performance in discriminating between

legitimate and foil sequence patterns; consequently, the reliability of conventional pro-

portion correct measures suffered. In response, the authors designed a new statistical

learning task involving stimulus sequences that ranged more widely in their difficulty to

learn. Only a minority of participants showed chance-level performance on this new task
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and, as such, the reliability of proportion correct scores improved (from ρ = 0.75 to 0.88).

Similarly, in developing an abbreviated working-memory task, Oswald and colleagues [30]

found that they could remove the easiest trials—those with ceiling level performance—

with virtually no change to task reliability. This is because those trials are incapable of

differentiating ability across participants and therefore cannot contribute significantly to

the reliability of the task.

Researchers administering a task to a new population should be especially wary of

range-restriction effects. Cognitive tasks calibrated for one group of participants may not

be adequately sensitive for others due to being too easy or difficult for a different group.

For example, Arnon and colleagues [10] found that statistical learning tasks developed for

adults were too difficult for young children and therefore yielded unreliable discrimination

scores in that population. Similarly, Kyllonen and colleagues [31] developed a battery

of fluid-reasoning measures for highly educated adults after observing ceiling effects in

performance when using preexisting fluid-reasoning tasks in this population.

2.1.2 Repeatability & practice effects

A related issue for task reliability is practice effects, where participants’ performance on

a task improves with repeated administrations. Practice effects are relatively common

for cognitive tasks [32, 33]. They might occur due to the attenuation of task-irrelevant

nuisance factors (e.g., performance anxiety) and/or the learning of task-specific knowledge

or strategies. Practice effects are not inherently an issue for reliability — especially if

an experimenter is only interested in the consistency, but not the absolute agreement, of

participants’ performance over time — but they can become a pernicious issue if they are

exhibited differentially across participants or if they are severe enough to induce ceiling

effects. For example, Paredes and colleagues [34] observed large practice effects on the

Pavlovian go/no-go task for short retest intervals (3 days, 14 days), which resulted in poor

estimates of test-retest reliability. In developmental and lifespan studies, practice effects

are potentially complicated by their interaction with age [35, 36]; that is, practice-induced

ceiling effects may present in some age groups but not others.

One strategy for minimizing practice effects is simply to increase the time interval

between task administrations. The more time that elapses between sessions, the greater

the probability that participants will have forgotten task-specific knowledge or strategies

[32, 33]. Of course, this solution may not always be possible or desirable, especially if

a researcher is only able to or specifically interested in studying a behavior over a short

time period. Moreover, some forms of learning do not easily dissipate with time [37].

A second strategy is to use a combination of clear instructions and practice trials

to help participants reach stable performance from the start of an experiment (see the

“Improving experiment designs” section below). Another strategy is to design tasks so as

to prevent or discourage the formation of task-specific strategies. For example, McLean

and colleagues [25] investigated the repeatability of the beads task. In the beads task,

participants are presented with two jars containing beads of two colors in equal but

opposite ratios. In each trial of the task, a predetermined sequence of beads is drawn

from one jar. Participants must decide which jar beads were being drawn from or request

to see more beads. In a typical version of the task, the same sequence of bead draws is
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used across all trials. McLean and colleagues found that participants were aware that

the sequence repeated across trials and, as a consequence, became more erratic in their

decision to witness more bead draws with additional trials. In response, the authors

developed a new version of the task that included distractor sequences of bead draws.

This new design was effective in preventing participants from becoming aware of the

target sequence, which in turn resulted in more consistent responding, which improved

the reliability of participants’ information seeking scores (from ρ = 0.62 to 0.84).

2.1.3 Enhancing experimental manipulations

The preceding sections described potential threats to between-participants variability,

but not approaches to improve it. A primary strategy for increasing between-participants

variability is to enhance the experimental manipulation. Amplifying the strength of an

experimental manipulation (e.g., making a task more challenging, increasing the potency

of affect induction) typically increases the range of participants’ responses to it. For

example, Kucina and colleagues [26] investigated the reliability of cognitive conflict effects

(as measured by response time) in new versions of several standard cognitive-control tasks

(e.g., Stroop, Flanker, Simon) that amplified cognitive interference via two task design

features. First, they combined multiple sources of cognitive interference in the same

task, for example by combining the Stroop and Simon effects to create a “Stroopon”

task. Second, for a subset of trials, they required participants to make multiple responses

based on both relevant and irrelevant stimuli attributes. Compared to previous versions

of these tasks, these manipulations had the effect of increasing task demands, which

resulted in greater between-participants variance and, consequently, required hundreds

fewer trials to achieve a reliability of ρ = 0.8. (See also Snijder and colleagues [27] for

a similar redesign of classic cognitive-control tasks that improved reliability in part by

increasing proactive control demands.)

A related strategy is to calibrate the difficulty of the task to the average ability of

the population of interest. For example, consider a task trial with two response options.

Given the Bernoulli distribution, the variance in responses on this trial will be maximal

when the probability of choosing either response is equal. Thus, aggregating across many

trials, between-participants variance is maximized — and task reliability is improved —

when the difficulty of all items is matched to the average ability of the sample [38] (or

slightly higher if participants can guess the correct response [39, 40]). Of course, this

design principle is only helpful to the degree that a researcher knows the average ability

level of their participants. If this is unknown or poorly characterized, then it is instead

desirable to design a task with trials spanning a range of difficulty levels.

2.1.4 Sample population

A final strategy for increasing between-participant variance is to simply recruit more

diverse samples. While convenient, undergraduate students from a single university are

likely to be relatively homogeneous in their cognitive profiles. It may be worthwhile

instead to recruit participants from the community or from an online labor market (e.g.,

Amazon Mechanical Turk, Prolific Academic, CloudResearch Panels). With regard to the

latter, because online participants typically complete experiments from their homes or
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other poorly-controlled environments, they are more likely to be distracted or to multi-

task during an experiment [41]. Thus, when recruiting online samples, experimenters

should take special care to ensure that an increase in between-participants variance is not

offset by a concomitant increase in measurement noise. Separately, online participants

may be more familiar with particular experimental paradigms due to previous exposure

[42], which may attenuate between-participants performance variability for the reasons

previously mentioned (e.g., practice effects). Thus, researchers running experiments on-

line may want to alter task paradigms so that they appear less similar to preexisting

versions and/or limit the recruitment of highly-experienced participants [43].

2.2 Decreasing measurement noise

2.2.1 Increasing trial numbers

Perhaps the most straightforward approach to decreasing measurement error, and thereby

increasing reliability, is to increase the number of task trials. The relationship between

reliability and the number of trials defined as:

ρ =
σ2
T

σ2
T +

σ2
E
n

(2)

where σ2
T is the true between-participants variance, σ2

E is measurement error (i.e. trial-

level variance), and n is the number of trials. In practice, this relationship often holds

[8, 9] though with some exceptions [44, 45]. Notably, increasing the number of task trials

only benefits reliability if measurement error is random. If increasing task length results

in participant fatigue or boredom, measurement noise may systematically increase and

reliability will suffer. Increasing the number of trials may be impractical for other reasons,

and because of diminishing marginal improvements for reliability, achieving a desired level

of reliability through this means alone may require prohibitively long experiments.

2.2.2 Improving experiment designs

Measurement error can be reduced through improving the design of experiments, which

can be accomplished in many ways. The reliability of a task measure can be improved by

including in an experiment only the most discriminating stimuli. For example, in the con-

text of an emotion recognition task, stimuli of good discriminability would be those where

participants with good emotion-recognition ability consistently correctly identify the dis-

played emotion while participants with poor ability consistently incorrectly identify the

displayed emotion [46]. In contrast, stimuli with poor discriminability — those for which

performance between high- and low-ability participants is indistinguishable — will lead

to more measurement noise and decreased reliability [47]. In experiments where stimuli

are intended to be unique and distinguishable, improving both the linguistic and visual

distinctness of stimuli may prevent participant confusion and therefore aid reliability [48].

Other design features of an experiment that are specific to the task mechanics may

affect reliability. Consider, for example, the dot-probe task, in which participants must

disengage attention from a distracting image on one part of the screen in order to identify

and respond to the orientation of a pair of dots elsewhere on the screen. Dot-bottom trials,
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where a participant must disengage from a distracting stimulus located at the top of the

screen and saccade to the bottom of the screen, are more reliable than dot-top trials (e.g.,

dot-bottom: ρ = 0.33; dot-top: ρ = 0.07) [44, 49]. This has been explained by suggesting

that because participants’ gazes are biased towards the top of the screen, saccading away

from the top requires a stronger level of disengagement. Dot-bottom trials may therefore

be better measures of attentional bias.

It is worth stressing that clear instructions are essential for task reliability. When

participants are unsure of what they are intended to do in an experiment, their behav-

ior is likely to be more variable across time (as their understanding of the task evolves)

and across participants (due to different interpretation of instructions), thereby dimin-

ishing reliability. Clear instructions thus help to ensure that participants show stable

behavior from the start of the experiment. (Clear instructions may also work to ensure

the validity of an experiment by discouraging participants from using strategies not of

interest to the experimenter.) In their “10 simple rules” paper for designing cognitive

experiments [50], Barbosa and colleagues provide practical suggestions for writing task

instructions. When adapting a task for a new population, experimenters should ensure

that the instructions are still appropriate. Task instructions that are comprehensible to

healthy adult participants may not be suitable for other populations like children [51].

Another strategy to reduce measurement error is to make use of a practice phase.

Practice trials can help to minimize the effects of nuisance factors such as performance

anxiety or unfamiliarity with the response modality, and give participants an opportu-

nity to make sure they understand the task instructions. Thus, practice trials can help

participants reach a “steady state” of responding, thereby reducing the noisiness of their

responses across task trials and increasing reliability [52]. Practice can take the form of

a standalone practice block or by designating as such and discarding (or modeling sep-

arately) the first few trials of an experiment (e.g, [25]), though the latter may not fully

allow participants to explore response options during the practice.

Yet another strategy to diminish measurement error is to “gamify” an experiment.

Incorporating (video) game design elements into cognitive tasks can increase participant

engagement and motivation [53], countering the would-be effects of boredom and fatigue

on task reliability. For example, Kucina and colleagues [26] cite task gamification as

an important factor that contributed to the reliability of their cognitive-control tasks.

Similarly, Verdejo and colleagues [22] partially attribute the adequate reliability of their

impulsivity task battery to gamified task design (range: ρ = 0.52− 0.71).

2.2.3 Reducing parameter estimation noise

When parameters from cognitive models are used as indices of participants’ task per-

formance, another means to improve measure reliability is to decrease estimation noise.

The estimation noise of a parameter given an experiment and model can be quantified

through simulation studies [54, 55]. Here, an experimenter generates artificial data for

the experiment using representative model parameters and then attempts to recover the

model parameters by fitting the model to the simulated data. Estimation noise is the in-

verse of the (relative or absolute) agreement between the true and recovered parameters.

Alterations to experimental design can improve parameter recovery and estimation noise,
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and multiple frameworks have been proposed for testing and improving experimental de-

signs to aid parameter recovery [56, 57]. Parameter recovery can also be affected by the

model estimation method [58, 59]. In particular, the partial pooling properties of hierar-

chical Bayesian models can be especially beneficial for improving parameter recovery and

decreasing estimation noise [60].

A related approach is to use adaptive experimental designs [61], where the trials of

an experiment are designed in real time so as to present each participant with stimuli

or trial types that are matched to their particular response patterns or ability levels.

Though undoubtedly a more complex experimental design, adaptive experiments have the

advantage of selecting the most informative trials for resolving the ability or preference

level of a participant (e.g., as measured by a cognitive model). Adaptive designs have

been successfully used in cognitive research, for example to study working memory [62]

and delay discounting [63]. For a detailed discussion of adaptive-design experiments, see

[64].

Parameter estimation may be further improved by leveraging additional information.

For example, latent variables may be more accurately measured through the inclusion of

demographic variables or other covariates that, if associated to model parameters, can

aid in resolving parameter estimates [65]. An extension of this idea is to utilize joint

modeling of dependent variables; that is, to design models where multiple observed trial-

level variables are predicted simultaneously. For example, the joint modeling of choice

and response time has been found to improve the precision and reliability of estimated

parameters in cognitive ability testing [66] and reinforcement learning [67, 68]. It is also

possible to incorporate physiological and/or neural correlates of behavior, such as skin

conductance response, fMRI BOLD signal, and EEG [69].

2.3 Difference scores

Difference scores deserve special treatment in the context of reliability. Difference scores

subtract a measure of a participant’s performance in one condition from their perfor-

mance in another. An example is the Stroop interference effect, calculated as the average

reaction-time difference between congruent and incongruent trials. Difference scores are

commonly used because they allow experimenters to isolate particular cognitive processes

(e.g., processing cognitive conflict) while controlling for other sources of variance (e.g.,

perceptual processing, motor ability) through the subtraction of conditions that share

that variance. The challenge is that the reliability of a difference score is a function of

the reliability of each of its components and the correlation between the components:

ρdd′ =
σ2
xρxx′ + σ2

yρyy′ − 2ρxyσxσy

σ2
x + σ2

y − 2ρxyσxσy
(3)

where σ2
x and σ2

y are the variances of task measures x and y, ρxx′ and ρyy′ are the

reliabilities of task measures x and y, and ρxy is the correlation between task measures x

and y [70]. When the variances of the two measures are equal, this reduces to:

ρdd′ =
ρxx′ + ρyy′ − 2ρxy

2− 2ρxy
(4)

From the above equation, one can see that the reliability of a difference score measure is

diminished to the extent that its components are correlated. Two measures derived from
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the same task will often be correlated due to shared domain-general cognitive processes.

Thus, it will often (if not always) be the case that difference scores derived from task

measures will be less reliable than the average reliability of their components.

2.3.1 Enhance & purify task measures

The equations above suggest three steps experimenters can take to improve the reliability

of difference scores: (1) improve the reliability of the component measures, (2) increase

the relative difference between the variances of two task measures, and (3) minimize the

correlation between the task measures. The first strategy has been our focus so far. The

second approach deserves further comment. As discussed elsewhere [70], the reliability of a

difference score measure increases as the difference (or the ratio) between the variances of

the component measures increases. Intuitively, this is because as the variance of one (but

not the other) component grows, so too does the proportion of unshared reliable variance.

Figure 2A shows that even when the correlation of two measures is large, it is possible to

achieve acceptable reliability insofar as the ratio of the variances (i.e. σx/σy) is sufficiently

different from 1. (It is also worth noting that component variances essentially function

as weights in determining the overall reliability, such that the difference-score reliability

reflects more the reliability of the component measure with the larger variance; Figure

2B.) This speaks to the advantage of increasing the between-participants variability of

a measure of performance in one experiment condition without increasing performance

variability in a second condition. This may explain how Kuchina and colleagues improved

the reliability of their difference score measures after making only the incongruent trials

more difficult [26].

The third approach is to purify task measures; that is, to decorrelate the components

of a difference score by reducing or eliminating their shared variance. Rey-Mermet and

colleagues [28] provide an interesting example in the context of executive control. In

typical executive control tasks, response times on congruent and incongruent trials are

highly correlated, reflecting shared variance from conflict-irrelevant processes including

baseline processing speed (e.g., perceptual processing, motor speed) and performance

strategies (e.g., individual differences in speed-accuracy preferences; [71]). Rey-Mermet

and colleagues designed a number of “response-deadline” executive control tasks where

participants had a limited amount of time to respond during a trial. The duration of the

response deadline was calibrated for each participant individually, such that participants

achieved a fixed accuracy level in blocks of neutral trials, which was then used as the

deadline for both congruent and incongruent trials. The calibration procedure controls

for individual differences in processing speed that contribute to performance in both

congruent and incongruent trials. It also controls for individual differences in strategy,

as regardless of whether a participant was biased towards speed or accuracy, inefficient

executive control would result in lower accuracy. With this calibration procedure, the

researchers found that the reliability of an accuracy difference score (incongruent minus

congruent, which ranged from ρ = 0.58 to ρ = 0.91) was as good or better than what had

previously been reported for executive control tasks. Thus, controlling for shared variance

across measures—that is, purifying measures—can help to improve task reliability.
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Figure 2: Difference score reliability as a function of the variances and reliabilities of its component

measures. (A) Difference-score reliability as the ratio of the component measure variances (σx/σy)

increases, with component reliabilities held fixed (ρxx′ = ρyy′ = 0.8). When component measures

have equal variances (σx/σy = 1), large correlations between the measures substantially diminish the

reliability of a difference score measure. When the variances are unequal (σx/σy > 1), even large

correlations between the measures are less deleterious for reliability. (B) Difference score reliability as

the component reliabilities change, with the ratio of the component-measure variances fixed (σx/σy =

2). When the variances are unequal, the reliability of a difference score reflects more the component

measure with the larger variance (here, component x).

2.3.2 Identify alternative measures

Rather than improving the reliability of difference scores, one can simply avoid using them

in the first place. This recommendation has a long history in experimental psychology.

Indeed, because difference scores will virtually always be less reliable, many authors have

advocated to abandon them [72–74].

What then are the alternatives to difference scores? Draheim and colleagues [71]

provide an in-depth review of alternatives to difference scores in the context of response-

time measures, though much of their discussion is applicable to difference scores in general.

One possibility is to simply use the component measures (e.g., performance on incongruent

trials in a Stroop task alone). Of course, because component scores will be contaminated

other sources of variance, such as baseline performance, interpreting component scores

should be done with caution. Another approach is to identify alternative measures of

task performance. For example, intra-individual response time variability and cognitive

efficiency have been identified as correlates of executive control that can be measured

reliably [75, 76] and are altered in psychopathology [77, 78].

3 Conclusion

We have briefly reviewed issues and research regarding the reliability of cognitive-task

measures. Specifically, we introduced a taxonomy of experiment design and analysis
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strategies for improving the reliability of cognitive-task measures, highlighting exemplary

studies that have successfully implemented such approaches. We hope we have made clear

the importance of calculating (and reporting) the reliability of task measures intended

for use in psychiatric research. We also hope we have provided a useful guide for experi-

menters who wish to design a new task, or to improve an existing task, in order to study

individual differences in cognitive processing.

We conclude with two important points. First, although we have discussed the im-

portance of task reliability, we have largely avoided the question of when a task measure

is “reliable enough”. Though it is tempting to fall back on conventional cutoffs (e.g.,

ρ ≥ 0.7), what constitutes sufficient reliability in actuality will depend on the goal(s)

of the researcher. If the goal is to detect a significant individual-differences correlation,

such as between a task measure and self-reported symptom measure, then a task measure

with “unacceptable” reliability by conventional standards may suffice (e.g., if a researcher

has the resources to collect a sample large enough to be adequately powered to detect a

correlation at the attenuated magnitude). On the other hand, if a researcher intends to

estimate an individual-differences correlation with high precision, or use a task measure

in a high stakes setting (e.g., treatment selection for an individual patient), then high

reliability may be required. We cannot overstate the value of simulation studies (e.g.,

[24]) for researchers trying to determine what level of reliability is required to meet their

goals and risk preferences.

Second, we would like to emphasize that reliability is but one of many important con-

siderations in the design and evaluation of cognitive task measures. Task measures may

be reliable but show poor convergent validity [27, 79], raising questions about whether

they actually measure the constructs they are intended to measure. Similarly, task mea-

sures may be reliable but exhibit poor ecological validity [80], thus being poor proxies for

cognition in real-world settings. Task measures may also be reliable but show poor pre-

dictive validity [22], explaining little (unique) variance in other variables of interest (e.g.,

symptoms, treatment response). Finally, there are many other practical considerations

(e.g., task duration, engagement, accessibility) to ensure cognitive tasks are able to be

deployed successfully in the clinic or in naturalistic environments at scale [81].

Despite the challenges of making task measures reliable and valid, we are optimistic

about their current and future use in biological psychiatry. We believe that, with further

efforts towards developing, documenting, and sharing reliable task paradigms, our field

can make increased strides towards understanding, predicting, and ultimately relieving

psychiatric illness.

4 Code availability

The code used to generate the figures in this manuscript is publicly available at

https://github.com/nivlab/biopsych-reliability-review.
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7 Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such that

papers from women and other minority scholars are under-cited relative to the number

of such papers in the field [82, 83]. Here we sought to proactively consider choosing

references that reflect the diversity of the field in thought, form of contribution, gender,

race, ethnicity, and other factors. First, we obtained the predicted gender of the first and

last author of each reference by using databases that store the probability of a first name

being carried by a woman [82]. By this measure and excluding self-citations to the first and

last authors of our current paper), our references contain 8.3% woman(first)/woman(last),

14.7% man/woman, 18.6% woman/man, and 58.4% man/man. This method is limited in

that a) names, pronouns, and social media profiles used to construct the databases may

not, in every case, be indicative of gender identity and b) it cannot account for intersex,

non-binary, or transgender people. Second, we obtained predicted racial/ethnic category

of the first and last author of each reference by databases that store the probability of

a first and last name being carried by an author of color [84, 85]. By this measure (and

excluding self-citations), our references contain 4.7% author of color (first)/author of

color(last), 15.5% white author/author of color, 18.0% author of color/white author, and

61.8% white author/white author. This method is limited in that a) names and Florida

Voter Data to make the predictions may not be indicative of racial/ethnic identity, and

b) it cannot account for Indigenous and mixed-race authors, or those who may face

differential biases due to the ambiguous racialization or ethnicization of their names. We

look forward to future work that could help us to better understand how to support

equitable practices in science.
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Supplementary materials

Calculating reliability

There are two measures of reliability of relevance for task measures: internal consistency

and test-retest reliability. Internal consistency is the reliability of a measure in a single

administration of a task. Test-retest reliability (also known as temporal stability) is the

reliability of a task measure across two or more administrations. Even for cross-sectional

experiments, where stability over time is of no scientific interest, test-retest reliability

is a useful index. This is because estimates of internal consistency tend to be inflated

due to between-participants variance from construct-irrelevant, state-dependent factors

(e.g., current mood, fatigue). Given sufficient time between testing sessions, test-retest

reliability should be less biased by state factors, and thus a better estimate of the true

cross-sectional task-measure reliability. However, whereas high internal consistency is

always desirable for individual difference studies, high test-retest reliability may not be,

depending on the construct a researcher is intending to measure. For example, low one-

month test-retest reliability may not be problematic for an index of a transient cognitive

process (e.g., mood-dependent attentional biases), but is a problem if individual differ-

ences in a cognitive process are hypothesized to be stable across time (e.g., extraversion

and social reward processing).

The test-retest reliability of a task measure can be calculated in numerous ways [1].

Perhaps the simplest approach is to compute the Pearson correlation between partici-

pants’ scores from two sessions. An alternative approach is to calculate the intraclass

correlation coefficient (ICC), which decomposes a task measure into true score variance

and error variance. There are many formulas for calculating ICC [2], with the critical

distinction being whether reliability is based on the consistency or absolutely agreement

of a task measure across two administrations. Consistency-based ICCs are affected only

by the relative ordering of participants across time; that is, they are insensitive to sys-

tematic changes to the actual values of a task measure across time (e.g., due to practice

effects on task performance). In contrast, absolute-agreement-based ICCs measure the

degree to which scores are stable across time. The type of ICC to use depends on the

experimenter’s goals and the ultimate use of the task measure.

Calculating the internal consistency of a task measure is more complicated. The most

common measure of internal consistency is Cronbach’s α, which is a function of the av-

erage correlation across all unique pairs of trials. However, Cronbach’s α is an accurate

measure of reliability only under assumptions that are unrealistic for many tasks (e.g.,

equivalence of trials, uncorrelated measurement error; [1, 3]). As such, internal consis-

tency for task measures is instead usually calculated via split-half reliability, where relia-

bility is estimated after trial data have been divided into two halves. A critical challenge

in calculating split-half reliability is in deciding how to partition the data, as estimates

of reliability may be also biased if the data partitions violate either of the two above

assumptions (for detailed discussion, see [3, 4]). For example, first-second splitting (i.e.,

partitioning the data into the first and second halves of an experiment) may underestimate

reliability due to nonequivalence of the two partitions resulting from practice, fatigue,

or other linear time effects. In contrast, odd-even splitting (i.e., partitioning the data
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into odd and even trials) may cause bias when behavior across trials is non-independent

(i.e., measurement error is correlated across trials), artificially inflating the similarity

of data across partitions and thereby decreasing estimates of measurement noise and

overestimating reliability. Therefore, where possible, a permutation-based approach to

calculating split-half reliability is recommended [1, 4]. Here, reliability is averaged across

many thousands of random partitions of the data into halves. (Insofar that Cronbach’s α

is analytically equivalent to the average of all possible split-half reliability estimates [5],

permutation-based split-half reliability provides an approximation to Cronbach’s α while

avoiding its problematic assumptions.) For task measures derived from cognitive models,

however, it may be prohibitively computationally intensive to employ such an approach

due to the need to re-estimate the model for each new subset of the data. Moreover,

for learning tasks that are commonly used in computational psychiatry, cognitive-model

based task measures cannot be estimated from only a subset of the trials due to inherent

non-independence of task behavior across trials. In these cases, one can design tasks with

at least two independent blocks. The model can then be fit to each block independently

and reliability calculated using the model parameters estimated from each.

As a final point, traditional sum or mean score estimates of performance (e.g., pro-

portion correct responses, mean response time) may substantially underestimate task

reliability [6–8]. This is because such summary scores are contaminated by trial-level

noise that, in the absence of a sufficiently (possibly prohibitively) large number of tri-

als, increases measurement error (and thus diminishes reliability). Instead, it may be

preferable to use trial-level hierarchical models in which observations are organized hier-

archically (e.g., individuals within a group, trials within an individual) with variability

modeled at both levels. Hierarchical models exert a pooling or regularization effect on

person-level variables, in effect correcting for measurement error and improving estimates

of reliability [6–8]. The benefits of hierarchical models for estimating reliability have been

multiply demonstrated [9–12], though see [13] for discussion of when these benefits may

be limited. Using statistical models that more accurately characterize the latent data-gen-

erating process (e.g., using the shifted log-normal distribution to model response times)

may also improve reliability estimates [7, 14]. For a detailed discussion of hierarchical

and generative models in the context of task reliability, see [7, 15].
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